1
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
2
|
Mahdei Nasir Mahalleh N, Hemmati M, Biyabani A, Pirouz F. The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway. DNA Cell Biol 2025; 44:55-81. [PMID: 39653363 DOI: 10.1089/dna.2024.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Breast cancer (BC) is a significant contributor to cancer-related deaths in women, and it has complex connections with obesity and aging. This review explores the interaction between obesity and aging in relation to the development and progression of BC, focusing on the controlling role of microRNAs (miRNAs). Obesity, characterized by excess adipose tissue, contributes to a proinflammatory environment and metabolic dysregulation, which are important in tumor development. Aging, associated with cellular senescence and systemic changes, further exacerbates these conditions. miRNAs, small noncoding RNAs that regulate gene expression, play key roles in these processes, impacting pathways involved in cell proliferation, apoptosis, and cancer metastasis, either as tumor suppressors or oncogenes. Importantly, specific miRNAs are implicated in mediating the impact of obesity and aging on BC. Exploring the regulatory networks controlled by miRNAs provides valuable information on new targets for therapy and predictive markers, demonstrating the potential for using miRNA-based interventions to treat BC in obese and elderly individuals. This review emphasizes the importance of integrated research strategies to understand the complex connections between obesity, aging, and miRNA regulation in BC.
Collapse
Affiliation(s)
- Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Pirouz
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Zhang YZ, Wu HY, Ma RW, Feng B, Yang R, Chen XG, Li MX, Cheng LM. Machine Learning-Based predictive model for adolescent metabolic syndrome: Utilizing data from NHANES 2007-2016. Sci Rep 2025; 15:3274. [PMID: 39863763 PMCID: PMC11762282 DOI: 10.1038/s41598-025-88156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/24/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS. After excluding adolescents with missing diagnostic variables, the dataset included 2,459 adolescents via NHANES data from 2007-2016. We used LASSO regression and 20-fold cross-validation to screen for the variables with the greatest predictive value. The dataset was divided into training and validation sets in a 7:3 ratio, and SMOTE was used to expand the training set with a ratio of 1:1. Based on the training set, we built eight machine learning models and a multifactor logistic regression model, evaluating nine predictive models in total. After evaluating all models using the confusion matrix, calibration curves and decision curves, the LGB model had the best predictive performance, with an AUC of 0.969, a Youden index of 0.923, accuracy of 0.978, F1 score of 0.989, and Kappa value of 0.800. We further interpreted the LGB model using SHAP, the SHAP hive plot showed that the predictor variables were, in descending order of importance, BMI age sex-specific percentage, weight, upper arm circumference, thigh length, and race. Finally, we deployed it online for broader accessibility. The predictive models we developed and validated demonstrated high performance, making them suitable for large-scale, non-medical primary screening and early warning of adolescent Metabolic syndrome. The online deployment of the model allows for practical use in community and school settings, promoting early intervention and public health improvement.
Collapse
Affiliation(s)
- Yu-Zhen Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Hai-Ying Wu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Run-Wei Ma
- Department of Cardiac Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bo Feng
- Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Rui Yang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Gang Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Min-Xiao Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Li-Ming Cheng
- Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Marchio V, Augimeri G, Morelli C, Vivacqua A, Giordano C, Catalano S, Sisci D, Barone I, Bonofiglio D. Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer. Cell Mol Biol Lett 2025; 30:11. [PMID: 39863855 PMCID: PMC11762563 DOI: 10.1186/s11658-025-00694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer. Moreover, the development of chemoresistance is a major cause of therapeutic failure in this neoplasia, leading to disease relapse and patient death. In addition, chemotherapy's adverse side effects may substantially worsen health-related quality of life. Therefore, to improve the outcome of patients with breast cancer who are undergoing chemotherapy, several therapeutic options are under investigation, including the combination of chemotherapeutic drugs with natural compounds. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), including docosahexaenoic and eicosapentaenoic acids, have drawn attention for their antitumoral properties and their preventive activities against chemotherapy-induced toxicities in breast cancer. A literature review was conducted on PubMed using keywords related to breast cancer, omega-3, chemoresistance, and chemotherapy. This review aims to provide an overview of the molecular mechanisms driving breast cancer chemoresistance, focusing on the role of ω-3 PUFAs in these recognized cellular paths and presenting current findings on the effects of ω-3 PUFAs combined with chemotherapeutic drugs in breast cancer management.
Collapse
Affiliation(s)
- Vittoria Marchio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
| | - Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| |
Collapse
|
5
|
Han DS, Lee EO. Leptin Promotes Vasculogenic Mimicry in Breast Cancer Cells by Regulating Aquaporin-1. Int J Mol Sci 2024; 25:5215. [PMID: 38791252 PMCID: PMC11121373 DOI: 10.3390/ijms25105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer cells. VM was measured by a 3D culture assay. Signal transducers and activators of transcription 3 (STAT3) signaling, aquaporin-1 (AQP1), and the expression of VM-related proteins, including vascular endothelial cadherin (VE-cadherin), twist, matrix metalloproteinase-2 (MMP-2), and laminin subunit 5 gamma-2 (LAMC2), were examined by Western blot. AQP1 mRNA was analyzed by a reverse transcriptase-polymerase chain reaction (RT-PCR). Leptin increased VM and upregulated phospho-STAT3, VE-cadherin, twist, MMP-2, and LAMC2. These effects were inhibited by the leptin receptor-blocking peptide, Ob-R BP, and the STAT3 inhibitor, AG490. A positive correlation between leptin and AQP1 mRNA was observed and was confirmed by RT-PCR. Leptin upregulated AQP1 expression, which was blocked by Ob-R BP and AG490. AQP1 overexpression increased VM and the expression of VM-related proteins. AQP1 silencing inhibited leptin-induced VM and the expression of VM-related proteins. Thus, these results showed that leptin facilitates VM in breast cancer cells via the Ob-R/STAT3 pathway and that AQP1 is a key mediator in leptin-induced VM.
Collapse
Affiliation(s)
- Deok-Soo Han
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Eun-Ok Lee
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Department of Cancer Preventive Material Development, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Andò S, Simões BM. Editorial: Adipokines and hormone-dependent cancers. Front Endocrinol (Lausanne) 2023; 14:1340171. [PMID: 38107522 PMCID: PMC10722399 DOI: 10.3389/fendo.2023.1340171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Bruno M. Simões
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
7
|
Chen H, Qian X, Tao Y, Wang D, Wang Y, Yu Y, Yao H. Impact of body mass index and its change on survival outcomes in patients with early breast cancer: A pooled analysis of individual-level data from BCIRG-001 and BCIRG-005 trials. Breast 2023; 71:1-12. [PMID: 37429049 PMCID: PMC10512096 DOI: 10.1016/j.breast.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
INTRODUCTION The relationships between body mass index (BMI) and survival rates are complex, and have not been thoroughly investigated in breast cancer patients who received adjuvant chemotherapy. METHODS We collected data on 2394 patients from two randomized, phase III clinical trials that investigated adjuvant chemotherapy in breast cancer identified in Project Data Sphere. The objective was to examine the effect of baseline BMI, BMI after adjuvant chemotherapy, and BMI change from baseline to post-adjuvant chemotherapy on disease-free survival (DFS) and overall survival (OS). Restricted cubic splines were used to examine potential non-linear associations between continuous BMI value and survival. Stratified analyses involved chemotherapy regimens. RESULTS Severe obesity (BMI≥40.0 kg/m2) at baseline was independently associated with worse DFS (hazard ration [HR] = 1.48, 95% confidence interval [CI] 1.02-2.16, P = 0.04) and OS (HR = 1.79, 95%CI 1.17-2.74, P = 0.007) compared with underweight/normal weight (BMI≤24.9 kg/m2). A BMI loss >10% was also an independent prognostic factor for adverse OS (HR = 2.14, 95%CI 1.17-3.93, P = 0.014). Stratified analyses revealed that severe obesity adversely affected DFS (HR = 2.38, 95%CI 1.26-4.34, P = 0.007) and OS (HR = 2.90, 95%CI 1.46-5.76, P = 0.002) in the docetaxel-based group, but not in the non-docetaxel-based group. Restricted cubic splines revealed a "J-shaped" association of baseline BMI with risk of recurrence or all-cause death, and this relationship was more pronounced in the docetaxel-based group. CONCLUSIONS In early breast cancer patients treated with adjuvant chemotherapy, baseline severe obesity was significantly linked to worse DFS and OS, and a BMI loss over 10% from baseline to post-adjuvant chemotherapy also negatively affected OS. Moreover, the prognostic role of BMI might differ between docetaxel-based and non-docetaxel-based groups.
Collapse
Affiliation(s)
- Haizhu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoyan Qian
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, PR China
| | - Yunxia Tao
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Daquan Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yunfang Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Yat-sen Supercomputer Intelligent Medical Joint Research Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China.
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
8
|
Chung M, Hwang J, Park S. Antiobesity effects of onion ( Allium cepa) in subjects with obesity: Systematic review and meta-analysis. Food Sci Nutr 2023; 11:4409-4418. [PMID: 37576046 PMCID: PMC10420769 DOI: 10.1002/fsn3.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 04/30/2023] [Indexed: 08/15/2023] Open
Abstract
Onions are rich in bioactive compounds and have been found to prevent various chronic diseases, including obesity. We performed a systematic review and meta-analysis to investigate the antiobesity effect of onions. Studies were identified in PubMed/MEDLINE, Embase, Web of Science, and CENTRAL focusing on clinical trials evaluating the antiobesity effects of onion in obese subjects. The risk of bias in the studies was evaluated using Cochrane's Risk of Bias tool. The effect of onions was analyzed using data from the selected studies, and the results were indicated by weighted mean difference with 95% CI. The I 2 static test was used to examine heterogeneity between the studies. A total of 38 studies were reviewed, of which five clinical trials meeting the criteria were selected. As investigational products, onion peels were used in four studies and onions were used in one study. Following systematic review, it was determined that the risk of bias was generally low, and body weight, BMI, waist circumference, and triglyceride levels were significantly reduced in the onion groups compared to the placebo. In conclusion, onion intake had an antiobesity effect by reducing body weight and body fat, and this effect was particularly pronounced with onion peel.
Collapse
Affiliation(s)
- Min‐Yu Chung
- Department of Food and NutritionGangseo UniversitySeoulKorea
| | - Jin‐Taek Hwang
- Food Functionality Research DivisionKorea Food Research InstituteWanjuKorea
| | - Soo‐Hyun Park
- Food Functionality Research DivisionKorea Food Research InstituteWanjuKorea
| |
Collapse
|
9
|
Caruso A, Gelsomino L, Panza S, Accattatis FM, Naimo GD, Barone I, Giordano C, Catalano S, Andò S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023; 13:1084. [PMID: 37509120 PMCID: PMC10377641 DOI: 10.3390/biom13071084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.
Collapse
Affiliation(s)
- Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
10
|
Ayed K, Nabi L, Akrout R, Mrizak H, Gorrab A, Bacha D, Boussen H, Gati A. Obesity and cancer: focus on leptin. Mol Biol Rep 2023:10.1007/s11033-023-08525-y. [PMID: 37227675 DOI: 10.1007/s11033-023-08525-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Over the past decades, obesity has grown to epidemic proportions worldwide. It has been associated with an increased risk for different types of cancer. In addition, obesity has been associated with a poor prognosis, an increased risk of metastasis and mortality, and resistance to anti-cancer therapies. The pathophysiological mechanisms underlying the obesity-cancer connection have not yet been fully elucidated. However, this connection could result, at least in part, from the action of adipokines, whose levels are increased in obesity. Among these adipokines, evidence suggests leptin's critical role in linking obesity to cancer. In this review, we first summarize the current state of the literature regarding the implication of leptin in tumorigenic processes. Next, we focus on the effects of leptin on the anti-tumor immune response. Then, we discuss the influence of leptin on the efficiency of antineoplastic treatments and the development of tumor resistance. Finally, we highlight the use of leptin as a potential target for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Khouloud Ayed
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lamis Nabi
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rym Akrout
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hela Mrizak
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amal Gorrab
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dhouha Bacha
- Anatomopathology Department, Mongi Slim Hospital, Tunis, Tunisia
| | - Hamouda Boussen
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis El Manar, Ariana, Tunisia
| | - Asma Gati
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
11
|
Barone I, Gelsomino L, Accattatis FM, Giordano F, Gyorffy B, Panza S, Giuliano M, Veneziani BM, Arpino G, De Angelis C, De Placido P, Bonofiglio D, Andò S, Giordano C, Catalano S. Analysis of circulating extracellular vesicle derived microRNAs in breast cancer patients with obesity: a potential role for Let-7a. J Transl Med 2023; 21:232. [PMID: 37004031 PMCID: PMC10064709 DOI: 10.1186/s12967-023-04075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The incidence of obesity, a known risk factor for several metabolic and chronic diseases, including numerous malignancies, has risen sharply in the world. Various clinical studies demonstrate that excessive Body Mass Index (BMI) may worsen the incidence, prognosis, and mortality rates of breast cancer. Thus, understanding the link tying up obesity and breast cancer onset and progression is critically important, as it can impact patients' survival and quality of life. Recently, circulating extracellular vesicle (EV) derived miRNAs have attracted much attention for their diagnostic, prognostic and therapeutic potential in oncology research. Although the potential role of EV-derived miRNAs in the early detection of breast cancer has been repeatedly mentioned, screening of miRNAs packaged within serum EVs has not yet been reported in patients with obesity. METHODS Circulating EVs were isolated from normal weight (NW), and overweight/obese (OW/Ob) breast cancer patients and characterized by Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and protein marker expression. Evaluation of EV-associated miRNAs was conducted in a screening (RNA-seq) and a validation (qRT-PCR) cohort. Bioinformatic analysis was performed to uncover significantly enriched biological processes, molecular functions and pathways. ROC and Kaplain-Meier survival analyses were used for clinical significance. RESULTS Comparison of serum EV-derived miRNAs from NW and OW/Ob patients detected seven differentially expressed miRNAs (let-7a-5p, miR-122-5p, miR-30d-5p, miR-126-3p, miR-27b-3p, miR-4772-3p, and miR-10a-5p) in the screening cohort. GO analysis revealed the enrichment of protein phosphorylation, intracellular signal transduction, signal transduction, and vesicle-mediated transport among the top biological processes. In addition, the target genes were significantly enriched in pathways related to PI3K/Akt, growth hormones, and insulin signalings, which are all involved in obesity-related diseases and/or breast cancer progression. In the validation cohort, qRT-PCR confirmed a significant down-regulation of EV-derived let-7a in the serum of OW/Ob breast cancer patients compared to NW patients. Let-7a levels also exhibited a negative correlation with BMI values. Importantly, decreased let-7a miRNA expression was associated with higher tumor grade and poor survival in patients with breast cancer. CONCLUSION These results suggest that serum-EV derived miRNAs may reflect a differential profile in relation to a patient's BMI, which, once validated in larger cohorts of patients, could provide insights into novel specific biomarkers and innovative targets to prevent the progression of obesity-mediated breast cancer.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, 1094, Budapest, Hungary
- TTK Cancer Biomarker Research Group, 1117, Budapest, Hungary
| | - Salvatore Panza
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
| |
Collapse
|
12
|
Dana N, Ferns GA, Nedaeinia R, Haghjooy Javanmard S. Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ. Clin Transl Oncol 2023; 25:601-610. [PMID: 36348225 DOI: 10.1007/s12094-022-02988-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Obesity may create a mitogenic microenvironment that influences tumor initiation and progression. The obesity-associated adipokine, leptin regulates energy metabolism and has been implicated in cancer development. It has been shown that some cell types other than adipocytes can express leptin and leptin receptors in tumor microenvironments. It has been shown that peroxisome proliferator-activated receptors (PPAR) agonists can affect leptin levels and vice versa leptin can affect PPARs. Activation of PPARs affects the expression of several genes involved in aspects of lipid metabolism. In addition, PPARs regulate cancer cell progression through their action on the tumor cell proliferation, metabolism, and cellular environment. Some studies have shown an association between obesity and several types of cancer, including breast cancer. There is some evidence that suggests that there is crosstalk between PPARs and leptin during the development of breast cancer. Through a systematic review of previous studies, we have reviewed the published relevant articles regarding leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ.
Collapse
Affiliation(s)
- Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Liu L, Liu T, Jia R, Zhang L, Lv Z, He Z, Qu Y, Sun S, Tai F. Downregulation of fatty acid oxidation led by Hilpda increases G2/M arrest/delay-induced kidney fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166701. [PMID: 36990128 DOI: 10.1016/j.bbadis.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Hypoxia-regulated proximal tubular epithelial cells (PTCs) G2/M phase arrest/delay was involved in production of renal tubulointerstitial fibrosis (TIF). TIF is a common pathological manifestation of progression in patients with chronic kidney disease (CKD), and is often accompanied by lipid accumulation in renal tubules. However, cause-effect relationship between hypoxia-inducible lipid droplet-associated protein (Hilpda), lipid accumulation, G2/M phase arrest/delay and TIF remains unclear. Here we found that overexpression of Hilpda downregulated adipose triglyceride lipase (ATGL) promoted triglyceride overload in the form of lipid accumulation, leading to defective fatty acid β-oxidation (FAO), ATP depletion in a human PTC cell line (HK-2) under hypoxia and in mice kidney tissue treated with unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Hilpda-induced lipid accumulation caused mitochondrial dysfunction, enhanced expression of profibrogenic factors TGF-β1, α-SMA and Collagen I elevation, and reduced expression of G2/M phase-associated gene CDK1, as well as increased CyclinB1/D1 ratio, resulted in G2/M phase arrest/delay and profibrogenic phenotypes. Hilpda deficiency in HK-2 cell and kidney of mice with UUO had sustained expression of ATGL and CDK1 and reduced expression of TGF-β1, Collagen I and CyclinB1/D1 ratio, resulting in the amelioration of lipid accumulation and G2/M arrest/delay and subsequent TIF. Expression of Hilpda correlated with lipid accumulation, was positively associated with tubulointerstitial fibrosis in tissue samples from patients with CKD. Our findings suggest that Hilpda deranges fatty acid metabolism in PTCs, which leads to G2/M phase arrest/delay and upregulation of profibrogenic factors, and consequently promote TIF which possibly underlie pathogenesis of CKD.
Collapse
|
14
|
Augimeri G, Fiorillo M, Morelli C, Panza S, Giordano C, Barone I, Catalano S, Sisci D, Andò S, Bonofiglio D. The Omega-3 Docosahexaenoyl Ethanolamide Reduces CCL5 Secretion in Triple Negative Breast Cancer Cells Affecting Tumor Progression and Macrophage Recruitment. Cancers (Basel) 2023; 15:cancers15030819. [PMID: 36765778 PMCID: PMC9913844 DOI: 10.3390/cancers15030819] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC), an aggressive breast cancer subtype lacking effective targeted therapies, is considered to feature a unique cellular microenvironment with high infiltration of tumor-associated macrophages (TAM), which contribute to worsening breast cancer patient outcomes. Previous studies have shown the antitumoral actions of the dietary omega-3 docosahexaenoic acid (DHA) in both tumor epithelial and stromal components of the breast cancer microenvironment. Particularly in breast cancer cells, DHA can be converted into its conjugate with ethanolamine, DHEA, leading to a more effective anti-oncogenic activity of the parent compound in estrogen receptor-positive breast cancer cells. Here, we investigated the ability of DHEA to attenuate the malignant phenotype of MDA-MB-231 and MDA-MB-436 TNBC cell lines, which in turn influenced TAM behaviors. Our findings revealed that DHEA reduced the viability of TNBC cells in a concentration-dependent manner and compromised cell migration and invasion. Interestingly, DHEA inhibited oxygen consumption and extracellular acidification rates, reducing respiration and the glycolytic reserve in both cell lines. In a co-culture system, TNBC cells exposed to DHEA suppressed recruitment of human THP-1 cells, reduced their viability, and the expression of genes associated with TAM phenotype. Interestingly, we unraveled that the effects of DHEA in TNCB cells were mediated by reduced C-C motif chemokine ligand 5 (CCL5) expression and secretion affecting macrophage recruitment. Overall, our data, shedding new light on the antitumoral effects of DHA ethanolamine-conjugated, address this compound as a promising option in the treatment of TNBC patients.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Correspondence: (C.G.); (D.B.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Correspondence: (C.G.); (D.B.)
| |
Collapse
|
15
|
Al Qteishat A, Aringazina R, Ermakov D, Demianenko E. Adipocytokine imbalance and breast cancer in obese women. J Cancer Res Ther 2023; 19:S827-S834. [PMID: 38384062 DOI: 10.4103/jcrt.jcrt_2566_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2024]
Abstract
CONTEXT Breast cancer is the most common diagnosis established in women with malignant tumors. AIMS The purpose is to investigate the blood contents of adiponectin and leptin in women with breast cancer and obesity. SETTINGS AND DESIGN A total of 140 women aged 40-50 were examined. MATERIALS AND METHODS Group 1 included 70 women from classes 1 or 2 obesity. Group 2 included 70 women with stage 1 or 2 breast cancer and classes 1 or 2 obesity. The control group included 30 apparently healthy women, with mean age of 42.5 ± 2.5 years. STATISTICAL ANALYSIS USED Statistical processing of the results obtained was performed using Statistica. RESULTS Groups 1 and 2 were statistically significantly different from each other across all parameters, except for leptin resistance. In group 2, the course of breast cancer with concomitant obesity is characterized by disrupted adipocytokine homeostasis, which manifests as a 1.94-fold decrease in the blood content of adiponectin (P < 0.05), a 4.14-fold increase in the blood content of leptin (P < 0.05), and an 8.00-fold increase in the leptin/adiponectin ratio (P < 0.05). Poorly differentiated breast tumors exhibit a more pronounced imbalance in the blood levels of adipocytokines. Thus, the serum content of leptin in women with poorly differentiated tumors (G3) was 1.79 times (P < 0.05) higher than in women with moderately differentiated tumors (G2). CONCLUSIONS The course of breast cancer with concomitant obesity is characterized by disrupted adipocytokine homeostasis and decreased adiponectin concentration in the blood.
Collapse
Affiliation(s)
- Ahmed Al Qteishat
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, Non-Commercial Joint-Stock Society, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Dmitriy Ermakov
- Department of Pharmacy, Sechenov First State Medical University, Moscow, Russian Federation
| | - Elena Demianenko
- Department of Medical Chemistry, Lugansk State Medical University, Lugansk, Ukraine
| |
Collapse
|
16
|
Shveid Gerson D, Gerson‐Cwilich R, Lara Torres CO, Chousleb de Kalach A, Ventura Gallegos JL, Badillo‐Garcia LE, Bargalló Rocha JE, Maffuz‐Aziz A, Sánchez Forgach ER, Castorena Roji G, Robles Vidal CD, Vargas‐Castillo A, Torres N, Tovar AR, Contreras Jarquín M, Gómez Osnaya JT, Zentella‐Dehesa A. Establishment of triple-negative breast cancer cells based on BMI: A novel model in the correlation between obesity and breast cancer. Front Oncol 2022; 12:988968. [PMID: 36591465 PMCID: PMC9795201 DOI: 10.3389/fonc.2022.988968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Obesity has been associated with an increased risk of biologically aggressive variants in breast cancer. Women with obesity often have tumors diagnosed at later stages of the disease, associated with a poorer prognosis and a different response to treatment. Human cell lines have been derived from specific subtypes of breast cancer and have served to define the cell physiology of corresponding breast cancer subtypes. However, there are no current cell lines for breast cancer specifically derived from patients with different BMIs. The availability of those breast cancer cell lines should allow to describe and unravel functional alterations linked to these comorbidities. Methods Cell cultures were established from tumor explants. Once generated, the triple negative subtype in a patient with obesity and a patient with a normal BMI were chosen for comparison. For cellular characterization, the following assays were conducted: proliferation assays, chemo - sensitivity assays for doxorubicin and paclitaxel, wound healing motility assays, matrix invasion assays, breast cancer cell growth to estradiol by chronic exposure to leptin, induction of endothelial permeability and tumorigenic potential in athymic mice with normo - versus hypercaloric diets with an evaluation of the epithelium - mesenchymal transformation proteins. Results Two different cell lines, were established from patients with breast cancer: DSG-BC1, with a BMI of 21.9 kg/m2 and DSG-BC2, with a BMI of 31.5 kg/m2. In vitro, these two cell lines show differential growth rates, motility, chemosensitivity, vascular permeability, response to leptin with an activation of the JAK2/STAT3/AKT signaling pathway. In vivo, they displayed distinct tumorigenic potential. In particular, DSG-BC2, presented higher tumorigenicity when implanted in mice fed with a hypercaloric diet. Discussion To our knowledge, these primary cultures are the first in vitro representation of both breast cancer and obesity. DSG - BC2 presented a more aggressive in vivo and in vitro phenotype. These results support the hypothesis that breast cancer generated in an obese metabolic state may represent a contrasting variant within the same disease. This new model will allow both further comprehension, functional studies and the analysis of altered molecular mechanisms under the comorbidity of obesity and breast cancer.
Collapse
Affiliation(s)
- Daniela Shveid Gerson
- Cancer Center, American British Cowdray (ABC) Medical Center, Mexico City, Mexico,*Correspondence: Daniela Shveid Gerson,
| | | | - Cesar Octavio Lara Torres
- Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | | | - José Luis Ventura Gallegos
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | - Luis Ernesto Badillo‐Garcia
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Antonio Maffuz‐Aziz
- Cancer Center, American British Cowdray (ABC) Medical Center, Mexico City, Mexico
| | | | | | | | - Ariana Vargas‐Castillo
- Biochemistry Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico,Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Nimbe Torres
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Armando R. Tovar
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Mariela Contreras Jarquín
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jesús Tenahuatzin Gómez Osnaya
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alejandro Zentella‐Dehesa
- Cancer Center, American British Cowdray (ABC) Medical Center, Mexico City, Mexico,Biochemistry Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| |
Collapse
|
17
|
Wu Y, Li X, Li Q, Cheng C, Zheng L. Adipose tissue-to-breast cancer crosstalk: Comprehensive insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188800. [PMID: 36103907 DOI: 10.1016/j.bbcan.2022.188800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The review focuses on mechanistic evidence for the link between obesity and breast cancer. According to the IARC study, there is sufficient evidence that obesity is closely related to a variety of cancers. Among them, breast cancer is particularly disturbed by adipose tissue due to the unique histological structure of the breast. The review introduces the relationship between obesity and breast cancer from two aspects, including factors that promote tumorigenesis or metastasis. We summarize alterations in adipokines and metabolic pathways that contribute to breast cancer development. Breast cancer metastasis is closely related to obesity-induced pro-inflammatory microenvironment, adipose stem cells, and miRNAs. Based on the mechanism by which obesity causes breast cancer, we list possible therapeutic directions, including reducing the risk of breast cancer and inhibiting the progression of breast cancer. We also discussed the risk of autologous breast remodeling and fat transplantation. Finally, the causes of the obesity paradox and the function of enhancing immunity are discussed. Evaluating the balance between obesity-induced inflammation and enhanced immunity warrants further study.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Chienshan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China.
| |
Collapse
|
18
|
Pantelimon I, Gales LN, Anghel RM, Gruia MI, Nita I, Matei CV, Bodea D, Stancu AM, Pirvu E, Radu MC, Dumitrescu AI, Manolescu LSC. Aspects Regarding the Influence of Obesity on the Molecular Characteristics of Breast Tumors. Cureus 2022; 14:e26952. [PMID: 35989732 PMCID: PMC9381069 DOI: 10.7759/cureus.26952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/05/2022] Open
|
19
|
Chen K, Zhang J, Beeraka NM, Tang C, Babayeva YV, Sinelnikov MY, Zhang X, Zhang J, Liu J, Reshetov IV, Sukocheva OA, Lu P, Fan R. Advances in the Prevention and Treatment of Obesity-Driven Effects in Breast Cancers. Front Oncol 2022; 12:820968. [PMID: 35814391 PMCID: PMC9258420 DOI: 10.3389/fonc.2022.820968] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity and associated chronic inflammation were shown to facilitate breast cancer (BC) growth and metastasis. Leptin, adiponectin, estrogen, and several pro-inflammatory cytokines are involved in the development of obesity-driven BC through the activation of multiple oncogenic and pro-inflammatory pathways. The aim of this study was to assess the reported mechanisms of obesity-induced breast carcinogenesis and effectiveness of conventional and complementary BC therapies. We screened published original articles, reviews, and meta-analyses that addressed the involvement of obesity-related signaling mechanisms in BC development, BC treatment/prevention approaches, and posttreatment complications. PubMed, Medline, eMedicine, National Library of Medicine (NLM), and ReleMed databases were used to retrieve relevant studies using a set of keywords, including "obesity," "oncogenic signaling pathways," "inflammation," "surgery," "radiotherapy," "conventional therapies," and "diet." Multiple studies indicated that effective BC treatment requires the involvement of diet- and exercise-based approaches in obese postmenopausal women. Furthermore, active lifestyle and diet-related interventions improved the patients' overall quality of life and minimized adverse side effects after traditional BC treatment, including postsurgical lymphedema, post-chemo nausea, vomiting, and fatigue. Further investigation of beneficial effects of diet and physical activity may help improve obesity-linked cancer therapies.
Collapse
Affiliation(s)
- Kuo Chen
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Zhang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Narasimha M. Beeraka
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, India
| | - Chengyun Tang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Yulia V. Babayeva
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Mikhail Y. Sinelnikov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Xinliang Zhang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Jiacheng Zhang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Igor V. Reshetov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Pengwei Lu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Benot-Dominguez R, Cimini A, Barone D, Giordano A, Pentimalli F. The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers? Cancers (Basel) 2022; 14:2709. [PMID: 35681689 PMCID: PMC9179653 DOI: 10.3390/cancers14112709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO). Here we provide an overview of the most recent studies involving nutraceuticals and other dietary strategies affecting cell-cycle pathways, which might impact the management of breast and ovarian cancers, as well as the repurposing of already commercialized chemotherapeutic options to treat DIO.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
21
|
Li L, Meng X, Liu L, Xiang Y, Wang F, Yu L, Zhou F, Zheng C, Zhou W, Cui S, Tian F, Fan Z, Geng C, Cao X, Yang Z, Wang X, Liang H, Wang S, Jiang H, Duan X, Wang H, Li G, Wang Q, Zhang J, Jin F, Tang J, Li L, Zhu S, Zuo W, Ye C, Yin G, Ma Z, Huang S, Yu Z. Single-Nucleotide Polymorphisms in LEP and LEPR Associated With Breast Cancer Risk: Results From a Multicenter Case-Control Study in Chinese Females. Front Oncol 2022; 12:809570. [PMID: 35223490 PMCID: PMC8866686 DOI: 10.3389/fonc.2022.809570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Leptin (LEP) plays a physiological role through its specific receptor (LEPR) and is involved in the occurrence and development of breast cancer. Our current study aimed at determining the influence of single-nucleotide polymorphisms (SNPs) in the genes coding for LEP and LEPR on breast cancer risk. Methods In the present study, 963 breast cancer cases and 953 controls were enrolled. Five SNPs of LEP and two of LEPR were chosen to evaluate the correlation of selected SNPs with breast cancer susceptibility among women in northern and eastern China. Analyses were further stratified by body mass index (BMI), waist–hip rate (WHR), estrogen receptor, and progesterone receptor status. The expression patterns of risk variant-associated genes were detected by expression quantitative trait locus (eQTL) analysis with eQTLGen and The Cancer Genome Atlas database. Results There were significant differences between breast cancer cases and control groups in the menopausal status and family history of breast cancer. Two SNPs (rs1137101 and rs4655555) of the LEPR gene decreased overall breast cancer risk, and other five SNPs showed no significant association with breast cancer risk. rs1137101 (GA vs. GG; adjusted OR = 0.719, 95% CI = 0.578–0.894, p = 0.003) and rs4655555 (TT vs. AA; adjusted OR = 0.574, 95% CI = 0.377–0.873, p = 0.009) significantly decreased breast cancer risk after Bonferroni correction for multiple testing. In subgroup analyses, the GA and GA + AA genotypes of LEPR rs1137101 associated with decreased breast cancer risk in the subgroup of BMI ≤ 24 kg/m2 or WHR ≥ 0.85 after Bonferroni correction. Furthermore, we found that the expressions of rs4655555-associated gene LEPR and leptin receptor overlapping transcript (LEPROT) were upregulated in breast cancer tumor tissues compared with adjacent normal tissues, and a higher expression of LEPR in tumor tissues was correlated with poor prognosis of breast cancer patients using The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) data. Conclusion Our study demonstrated that the polymorphisms rs1137101 and rs4655555 located in the LEPR gene decreased breast cancer risk in Chinese females, which might be a research-worthy bio-diagnostic marker and applied for early prediction and risk assessment of breast cancer.
Collapse
Affiliation(s)
- Liang Li
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Xingchen Meng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Shude Cui
- Department of Breast Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuguo Tian
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Cuizhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuchen Cao
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiang Wang
- Department of Breast Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Liang
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Shu Wang
- Department of Breast Disease Center, Peking University People's Hospital, Beijing, China
| | - Hongchuan Jiang
- Department of General Surgery, Beijing Chaoyang Hospital, Beijing, China
| | - Xuening Duan
- Department of Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Haibo Wang
- Department of Breast Center, Qingdao University Affiliated Hospital, Qingdao, China
| | - Guolou Li
- Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Qitang Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Qingdao Medical College, Qingdao Central Hospital, Qingdao, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinhai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Liang Li
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, Zibo, China
| | - Shiguang Zhu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Wenshu Zuo
- Department of Breast Cancer Center, Shandong Cancer Hospital, Jinan, China
| | - Chunmiao Ye
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gengshen Yin
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China.,Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, China
| |
Collapse
|
22
|
Chen P, Wang B, Li M, Cui C, Liu F, Gao Y. Celastrol inhibits the proliferation and migration of MCF-7 cells through the leptin-triggered PI3K/AKT pathway. Comput Struct Biotechnol J 2022; 20:3173-3181. [PMID: 35782744 PMCID: PMC9234344 DOI: 10.1016/j.csbj.2022.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Leptin is the pivotal modulator in the onset and progression of breast cancer and obesity. Celastrol, which is extracted from the roots of Tripterygium wilfordi plants, exerts various anticancer bioactivities and has recently emerged as a candidate to treat obesity by improving leptin sensitivity. However, the relationship between leptin and celastrol in the treatment of breast cancer is unknown. Here, the growth and migration of MCF-7 cells induced by leptin were tested to demonstrate the antineoplastic activity of celastrol. Transcriptomic analysis and western blotting were conducted to explore the biological roles of leptin in treating breast cancer with celastrol. The present findings showed that celastrol remarkably reversed leptin-triggered cell proliferation and migration in MCF-7 cells. Fifty-two mRNAs with fivefold higher counts and 149 mRNAs with fivefold lower counts were identified in the celastrol-treated MCF-7 cells. According to the GO and KEGG analyses, the effects of celastrol on MCF-7 cells forced lipid metabolism and the endocrine system. Moreover, leptin treatment induced phosphorylation of leptin receptor and PI3K/AKT in MCF-7 cells, whereas pretreatment with celastrol partly abrogated leptin activation. The binding of celastrol to the leptin receptor was also confirmed by molecular docking. The antitumor effect of celastrol is proposed to be mediated by its binding to the leptin receptor and controlled downregulation of the PI3K/AKT pathway.
Collapse
|
23
|
Leptin and Beyond: Actors in Cancer. Biomolecules 2021; 11:biom11121836. [PMID: 34944480 PMCID: PMC8699167 DOI: 10.3390/biom11121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
|
24
|
García-Estévez L, Cortés J, Pérez S, Calvo I, Gallegos I, Moreno-Bueno G. Obesity and Breast Cancer: A Paradoxical and Controversial Relationship Influenced by Menopausal Status. Front Oncol 2021; 11:705911. [PMID: 34485137 PMCID: PMC8414651 DOI: 10.3389/fonc.2021.705911] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most common tumor in women worldwide, and an increasing public health concern. Knowledge of both protective and negative risk factors is essential for a better understanding of this heterogenous disease. We undertook a review of the recent literature and evaluated the relationship between obesity mediators and breast cancer development depending on menopausal status. Excess weight is now pandemic and has replaced tobacco as the main lifestyle-related risk factor for premature death. Although the prevalence of obesity/overweight has increased globally over the last 50 years, the potential harm attributable to excess fat has generally been underestimated. The relationship between overweight/obesity, breast cancer and overall risk appears to be highly dependent on menopausal status. Thus, obesity increases the risk of breast cancer in postmenopausal women but, conversely, it appears to be protective in premenopausal women. We evaluate the role of different clinical factors potentially involved in this seemingly contradictory relationship, including estrogen, mammogram density, adipokines, insulin-signaling pathway activation, and inflammatory status. A key focus of this review is to better understand the impact of body mass index and menopausal status on these clinical factors and, hence, provide some clarity into the inter-relationships involved in this controversial issue.
Collapse
Affiliation(s)
- Laura García-Estévez
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Barcelona, Spain.,Medical Scientia Innovation Research (MedSIR), Barcelona, Spain.,Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Silvia Pérez
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain
| | - Isabel Calvo
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain
| | - Isabel Gallegos
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, & Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,MD Anderson International Foundation, Madrid, Spain
| |
Collapse
|
25
|
Zhao C, Hu W, Xu Y, Wang D, Wang Y, Lv W, Xiong M, Yi Y, Wang H, Zhang Q, Wu Y. Current Landscape: The Mechanism and Therapeutic Impact of Obesity for Breast Cancer. Front Oncol 2021; 11:704893. [PMID: 34350120 PMCID: PMC8326839 DOI: 10.3389/fonc.2021.704893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Obesity is defined as a chronic disease induced by an imbalance of energy homeostasis. Obesity is a widespread health problem with increasing prevalence worldwide. Breast cancer (BC) has already been the most common cancer and one of the leading causes of cancer death in women worldwide. Nowadays, the impact of the rising prevalence of obesity has been recognized as a nonnegligible issue for BC development, outcome, and management. Adipokines, insulin and insulin-like growth factor, sex hormone and the chronic inflammation state play critical roles in the vicious crosstalk between obesity and BC. Furthermore, obesity can affect the efficacy and side effects of multiple therapies such as surgery, radiotherapy, chemotherapy, endocrine therapy, immunotherapy and weight management of BC. In this review, we focus on the current landscape of the mechanisms of obesity in fueling BC and the impact of obesity on diverse therapeutic interventions. An in-depth exploration of the underlying mechanisms linking obesity and BC will improve the efficiency of the existing treatments and even provide novel treatment strategies for BC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiping Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Coradini D, Gambazza S, Oriana S, Ambrogi F. Adipokines expression and epithelial cell polarity in normal and cancerous breast tissue. Carcinogenesis 2021; 41:1402-1408. [PMID: 32556088 DOI: 10.1093/carcin/bgaa060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/13/2020] [Accepted: 06/12/2020] [Indexed: 11/12/2022] Open
Abstract
Cell polarity is crucial for the correct structural and functional organization of epithelial tissue. Its disruption can lead to loss of the apicobasal polarity, alteration in the intracellular components, misregulation of the pathways involved in cell proliferation and cancer promotion. Very recent in vitro/in vivo findings demonstrated that obesity-associated alterations in tissue adipokines protein level negatively affect epithelial polarity. We performed an in silico study to investigate whether such alterations also occur in surgical samples. We aimed to explore the relationship among the expression of the genes coding for leptin (LEP), adiponectin (ADIPOQ), adipokine receptors (LEPR, ADIPOR1 and ADIPOR2), and a panel of polarity-associated genes in normal tissue from breast reduction mammoplasty, and a series of paired samples of histologically normal (HN) tissue and invasive cancer. Results indicated that, in normal tissue, the expression of adipokines and their receptors negatively correlated with that of the polarity-associated genes and GGT1, which codes for γ-glutamyl transferase (GGT) enzyme, a marker of cell distress and membrane disruption. This negative correlation progressively decreased in HN and cancerous tissue, and loss of correlation between ADIPOR2 and polarity-associated genes appeared the most noticeable alteration. Given the growing role of obesity in breast cancer etiology and the opposite action of leptin and adiponectin in epithelial tissue remodeling, ADIPOR2 loss could be addressed as a key mechanism leading to an unbalanced leptin stimulatory activity, subsequent cell polarity disruption and eventually tumor initiation, a finding that requires to be confirmed also at the protein level and with in vivo models.
Collapse
Affiliation(s)
- Danila Coradini
- Laboratory of Medical Statistics and Biometry, 'Giulio A. Maccacaro', Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Via Vanzetti, Milan, Italy
| | - Simone Gambazza
- Laboratory of Medical Statistics and Biometry, 'Giulio A. Maccacaro', Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Via Vanzetti, Milan, Italy
| | - Saro Oriana
- Senology Center, Ambrosiana Clinic, Istituto Sacra Famiglia, Cesano Boscone, Piazza Mons. Moneta, Cesano Boscone, Milan, Italy
| | - Federico Ambrogi
- Laboratory of Medical Statistics and Biometry, 'Giulio A. Maccacaro', Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Via Vanzetti, Milan, Italy
| |
Collapse
|
27
|
Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M, Taniguchi K. Inflammation-Induced Tumorigenesis and Metastasis. Int J Mol Sci 2021; 22:ijms22115421. [PMID: 34063828 PMCID: PMC8196678 DOI: 10.3390/ijms22115421] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation, especially chronic inflammation, plays a pivotal role in tumorigenesis and metastasis through various mechanisms and is now recognized as a hallmark of cancer and an attractive therapeutic target in cancer. In this review, we discuss recent advances in molecular mechanisms of how inflammation promotes tumorigenesis and metastasis and suppresses anti-tumor immunity in various types of solid tumors, including esophageal, gastric, colorectal, liver, and pancreatic cancer as well as hematopoietic malignancies.
Collapse
Affiliation(s)
- Sana Hibino
- Research Center for Advanced Science and Technology, Department of Inflammology, The University of Tokyo, Tokyo 153-0041, Japan;
| | - Tetsuro Kawazoe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Hidenori Kasahara
- National Center for Global Health and Medicine, Department of Stem Cell Biology, Research Institute, Tokyo 162-8655, Japan;
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan;
| | | | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence: ; Tel.: +81-11-706-5050
| |
Collapse
|
28
|
Lv W, Ding B, Qian L, Wu W, Wen Y. Safety of Breast Cancer Mastoscopic Surgery from the Perspective of Immunity and Adipokines. J INVEST SURG 2021; 35:632-638. [PMID: 33998356 DOI: 10.1080/08941939.2021.1919945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: This study was performed to explore the safety of breast cancer (BC) mastoscopic surgery from the perspective of immunity and adipokines. Method: A single-center, prospective, randomized controlled trial was carried out among 42 patients who had undergone surgery from December 2018 to July 2019. All patients were randomly divided into an open surgery group (n = 21) and a mastoscopic surgery group (n = 21). Flow cytometry was used to detect natural killer (NK), CD4+ T cells, CD8+ T cells, and regulatory T (Treg) cells in each group 1 d before surgery, 1 h after operation, and 1, 5, and 7 d after operation. The levels of serum leptin and adiponectin were detected by enzyme-linked immunosorbent assay before and after operation. Results: There were no significant differences in the percentages of NK (p = 0.984), CD4+ T (p = 0.591), Treg (p = 0.676), and CD8 + T (p = 0.341) lymphocytes between the two groups during the perioperative period. There were no significant differences in the levels of serum leptin and adiponectin before and after operation between the two groups (all p > 0.05). There were no significant differences between patients undergoing open surgery and mastoscopic surgery from the perspective of immunity and adipokines. Conclusion: Mastoscopic surgery is a suitable surgical choice for patients with BC.
Collapse
Affiliation(s)
- Wenzhi Lv
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Boni Ding
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liyuan Qian
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wu
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanguang Wen
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
29
|
Wang J, Zhou F, Li F, Wang B, Hu Y, Li X. Autocrined leptin promotes proliferation of non-small cell lung cancer (NSCLC) via PI3K/AKT and p53 pathways. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:568. [PMID: 33987266 DOI: 10.21037/atm-20-7482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Circulating leptin can directly act on tumor cells. However, a recent meta-analysis showed that plasma leptin concentration had no significant effect on the survival of lung cancer patients. So does Leptin have an effect on lung cancer? Or there may be other factors that influence the effect. Methods Genome sequencing database Oncomine was searched to learn the differential expression of leptin between tumors and normal lungs. Fresh tumor specimens and paired normal lung tissue from six lung adenocarcinoma patients were collected, and validate the expression level of leptin. Clinicopathological information and tumor slices from 60 non-small cell lung cancer (NSCLC) patients were analyzed to evaluate the prognostic value of autocrined leptin. Whole genome sequencing data from the cancer genome atlas (TCGA) was analyzed to predict the underlying mechanism of leptin regulating tumor proliferation. Finally, these findings were confirmed by using cell lines H1299, A549, H460, and H322 to explore the promoting effect and mechanism of leptin on cell proliferation in vitro. Results Five datasets in Oncomine reported the expression of the LEP gene in NSCLC, and 4 datasets showed that leptin was up-regulated in tumors compared with normal lungs. Leptin was also overexpressed in 5 out of 6 clinical lung adenocarcinoma specimens. The analysis of the 60 NSCLC patients revealed that autocrined leptin could serve as an auxiliary prognostic factor, and a higher expression of leptin indicated a higher survival risk. Gene set enrichment analysis (GSEA) showed that the PI3K/AKT/mTOR signaling pathway was positively enriched when the LEP gene was highly expressed, while the P53 signaling pathway was negatively enriched. Leptin promoted cell cycle and clone formation in H1299 and A549 cells, up-regulation or down-regulation of leptin in these two cell lines led to enhanced or declined proliferation. Finally, it was confirmed that the PI3K/AKT/mTOR signaling pathway was positively regulated by leptin expression, while the P53 signaling pathway was negatively regulated. Conclusions Autocrined leptin was observed in majority of NSCLC tissue, which could serve as an auxiliary prognostic factor for NSCLC patients. Autocrined leptin had a promoting effect on the proliferation of NSCLC cells, which probably positively regulating the PI3K/AKT/mTOR signaling pathway and negatively regulate the P53 signaling pathway.
Collapse
Affiliation(s)
- Jin Wang
- Department of Immunology, Dalian Medical University, Dalian, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fachen Zhou
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fengzhou Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bing Wang
- Department of Immunology, Dalian Medical University, Dalian, China
| | - Yiying Hu
- Department of Neuroelectrophysiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xia Li
- Department of Immunology, Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Olea-Flores M, Juárez-Cruz JC, Zuñiga-Eulogio MD, Acosta E, García-Rodríguez E, Zacapala-Gomez AE, Mendoza-Catalán MA, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. New Actors Driving the Epithelial-Mesenchymal Transition in Cancer: The Role of Leptin. Biomolecules 2020; 10:E1676. [PMID: 33334030 PMCID: PMC7765557 DOI: 10.3390/biom10121676] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial-mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Juan C. Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Miriam D. Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Erika Acosta
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Ana E. Zacapala-Gomez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteinas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| |
Collapse
|
31
|
Leptin, Leptin Receptor, KHDRBS1 (KH RNA Binding Domain Containing, Signal Transduction Associated 1), and Adiponectin in Bone Metastasis from Breast Carcinoma: An Immunohistochemical Study. Biomedicines 2020; 8:biomedicines8110510. [PMID: 33213024 PMCID: PMC7698510 DOI: 10.3390/biomedicines8110510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer patients are at a high risk of complications from bone metastasis. Molecular characterization of bone metastases is essential for the discovery of new therapeutic targets. Here, we investigated the expression and the intracellular distribution of KH RNA binding domain containing, signal transduction associated 1 (KHDRBS1), leptin, leptin receptor (LEPR), and adiponectin in bone metastasis from breast carcinoma and looked for correlations between the data. The expression of these proteins is known in breast carcinoma, but it has not been investigated in bone metastatic tissue to date. Immunohistochemical analysis was carried out on bone metastasis specimens, then semiquantitative evaluation of the results and the Pearson test were performed to determine eventual correlations. KHDRBS1 expression was significantly higher in the nuclei than in the cytosol of metastatic cells; LEPR was prevalently observed in the cytosol and the nuclei; leptin and adiponectin were found in metastatic cells and stromal cells; the strongest positive correlation was between nuclear KHDRBS1 and nuclear LEPR expression. Taken together, our findings support the importance of the leptin/LEPR/KHDRBS1 axis and of adiponectin in the progression of bone metastasis and suggest their potential application in pharmacological interventions.
Collapse
|
32
|
Duan L, Lu Y, Xie W, Nong L, Jia Y, Tan A, Liu Y. Leptin promotes bone metastasis of breast cancer by activating the SDF-1/CXCR4 axis. Aging (Albany NY) 2020; 12:16172-16182. [PMID: 32836215 PMCID: PMC7485740 DOI: 10.18632/aging.103599] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Obesity is associated with an increased risk of tumorigenesis, and increased leptin levels can promote tumor metastasis. However, the effects of leptin on bone metastasis in breast cancer are not fully understood. Here, we examined leptin receptor expression and bone metastasis in tissue samples from 96 breast cancer patients. In addition, we investigated the effects of leptin on the metastatic capacity of breast cancer cells in vitro using a transwell assays. The results indicated that higher leptin receptor levels in breast cancer cells are associated with increased incidence of bone metastasis in breast cancer patients. Additionally, leptin promoted migration and invasion of breast cancer cells. The SDF-1/CXCR4 axis activated by leptin also promoted bone metastasis of breast cancer. Finally, increased CXCR4 expression was accompanied by high leptin receptor expression in bone metastatic tissues from breast cancer patients. These results indicate that leptin induces bone metastasis of breast cancer by activating the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Lixia Duan
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yongkui Lu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Weimin Xie
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Li Nong
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yuxian Jia
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Aihua Tan
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yan Liu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China.,Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
33
|
Gelsomino L, Naimo GD, Malivindi R, Augimeri G, Panza S, Giordano C, Barone I, Bonofiglio D, Mauro L, Catalano S, Andò S. Knockdown of Leptin Receptor Affects Macrophage Phenotype in the Tumor Microenvironment Inhibiting Breast Cancer Growth and Progression. Cancers (Basel) 2020; 12:cancers12082078. [PMID: 32727138 PMCID: PMC7464041 DOI: 10.3390/cancers12082078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant leptin (Ob) signaling, a hallmark of obesity, has been recognized to influence breast cancer (BC) biology within the tumor microenvironment (TME). Here, we evaluated the impact of leptin receptor (ObR) knockdown in affecting BC phenotype and in mediating the interaction between tumor cells and macrophages, the most abundant immune cells within the TME. The stable knockdown of ObR (ObR sh) in ERα-positive and ERα-negative BC cells turned the tumor phenotype into a less aggressive one, as evidenced by in vitro and in vivo models. In xenograft tumors and in co-culture experiments between circulating monocytes and BC cells, the absence of ObR reduced the recruitment of macrophages, and also affected their cytokine mRNA expression profile. This was associated with a decreased expression and secretion of monocyte chemoattractant protein-1 in ObR sh clones. The loss of Ob/ObR signaling modulated the immunosuppressive TME, as shown by a reduced expression of programmed death ligand 1/programmed cell death protein 1/arginase 1. In addition, we observed increased phagocytic activity of macrophages compared to control Sh clones in the presence of ObR sh-derived conditioned medium. Our findings, addressing an innovative role of ObR in modulating immune TME, may open new avenues to improve BC patient health care.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
| | - Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende (CS), Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende (CS), Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (L.G.); (G.D.N.); (R.M.); (G.A.); (S.P.); (C.G.); (I.B.); (D.B.); (L.M.); (S.C.)
- Centro Sanitario, University of Calabria, 87036 Rende (CS), Italy
- Correspondence: ; Tel.: +39-0984-496201; Fax: +39-0984-496203
| |
Collapse
|
34
|
Mannelli M, Gamberi T, Magherini F, Fiaschi T. The Adipokines in Cancer Cachexia. Int J Mol Sci 2020; 21:ijms21144860. [PMID: 32660156 PMCID: PMC7402301 DOI: 10.3390/ijms21144860] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cachexia is a devastating pathology induced by several kinds of diseases, including cancer. The hallmark of cancer cachexia is an extended weight loss mainly due to skeletal muscle wasting and fat storage depletion from adipose tissue. The latter exerts key functions for the health of the whole organism, also through the secretion of several adipokines. These hormones induce a plethora of effects in target tissues, ranging from metabolic to differentiating ones. Conversely, the decrease of the circulating level of several adipokines positively correlates with insulin resistance, metabolic syndrome, diabetes, and cardiovascular disease. A lot of findings suggest that cancer cachexia is associated with changed secretion of adipokines by adipose tissue. In agreement, cachectic patients show often altered circulating levels of adipokines. This review reported the findings of adipokines (leptin, adiponectin, resistin, apelin, and visfatin) in cancer cachexia, highlighting that to study in-depth the involvement of these hormones in this pathology could lead to the development of new therapeutic strategies.
Collapse
|
35
|
Bouguerra H, Amal G, Clavel S, Boussen H, Louet JF, Gati A. Leptin decreases BC cell susceptibility to NK lysis via PGC1A pathway. Endocr Connect 2020; 9:578-586. [PMID: 32449691 PMCID: PMC7354724 DOI: 10.1530/ec-20-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Large prospective studies established a link between obesity and breast cancer (BC) development. Yet, the mechanisms underlying this association are not fully understood. Among the diverse adipocytokine secreted by hypertrophic adipose tissue, leptin is emerging as a key candidate molecule linking obesity and cancer, since it promotes proliferation and invasiveness of tumors. However, the potential implication of leptin on tumor escape mechanisms remains unknown. This study aims to explore the effect of leptin on tumor resistance to NK lysis and the underlying mechanism. We found that leptin promotes both BC resistance to NK92-mediated lysis and β oxidation on MCF-7, by the up-regulation of a master regulator of mitochondrial biogenesis, the peroxisome proliferator activated receptor coactivator-1 α (PGC1A). Using adenoviral approaches, we show that acute elevation of PGC1A enhances the fatty acid oxidation pathway and decreases the susceptibility of BC cells to NK92-mediated lysis. Importantly, we identified the involvement of PGC1A and leptin in the regulation of hypoxia inducible factor-1 alpha (HIF1A) expression by tumor cells. We further demonstrate that basal BC cells MDA-MB-231 and BT-20 exhibit an increased PGC1A mRNA level and an enhanced oxidative phosphorylation activity; in comparison with luminal BC cells MCF7 and MDA-361, which are associated with more resistance NK92 lysis. Altogether, our results demonstrate for the first time how leptin could promote tumor resistance to immune attacks. Reagents blocking leptin or PGC1A activity might aid in developing new therapeutic strategies to limit tumor development in obese BC patients.
Collapse
Affiliation(s)
- Hichem Bouguerra
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique, Immunologie et pathologies Humaines, Tunis, Tunisie
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
| | - Gorrab Amal
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique, Immunologie et pathologies Humaines, Tunis, Tunisie
| | - Stephan Clavel
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
| | - Hamouda Boussen
- Département d’Oncologie Médicale, Hôpital Abderrahman Mami, Ariana, Tunisia
| | - Jean-François Louet
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
| | - Asma Gati
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique, Immunologie et pathologies Humaines, Tunis, Tunisie
- Correspondence should be addressed to A Gati:
| |
Collapse
|
36
|
Kim SH, Hahm ER, Singh KB, Singh SV. Diallyl Trisulfide Inhibits Leptin-induced Oncogenic Signaling in Human Breast Cancer Cells but Fails to Prevent Chemically-induced Luminal-type Cancer in Rats. J Cancer Prev 2020; 25:1-12. [PMID: 32266174 PMCID: PMC7113410 DOI: 10.15430/jcp.2020.25.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Previous studies have demonstrated inhibitory effect of garlic component diallyl trisulfide (DATS) on growth of breast cancer cells in vitro and in vivo. This study investigated the effect of DATS on oncogenic signaling regulated by leptin, which plays an important role in breast carcinogenesis. Leptin-induced phosphorylation and nuclear translocation of STAT3 was inhibited significantly in the presence of DATS in MCF-7 (a luminal-type human breast cancer cell line) and MDA-MB-231 (a basal-like human breast cancer cell line). Leptin-stimulated cell proliferation, clonogenic cell survival, and migration and/or invasion ability in MCF-7 and/or MDA-MB-231 cells were also suppressed by DATS treatment. DATS exposure resulted in inhibition of leptin-stimulated expression of protein and/or mRNA levels of Bcl-2, Bcl-xL, Cyclin D1, vascular endothelial growth factor, and matrix metalloproteinase-2. Western blotting revealed a decrease in protein levels of phosphorylated STAT3 in breast cancer xenografts from DATS-treated mice when compared to controls in vivo. However, the incidence of N-methyl-N-nitrosourea-induced luminal-type breast cancer development in rats was not affected by oral administration of 5 mg/kg or 25 mg/kg DATS. The present study reveals that oncogenic signaling induced by leptin is inhibited in the presence of DATS but higher doses of this phytochemical may be required to achieve chemopreventive activity.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eun-Ryeong Hahm
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Krishna B Singh
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shivendra V Singh
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Atoum MF, Alzoughool F, Al-Hourani H. Linkage Between Obesity Leptin and Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223419898458. [PMID: 31975779 PMCID: PMC6956603 DOI: 10.1177/1178223419898458] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Many cancers might be influenced by obesity, including breast cancer, the leading cause of cancer death among women. Obesity is a complex state associated with multiple physiological and molecular changes capable of modulating the behavior of breast tumor cells and the surrounding microenvironment. This review discussed the inverse association between obesity and breast cancer among premenopausal breast cancer females and the positive association among postmenopausal. Four mechanisms may link obesity and breast cancer including leptin and leptin receptor expression, adipose chronic inflammation, sex hormone alternation, and insulin and insulinlike growth factor 1 (IGF-1) signaling. Leptin has been involved in breast cancer initiation, development, and progression through signaling transduction network. Leptin functions are strengthened through cross talk with multiple oncogenes, cytokines, and growth factors. Adipose chronic inflammation promotes cancer growth and angiogenesis and modifies the immune responses. A pro-inflammatory microenvironment at tumor site promotes cytokines and pro-inflammatory mediators adjacent to the tumor. Leptin stimulates pro-inflammatory cytokines and promotes T-helper 1 responses. Obesity is common of chronic inflammation. In obese patients, white adipose tissue (WAT) will promote pro-inflammatory mediators that will encourage tumor growth and WAT inflammation. Sex hormone alternation of estrogens is associated with increased risk for hormone-sensitive breast cancers. Estrogens cause tumorigenesis by its effect on signaling pathways that lead to DNA damage, stimulation angiogenesis, mutagenesis, and cell proliferation. In postmenopausal females, and due to termination of ovarian function, estrogens were produced extra gonadally, mainly in peripheral adipose tissues where adrenal-produced androgen precursors are converted to estrogens. Active estradiol leads to breast cancer development by binding to ERα, which is modified by receptor’s interaction of various signal transduction pathways. Hyperinsulinemia and IGF-1 activate the MAPK and PI3K pathways, leading to cancer-promoting effects. Cross talk between insulin/IGF and estrogen signaling pathways promotes hormone-sensitive breast cancer development. Hyperinsulinemia is a risk factor for breast cancer that explains the obesity-breast cancer association. Controlling IGF-1 level and targeting IGF-1 receptors among different breast cancer subtypes may be useful for breast cancer treatment. This review discussed several leptin signaling pathways, highlighting the potential advantage of targeting leptin as a potential target of the novel therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Foad Alzoughool
- Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Huda Al-Hourani
- Department of Clinical Nutrition and Dietetics, Hashemite University, Zarqa, Jordan
| |
Collapse
|
38
|
Martínez-Rodríguez OP, Thompson-Bonilla MDR, Jaramillo-Flores ME. Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways. Crit Rev Food Sci Nutr 2020; 60:3770-3792. [PMID: 31899947 DOI: 10.1080/10408398.2019.1708262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an abnormal or excessive accumulation of fat that leads to different health problems, such as cancer, where the adipocytes promote the proliferation, migration, and invasion of cancer cells, especially in the breast, where the epithelial cells are immersed in a fatty environment, and the interactions between these two types of cells involve, not only adipokines but also local pro-inflammatory mechanisms and hypoxic processes generating anti-apoptotic signals, which are a common result in leptin signaling. The expression of the Vascular Endothelial Growth Factor (VEGF) and cyclin D1, results in the decrease in phosphorylation of AMPK, increasing the activity of the aromatase enzyme; alternatively, the adiponectin activates AMPK to reduce inflammation. Nevertheless, alterations of the JAK/STAT pathways contribute to mammary carcinogenesis, while the PI3K/AKT/mTOR pathway controls most of the cancer's characteristics such as the cell cycle, survival, differentiation, proliferation, motility, metabolism, and genetic stability. Therefore, the purpose of the present review is, through the accumulated scientific evidence, to find the concordance between the signaling pathways involved among obesity and breast cancer, which can be modulated by using flavonoids.
Collapse
Affiliation(s)
- Oswaldo Pablo Martínez-Rodríguez
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - María Del Rocío Thompson-Bonilla
- Laboratorio de Medicina Genómica, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado ISSSTE, Ciudad de México, México
| | - María Eugenia Jaramillo-Flores
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
39
|
Juárez-Cruz JC, Zuñiga-Eulogio MD, Olea-Flores M, Castañeda-Saucedo E, Mendoza-Catalán MÁ, Ortuño-Pineda C, Moreno-Godínez ME, Villegas-Comonfort S, Padilla-Benavides T, Navarro-Tito N. Leptin induces cell migration and invasion in a FAK-Src-dependent manner in breast cancer cells. Endocr Connect 2019; 8:1539-1552. [PMID: 31671408 PMCID: PMC6893313 DOI: 10.1530/ec-19-0442] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common invasive neoplasia, and the second leading cause of the cancer deaths in women worldwide. Mammary tumorigenesis is severely linked to obesity, one potential connection is leptin. Leptin is a hormone secreted by adipocytes, which contributes to the progression of breast cancer. Cell migration, metalloproteases secretion, and invasion are cellular processes associated with various stages of metastasis. These processes are regulated by the kinases FAK and Src. In this study, we utilized the breast cancer cell lines MCF7 and MDA-MB-231 to determine the effect of leptin on FAK and Src kinases activation, cell migration, metalloprotease secretion, and invasion. We found that leptin activates FAK and Src and induces the localization of FAK to the focal adhesions. Interestingly, leptin promotes the activation of FAK through a Src- and STAT3-dependent canonical pathway. Specific inhibitors of FAK, Src and STAT3 showed that the effect exerted by leptin in cell migration in breast cancer cells is dependent on these proteins. Moreover, we established that leptin promotes the secretion of the extracellular matrix remodelers, MMP-2 and MMP-9 and invasion in a FAK and Src-dependent manner. Our findings strongly suggest that leptin promotes the development of a more aggressive invasive phenotype in mammary cancer cells.
Collapse
Affiliation(s)
| | | | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, México
| | | | | | - Carlos Ortuño-Pineda
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, México
| | | | | | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Napoleón Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, México
| |
Collapse
|
40
|
Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Semin Cancer Biol 2019; 60:274-284. [PMID: 31491560 DOI: 10.1016/j.semcancer.2019.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
The escalating epidemic of overweight and obesity is currently recognized as one of the most significant health and economic concern worldwide. At the present time, over 1.9 billion adults and more than 600 million people can be, respectively, classified as overweight or obese, and numbers will continue to increase in the coming decades. This alarming scenario implies important clinical implications since excessive adiposity can progressively cause and/or exacerbate a wide spectrum of co-morbidities, including type 2 diabetes mellitus, hypertension, cardiovascular disease, and even certain types of cancer, including breast cancer. Indeed, pathological remodelling of white adipose tissue and increased levels of fat-specific cytokines (mainly leptin), as a consequence of the obesity condition, have been associated with several hallmarks of breast cancer, such as sustained proliferative signaling, cellular energetics, inflammation, angiogenesis, activating invasion and metastasis. Different preclinical and clinical data have provided evidence indicating that obesity may worsen the incidence, the severity, and the mortality of breast cancer. In the present review, we will discuss the epidemiological connection between obesity and breast cancer progression and metastasis and we will highlight the candidate players involved in this dangerous relationship. Since the major cause of death from cancer is due to widespread metastases, understanding these complex mechanisms will provide insights for establishing new therapeutic interventions to prevent/blunt the effects of obesity and thwart breast tumor progression and metastatic growth.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy.
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy; Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy; Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy.
| |
Collapse
|
41
|
Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Breast Cancer: Role of Leptin. Front Oncol 2019; 9:596. [PMID: 31380268 PMCID: PMC6657346 DOI: 10.3389/fonc.2019.00596] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/17/2019] [Indexed: 01/08/2023] Open
Abstract
Obesity-related breast cancer is an important threat that affects especially post-menopausal women. The link between obesity and breast cancer seems to be relying on the microenvironment generated at adipose tissue level, which includes inflammatory cytokines. In addition, its association with systemic endocrine changes, including hyperinsulinemia, increased estrogens levels, and hyperleptinemia may be key factors for tumor development. These factors may promote tumor initiation, tumor primary growth, tissue invasion, and metastatic progression. Although the relationship between obesity and breast cancer is already established, the different pathophysiological mechanisms involved are not clear. Obesity-related insulin resistance is a well-known risk factor for breast cancer development in post-menopausal women. However, the role of inflammation and other adipokines, especially leptin, is less studied. Leptin, like insulin, appears to be a growth factor for breast cancer cells. There exists a link between leptin and metabolism of estrogens and between leptin and other factors in a more complex network. As a result, obesity-associated hyperleptinemia has been suggested as an important mediator in the pathophysiology of breast cancer. On the other hand, recent data on the paradoxical effect of obesity on cancer immunotherapy efficacy has brought some controversy, since the proinflammatory effect of leptin may help the effect of immune checkpoint inhibitors. Therefore, a better knowledge of the molecular mechanisms that mediate leptin action may be helpful to understand the underlying processes which link obesity to breast cancer in post-menopausal women, as well as the possible role of leptin in the response to immunotherapy in obese patients.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Department of Clinical Oncology, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| |
Collapse
|
42
|
Leptin Modulates Exosome Biogenesis in Breast Cancer Cells: An Additional Mechanism in Cell-to-Cell Communication. J Clin Med 2019; 8:jcm8071027. [PMID: 31336913 PMCID: PMC6678227 DOI: 10.3390/jcm8071027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Exosomes—small membrane vesicles secreted by both normal and malignant cells upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane—play an important role in cell-to-cell communication. During the last decade, several reports have highlighted the involvement of these nanovesicles in many aspects of breast cancer development and progression, but the extracellular signals governing their generation in breast cancer cells have not been completely unraveled. Here, we investigated the role of the obesity hormone leptin, a well-known adipokine implicated in mammary tumorigenesis, on the mechanisms regulating exosome biogenesis and release in both estrogen receptor α (ERα)—positive MCF-7 and triple-negative MDA-MB-231 breast cancer cells. We found that leptin treatment enhanced the number of MVBs in the cytoplasm of breast cancer cells and increased the amount of exosomes released in cell conditioned media. At molecular level, leptin increased the protein expression of Tsg101—a key component of the endosomal sorting complex required for transport I (ESCRT-I)—by a post-transcriptional mechanism involving its direct interaction with the chaperone protein Hsp90. Targeting leptin signaling, by a selective leptin receptor antagonist the peptide LDFI (Leu-Asp-Phe-Ile), abrogated leptin effects on Tsg101 expression and on exosome secretion in breast cancer cells. In conclusion, our findings, identifying for the first time leptin/leptin receptor/Hsp90 axis as an important regulator of exosome generation in mammary carcinoma cells, suggest that targeting this signaling pathway might represent a novel therapeutic strategy to impair exosome secretion and interrupt the dangerous cell-to-cell communication in breast cancer.
Collapse
|
43
|
Inagaki-Ohara K. Gastric Leptin and Tumorigenesis: Beyond Obesity. Int J Mol Sci 2019; 20:ijms20112622. [PMID: 31141984 PMCID: PMC6600422 DOI: 10.3390/ijms20112622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin, an adipocyte-derived hormone and its receptor (ObR) expressed in the hypothalamus are well known as an essential regulator of appetite and energy expenditure. Obesity induces abundant leptin production, however, reduced sensitivity to leptin leads to the development of metabolic disorders, so called leptin resistance. The stomach has been identified as an organ that simultaneously expresses leptin and ObR. Accumulating evidence has shown gastric leptin to perform diverse functions, such as those in nutrient absorption and carcinogenesis in the gastrointestinal system, independent of its well-known role in appetite regulation and obesity. Overexpression of leptin and phosphorylated ObR is implicated in gastric cancer in humans and in murine model, and diet-induced obesity causes precancerous lesions in the stomach in mice. While the underlying pathomechanisms remain unclear, leptin signaling can affect gastric mucosal milieu. In this review, we focus on the significant role of the gastric leptin signaling in neoplasia and tumorigenesis in stomach in the context of hereditary and diet-induced obesity.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Division of Host Defense, Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
44
|
Tsai CF, Chen JH, Wu CT, Chang PC, Wang SL, Yeh WL. Induction of osteoclast-like cell formation by leptin-induced soluble intercellular adhesion molecule secreted from cancer cells. Ther Adv Med Oncol 2019; 11:1758835919846806. [PMID: 31205504 PMCID: PMC6535721 DOI: 10.1177/1758835919846806] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Leptin is considered a tumorigenic adipokine, suggested to promote tumorigenesis and progression in many cancers. On the other hand, intercellular adhesion molecule-1 (ICAM-1) shows altered expression in a variety of benign and malignant diseases. Histologically, ICAM-1 expression is reported as proportional to cancer stage and considered as a potential diagnosis biomarker. The altered expressions of ICAM-1 and its soluble form in malignant diseases have gained interests in recent years. Material and methods: The expression of ICAM-1 and its regulatory signaling were examined by Western blot or flow cytometry. The effect of soluble ICAM-1 on osteoclast formation was investigated by tartrate-resistance acid phosphatase staining of RAW cells and tumor-induced osteolysis in vivo. Results: In our study, we found that leptin enhanced soluble ICAM-1 production but not surface ICAM-1 expression in lung and breast cancer cells, and this effect was regulated through leptin receptor (ObR), while silencing ObR abrogated leptin-induced soluble ICAM-1 expression. In addition, we revealed that leptin administration provoked the JAK1/2, STAT3, FAK, ERK, and GSK3αβ signaling cascade, leading to the elevation of ICAM-1 expression. Moreover, soluble ICAM-1 secreted by leptin-stimulated cancer cells synergize with the receptor activator of nuclear factor kappa-B ligand (RANKL) in inducing osteoclast formation. Soluble ICAM also enhanced tumor-induced osteolysis in vivo. Conclusion: These findings suggest that soluble ICAM-1 produced under leptin treatment enhances osteoclast formation and is involved in tumor-induced osteolysis. Leptin plays an important role in physiology in health and diseases. Leptin affects immune responses that may induce inflammation and carcinogenesis. Leptin is also considered as a tumorigenic adipokine suggested to promote tumorigenesis and progression in many cancers. On the other hand, intercellular adhesion molecule-1 (ICAM-1) shows altered expression in a variety of benign and malignant diseases. Histologically, ICAM-1 expression is reported to be proportional to cancer stage and considered as a potential diagnosis biomarker. It has been reported that soluble ICAM-1 allows tumor cells to escape from immune recognition and stimulates angiogenesis and tumor growth. The altered expressions of ICAM-1 and its soluble form in malignant diseases have gained interests in recent years. In our study, we found that leptin enhanced soluble ICAM-1 production but not surface ICAM-1 expression in lung and breast cancer cells, and this effect was regulated through leptin receptor (ObR), while silencing ObR abrogated leptin-induced soluble ICAM-1 expression. In addition, we revealed that leptin administration provoked the JAK1/2, STAT3, FAK, ERK, and GSK3αβ signaling cascade, leading to the elevation of ICAM-1 expression. Moreover, soluble ICAM-1 secreted by leptin-stimulated cancer cells synergize with receptor activator of nuclear factor-kappa B ligand in inducing osteoclast formation. Soluble ICAM also enhanced tumor-induced osteolysis in vivo. These findings suggest that soluble ICAM-1 produced under leptin treatment is possibly involved in lung and breast cancer bone metastasis.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, China
| | - Jia-Hong Chen
- Department of General Surgery, Buddhist Tzu Chi Medical Foundation, Taichung, China
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, Taichung, China
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, China
| | - Shu-Lin Wang
- Institute of New Drug Development, China Medical University, Taichung, China
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402 China
| |
Collapse
|
45
|
Kong Y, Dong Q, Ji H, Sang M, Ding Y, Zhao M, Yang H, Geng C. The Effect of the Leptin and Leptin Receptor Expression on the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer. Med Sci Monit 2019; 25:3005-3013. [PMID: 31015393 PMCID: PMC6496971 DOI: 10.12659/msm.915368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The purpose of the present study was to evaluate the effect of leptin and leptin receptor (LEPR) expression on the efficacy of neoadjuvant chemotherapy in breast cancer. Material/Methods There were 325 breast cancer patients with complete data enrolled in this study. Patients were categorized into 3 groups: pathological complete response group, non-pathological complete response group, and progressive disease group. Immunohistochemistry was performed to determine leptin and its receptor LEPR expression levels that were compared among the 3 groups. Results Compared with the non-pathological complete response group, patients in the pathological complete response group had increased leptin and LEPR expression, although the difference was not statistically significant (P=0.194, P=0.110). In addition, the expression of leptin and LEPR in the pathological complete response group was also higher than that in the progressive disease group, and the difference of LEPR expression was statistically significant (P=0.008) while the leptin expression was not (P=0.065). There were more HER2+ breast cancer patients in the pathological complete response group categorized into strong positive, and positive expression of leptin and LEPR compared with the progressive disease group (P<0.05). There were significant differences of leptin and LEPR expression among breast cancer patients under different molecular subtypes HER2+, HR+, and triple negative, in which the triple negative patients had the highest expression of leptin and LEPR. In addition, patients in the progressive disease group had high and low expression of leptin and LEPR: 13.25% versus 11.32% and 13.1% versus 10.42% respectively. Conclusions Overexpression of leptin and LEPR improved the therapeutic efficacy of neoadjuvant chemotherapy for patients with breast cancer, especially for those with HER2+ subtype. Overexpression of leptin and LEPR was distinct among the different molecular subtypes of breast cancer, suggesting a certain predictive value for breast cancer prognosis.
Collapse
Affiliation(s)
- Yan Kong
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Qian Dong
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Hong Ji
- Department of Gland Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Meixiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yan Ding
- Department of Pathology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Meng Zhao
- Department of Pathology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Huichai Yang
- Department of Pathology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Cuizhi Geng
- Breast Medical Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
46
|
Abstract
BACKGROUND Breast cancer is the second most common cause of cancer-related death among women. Advances in our understanding of the disease have translated into better diagnostics and more effective therapeutics, leading to earlier detection and improved outcomes. Several studies have pointed at lifestyle and environmental factors as contributory for the onset and progression of the disease. Obesity and cholesterol stand out for their potential causal relationship with breast cancer and ease of modification. MAIN TEXT Obesity and cholesterol represent risk factors for breast cancer, but their impact is largely affected by cofounding variables including menopausal status, disease subtype, and inflammation. Establishing a causal relationship between lifestyle factors and clinical outcomes may be challenging. Epidemiological studies and meta-analyses have rendered conflicting or sometimes contradictory results, possibly owing to the multifactorial nature of the disease. We discuss the supporting evidence and limitations in our understanding of obesity and cholesterol as risk factors for breast cancer. CONCLUSIONS There is sufficient evidence that obesity and cholesterol impact clinical outcomes. Physicians are advised to take steps to help patients with their weight, such as recommending dietary and lifestyle interventions.
Collapse
Affiliation(s)
- Laura Garcia-Estevez
- Breast Cancer Department, MD Anderson Cancer Center, Arturo Soria 270, 280339, Madrid, Spain.
| | - Gema Moreno-Bueno
- Breast Cancer Department, MD Anderson Cancer Center, Arturo Soria 270, 280339, Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, & Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
47
|
Andò S, Gelsomino L, Panza S, Giordano C, Bonofiglio D, Barone I, Catalano S. Obesity, Leptin and Breast Cancer: Epidemiological Evidence and Proposed Mechanisms. Cancers (Basel) 2019; 11:cancers11010062. [PMID: 30634494 PMCID: PMC6356310 DOI: 10.3390/cancers11010062] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
The prevalence of obesity has been steadily increasing over the past few decades in several developed and developing countries, with resultant hazardous health implications. Substantial epidemiological evidence has shown that excessive adiposity strongly influences risk, prognosis, and progression of various malignancies, including breast cancer. Indeed, it is now well recognized that obesity is a complex physiologic state associated with multiple molecular changes capable of modulating the behavior of breast tumor cells as well of the surrounding microenvironment. Particularly, insulin resistance, hyperactivation of insulin-like growth factor pathways, and increased levels of estrogen due to aromatization by the adipose tissue, inflammatory cytokines, and adipokines contribute to breast cancerogenesis. Among adipokines, leptin, whose circulating levels increase proportionally to total adipose tissue mass, has been identified as a key member of the molecular network in obesity. This review summarizes the current knowledge on the epidemiological link existing between obesity and breast cancer and outlines the molecular mechanisms underlying this connection. The multifaceted role of the obesity adipokine leptin in this respect is also discussed.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- Centro Sanitario, University of Calabria, Via P Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- Centro Sanitario, University of Calabria, Via P Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
48
|
Panza S, Gelsomino L, Malivindi R, Rago V, Barone I, Giordano C, Giordano F, Leggio A, Comandè A, Liguori A, Aquila S, Bonofiglio D, Andò S, Catalano S. Leptin Receptor as a Potential Target to Inhibit Human Testicular Seminoma Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:687-698. [PMID: 30610844 DOI: 10.1016/j.ajpath.2018.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Although in past decades the adipokine leptin and its own receptor have been considered as significant cancer biomarkers, their potential involvement in human testicular seminoma growth and progression remains unexplored. Here, we showed that the expression of leptin and its receptor was significantly higher in human testicular seminoma compared with normal adult testis. Human seminoma cell line TCam-2 also expressed leptin along with the long and short isoforms of leptin receptor, and in response to leptin treatment showed enhanced activation of its downstream effectors. In line with these results, leptin stimulation significantly increased the proliferation and migration of TCam-2 cells. Treatment of TCam-2 cells with the peptide Leu-Asp-Phe-Ile (LDFI), a full leptin-receptor antagonist, completely reversed the leptin-mediated effects on cell growth and motility as well as reduced the expression of several leptin-induced target genes. More importantly, the in vivo xenograft experiments showed that LDFI treatment markedly decreased seminoma tumor growth. Interestingly, LDFI-treated tumors showed reduced levels of the proliferation marker Ki-67 as well as decreased expression of leptin-regulated genes. Taken together, these data identify, for the first time, leptin as a key factor able to affect testicular seminoma behavior, highlighting leptin receptor as a potential target for novel potential treatments in this type of cancer.
Collapse
Affiliation(s)
- Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Alessandra Comandè
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Angelo Liguori
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
49
|
Marrelli M, Amodeo V, Statti G, Conforti F. Biological Properties and Bioactive Components of Allium cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities. Molecules 2018; 24:molecules24010119. [PMID: 30598012 PMCID: PMC6337254 DOI: 10.3390/molecules24010119] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/10/2023] Open
Abstract
Common onion (Allium cepa L.) is one of the oldest cultivated plants, utilized worldwide as both vegetable and flavouring. This species is known to contain sulphur amino acids together with many vitamins and minerals. A variety of secondary metabolites, including flavonoids, phytosterols and saponins, have also been identified. Despite the predominant use of this plant as food, a wide range of beneficial effects have also been proved. Different biological properties, such as antioxidant, antimicrobial and antidiabetic, have been reported. The aim of this review is to provide an overview of the studies concerning the beneficial effects of this species against obesity and its related comorbidities, such as hyperlipidaemia, hypertension and diabetes. Both in vitro and in vivo results about onion dietary supplementation have been taken into account. Furthermore, this review examines the possible role of onion bioactive components in modulating or preventing weight-gain or related diseases, as well as the possible mechanisms behind their activity.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy.
| | - Valentina Amodeo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy.
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy.
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy.
| |
Collapse
|
50
|
Murphy J, Pfeiffer RM, Lynn BCD, Caballero AI, Browne EP, Punska EC, Yang HP, Falk RT, Anderton DL, Gierach GL, Arcaro KF, Sherman ME. Pro-inflammatory cytokines and growth factors in human milk: an exploratory analysis of racial differences to inform breast cancer etiology. Breast Cancer Res Treat 2018; 172:209-219. [PMID: 30083950 DOI: 10.1007/s10549-018-4907-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/29/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Analysis of cytokines and growth factors in human milk offers a noninvasive approach for studying the microenvironment of the postpartum breast, which may better reflect tissue levels than testing blood samples. Given that Black women have a higher incidence of early-onset breast cancers than White women, we hypothesized that milk of the former contains higher levels of pro-inflammatory cytokines, adipokines, and growth factors. METHODS Participants included 130 Black and 162 White women without a history of a breast biopsy who completed a health assessment questionnaire and donated milk for research. Concentrations of 15 analytes in milk were examined using two multiplex and 4 single-analyte electrochemiluminescent sandwich assays to measure pro-inflammatory cytokines, angiogenesis factors, and adipokines. Mixed-effects ordinal logistic regression was used to identify determinants of analyte levels and to compare results by race, with adjustment for confounders. Factor analysis was used to examine covariation among analytes. RESULTS Thirteen of 15 analytes were detected in ≥ 25% of the human milk specimens. In multivariable models, elevated BMI was significantly associated with increased concentrations of 5 cytokines: IL-1β, bFGF, FASL, EGF, and leptin (all p-trend < 0.05). Black women had significantly higher levels of leptin and IL-1β, controlling for BMI. Factor analysis of analyte levels identified two factors related to inflammation and growth factor pathways. CONCLUSION This exploratory study demonstrated the feasibility of measuring pro-inflammatory cytokines, adipokines, and angiogenesis factors in human milk, and revealed higher levels of some pro-inflammatory factors, as well as increased leptin levels, among Black as compared with White women.
Collapse
Affiliation(s)
- Jeanne Murphy
- George Washington University School of Nursing, 1919 Pennsylvania Ave NW, Suite 500, Washington, DC, 20006, USA. .,Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA.
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Brittny C Davis Lynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ana I Caballero
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Eva P Browne
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Elizabeth C Punska
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Hannah P Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Roni T Falk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Douglas L Anderton
- Department of Sociology, Sloan College, University of South Carolina, Columbia, SC, USA
| | - Gretchen L Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kathleen F Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mark E Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|