1
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. Targeting γc family cytokines with biologics: current status and future prospects. MAbs 2025; 17:2468312. [PMID: 39967341 PMCID: PMC11845063 DOI: 10.1080/19420862.2025.2468312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Over the recent decades the market potential of biologics has substantially expanded, and many of the top-selling drugs worldwide are now monoclonal antibodies or antibody-like molecules. The common gamma chain (γc) cytokines, Interleukin (IL-)2, IL-4, IL-7, IL-9, IL-15, and IL-21, play pivotal roles in regulating immune responses, from innate to adaptive immunity. Dysregulation of cell signaling by these cytokines is strongly associated with a range of immunological disorders, which includes cancer as well as autoimmune and inflammatory diseases. Given the essential role of γc cytokines in maintaining immune homeostasis, the development of therapeutic interventions targeting these molecules poses unique challenges. Here, we provide an overview of current biologics targeting either single or multiple γc cytokines or their respective receptor subunits across a spectrum of diseases, primarily focusing on antibodies, antibody-like constructs, and antibody-cytokine fusions. We summarize therapeutic biologics currently in clinical trials, highlighting how they may offer advantages over existing therapies and standard of care, and discuss recent advances in this field. Finally, we explore future directions and the potential of novel therapeutic intervention strategies targeting this cytokine family.
Collapse
Affiliation(s)
- Fabian Bick
- Argenx BV, Zwijnaarde, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J. Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Sanchez Santos A, Socorro Avila I, Galvan Fernandez H, Cazorla Rivero S, Lemes Castellano A, Cabrera Lopez C. Eosinophils: old cells, new directions. Front Med (Lausanne) 2025; 11:1470381. [PMID: 39886455 PMCID: PMC11780905 DOI: 10.3389/fmed.2024.1470381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Eosinophils are polymorphonuclear cells that have progressively gained attention due to their involvement in multiple diseases and, more recently, in various homeostatic processes. Their well-known roles range from asthma and parasitic infections to less prevalent diseases such as eosinophilic granulomatosis with polyangiitis, eosinophilic esophagitis, and hypereosinophilic syndrome. In recent years, various biological therapies targeting these cells have been developed, altering the course of eosinophilic pathologies. Recent research has demonstrated differences in eosinophil subtypes and their functions. The presence of distinct classes of eosinophils has led to the theory of resident eosinophils (rEos) and inflammatory eosinophils (iEos). Subtype differences are determined by the pattern of protein expression on the cell membrane and the localization of eosinophils. Most of this research has been conducted in murine models, but several studies confirm these findings in peripheral blood and tissue. The objective of this review is to provide a comprehensive analysis of eosinophils, by recent findings that divide this cell line into two distinct populations with different functions and purposes.
Collapse
Affiliation(s)
- Alejandra Sanchez Santos
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| | - Iovanna Socorro Avila
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| | - Helena Galvan Fernandez
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| | - Sara Cazorla Rivero
- Hospital Universitario de Gran Canaria Dr. Negrín, Research Unit, Las Palmas de Gran Canaria, Spain
- Universidad de La Laguna, Research Unit, Santa Cruz de Tenerife, Spain
| | - Angelina Lemes Castellano
- Hospital Universitario de Gran Canaria Dr. Negrín, Hematology Service, Las Palmas de Gran Canaria, Spain
| | - Carlos Cabrera Lopez
- Hospital Universitario de Gran Canaria Dr. Negrín, Respiratory Service, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
3
|
Schuijs MJ, Brenis Gomez CM, Bick F, Van Moorleghem J, Vanheerswynghels M, van Loo G, Beyaert R, Voehringer D, Locksley RM, Hammad H, Lambrecht BN. Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. J Exp Med 2024; 221:e20240103. [PMID: 39297875 PMCID: PMC11413418 DOI: 10.1084/jem.20240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.
Collapse
Affiliation(s)
- Martijn J. Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia M. Brenis Gomez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Fabian Bick
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Laboratory of Molecular and Cellular Pathophysiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Richard M. Locksley
- UCSF Department of Medicine and Howard Hugues Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands
| |
Collapse
|
4
|
Xu F, Jiang H, Li F, Wen Y, Jiang P, Chen F, Feng Y. Association between the systemic inflammation response index and mortality in the asthma population. Front Med (Lausanne) 2024; 11:1446364. [PMID: 39296893 PMCID: PMC11408729 DOI: 10.3389/fmed.2024.1446364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Background As a novel indicator of inflammation, the relationship between the systemic immune-inflammation index (SIRI) and mortality in patients with asthma remains uncertain. Our study aimed to explore the association between SIRI and mortality in asthma patients. Methods Data from the National Health and Nutrition Examination Survey (NHANES) for US adults from 2001 to 2018 were included in this study. Then, we divided all patients into three groups based on SIRI tertiles and used multivariable weighted Cox regression analysis, smoothing curve fitting, survival curve analysis, and subgroup analysis to investigate the relationship between SIRI and asthma. Results A total of 6,156 participants were included in the study, with each SIRI tertile consisting of 2052 individuals. Asthma patients with higher SIRI levels were older, had a higher level of education, were more likely to be married, and had a higher chance of being smokers. In Cox proportional-hazards models, the highest SIRI group showed higher hazard ratios (HRs) for all-cause mortality in individuals with asthma after adjusting for potential confounders. The restricted cubic spline analysis indicated a non-linear relationship between SIRI and all-cause mortality. The Kaplan-Meier survival curves showed that patients with higher SIRI levels had a higher risk of all-cause mortality. Subgroup analyses revealed SIRI's association with all-cause mortality across various demographics, including age, sex, race, education levels, smoking status, and marital status. Conclusion Our study provides evidence for the relationship between SIRI and mortality in asthma patients. SIRI may potentially serve as a predictive tool for evaluating asthma mortality rates.
Collapse
Affiliation(s)
- Feng Xu
- Department of Intensive Care Unit, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Hui Jiang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Fanglan Li
- Department of Stomatology, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Yan Wen
- Department of Intensive Care Unit, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Pan Jiang
- Department of Stomatology, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Feng Chen
- Department of Intensive Care Unit, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Yongwen Feng
- Department of Intensive Care Unit, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Cheng S, Jiang D, Lan X, Liu K, Fan C. Voltage-gated potassium channel 1.3: A promising molecular target in multiple disease therapy. Biomed Pharmacother 2024; 175:116651. [PMID: 38692062 DOI: 10.1016/j.biopha.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Yang S, Guo R, Meng X, Zhang Y. AIM2 participates in house dust mite (HDM)-induced epithelial dysfunctions and ovalbumin (OVA)-induced allergic asthma in infant mice. J Asthma 2024; 61:479-490. [PMID: 38078661 DOI: 10.1080/02770903.2023.2289157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/13/2024]
Abstract
Objective: Allergen sensitization and high rates of concomitant allergic diseases are characteristic of severe pediatric asthma. The present study was aimed to explore the mechanism of allergic asthma via bioinformatics and experiment investigation. Methods: The GSE27011 dataset contained the expression profiles of normal and pediatric asthma white blood cells was downloaded for analyzing the different expression genes and function enrichment. The allergic asthma model in infant mice was established by ovalbumin (OVA) stimulation. The cellular model was established by house dust mite (HDM)-stimulation in human bronchial epithelial cells. The absent in melanoma 2 (AIM2) knockdown was achieved by intranasal lentivirus injection or cell infection. The bronchoalveolar lavage fluid (BALF) was collected for cell counting and ELISA assessment of cytokines. Lung tissues were collected for HE staining and immunohistochemical (IHC) staining. Real-time PCR and immunoblotting were used for the determination of key gene expressions in mouse and cell models. Results: upregulation of AIM2 gene expression was observed in pediatric asthma patients based on GSE27011 and OVA-induced infant mouse allergic asthma model. AIM2 knockdown ameliorated OVA caused elevation in airway hyper-responsiveness (AHR), elevation in cell quantities (eosinophils, neutrophils, lymphocytes), and levels of cytokines (IL-4, IL-13, TNF-α, and OVA-specific IgE) in BALF. Moreover, AIM2 knockdown relieved OVA-caused histopathological alterations in mouse lungs, up-regulation of AIM2 levels, and NOD1 and receptor-interacting protein 2 (RIP2) protein levels, as well as p65 phosphorylation. In the cell model, AIM2 knockdown partially ameliorated HDM-induced epithelial dysfunctions by promoting cell viability, down-regulating inflammatory cytokines levels, and decreasing the protein levels of AIM2, NOD1, RIP2, and phosphorylated p65. Conclusion: AIM2 participates in HDM-induced epithelial dysfunctions and OVA-induced allergic asthma progression. AIM2 could be a promising target for pediatric allergic asthma treatment regimens, which warrants further in vivo investigations.
Collapse
Affiliation(s)
- Shengzhi Yang
- Department of Pediatrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, PR China
| | - Ru Guo
- Department of Pediatrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, PR China
| | - Xianmei Meng
- Department of Pediatrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, PR China
| | - Yunhong Zhang
- Department of Pediatrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, PR China
| |
Collapse
|
7
|
AlBloushi S, Al-Ahmad M. Exploring the immunopathology of type 2 inflammatory airway diseases. Front Immunol 2024; 15:1285598. [PMID: 38680486 PMCID: PMC11045947 DOI: 10.3389/fimmu.2024.1285598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Significant advancements have been achieved in understanding the roles of different immune cells, as well as cytokines and chemokines, in the pathogenesis of eosinophilic airway conditions. This review examines the pathogenesis of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP), marked by complex immune dysregulation, with major contributions from type 2 inflammation and dysfunctional airway epithelium. The presence of eosinophils and the role of T-cell subsets, particularly an imbalance between Treg and Th17 cells, are crucial to the disease's pathogenesis. The review also investigates the pathogenesis of eosinophilic asthma, a unique asthma subtype. It is characterized by inflammation and high eosinophil levels, with eosinophils playing a pivotal role in triggering type 2 inflammation. The immune response involves Th2 cells, eosinophils, and IgE, among others, all activated by genetic and environmental factors. The intricate interplay among these elements, chemokines, and innate lymphoid cells results in airway inflammation and hyper-responsiveness, contributing to the pathogenesis of eosinophilic asthma. Another scope of this review is the pathogenesis of Eosinophilic Granulomatosis with Polyangiitis (EGPA); a complex inflammatory disease that commonly affects the respiratory tract and small to medium-sized blood vessels. It is characterized by elevated eosinophil levels in blood and tissues. The pathogenesis involves the activation of adaptive immune responses by antigens leading to T and B cell activation and eosinophil stimulation, which causes tissue and vessel damage. On the other hand, Allergic Bronchopulmonary Aspergillosis (ABPA) is a hypersensitive response that occurs when the airways become colonized by aspergillus fungus, with the pathogenesis involving activation of Th2 immune responses, production of IgE antibodies, and eosinophilic action leading to bronchial inflammation and subsequent lung damage. This analysis scrutinizes how an imbalanced immune system contributes to these eosinophilic diseases. The understanding derived from this assessment can steer researchers toward designing new potential therapeutic targets for efficient control of these disorders.
Collapse
Affiliation(s)
| | - Mona Al-Ahmad
- Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait
- Microbiology Department, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
8
|
Muhamad SA, Safuan S, Stanslas J, Wan Ahmad WAN, Bushra SMR, Nurul AA. Lignosus rhinocerotis extract ameliorates airway inflammation and remodelling via attenuation of TGF-β1 and Activin A in a prolonged induced allergic asthma model. Sci Rep 2023; 13:18442. [PMID: 37891170 PMCID: PMC10611742 DOI: 10.1038/s41598-023-45640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) is used traditionally to treat various illnesses, including asthma in Southeast Asia. This study was carried out to evaluate the effect of L. rhinocerotis extract (LRE) on airway inflammation and remodelling in a chronic model of asthma. The present study investigated the therapeutic effects of LRE on airway inflammation and remodelling in prolonged allergen challenged model in allergic asthma. Female Balb/C mice were sensitised using ovalbumin (OVA) on day 0 and 7, followed by OVA-challenged (3 times/week) for 2, 6 and 10 weeks. LRE (125, 250, 500 mg/kg) were administered by oral gavage one hour after every challenge. One group of mice were left untreated after the final challenge for two weeks. LRE suppressed inflammatory cells and Th2 cytokines (IL-4, IL-5 and IL-13) in BALF and reduced IgE level in the serum. LRE also attenuated eosinophils infiltration and goblet cell hyperplasia in the lung tissues; as well as ameliorated airway remodelling by reducing smooth muscle thickness and reducing the expressions of TGF-β1 and Activin A positive cell in the lung tissues. LRE attenuated airway inflammation and remodelling in the prolonged allergen challenge of allergic asthma model. These findings suggest the therapeutic potential of LRE as an alternative for the management of allergic asthma.
Collapse
Affiliation(s)
- Siti-Aminah Muhamad
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sabreena Safuan
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
9
|
Cheng W, Bu X, Xu C, Wen G, Kong F, Pan H, Yang S, Chen S. Higher systemic immune-inflammation index and systemic inflammation response index levels are associated with stroke prevalence in the asthmatic population: a cross-sectional analysis of the NHANES 1999-2018. Front Immunol 2023; 14:1191130. [PMID: 37600830 PMCID: PMC10436559 DOI: 10.3389/fimmu.2023.1191130] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Significant evidence suggests that asthma might originate from low-grade systemic inflammation. Previous studies have established a positive association between the systemic immune-inflammation index (SII) and the systemic inflammation response index (SIRI) levels and the risk of stroke. However, it remains unclear whether SII, SIRI and the prevalence of stroke are related in individuals with asthma. Methods The present cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2018. SII was calculated using the following formula: (platelet count × neutrophil count)/lymphocyte count. SIRI was calculated using the following formula: (neutrophil count × monocyte count)/lymphocyte count. The Spearman rank correlation coefficient was used to determine any correlation between SII, SIRI, and the baseline characteristics. Survey-weighted logistic regression was employed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) to determine the association between SII, SIRI, and stroke prevalence. The predictive value of SII and SIRI for stroke prevalence was assessed through receiver operating characteristic (ROC) curve analysis, with the area under the ROC curve (AUC) being indicative of its predictive value. Additionally, clinical models including SIRI, coronary heart disease, hypertension, age, and poverty income ratio were constructed to evaluate their clinical applicability. Results Between 1999 and 2018, 5,907 NHANES participants with asthma were identified, of which 199 participants experienced a stroke, while the remaining 5,708 participants had not. Spearman rank correlation analysis indicated that neither SII nor SIRI levels exhibited any significant correlation with the baseline characteristics of the participants (r<0.1). ROC curves were used to determine the optimal cut-off values for SII and SIRI levels to classify participants into low- and high-level groups. Higher SII and SIRI levels were associated with a higher prevalence of stroke, with ORs of 1.80 (95% CI, 1.18-2.76) and 2.23 (95% CI, 1.39-3.57), respectively. The predictive value of SIRI (AUC=0.618) for stroke prevalence was superior to that of SII (AUC=0.552). Furthermore, the clinical model demonstrated good predictive value (AUC=0.825), with a sensitivity of 67.1% and specificity of 87.7%. Conclusion In asthmatics, higher levels of SII and SIRI significantly increased the prevalence of stroke, with its association being more pronounced in individuals with coexisting obesity and hyperlipidaemia. SII and SIRI are relatively stable novel inflammatory markers in the asthmatic population, with SIRI having a better predictive value for stroke prevalence than SII.
Collapse
Affiliation(s)
- Wenke Cheng
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Xiancong Bu
- Department of Neurology, Zaozhuang Municipal Hospital, Shandong, China
| | - Chunhua Xu
- Department of Recuperation, Lintong Rehabilitation and Recuperation Center, Shanxi, China
| | - Grace Wen
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Fanliang Kong
- University Medical Center of Göttingen, Georg-August University, Göttingen, Germany
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shumin Yang
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siwei Chen
- Department of Cardiovascular Medicine, Nanchang People's Hospital (The Third Hospital of Nanchang), Jiangxi, China
| |
Collapse
|
10
|
Chen S, Piao Y, Song Y, Wang Z, Jiang J, Piao Y, Li L, Xu C, Li L, Chi Y, Jin G, Yan G. Protective effects of glaucocalyxin A on the airway of asthmatic mice. Open Med (Wars) 2022; 17:1158-1171. [PMID: 35859797 PMCID: PMC9263894 DOI: 10.1515/med-2022-0513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
The aim of this study is to investigate the protective effects of glaucocalyxin A (GLA) on airways in mouse models of asthma, concerning the inflammatory mediators, Th1/Th2 subgroup imbalance, and Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Hematoxylin and eosin/periodic acid-Schiff staining was used to observe the pathological changes in lung tissues. Inflammatory cytokine contents in the bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay. Protein expression levels were detected with Western blot, immunohistochemistry, and immunofluorescence. In vivo studies showed that, in ovalbumin (OVA)-induced asthmatic mouse models, the GLA treatments reduced the airway hyperresponsiveness and the secretion of inflammatory cells, declined the proliferation of goblet cells, decreased the levels of IL-4, IL-5, and IL-13, and increased the contents of interferon-γ and IL-12. Moreover, GLA inhibited the protein expression levels of TLR4, MyD88, TRAF6, and NF-κB in OVA-induced asthmatic mouse models. Further in vitro studies showed that GLA inhibited the expression of NF-κB, p-IκBα, tumor necrosis factor-α, IL-6, and IL-1β and blocked the nuclear transfer of NF-κB in lipopolysaccharide-stimulated RAW264.7 macrophages. Conclusively, GLA can inhibit the inflammatory responses in OVA-induced asthmatic mice and inhibit the release of inflammatory factors in LPS-induced RAW264.7 macrophages, which may be related to the inhibition of TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Si Chen
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji 133099, Jilin, P. R. China
- Department of Neonatology, Children’s Hospital of Changchun, Changchun 130061, Jilin, P. R. China
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
| | - Ying Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Emergency, Yanbian University Hospital, Yanji 133000, Jilin, P. R. China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, Jilin, P. R. China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, P. R. China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, Jilin, P. R. China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, P. R. China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, P. R. China
| | - Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, Jilin, P. R. China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, Jilin, P. R. China
| | - Yongxue Chi
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Pediatrics, Affiliated Hospital of Yanbian University, No. 1327, Juzi Street, Yanji 133099, Jilin, P. R. China
| | - Guihua Jin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133000, Jilin, P. R. China
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji 133002, Jilin, P. R. China
| | - Guanghai Yan
- Department of Neonatology, Children’s Hospital of Changchun, Changchun 130061, Jilin, P. R. China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji 133002, Jilin, P. R. China
| |
Collapse
|
11
|
Еlmahdy MK, Abdelaziz RR, Elmahdi HS, Suddеk GM. Effect of Agmatine on a mouse model of allergic airway inflammation: A comparative study. Autoimmunity 2022; 55:608-619. [PMID: 35775471 DOI: 10.1080/08916934.2022.2093864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Asthma is a chronic lung disease that injures and constricts the airways. This study evaluates the effects of agmatine on ovalbumin (OVA)-induced allergic inflammation of the airways. METHODS OVA sensitization by intraperitoneal injection was used to induce airway inflammation in mice on days 0 and 7; then the mice were challenged using beclomethasone (150 µg/kg, inhalation), a standard anti-asthmatic drug, from day 14 to day 16. Furthermore, agmatine (200 mg/kg) was intraperitoneally injected on day 0 and then daily for 16 days, followed by OVA challenge. The lung weight ratio, total and differential cell counts, TNF-α, interleukin-5 (IL-5) and IL-13 in bronchoalveolar lavage fluid (BALF), lung nitrite/nitrate (NO), and oxidative parameters were determined. Moreover, histopathological and immunohistochemical staining was employed. RESULTS Injection of agmatine (200 mg/kg) for 16 days significantly attenuated inflammation of the airways. The levels of BALF inflammatory cells, TNF-α, IL-5, IL-13, lung NO, and malondialdehyde (MDA), significantly decreased with concomitant elevation of superoxide dismutase (SOD) levels. Histological and immunohistochemical analyses of mast cells paralleled to biochemical improvements. CONCLUSION Finally, this study illustrated that agmatine attenuates the allergic inflammation of airways caused by OVA by mitigating cytokines release, NO expression, and oxidative stress.
Collapse
Affiliation(s)
- Mohammed K Еlmahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Hoda S Elmahdi
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddеk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
12
|
Balkrishna A, Solleti SK, Singh H, Singh R, Bhattacharya K, Varshney A. Herbo-metallic ethnomedicine 'Malla Sindoor' ameliorates lung inflammation in murine model of allergic asthma by modulating cytokines status and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115120. [PMID: 35202713 DOI: 10.1016/j.jep.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is the leading inflammatory disease of the airways with inadequate therapeutic options. 'Malla Sindoor' (MS) is a metal-based ethnomedicinal formulation that has been prescribed in the ancient traditional medicinal system for treating chronic inflammations. AIM OF THE STUDY Here, we validated the anti-inflammatory and anti-asthmatic properties of traditional metallic medicine MS in asthmatic mice model and in LPS stimulated human monocytic THP-1 cells, by examining the relevant cellular, biochemical and molecular intermediates. MATERIALS AND METHODS Scanning Electron Microscope (SEM), Electron Dispersive X-ray (EDX), and X-Ray Diffraction (XRD) were performed to characterize MS particles. Allergic asthma was induced in Balb/c mice through intraperitoneal ovalbumin (OVA) injection. Experimental groups include, normal control, disease control, Dexamethasone (2 mg/kg) and three MS treated groups: 4.3 mg/kg, 13 mg/kg, and 39 mg/kg. Quantitative PCR, inflammatory cytokines and anti-oxidant enzymes, and histological analysis were performed, in the treated mice and LPS stimulated human monocytic THP-1 cells for determining the MS efficacy. RESULTS SEM image analysis showed the MS to be heterogenous in shape with a particle size distribution between 100 nm-1 μm. Elemental composition showed the presence of mercury (Hg), arsenic (As), and sulphur (S) along with other elements in the forms of mercury sulfide, arsenic trioxide, and their alloy crystals. OVA-challenge of the Balb/c mice resulted in the development of overt pathological features for allergic asthma including smooth muscle thickening and collagen deposition. Mice receiving MS-exhibited alleviation of allergic asthma features. BAL fluid analysis showed a decrease in the total cell count and decreases in neutrophils, monocytes, lymphocytes, and eosinophils. Further, the stimulated levels of interleukin (IL)-1β, -6, and TNF-α cytokines and antioxidant levels were also reduced upon MS-treatment. At the molecular level, MS-treatment reduced stimulated mRNA expression levels for IL-4, -5, -10, -13, -33, and IFN-γ cytokines. Histological analysis following MS-treatment of OVA-stimulated mice lungs showed a reduction in mucus accumulation in airways, decreases in peribronchial collagen deposition, bronchial smooth muscle thickening, and attenuation of inflammatory cell infiltration. In addition, under in-vitro conditions, MS-treatment attenuated the LPS induced secretion of IL-1β, -6, and TNF-α from THP-1 cells. CONCLUSION Collectively, the results suggest that MS acts as an effective anti-asthmatic and anti-inflammatory agent, by regulating various cellular, biochemical and molecular intermediates.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, India; Patanjali UK Trust, Glasgow, United Kingdom
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, Uttarakhand, India; Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
13
|
Dou T, Wang J, Liu Y, Jia J, Zhou L, Liu G, Li X, Han M, Lin J, Huang F, Chen X. A Combined Transcriptomic and Proteomic Approach to Reveal the Effect of Mogroside V on OVA-Induced Pulmonary Inflammation in Mice. Front Immunol 2022; 13:800143. [PMID: 35371026 PMCID: PMC8972588 DOI: 10.3389/fimmu.2022.800143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Mogroside V is a bioactive ingredient extracted from the natural food Siraitia grosvenorii which possesses functions that stimulate lung humidification and cough relief activities, but its underlying mechanisms were rarely studied. To estimate its potential protective effect on ovalbumin (OVA)-induced pulmonary inflammation and understand its system-wide mechanism, integrated omics was applied in this study. Mogroside V effectively reduced the levels of IgE, TNF-α, and IL-5 in OVA-induced mice. The results of RNA-seq and data-independent acquisition proteomics approach revealed that 944 genes and 341 proteins were differentially expressed in the normal control group (NC) and ovalbumin-induced control group (OC) and 449 genes and 259 proteins were differentially expressed between the OC and the group treated with 50 mg/kg mogroside V (MV). After a combined analysis of the transcriptome and the proteome, 93 major pathways were screened, and we discovered that mogroside V exerts an anti-inflammation effect in the lung via NF-κB and JAK-STAT, both of which are among the signaling pathways mentioned above. In addition, we found that the key regulatory molecules (Igha, Ighg1, NF-κB, Jak1, and Stat1) in the two pathways were activated in inflammation and inhibited by mogroside V. Thus, mogroside V may be the main bioactivity component in S. grosvenorii that exerts lung humidification and cough relief effects.
Collapse
Affiliation(s)
- Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Juan Wang
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jiangang Jia
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jiaxun Lin
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Fengxiang Huang
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- *Correspondence: Xu Chen,
| |
Collapse
|
14
|
Nam HH, Lee JH, Ryu SM, Lee S, Yang S, Noh P, Moon BC, Kim JS, Seo YS. Gekko gecko extract attenuates airway inflammation and mucus hypersecretion in a murine model of ovalbumin-induced asthma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114574. [PMID: 34461187 DOI: 10.1016/j.jep.2021.114574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gekko gecko is used as a traditional medicine for various diseases including respiratory disorders in northeast Asian countries, mainly Korea, Japan, and China. AIM OF THE STUDY Allergic asthma is a chronic respiratory disease caused by an inappropriate immune response. Due to the recent spread of coronavirus disease 2019, interest in the treatment of pulmonary disorders has rapidly increased. In this study, we investigated the anti-asthmatic effects of G. gecko extract (GGE) using an established mouse model of ovalbumin-induced asthma. MATERIALS AND METHODS To evaluate the anti-asthmatic effects of GGE, we evaluated histological changes and the responses of inflammatory mediators related to allergic airway inflammation. Furthermore, we investigated the regulatory effects of GGE on type 2 helper T (Th2) cell activation. RESULTS Administration of GGE attenuated asthmatic phenotypes, including inflammatory cell infiltration, mucus production, and expression of Th2 cytokines. Furthermore, GGE treatment reduced Th2 cell activation and differentiation. CONCLUSIONS These results indicate that GGE alleviates allergic airway inflammation by regulating Th2 cell activation and differentiation.
Collapse
Affiliation(s)
- Hyeon Hwa Nam
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, 58245, South Korea.
| | - Ji Hye Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, 58245, South Korea; College of Korean Medicine, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk, 27126, South Korea.
| | - Seung Mok Ryu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, 58245, South Korea.
| | - Sueun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, 58245, South Korea.
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, 58245, South Korea.
| | - Pureum Noh
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, 58245, South Korea.
| | - Byung Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, 58245, South Korea.
| | - Joong Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, 58245, South Korea; College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| | - Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, 58245, South Korea.
| |
Collapse
|
15
|
Prihandoko R, Kaur D, Wiegman CH, Alvarez-Curto E, Donovan C, Chachi L, Ulven T, Tyas MR, Euston E, Dong Z, Alharbi AGM, Kim RY, Lowe JG, Hansbro PM, Chung KF, Brightling CE, Milligan G, Tobin AB. Pathophysiological regulation of lung function by the free fatty acid receptor FFA4. Sci Transl Med 2021; 12:12/557/eaaw9009. [PMID: 32817367 DOI: 10.1126/scitranslmed.aaw9009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 10/22/2019] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
Increased prevalence of inflammatory airway diseases including asthma and chronic obstructive pulmonary disease (COPD) together with inadequate disease control by current frontline treatments means that there is a need to define therapeutic targets for these conditions. Here, we investigate a member of the G protein-coupled receptor family, FFA4, that responds to free circulating fatty acids including dietary omega-3 fatty acids found in fish oils. We show that FFA4, although usually associated with metabolic responses linked with food intake, is expressed in the lung where it is coupled to Gq/11 signaling. Activation of FFA4 by drug-like agonists produced relaxation of murine airway smooth muscle mediated at least in part by the release of the prostaglandin E2 (PGE2) that subsequently acts on EP2 prostanoid receptors. In normal mice, activation of FFA4 resulted in a decrease in lung resistance. In acute and chronic ozone models of pollution-mediated inflammation and house dust mite and cigarette smoke-induced inflammatory disease, FFA4 agonists acted to reduce airway resistance, a response that was absent in mice lacking expression of FFA4. The expression profile of FFA4 in human lung was similar to that observed in mice, and the response to FFA4/FFA1 agonists similarly mediated human airway smooth muscle relaxation ex vivo. Our study provides evidence that pharmacological targeting of lung FFA4, and possibly combined activation of FFA4 and FFA1, has in vivo efficacy and might have therapeutic value in the treatment of bronchoconstriction associated with inflammatory airway diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Rudi Prihandoko
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Davinder Kaur
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, LE3 9QP, Leicester, UK
| | - Coen H Wiegman
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Elisa Alvarez-Curto
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton, NSW 2305 and The University of Newcastle, Callaghan, NSW 2208, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo NSW 2007, Australia
| | - Latifa Chachi
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, LE3 9QP, Leicester, UK
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Martha R Tyas
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Eloise Euston
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Zhaoyang Dong
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK
| | - Abdulrahman Ghali M Alharbi
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK.,Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 42353, Saudi Arabia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton, NSW 2305 and The University of Newcastle, Callaghan, NSW 2208, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo NSW 2007, Australia
| | - Jack G Lowe
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton, NSW 2305 and The University of Newcastle, Callaghan, NSW 2208, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, and University of Technology Sydney, Faculty of Science, Ultimo NSW 2007, Australia
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, LE3 9QP, Leicester, UK.
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK.
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
16
|
Nam W, Kim H, Kim J, Nam B, Bae C, Kim J, Park S, Lee J, Sim J. Lactic Acid Bacteria and Natural Product Complex Ameliorates Ovalbumin-Induced Airway Hyperresponsiveness in Mice. J Med Food 2021; 24:517-526. [PMID: 34009021 DOI: 10.1089/jmf.2020.4853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The incidence of respiratory diseases, such as asthma, has substantially increased in recent times owing to environmental changes, such as air pollution. Induction of a chronic inflammatory response begins with production of biologically active mediators from the airway epithelium, which attracts and recruits inflammatory cells into the lung airway. In our previous study, we confirmed that Lactobacillus casei HY2782 and Bifidobacterium animalis spp. lactis HY8002 could improve lung inflammation in the COPD animal model. In this study, we investigated the effect of the HY2782 complex against airway hyperresponsiveness by using an ovalbumin (OVA)-induced animal model. An orally administered HY2782 complex on OVA-induced allergic asthma in a BALB/c mouse model was used. The present results showed that the HY2782 complex suppressed total immunoglobulin E in serum and bronchoalveolar lavage fluid (BALF). The cytokine production profile in BALF and serum revealed that the HY2782 complex showed reduced levels of Th2 cytokines among immune factors released due to the elevated allergic response. Levels of inflammatory mediators in BALF, MCP-1, MIP-2, and CXCL-9 were decreased by oral administration of the HY2782 complex. Lower numbers of eosinophils and neutrophils in BALF suggested that inflammation was ameliorated by the HY2782 complex. Histological observation of lung sections also showed infiltration of fewer cells. From results, we suggested that the HY2782 complex effectively responds to improvement of the immune response and airway hypersensitivity reaction because of the anti-inflammatory effect of the Pueraria lobata root extract and antioxidant effect of HY2782.
Collapse
Affiliation(s)
- Woo Nam
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Hyeonji Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Jisoo Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Bora Nam
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Chuhyun Bae
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Jooyun Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Soodong Park
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | | | - Jaehun Sim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| |
Collapse
|
17
|
Evolution toward beta common chain receptor usage links the matrix proteins of HIV-1 and its ancestors to human erythropoietin. Proc Natl Acad Sci U S A 2021; 118:2021366118. [PMID: 33372148 PMCID: PMC7812818 DOI: 10.1073/pnas.2021366118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The HIV-1 matrix protein p17 (p17) is a pleiotropic molecule impacting on different cell types. Its interaction with many cellular proteins underlines the importance of the viral protein as a major determinant of human specific adaptation. We previously showed the proangiogenic capability of p17. Here, by integrating functional analysis and receptor binding, we identify a functional epitope that displays molecular mimicry with human erythropoietin (EPO) and promotes angiogenesis through common beta chain receptor (βCR) activation. The functional EPO-like epitope was found to be present in the matrix protein of HIV-1 ancestors SIV originated in chimpanzees (SIVcpz) and gorillas (SIVgor) but not in that of HIV-2 and its ancestor SIVsmm from sooty mangabeys. According to biological data, evolution of the EPO-like epitope showed a clear differentiation between HIV-1/SIVcpz-gor and HIV-2/SIVsmm branches, thus highlighting this epitope on p17 as a divergent signature discriminating HIV-1 and HIV-2 ancestors. P17 is known to enhance HIV-1 replication. Similarly to other βCR ligands, p17 is capable of attracting and activating HIV-1 target cells and promoting a proinflammatory microenvironment. Thus, it is tempting to speculate that acquisition of an epitope on the matrix proteins of HIV-1 ancestors capable of triggering βCR may have represented a critical step to enhance viral aggressiveness and early human-to-human SIVcpz/gor dissemination. The hypothesis that the p17/βCR interaction and βCR abnormal stimulation may also play a role in sustaining chronic activation and inflammation, thus marking the difference between HIV-1 and HIV-2 in term of pathogenicity, needs further investigation.
Collapse
|
18
|
Chao CL, Wang CJ, Huang HW, Kuo HP, Su MH, Lin HC, Teng CW, Sy LB, Wu WM. Poria cocos Modulates Th1/Th2 Response and Attenuates Airway Inflammation in an Ovalbumin-Sensitized Mouse Allergic Asthma Model. Life (Basel) 2021; 11:life11050372. [PMID: 33919400 PMCID: PMC8143325 DOI: 10.3390/life11050372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Poria cocos, called fuling, is a famous tonic in traditional Chinese medicine that reportedly possesses various pharmacological properties, including anti-inflammation and immunomodulation. However, few studies have investigated the effects of P. cocos on allergic diseases, such as allergic asthma. Allergic asthma is caused primarily by Th2 immune response and characterized by airway inflammation. This study first demonstrated the anti-allergic and anti-asthmatic effects of P. cocos extract (Lipucan®). P. cocos extract distinctly exhibited reduced inflammatory cell infiltration in the peribronchial and peribronchiolar regions compared to the asthma group in the histological analysis of pulmonary tissue sections. Prolonged P. cocos extract administration significantly reduced eosinophil infiltration, PGE2 levels, total IgE, and OVA-specific IgE. Moreover, P. cocos extract markedly suppressed Th2 cytokines, IL-4, IL-5, and IL-10. On the other hand, P. cocos extract significantly elevated IL-2 secretion by Th1 immune response. In addition, P. cocos extract elevated the IFN-γ level at a lower dose. We also observed that P. cocos extract increased the activity of NK cells. Our results suggest that P. cocos extract remodels the intrinsic Th1/Th2 response to prevent or alleviate allergy-induced asthma or symptoms.
Collapse
Affiliation(s)
- Chien-Liang Chao
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
| | - Chao-Jih Wang
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
- Sinphar Tian-Li Pharmaceutical Co., Ltd., Sinphar Group, Hangzhou 311100, China
| | - Hsin-Wen Huang
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
| | - Han-Peng Kuo
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
- SynCore Biotechnology Co., Ltd., Sinphar Group, Yilan 269, Taiwan
| | - Muh-Hwan Su
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
- SynCore Biotechnology Co., Ltd., Sinphar Group, Yilan 269, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Hang-Ching Lin
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan; (C.-L.C.); (C.-J.W.); (H.-W.H.); (H.-P.K.); (M.-H.S.); (H.-C.L.)
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Wen Teng
- Department of Nutritional Science, Fu-Jen Catholic University, Hsinchuang 24205, Taiwan;
| | | | - Wen-Mein Wu
- Department of Nutritional Science, Fu-Jen Catholic University, Hsinchuang 24205, Taiwan;
- Correspondence: ; Tel.: +886-2-2905-3633
| |
Collapse
|
19
|
Cusack RP, Whetstone CE, Xie Y, Ranjbar M, Gauvreau GM. Regulation of Eosinophilia in Asthma-New Therapeutic Approaches for Asthma Treatment. Cells 2021; 10:cells10040817. [PMID: 33917396 PMCID: PMC8067385 DOI: 10.3390/cells10040817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma is a complex and chronic inflammatory disease of the airways, characterized by variable and recurring symptoms, reversible airflow obstruction, bronchospasm, and airway eosinophilia. As the pathophysiology of asthma is becoming clearer, the identification of new valuable drug targets is emerging. IL-5 is one of these such targets because it is the major cytokine supporting eosinophilia and is responsible for terminal differentiation of human eosinophils, regulating eosinophil proliferation, differentiation, maturation, migration, and prevention of cellular apoptosis. Blockade of the IL-5 pathway has been shown to be efficacious for the treatment of eosinophilic asthma. However, several other inflammatory pathways have been shown to support eosinophilia, including IL-13, the alarmin cytokines TSLP and IL-33, and the IL-3/5/GM-CSF axis. These and other alternate pathways leading to airway eosinophilia will be described, and the efficacy of therapeutics that have been developed to block these pathways will be evaluated.
Collapse
|
20
|
Johnathan M, Muhamad SA, Gan SH, Stanslas J, Mohd Fuad WE, Hussain FA, Wan Ahmad WAN, Nurul AA. Lignosus rhinocerotis Cooke Ryvarden ameliorates airway inflammation, mucus hypersecretion and airway hyperresponsiveness in a murine model of asthma. PLoS One 2021; 16:e0249091. [PMID: 33784348 PMCID: PMC8009377 DOI: 10.1371/journal.pone.0249091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/11/2021] [Indexed: 11/19/2022] Open
Abstract
Lignosus rhinocerotis Cooke. (L. rhinocerotis) is a medicinal mushroom traditionally used in the treatment of asthma and several other diseases by the indigenous communities in Malaysia. In this study, the effects of L. rhinocerotis on allergic airway inflammation and hyperresponsiveness were investigated. L. rhinocerotis extract (LRE) was prepared by hot water extraction using soxhlet. Airway hyperresponsiveness (AHR) study was performed in house dust mite (HDM)-induced asthma in Balb/c mice while airway inflammation study was performed in ovalbumin (OVA)-induced asthma in Sprague-Dawley rats. Treatment with different doses of LRE (125, 250 and 500 mg/kg) significantly inhibited AHR in HDM-induced mice. Treatment with LRE also significantly decreased the elevated IgE in serum, Th2 cytokines in bronchoalveolar lavage fluid and ameliorated OVA-induced histological changes in rats by attenuating leukocyte infiltration, mucus hypersecretion and goblet cell hyperplasia in the lungs. LRE also significantly reduced the number of eosinophils and neutrophils in BALF. Interestingly, a significant reduction of the FOXP3+ regulatory T lymphocytes was observed following OVA induction, but the cells were significantly elevated with LRE treatment. Subsequent analyses on gene expression revealed regulation of several important genes i.e. IL17A, ADAM33, CCL5, IL4, CCR3, CCR8, PMCH, CCL22, IFNG, CCL17, CCR4, PRG2, FCER1A, CLCA1, CHIA and Cma1 which were up-regulated following OVA induction but down-regulated following treatment with LRE. In conclusion, LRE alleviates allergy airway inflammation and hyperresponsiveness, thus suggesting its therapeutic potential as a new armamentarium against allergic asthma.
Collapse
Affiliation(s)
- Malagobadan Johnathan
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Siti Aminah Muhamad
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Ezumi Mohd Fuad
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
21
|
de Genaro IS, de Almeida FM, Dos Santos Lopes FDTQ, Kunzler DDCH, Tripode BGB, Kurdejak A, Cordeiro BN, Pandolpho R, Macchione M, Brüggemann TR, Vieira RP, Martins MA, de Fátima Lopes Calvo Tibério I, Saraiva-Romanholo BM. Low-dose chlorine exposure impairs lung function, inflammation and oxidative stress in mice. Life Sci 2021; 267:118912. [PMID: 33338503 DOI: 10.1016/j.lfs.2020.118912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
AIM To explore the different consequences of acute and chronic exposure to chlorine gas (Cl2) on the functional and histological parameters of health mice. MAIN METHODS Firstly, male BALB/c mice were acute exposed to 3.3 or 33.3 or 70.5 mg/m3 Cl2. We analyzed the lung function, the inflammatory cells in the bronchoalveolar lavage, cell influx in the peribrochoalveolar space and mucus production. In a second phase, mice were chronic exposed to 70.5 mg/m3 Cl2. Besides the first phase analyses, we also evaluated the epithelial cells thickness, collagen deposition in the airways, immunohistochemistry stain for IL-1β, iNOS, IL-17 and ROCK-2 and the levels of IL-5, IL-13, IL-17, IL-1β and TNF-α in lung homogenate. KEY FINDINGS Acute exposure to chlorine impaired the lung function, increased the number of inflammatory cells in the BALF and in the airways, also increased the mucus production. Furthermore, when chlorine was exposed chronically, increased the airway remodeling with collagen deposition and epithelial cells thickness, positive cells for IL-1β, iNOS, IL-17 in the airways and in the alveolar walls and ROCK-2 in the alveolar walls, lung inflammation with increased levels of IL-5, IL-13, IL-1β and TNF-α in the lung homogenate, and also, induced the acid mucus production by the nasal epithelium. SIGNIFICANCE Acute and chronic exposure to low dose of chlorine gas worsens lung function, induces oxidative stress activation and mucus production and contributes to augmenting inflammation in health mice.
Collapse
Affiliation(s)
- Isabella Santos de Genaro
- Public Employee of Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil; Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Francine Maria de Almeida
- Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Fernanda Degobbi Tenorio Quirino Dos Santos Lopes
- Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil; Institute of LIM's Clinic Hospital of School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | | | | | | | - Bruna Nakamura Cordeiro
- University of Business and Social Sciences (UCES), Buenos Aires, Argentina; University of Mogi das Cruzes, Sao Paulo, Brazil
| | | | - Mariangela Macchione
- Department of pathology, Laboratory of Air Pollution, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Thayse Regina Brüggemann
- Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rodolfo Paula Vieira
- Post-graduation Program in Bioengineering and in Biomedical Engineering, Brazil University, São Paulo, Brazil; Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, Brazil; Post-graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, Brazil; Anhembi Morumbi University, School of Medicine, São José dos Campos, SP, Brazil
| | - Milton Arruda Martins
- Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | | | - Beatriz Mangueira Saraiva-Romanholo
- Public Employee of Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil; Department of Medicine (LIM 20), School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil; University City of Sao Paulo (UNICID), Sao Paulo, Brazil.
| |
Collapse
|
22
|
Erdogan T. Role of systemic immune-inflammation index in asthma and NSAID-exacerbated respiratory disease. CLINICAL RESPIRATORY JOURNAL 2020; 15:400-405. [PMID: 33249745 DOI: 10.1111/crj.13314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Asthma is a heterogeneous disease characterized by chronic progressive airway inflammation. Although the disease has numerous phenotypes, there are no practical biomarkers for distinguishing the phenotypes from one another. To address this challenge, we aimed to reveal whether the systemic immune-inflammation index (SII), an important indicator of systemic inflammation and prognosis in various malignancies and vasculitis, can be used for distinguishing between asthma and NSAID-exacerbated respiratory disease (NERD). METHODS The study enrolled 105 patients (asthma: n = 69; NERD: n = 36). SII was calculated using the formula of neutrophil X platelet/lymphocyte number. Major risk factors, namely ACT score, eosinophil level, total IgE level, N-L ratio (NLR), P-L ratio (PLR), and SII, were evaluated by logistic regression analysis. RESULTS No significant differences were found between the clinical features of the two study groups. Patients with an SII value ≥895.6 had a probability of having NERD with a sensitivity of 30.56%, whereas those with a lower SII had a probability of having asthma with a sensitivity of 92.65%. In the logistic regression analysis, no risk factor was determined for identifying asthma or NERD. The N-L ratio was found to be the risk factor affecting categorized SII (OR = 264.2, 95% CI 9.9-7046.5, P = 0.001). CONCLUSION This is the first study to evaluate SII as a tool for differentiating asthma phenotypes. The presence of SII below the cutoff value can help exclude the diagnosis of NERD. There is a need for large-scale prospective studies to compare different phenotypes and determine the optimal cutoff value.
Collapse
Affiliation(s)
- Tuba Erdogan
- Faculty of Medicine, Department of Chest Disease, Division of Immunology and Allergy, Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
23
|
Tan L, Song X, Ren Y, Wang M, Guo C, Guo D, Gu Y, Li Y, Cao Z, Deng Y. Anti-inflammatory effects of cordycepin: A review. Phytother Res 2020; 35:1284-1297. [PMID: 33090621 DOI: 10.1002/ptr.6890] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 09/13/2020] [Indexed: 01/08/2023]
Abstract
Cordycepin is the major bioactive component extracted from Cordyceps militaris. In recent years, cordycepin has received increasing attention owing to its multiple pharmacological activities. This study reviews recent researches on the anti-inflammatory effects and the related activities of cordycepin. The results from our review indicate that cordycepin exerts protective effects against inflammatory injury for many diseases including acute lung injury (ALI), asthma, rheumatoid arthritis, Parkinson's disease (PD), hepatitis, atherosclerosis, and atopic dermatitis. Cordycepin regulates the NF-κB, RIP2/Caspase-1, Akt/GSK-3β/p70S6K, TGF-β/Smads, and Nrf2/HO-1 signaling pathways among others. Several studies focusing on cordycepin derivatives were reviewed and found to down metabolic velocity of cordycepin and increase its bioavailability. Moreover, cordycepin enhanced immunity, inhibited the proliferation of viral RNA, and suppressed cytokine storms, thereby suggesting its potential to treat COVID-19 and other viral infections. From the collected and reviewed information, this article provides the theoretical basis for the clinical applications of cordycepin and discusses the path for future studies focusing on expanding the medicinal use of cordycepin. Taken together, cordycepin and its analogs show great potential as the next new class of anti-inflammatory agents.
Collapse
Affiliation(s)
- Lu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xiaominting Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yali Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Miao Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Chuanjie Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Dale Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Berkshire, UK
| | - Yuzhi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yun Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|
24
|
Lin X, Lv J, Ge D, Bai H, Yang Y, Wu J. Heme oxygenase-1 alleviates eosinophilic inflammation by inhibiting STAT3-SOCS3 signaling. Pediatr Pulmonol 2020; 55:1440-1447. [PMID: 32297710 DOI: 10.1002/ppul.24759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 01/05/2023]
Abstract
Airway inflammation of eosinophilic asthma (EA) attributes to Th2 response, leaving the role of Th17 response unknown. Signal transducer and activator of transcription 3 (STAT3) induce both suppressors of cytokine signaling 3 (SOCS3) and retinoic acid receptor-related orphan nuclear receptor γ (RORγt) to initiate Th17 cell differentiation which is inhibited by SOCS3, a negative feedback regulator of STAT3. Heme oxygenase-1 (HO-1) is a stress-responsive, cytoprotective, and immunoregulatory molecular. Two other isoforms of the enzyme includes HO-2 and HO-3. Because HO-2 does not exhibit stress-related upregulation and distributes mainly in nervous system and HO-3 shows a low enzymatic activity, we tested a hypothesized anti-inflammatory role for HO-1 in EA by inhibiting STAT3-SOCS3 signaling. Animal model was established with Ovalbumin in wild type Balb/C mice. Hemin or SNPP was intraperitoneally (IP) injected ahead of the animal model to induce or inhibit HO-1 expression. Airway inflammation was evaluated by bronchoalveolar lavage, hematoxyline and eosin staining, enzyme-linked immunosorbent assay, and Western blot analysis. In vivo results showed that HO-1 induction inhibited phosphorylation of STAT3 and expression of SOCS3 and RORγt, decreased Th2 and Th17 immune responses, and alleviated airway inflammation. In vitro results revealed that HO-1 inhibited phosphorylation of STAT3 and expression of SOCS3 in naive CD4+ T cells. These findings identify HO-1 induction as a potential therapeutic strategy for EA treatment by reducing STAT3 phosphorylation, STAT3-SOCS3-mediated Th2/Th17 immune responses, and ultimate allergic airway inflammation.
Collapse
Affiliation(s)
- Xiaoliang Lin
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiajia Lv
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Ge
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Haitao Bai
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yungang Yang
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jinzhun Wu
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Direct Inhibition of the Allergic Effector Response by Raw Cow's Milk-An Extensive In Vitro Assessment. Cells 2020; 9:cells9051258. [PMID: 32438725 PMCID: PMC7290799 DOI: 10.3390/cells9051258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying the allergy-protective effects of raw cow’s milk are poorly understood. The current focus is mainly on the modulation of T cell responses. In the present study, we investigated whether raw cow’s milk can also directly inhibit mast cells, the key effector cells in IgE-mediated allergic responses. Primary murine bone marrow-derived mast cells (BMMC) and peritoneal mast cells (PMC), were incubated with raw milk, heated raw milk, or shop milk, prior to IgE-mediated activation. The effects on mast cell activation and underlying signaling events were assessed. Raw milk was furthermore fractionated based on molecular size and obtained fractions were tested for their capacity to reduce IgE-mediated mast cell activation. Coincubation of BMMC and PMC with raw milk prior to activation reduced β-hexosaminidase release and IL-6 and IL-13 production, while heated raw milk or shop milk had no effect. The reduced mast cell activation coincided with a reduced intracellular calcium influx. In addition, SYK and ERK phosphorylation levels, both downstream signaling events of the FcεRI, were lower in raw milk-treated BMMC compared to control BMMC, although differences did not reach full significance. Raw milk-treated BMMC furthermore retained membrane-bound IgE expression after allergen stimulation. Raw milk fractionation showed that the heat-sensitive raw milk components responsible for the reduced mast cell activation are likely to have a molecular weight of > 37 kDa. The present study demonstrates that raw cow’s milk can also directly affect mast cell activation. These results extend the current knowledge on mechanisms via which raw cow’s milk prevents allergic diseases, which is crucial for the development of new, microbiologically safe, nutritional strategies to reduce allergic diseases.
Collapse
|
26
|
Balkrishna A, Solleti SK, Singh H, Tomer M, Sharma N, Varshney A. Calcio-herbal formulation, Divya-Swasari-Ras, alleviates chronic inflammation and suppresses airway remodelling in mouse model of allergic asthma by modulating pro-inflammatory cytokine response. Biomed Pharmacother 2020; 126:110063. [PMID: 32145582 DOI: 10.1016/j.biopha.2020.110063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic allergic respiratory disease with limited therapeutic options. Here we validated the potential anti-inflammatory, anti-asthmatic and immunomodulatory therapeutic properties of calcio-herbal ayurvedic formulation, Divya-Swasari-Ras (DSR) in-vivo, using mouse model of ovalbumin (OVA) induced allergic asthma. HPLC analysis identified the presence of various bioactive indicating molecules and ICP-OES recognized the presence of Ca mineral in the DSR formulation. Here we show that DSR treatment significantly reduced cardinal features of allergic asthma including inflammatory cell accumulation, specifically lymphocytes and eosinophils in the Broncho-Alveolar Lavage (BAL) fluids, airway inflammation, airway remodelling, and pro-inflammatory molecules expression. Conversely, number of macrophages recoverable by BAL were increased upon DSR treatment. Histology analysis of mice lungs revealed that DSR attenuates inflammatory cell infiltration in lungs and thickening of bronchial epithelium. PAS staining confirmed the decrease in OVA-induced mucus secretion at the mucosal epithelium; and trichrome staining confirmed the decrease in peribronchial collagen deposition upon DSR treatment. DSR reduced the OVA-induced pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) levels in BALF and whole lung steady state mRNA levels (IL-4, -5, -33, IFN-γ, IL-6 and IL-1β). Biochemical assays for markers of oxidative stress and antioxidant defence mechanism confirmed that DSR increases the activity of SOD, Catalase, GPx, GSH, GSH/GSSG ratio and decreases the levels of MDA activity, GSSG, EPO and Nitrite levels in whole lungs. Collectively, present study suggests that, DSR effectively protects against allergic airway inflammation and possess potential therapeutic option for allergic asthma management.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, 249 405, Uttarakhand, India
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India
| | - Niti Sharma
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, 249 405, Uttarakhand, India.
| |
Collapse
|
27
|
Mamber SW, Gurel V, Lins J, Ferri F, Beseme S, McMichael J. Effects of cannabis oil extract on immune response gene expression in human small airway epithelial cells (HSAEpC): implications for chronic obstructive pulmonary disease (COPD). J Cannabis Res 2020; 2:5. [PMID: 33526116 PMCID: PMC7819312 DOI: 10.1186/s42238-019-0014-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/29/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is commonly associated with both a pro-inflammatory and a T-helper 1 (Th1) immune response. It was hypothesized that cannabis oil extract can alleviate COPD symptoms by eliciting an anti-inflammatory Th2 immune response. Accordingly, the effects of cannabis oil extract on the expression of 84 Th2 and related immune response genes in human small airways epithelial cells (HSAEpC) were investigated. METHODS HSAEpC from a single donor were treated with three dilutions of a standardized cannabis oil extract (1:400, 1:800 and 1:1600) along with a solvent control (0.25% [2.5 ul/ml] ethanol) for 24 h. There were four replicates per treatment dilution, and six for the control. RNA isolated from cells were employed in pathway-focused quantitative polymerase chain reaction (qPCR) microarray assays. RESULTS The extract induced significant (P < 0.05) changes in expression of 37 tested genes. Six genes (CSF2, IL1RL1, IL4, IL13RA2, IL17A and PPARG) were up-regulated at all three dilutions. Another two (CCL22 and TSLP) were up-regulated while six (CLCA1, CMA1, EPX, LTB4R, MAF and PMCH) were down-regulated at the 1:400 and 1:800 dilutions. The relationship of differentially-expressed genes of interest to biologic pathways was explored using the Database for Annotation, Visualization and Integrated Discovery (DAVID). CONCLUSIONS This exploratory investigation indicates that cannabis oil extract may affect expression of specific airway epithelial cell genes that could modulate pro-inflammatory or Th1 processes in COPD. These results provide a basis for further investigations and have prompted in vivo studies of the effects of cannabis oil extract on pulmonary function. TRIAL REGISTRATION NONE (all in vitro experiments).
Collapse
Affiliation(s)
- Stephen W Mamber
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
- The Institute for Therapeutic Discovery, Delanson, NY, 12053, USA
| | - Volkan Gurel
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
| | - Jeremy Lins
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
| | - Fred Ferri
- NCM Biotechnology, Newport, RI, 02840, USA
| | - Sarah Beseme
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA.
| | - John McMichael
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
- The Institute for Therapeutic Discovery, Delanson, NY, 12053, USA
| |
Collapse
|
28
|
Kim DI, Song MK, Lee K. Comparison of asthma phenotypes in OVA-induced mice challenged via inhaled and intranasal routes. BMC Pulm Med 2019; 19:241. [PMID: 31823765 PMCID: PMC6902567 DOI: 10.1186/s12890-019-1001-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
Background The respiratory system is exposed to various allergens via inhaled and intranasal routes. Murine models of allergic lung disease have been developed to clarify the mechanisms underlying inflammatory responses and evaluate the efficacy of novel therapeutics. However, there have been no comparative studies on differences in allergic phenotypes following inhaled vs. intranasal allergen challenge. In this study, we compared the asthmatic features of mice challenged via different routes following allergen sensitization and investigated the underlying mechanisms. Methods To establish ovalbumin (OVA)-induced allergic asthma models, BALB/c mice were sensitized to 20 μg OVA with 1 mg aluminum hydroxide by the intraperitoneal route and then challenged by inhalation or intranasal administration with 5% OVA for 3 consecutive days. Cellular changes and immunoglobulin (Ig) E levels in bronchoalveolar lavage fluid (BALF) and serum, respectively, were assessed. Histological changes in the lungs were examined by hematoxylin and eosin (H&E) and periodic acid Schiff (PAS) staining. Levels of T helper (Th)2 cytokines including interleukin (IL)-4, -5, and -13 in BALF and epithelial cytokines including IL-25 and -33 in BALF and lung tissues were measured by enzyme-linked immunosorbent assay and western blotting. Airway hyperresponsiveness (AHR) was evaluated by assessing airway resistance (Rrs) and elastance (E) via an invasive method. Results OVA-sensitized and challenged mice showed typical asthma features such as airway inflammation, elevated IgE level, and AHR regardless of the challenge route. However, H&E staining showed that inflammation of pulmonary vessels, alveolar ducts, and alveoli were enhanced by inhaled as compared to intranasal OVA challenge. PAS staining showed that intranasal OVA challenge induced severe mucus production accompanied by inflammation in bronchial regions. In addition, Th2 cytokine levels in BALF and AHR in lung were increased to a greater extent by inhalation than by intranasal administration of OVA. Epithelial cytokine expression, especially IL-25, was increased in the lungs of mice in the inhaled OVA challenge group. Conclusion OVA-sensitized mice exhibit different pathophysiological patterns of asthma including expression of epithelial cell-derived cytokines depending on the OVA challenge route. Thus, some heterogeneous phenotypes of human asthma can be replicated by varying the mode of delivery after OVA sensitization.
Collapse
Affiliation(s)
- Dong Im Kim
- National Center for Efficacy evaluation for Respiratory disease product, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Mi-Kyung Song
- National Center for Efficacy evaluation for Respiratory disease product, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea.,Department of human and environmental toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy evaluation for Respiratory disease product, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea. .,Department of human and environmental toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
29
|
Effects of the serine protease inhibitor rBmTI-A in an experimental mouse model of chronic allergic pulmonary inflammation. Sci Rep 2019; 9:12624. [PMID: 31477763 PMCID: PMC6718655 DOI: 10.1038/s41598-019-48577-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
To evaluate whether a recombinant serine protease inhibitor (rBmTI-A) modulates inflammation in an experimental model of chronic allergic lung inflammation. Balb/c mice were divided into four groups: SAL (saline), OVA (sensitized with ovalbumin), SAL + rBmTI-A (control treated with rBmTI-A) and OVA + rBmTI-A (sensitized with ovalbumin and treated with rBmTI-A). The animals received an intraperitoneal injection of saline or ovalbumin, according to the group. The groups received inhalation with saline or ovalbumin and were treated with rBmTI-A or saline by nasal instillation. After 29 days, we evaluated the respiratory mechanics; bronchoalveolar lavage fluid (BALF); cytokines; MMP-9, TIMP-1; eosinophils; collagen and elastic fibre expression in the airways; and the trypsin-like, MMP-1, and MMP-9 lung tissue proteolytic activity. Treatment with rBmTI-A reduced the trypsin-like proteolytic activity, the elastance and resistance maximum response, the polymorphonuclear cells, IL-5, IL-10, IL-13 and IL-17A in the BALF, the expression of IL-5, IL-13, IL-17, CD4+, MMP-9, TIMP-1, eosinophils, collagen and elastic fibres in the airways of the OVA + rBmTI-A group compared to the OVA group (p < 0.05). rBmTI-A attenuated bronchial hyperresponsiveness, inflammation and remodelling in this experimental model of chronic allergic pulmonary inflammation. This inhibitor may serve as a potential therapeutic tool for asthma treatment.
Collapse
|
30
|
Lee YS, Yang WK, Yee SM, Kim SM, Park YC, Shin HJ, Han CK, Lee YC, Kang HS, Kim SH. KGC3P attenuates ovalbumin-induced airway inflammation through downregulation of p-PTEN in asthmatic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152942. [PMID: 31102886 DOI: 10.1016/j.phymed.2019.152942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The roots of Korean red ginseng (Panax ginseng C.A.Mey.; KGC) have been used as an herbal supplement to enhance vital energy and immune capacity. Salvia plebeia R.Br. has been used to treat inflammatory diseases. PURPOSE The aim of this study was to examine the anti-asthmatic effects of a mixture of Korean red ginseng and Salvia plebeia R.Br. (KGC3P), its component nepetin, and their modes of action in alleviating ovalbumin (OVA)-induced asthma in mice. METHOD BALB/c mice were sensitized with OVA then subjected to intratracheal, intraperitoneal, and aerosol challenges. KGC3P and nepetin were administered orally for four weeks. Airway hyperresponsiveness (AHR), OVA-specific IgE levels, and Th2 cytokine- and gene expression levels in bronchoalveolar lavage fluid (BALF) and splenocytes were measured. Histological and immune cell subtype analyses were performed. PTEN and Akt phosphorylation levels were also evaluated. RESULTS KGC3P reduced OVA-induced AHR, serum IgE levels, histological changes, and eosinophils infiltration but also the absolute number of immune cell subtypes including CD3+/CD4+, CD3+/CD8+, CD4+/CD69+, and Gr-1+/CD11b+ in the lungs, BALF, and mesenteric lymph nodes (MLN). KGC3P also lowered the Th2 cytokines IL-4, IL-5, and IL-13 in the BALF and splenocytes and downregulated the IL-4, IL-13, IL-17, TNF-α, and MUC5AC genes in the lung. KGC3P upregulated the peroxisome proliferator-activated receptor (PPAR)γ gene but downregulated the p-Akt and p-PTEN phosphorylation. Similar results were obtained with nepetin treatment. CONCLUSION KGC3P and nepetin are anti-asthmatic because they reduce various immune cells such as eosinophils and Th2 cell as well as Th2 cytokines. These mechanisms may be accompanied by the regulation of PPARγ expression and the PTEN pathway. Taken together, our results indicate that KGC3P and nepetin may potentially prevent and treat asthma.
Collapse
Affiliation(s)
- Young-Sil Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Dajeon 34054, Republic of Korea
| | - Won-Kyung Yang
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea; Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea
| | - Su-Min Yee
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Su-Man Kim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | | | | | - Young Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea.
| |
Collapse
|
31
|
Sung YY, Kim SH, Yuk HJ, Yang WK, Lee YM, Son E, Kim DS. Siraitia grosvenorii residual extract attenuates ovalbumin-induced lung inflammation by down-regulating IL-4, IL-5, IL-13, IL-17, and MUC5AC expression in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152835. [PMID: 31035047 DOI: 10.1016/j.phymed.2019.152835] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Siraitia grosvenorii fruits are used in traditional medicine to treat cough, sore throat, bronchitis, and asthma. PURPOSE This study aimed to investigate the anti-inflammatory and anti-asthmatic effects of S. grosvenorii residual extract (SGRE) on ovalbumin (OVA)-induced asthma in mice. METHODS Asthma was induced in BALB/c mice by systemic sensitization to OVA, followed by intratracheal, intraperitoneal, and aerosol allergen challenges. SGRE was orally administered for four weeks. We investigated the effects of SGRE on airway hyper-responsiveness, OVA-specific IgE production, histological analysis of lung and trachea, immune cell phenotyping, Th1/Th2 cytokine production in bronchoalveolar lavage fluid (BAL) fluid and splenocytes, and gene expression in the lung. RESULTS SGRE ameliorated OVA-driven airway hyper-responsiveness, serum IgE production, and histopathological changes in the lung and trachea. SGRE reduced the total number of cells in the lung and BAL, the total number of lymphocytes, neutrophils, monocytes, and eosinophils in the lung and BAL, the absolute number of CD4+/CD69+ T cells in the lung, and the absolute number of CD4+/CD8+ T cells and CD11b+/Gr-1+ granulocytes in the lung and BAL. SGRE also reduced Th2 cytokines (IL-4, IL-5, and IL-13) and increased the Th1 cytokine IFN-γ in the BAL fluid and supernatant of splenocyte cultures. SGRE decreased the OVA-induced increase of IL-13, TARC, MUC5AC, TNF-α, and IL-17 expression in the lung. CONCLUSION SGRE exerts anti-asthmatic effects via the inhibition of Th2 and Th17 cytokines and the increase of Th1 cytokines, suggesting that SGRE may be a potential therapeutic agent for allergic lung inflammation, such as asthma.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Yun Mi Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Eunjung Son
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
32
|
Structure-Activity Relationships of Baicalein and its Analogs as Novel TSLP Inhibitors. Sci Rep 2019; 9:8762. [PMID: 31217492 PMCID: PMC6584507 DOI: 10.1038/s41598-019-44853-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) plays an important role in the differentiation and proliferation of Th2 cells, resulting in eosinophilic inflammation and numerous allergic diseases. Baicalein (1), a major component of Scutellaria baicalensis, was found to be the first small molecule to block TSLP signaling pathways. It inhibited effectively eosinophil infiltration in house dust mite-induced and ovalbumin-challenged mouse models. Structure-activity relationship studies identified compound 11a, a biphenyl flavanone analog, as a novel human TSLP inhibitor for the discovery and development of new anti-allergic drugs.
Collapse
|
33
|
Gasiuniene E, Janulaityte I, Zemeckiene Z, Barkauskiene D, Sitkauskiene B. Elevated levels of interleukin-33 are associated with allergic and eosinophilic asthma. Scand J Immunol 2019; 89:e12724. [PMID: 30303258 DOI: 10.1111/sji.12724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/30/2022]
Abstract
IL-33 is a recently discovered cytokine which plays an important role in asthma pathogenesis. AIM To evaluate serum IL-33 in patients with asthma and healthy controls, and to evaluate the association of IL-33 with different asthma phenotypes. METHODS Patients with asthma (n = 115) and healthy subjects (n = 85) were included in the study. Subjects with asthma were divided into groups according to their phenotype: allergic/non-allergic, eosinophilic/non-eosinophilic, obese/non-obese and severity according to GINA (mild, moderate and severe). The concentration of IL-33 in serum was measured by standardized enzyme-linked immunosorbent assay. RESULTS The level of IL-33 was significantly higher in patients with asthma when compared to healthy subjects (672.73 ± 104.47 pg/mL vs 268.52 ± 27.56 pg/mL, P < 0.05). IL-33 was also higher in the allergic asthma group patients when compared to non-allergic asthmatics (844.61 ± 152.08 pg/mL vs 369.56 ± 77.94 pg/mL, P < 0.05). There was a significantly higher serum IL-33 level in the eosinophilic asthma group when compared to the group of non-eosinophilic asthma patients (1001.10 ± 199.11 pg/mL vs 337.49 ± 72.68 pg/mL, P < 0.01). We did not find a significant difference in serum IL-33 level between different asthma severity groups, obese and non-obese asthmatics. CONCLUSION IL-33 is increased in asthma patients, particularly in some phenotypes: allergic asthma and eosinophilic asthma.
Collapse
Affiliation(s)
- Edita Gasiuniene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Janulaityte
- Department of Pulmonology, Laboratory of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Zivile Zemeckiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Diana Barkauskiene
- Department of Pulmonology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
34
|
Veres TZ. Visualizing immune responses of the airway mucosa. Cell Immunol 2018; 350:103865. [PMID: 30297084 DOI: 10.1016/j.cellimm.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/03/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The airway mucosa is the primary tissue site exposed to inhaled particulate matter, which includes pathogens and allergens. While most inhaled particles are eliminated from the airways via mucociliary clearance, some pathogens may penetrate the mucosal epithelial barrier and an effective activation of the mucosal immune system is required to prevent further pathogen spread. Similarly, inhaled environmental allergens may induce an aberrant activation of immune cells in the airway mucosa, causing allergic airway disease. During the last years, several investigators employed advanced microscopic imaging on both intravital and tissue explant preparations to observe the dynamic behavior of various immune cells within their complex tissue environment. In the respiratory tract, most imaging studies focused on immune responses of the alveolar compartment in the lung periphery. However, equally important immunological events occur more proximally in the mucosa of the conducting airways, both during infection and allergic responses, calling for a more detailed imaging analysis also at this site. In this review, I will outline the technical challenges of designing microscopic imaging experiments in the conducting airways and summarize our recent efforts in understanding airway mucosal immune cell dynamics in steady-state conditions, during infection and allergy.
Collapse
Affiliation(s)
- Tibor Z Veres
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; MediCity Research Laboratory, University of Turku, Turku 20520, Finland.
| |
Collapse
|
35
|
Litvinov J, Spear WC, Patrikeev I, Motamedi M, Ameredes BT. Noninvasive allergic sinus congestion and resolution assessments using microcomputed tomography imaging. J Appl Physiol (1985) 2018; 125:1563-1575. [PMID: 30161008 DOI: 10.1152/japplphysiol.00980.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sinus congestion resultant of allergic rhinosinusitis is associated with development and worsening of asthma and can result in difficulty breathing, headaches, and missed days of school and work. Quantification of sinus congestion is important in the understanding of allergic rhinosinusitis and the development of new drugs for its treatment. Noninvasive microcomputed tomography (micro-CT) was investigated in a guinea pig model of allergic rhinosinusitis to determine its utility to determine accurately the degree of sinus congestion and resolution with anti-inflammatory drug administration. Three-dimensional sinus air-space volume, two-dimensional sinus width, sinus image air-space area, and sinus image sinus perimeter were measured in guinea pigs administered ragweed pollen (RWP), intranasally (i.n.), followed by administration of fluticasone, i.n. To determine their relative accuracy in assessing sinus congestion, the micro-CT image results were compared with the "gold-standard" method of sinus fluid fill-volume (SFFV) measurements. As measured by SFFV method, RWP increased sinus congestion in a RWP concentration-dependent fashion, approaching near-total sinus blockage with concentrations ≥22 µg of RWP. At this level of congestion, fluticasone (25-100 µg) progressively decreased sinus congestion in a concentration-dependent fashion. The noninvasive micro-CT methods were found to accurately determine the amount of sinus congestion and resolution, with patterns of increases and decreases of congestion that were nearly identical to the SFFV method. We conclude that noninvasive micro-CT measurements of allergic sinus congestion can be useful as an investigative tool in the assessment of congestion intensity and the development of new drug therapies for its treatment. NEW & NOTEWORTHY Allergic rhinosinusitis afflicts significant portions of the world population, resulting in loss of work productivity and decreased quality of life. Thus the development of methodological approaches, which incorporate accurate and reproducible noninvasive assessments of sinus congestion, are desirable. Microcomputed tomography of the guinea pig sinuses offers a noninvasive evaluation tool in an animal model of IgE-dependent allergy similar to that in humans, with potential relevance toward development of therapeutics for human sinus diseases.
Collapse
Affiliation(s)
- Julia Litvinov
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas
| | - Walter C Spear
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas
| | - Igor Patrikeev
- Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Bill T Ameredes
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
36
|
Abdеlaziz RR, Еlmahdy MK, Suddek GM. Flavocoxid attenuates airway inflammation in ovalbumin-induced mouse asthma model. Chem Biol Interact 2018; 292:15-23. [PMID: 29986831 DOI: 10.1016/j.cbi.2018.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023]
Abstract
Asthma is a common airways inflammatory disease. This study provides evidence on the efficacy of flavocoxid against ovalbumin (OVA)-induced allergic airways inflammation in a mouse model of asthma. Airway inflammation was induced by intrapеritonеal injection of 10 mg ovalbumin (OVA) on day zero and day 7 followed by OVA challenge starting from 14th day to 16th day. Beclomethasone; a standard anti-inflammatory agent was selected as a drug in asthma. Flavocoxid (20 mg/kg, i. p.) was administered on day zero till 16th day followed by OVA challenge. At the end of the study, lung weight index, bronchoalveolar lavage fluid (BALF) content of total and differential WBCs, interleukin-13(IL-13), in addition to lung tissue nitrate/nitrite (NO) and oxidative stress biomarkers were measured. Also, histological and immunohistochemical analysis were conducted. Daily i. p. injection of flavocoxid (20 mg/kg) significantly improved airway inflammation. Inflammatory cells in BALF, malondialdehyde (MDA), NO and IL-13 significantly declined with concomitant increase in superoxide dismutase (SOD) activity. Histopathological examination and immunohistochеmical staining of mast cells were correlated with observed biochemical improvements. Collectively, these results demonstrate that flavocoxid mitigates the allergic airway inflammation induced by ovalbumin through attenuation of IL-13, NO expressions and oxidative stress.
Collapse
Affiliation(s)
- Rania R Abdеlaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| | - Mohammеd Kh Еlmahdy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
37
|
Takahashi K, Pavlidis S, Ng Kee Kwong F, Hoda U, Rossios C, Sun K, Loza M, Baribaud F, Chanez P, Fowler SJ, Horvath I, Montuschi P, Singer F, Musial J, Dahlen B, Dahlen SE, Krug N, Sandstrom T, Shaw DE, Lutter R, Bakke P, Fleming LJ, Howarth PH, Caruso M, Sousa AR, Corfield J, Auffray C, De Meulder B, Lefaudeux D, Djukanovic R, Sterk PJ, Guo Y, Adcock IM, Chung KF. Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J 2018; 51:13993003.02173-2017. [PMID: 29650557 DOI: 10.1183/13993003.02173-2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes.The U-BIOPRED cohort of severe asthma patients, containing current-smokers (CSA), ex-smokers (ESA), nonsmokers and healthy nonsmokers was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed.Colony-stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants, with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene set variation analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated.Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level, with CSA patients having increased CSF2 expression and ESA patients showing sustained loss of epithelial barrier processes.
Collapse
Affiliation(s)
- Kentaro Takahashi
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Research Centre for Allergy and Clinical Immunology, Asahi General Hospital, Matsudo, Japan
| | - Stelios Pavlidis
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Francois Ng Kee Kwong
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Uruj Hoda
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Christos Rossios
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Kai Sun
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Matthew Loza
- Janssen Research and Development, High Wycombe, UK
| | | | - Pascal Chanez
- Assistance Publique des Hôpitaux de Marseille, Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Steve J Fowler
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | | | | | - Florian Singer
- Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jacek Musial
- Dept of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Barbro Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Eric Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrom
- Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominic E Shaw
- Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Rene Lutter
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Bakke
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Peter H Howarth
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, Southampton, UK
| | - Massimo Caruso
- Dept Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GSK, Stockley Park, UK
| | - Julie Corfield
- AstraZeneca R&D, Molndal, Sweden.,Areteva R&D, Nottingham, UK
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, Southampton, UK
| | - Peter J Sterk
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Yike Guo
- Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Dept of Computing and Data Science Institute, Imperial College London, London, UK
| | | |
Collapse
|
38
|
Towards an Electrochemical Immunosensor System with Temperature Control for Cytokine Detection. SENSORS 2018; 18:s18051309. [PMID: 29695092 PMCID: PMC5982244 DOI: 10.3390/s18051309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
The cytokine interleukin-13 (IL-13) plays a major role in airway inflammation and is a target of new anti-asthmatic drugs. Hence, IL-13 determination could be interesting in assessing therapy success. Thus, in this work an electrochemical immunosensor for IL-13 was developed and integrated into a fluidic system with temperature control for read-out. Therefore, two sets of results are presented. First, the sensor was set up in sandwich format on single-walled carbon nanotube electrodes and was read out by applying the hydrogen peroxide–hydroquinone–horseradish peroxidase (HRP) system. Second, a fluidic system was built up with an integrated heating function realized by Peltier elements that allowed a temperature-controlled read-out of the immunosensor in order to study the influence of temperature on the amperometric read-out. The sensor was characterized at the temperature optimum of HRP at 30 °C and at 12 °C as a reference for lower performance. These results were compared to a measurement without temperature control. At the optimum operation temperature of 30 °C, the highest sensitivity (slope) was obtained compared to lower temperatures and a limit of detection of 5.4 ng/mL of IL-13 was calculated. Taken together, this approach is a first step towards an automated electrochemical immunosensor platform and shows the potential of a temperature-controlled read-out.
Collapse
|
39
|
Abdala-Valencia H, Coden ME, Chiarella SE, Jacobsen EA, Bochner BS, Lee JJ, Berdnikovs S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J Leukoc Biol 2018; 104:95-108. [PMID: 29656559 DOI: 10.1002/jlb.1mr1117-442rr] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/20/2022] Open
Abstract
Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergio E Chiarella
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth A Jacobsen
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
40
|
Yu HC, Chiang BL. Toll-like receptor 2 ligation of mesenchymal stem cells alleviates asthmatic airway inflammation. J Allergy Clin Immunol 2018; 142:284-287.e5. [PMID: 29382594 DOI: 10.1016/j.jaci.2017.12.996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Hui-Chieh Yu
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei City, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
41
|
Lei W, Zeng D, Liu G, Zhu Y, Wang J, Wu H, Jiang J, Huang J. Crucial role of OX40/OX40L signaling in a murine model of asthma. Mol Med Rep 2018; 17:4213-4220. [PMID: 29344664 PMCID: PMC5802192 DOI: 10.3892/mmr.2018.8453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to explore the roles of OX40/OX40 ligand (OX40L) signaling and OX40+ T cells in ovalbumin (OVA)-induced mouse asthma model. Asthma was induced by OVA exposure and subsequent co-treatment with OX40L protein, neutralizing anti-OX40L blocking antibody, OX40+ T cells or PBS. The protein expression levels of interleukin (IL)-4, IL-6, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in bronchoalveolar lavage fluid (BALF) were examined using murine cytokine-specific ELISA. Eosinophil accumulation as well as proliferation and apoptosis of T cells in BALF were detected by Cell Counting kit-8 and flow cytometric assays. Expression of the apoptosis-related protein cleaved caspase-3 was examined in OX40+ T cells using western blot assay. Flow cytometric analysis revealed that OVA-treated mice that were co-treated with OX40L or OX40+ T cells exhibited higher eosinophil infiltration compared with control mice treated only with OVA, whereas neutralizing anti-OX40L blocking antibody inhibited eosinophil infiltration. ELISA assays demonstrated that the expression of IL-4, IL-6, IL-13, IL-17, TNF-α and IFN-γ in BALF in OX40L-treated and OX40+ T cell-treated mice was increased compared with expression levels in control mice. Treatment with OX40L protein effectively reduced apoptosis of T cells and the expression of cleaved caspase-3 in T cells. OX40L-treated and OX40+ T cell-treated mice exhibited increased asthma through OX40/OX40L signaling, which probably promoted inflammatory factor expression, eosinophil infiltration and T cell proliferation.
Collapse
Affiliation(s)
- Wei Lei
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Daxiong Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yehan Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiajia Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongya Wu
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Junhong Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
42
|
Li N, Huo Y, Xie H, Cheng Y. Angiotensin II induces the secretion of ICAM-1 and MCP-1 in human airway smooth muscle cells in vitro. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.3.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Antiobesity and Anti-Inflammatory Effects of Orally Administered Bonito Extracts on Mice Fed a High-Fat Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9187167. [PMID: 29292401 PMCID: PMC5674501 DOI: 10.1155/2017/9187167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/05/2017] [Indexed: 01/03/2023]
Abstract
Background The condensed fermentative extract of bonito (BoE), skipjack tuna (Katsuwonus pelamis), has claimed its health conditioning effects against lifestyle-related diseases such as hypertension and type 2 diabetes. Methods We evaluated the antiobesity and anti-inflammatory effects of BoE on mice fed a high-fat diet (HFD). Mice (9 weeks of age) were maintained for 11 weeks on HFD with or without BoE (50 mg or 500 mg/kg). Results Compared with untreated mice, BoE50 or BoE500 mice achieved maximum weight reductions of 7.4% (males) and 11.4% (females), and visceral fat in male BoE500 mice was more decreased among all mice (P = 0.00459). Furthermore, an antiobesity gene uncoupling protein-1 was significantly induced in the visceral fat tissues of male BoE500 (P = 0.0110) and female BoE50 and BoE500 mice (P = 0.0110 and P = 0.0110, resp.). Finally, we detected reduced amount of granulocyte-colony stimulating factor (P = 0.0250) in the sera of female BoE50 and interleukin- (IL-) 5 (P = 0.0120), IL-6 (P = 0.0118), and IL-13 (P = 0.0243) in female BoE500 mice. Conclusion The antiobesity and anti-inflammatory effects of BoE were demonstrated with our examination system and any toxic adverse effects were not observed in mice during the 3-month investigation.
Collapse
|
44
|
Iman M, Rezaei R, Azimzadeh Jamalkandi S, Shariati P, Kheradmand F, Salimian J. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases. Expert Rev Clin Immunol 2017; 13:1173-1188. [PMID: 28994328 DOI: 10.1080/1744666x.2017.1389646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4+T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.
Collapse
Affiliation(s)
- Maryam Iman
- a Chemical Injuries Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ramazan Rezaei
- b Department of Immunology , School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | | | - Parvin Shariati
- c Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Farrah Kheradmand
- d Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, & Department of Medicine , Pulmonary and Critical Care, Baylor College of Medicine , Houston , TX , USA
| | - Jafar Salimian
- a Chemical Injuries Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
45
|
Chen H, Zhang L, Wang P, Su H, Wang W, Chu Z, Zhang L, Zhang X, Zhao Y. mTORC2 controls Th9 polarization and allergic airway inflammation. Allergy 2017; 72:1510-1520. [PMID: 28273354 DOI: 10.1111/all.13152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND T helper type 9 (Th9) cells, a subpopulation of CD4+ T cells, play a critical role in the pathogenesis of allergic airway inflammation. However, it remains unknown whether mTORC2 regulates Th9 differentiation or function during allergic inflammation. METHODS T-cell-specific Rictor-deficient mice, a mouse model of allergic airway inflammation induced by ovalbumin (OVA) sensitization and a mouse model of adoptive transfer of induced Th9 cells, were used to address the roles of mTORC2 in the pathogenesis of allergic airway inflammation. The in vitro Th9 induction, multiple colors flow cytometry, real-time PCR, and Western blots were used to investigate the molecular effects of mTORC2 in Th9 induction. RESULTS The differentiation of naïve CD4+ T cells into Th9 cells was significantly diminished in the absence of Rictor, the core component of mTORC2. Using a mouse model of allergic airway inflammation induced by OVA sensitization, T-cell-specific Rictor-deficient mice show much less severe allergic airway inflammation characterized by decreased pathological alterations and fibrosis of the lungs, which was accompanied with reduced Th9 differentiation and infiltration. Importantly, the isolated Rictor-deficient Th9 cells mediate less severe allergic pathogenesis upon adoptive transfer. Rictor deficiency impairs Th9 cell differentiation by reducing IRF4 expression rather than affecting Foxo1/Foxo3a transcriptional activity, which is likely due to decreased Akt and/or STAT6 activation. CONCLUSIONS These findings uncover a novel role of mTORC2 in Th9 cell differentiation and may have important implications for therapeutic intervention of allergic diseases.
Collapse
Affiliation(s)
- H. Chen
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - L. Zhang
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - P. Wang
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - H. Su
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - W. Wang
- Department of Urology; Beijing Chaoyang Hospital; Capital Medical University; Chaoyang District Beijing China
| | - Z. Chu
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - L. Zhang
- Key Laboratory of Human Diseases Comparative Medicine; Ministry of Health; Beijing China
- Institute of Laboratory Animal Science; Key Laboratory of Human Diseases Comparative Medicine; Ministry of Health; Beijing China
- Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - X. Zhang
- Department of Urology; Beijing Chaoyang Hospital; Capital Medical University; Chaoyang District Beijing China
| | - Y. Zhao
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
46
|
Illicium verum Extract and Trans-Anethole Attenuate Ovalbumin-Induced Airway Inflammation via Enhancement of Foxp3 + Regulatory T Cells and Inhibition of Th2 Cytokines in Mice. Mediators Inflamm 2017; 2017:7506808. [PMID: 29062168 PMCID: PMC5618762 DOI: 10.1155/2017/7506808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/11/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022] Open
Abstract
Illicium verum is used in traditional medicine to treat inflammation. The study investigates the effects of IVE and its component, trans-anethole (AET), on airway inflammation in ovalbumin- (OVA-) induced asthmatic mice. Asthma was induced in BALB/c mice by systemic sensitization to OVA, followed by intratracheal, intraperitoneal, and aerosol allergen challenges. IVE and AET were orally administered for four weeks. We investigated the effects of treatment on airway hyperresponsiveness, IgE production, pulmonary eosinophilic infiltration, immune cell phenotypes, Th2 cytokine production in bronchoalveolar lavage, Th1/Th2 cytokine production in splenocytes, forkhead box protein 3 (Foxp3) expression, and lung histology. IVE and AET ameliorated OVA-driven airway hyperresponsiveness (p < 0.01), pulmonary eosinophilic infiltration (p < 0.05), mucus hypersecretion (p < 0.01), and IL-4, IL-5, IL-13, and CCR3 production (p < 0.05), as well as IgE levels (p < 0.01). IVE and AET increased Foxp3 expression in lungs (p < 0.05). IVE and AET reduced IL-4 and increased IFN-γ production in the supernatant of splenocyte cultures (p < 0.05). Histological studies showed that IVE and AET inhibited eosinophilia and lymphocyte infiltration in lungs (p < 0.01). These results indicate that IVE and AET exert antiasthmatic effects through upregulation of Foxp3+ regulatory T cells and inhibition of Th2 cytokines, suggesting that IVE may be a potential therapeutic agent for allergic lung inflammation.
Collapse
|
47
|
Abbring S, Verheijden KAT, Diks MAP, Leusink-Muis A, Hols G, Baars T, Garssen J, van Esch BCAM. Raw Cow's Milk Prevents the Development of Airway Inflammation in a Murine House Dust Mite-Induced Asthma Model. Front Immunol 2017; 8:1045. [PMID: 28894452 PMCID: PMC5581320 DOI: 10.3389/fimmu.2017.01045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/11/2017] [Indexed: 02/03/2023] Open
Abstract
Epidemiological studies show an inverse relation between raw cow’s milk consumption and the development of asthma. This protective effect seems to be abolished by milk processing. However, evidence for a causal relationship is lacking, and direct comparisons between raw and processed milk are hardly studied. Therefore, this study investigated the preventive capacity of raw and heated raw milk on the development of house dust mite (HDM)-induced allergic asthma in mice. Six- to seven-week-old male BALB/c mice were intranasally (i.n.) sensitized with 1 µg HDM or PBS on day 0, followed by an i.n. challenge with 10 µg HDM or PBS on days 7–11. In addition, mice were fed 0.5 mL raw cow’s milk, heated raw cow’s milk, or PBS three times a week throughout the study, starting 1 day before sensitization. On day 14, airway hyperresponsiveness (AHR) in response to increasing doses of methacholine was measured to assess lung function. Bronchoalveolar lavage fluid (BALF) and lungs were furthermore collected to study the extent of airway inflammation. Raw milk prevented both HDM-induced AHR and pulmonary eosinophilic inflammation, whereas heated raw milk did not. Both milk types suppressed the Th2-polarizing chemokine CCL17 in lung homogenates and reduced lung Th2 and Th17 cell frequency. IL-4 and IL-13 production after ex vivo restimulation of lung T cells with HDM was also reduced by both milk types. However, local IL-5 and IL-13 concentrations were only suppressed by raw milk. These findings support the asthma-protective capacity of raw cow’s milk and show the importance of reduced local type 2 cytokine levels. Heated raw milk did not show an asthma-protective effect, which indicates the involvement of heat-sensitive components. Besides causal evidence, this study provides the basis for further mechanistic studies.
Collapse
Affiliation(s)
- Suzanne Abbring
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Kim A T Verheijden
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Athea Leusink-Muis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Hols
- Nutricia Research, Utrecht, Netherlands
| | - Ton Baars
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| |
Collapse
|
48
|
Inam A, Shahzad M, Shabbir A, Shahid H, Shahid K, Javeed A. Carica papaya ameliorates allergic asthma via down regulation of IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS levels. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:1-7. [PMID: 28732802 DOI: 10.1016/j.phymed.2017.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Natural products have a prime importance as an essential source for new drug discovery. Carica papaya leaves (CPL) have been used to treat inflammation in traditional system of medicine. AIM/HYPOTHESIS Current study evaluates the anti-inflammatory and immunomodulatory effects of CPL extract using mouse model of ovalbumin- (OVA) induced allergic asthma. METHODS All the mice were intraperitoneally sensitized and subsequently given intranasal challenge with OVA except the control group. Group-III and -IV were treated for seven consecutive days with CPL extract and methylprednisolone (MP), respectively. At the end of study, histopathological examination of the lungs was performed and inflammatory cell counts were done in blood as well as bronchoalveolar lavage fluid (BALF). The mRNA expression levels of IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS were measured using reverse transcription polymerase chain reaction (RT-PCR). RESULTS Results showed significant attenuation of lung infiltration of inflammatory cells, alveolar thickening, and goblet cell hyperplasia after treatment with CPL extract. We also found significant suppression of total and differential leukocyte counts in both blood and BALF samples of CPL extract treated group. CPL extract also alleviated the expression levels of IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS. Similarly, treatment with MP, used as a reference drug, also significantly ameliorated all the pro-inflammatory markers. CONCLUSION Current study shows that CPL extract possesses anti-inflammatory effect in mouse model of allergic airway inflammation by down-regulating IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS expression levels.
Collapse
Affiliation(s)
- Asma Inam
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan.
| | - Arham Shabbir
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan; Pharmacology Section, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Hira Shahid
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Khadija Shahid
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
49
|
Máspero J. Reslizumab in the treatment of inadequately controlled asthma in adults and adolescents with elevated blood eosinophils: clinical trial evidence and future prospects. Ther Adv Respir Dis 2017; 11:311-325. [PMID: 28683596 PMCID: PMC5933654 DOI: 10.1177/1753465817717134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
Eosinophils have long been implicated as playing a central role in the pathophysiology of asthma in many patients, and eosinophilic asthma is now recognized as an important asthma endotype. Eosinophil differentiation, maturation, migration, and survival are primarily under the control of interleukin-5 (IL-5). Reslizumab is a humanized monoclonal (immunoglobulin G4/κ) antibody that binds with high affinity to circulating human IL-5 and downregulates the IL-5 signaling pathway, potentially disrupting the maturation and survival of eosinophils. In 2016, an intravenous formulation of reslizumab was approved in the USA, Canada, and Europe as add-on maintenance treatment for patients aged ⩾18 years with severe asthma and with an eosinophilic phenotype. The efficacy of reslizumab as add-on intravenous therapy has been reported in several phase III studies in patients with inadequately controlled moderate-to-severe asthma and elevated blood eosinophil counts (⩾400 cells/µl). Compared with placebo, reslizumab was associated with significant improvements in clinical exacerbation rate, forced expiratory volume in 1 s, asthma symptoms and quality of life, and significant reductions in blood eosinophil counts. Reslizumab also demonstrated a favorable tolerability profile similar to that of placebo, with reported adverse events being mostly mild to moderate in severity. Ongoing studies are focusing on the evaluation of a subcutaneous formulation of reslizumab in patients with asthma and elevated eosinophil levels. This review discusses the preclinical and clinical trial data available on reslizumab, potential opportunities for predicting an early response to reslizumab, and future directions in the field of anti-IL-5 antibody therapy.
Collapse
Affiliation(s)
- Jorge Máspero
- Fundación Cidea Allergy and Respiratory Research
Unit, Paraguay 2035, 2*SS, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
50
|
Phosphatase wild-type p53-induced phosphatase 1 controls the development of T H9 cells and allergic airway inflammation. J Allergy Clin Immunol 2017; 141:2168-2181. [PMID: 28732646 DOI: 10.1016/j.jaci.2017.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Allergic asthma is one of the most common diseases worldwide, resulting in a burden of diseases. No available therapeutic regimens can cure asthma thus far. OBJECTIVE We sought to identify new molecular targets for TH9 cell-mediated allergic airway inflammation. METHODS Wild-type p53-induced phosphatase 1 (Wip1) gene knockout mice, Wip1 inhibitor-treated mice, and ovalbumin-induced allergic airway inflammation mouse models were used to characterize the roles of Wip1 in allergic airway inflammation. The induction of TH cell subsets in vitro, real-time PCR, immunoblots, luciferase assays, and chromatin immunoprecipitation assays were used to determine the regulatory pathways of Wip1 in TH9 differentiation. RESULTS Here we demonstrate that Wip1-deficient mice are less prone to allergic airway inflammation, as indicated by the decreased pathologic alterations in lungs. Short-term treatment with a Wip1-specific inhibitor significantly ameliorates allergic inflammation progression. Intriguingly, Wip1 selectively impaired TH9 but not TH1, TH2, and TH17 cell differentiation. Biochemical assays show that Wip1 deficiency increases c-Jun/c-Fos activity in a c-Jun N-terminal kinase-dependent manner and that c-Jun/c-Fos directly binds to Il9 promoter and inhibits Il9 transcription. CONCLUSION Wip1 controls TH9 cell development through regulating c-Jun/c-Fos activity on the Il9 promoter and is important for the pathogenesis of allergic airway inflammation. These findings shed light on the previously unrecognized roles of Wip1 in TH9 cell differentiation. The inhibitory effects of a Wip1 inhibitor on the pathogenesis of allergic airway inflammation can have important implications for clinical application of Wip1 inhibitors in allergy therapies.
Collapse
|