1
|
Guillaumin MCC, Harding CD, Krone LB, Yamagata T, Kahn MC, Blanco-Duque C, Banks GT, Achermann P, Diniz Behn C, Nolan PM, Peirson SN, Vyazovskiy VV. Deficient synaptic neurotransmission results in a persistent sleep-like cortical activity across vigilance states in mice. Curr Biol 2025; 35:1716-1729.e3. [PMID: 40118064 DOI: 10.1016/j.cub.2025.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/10/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
Growing evidence suggests that brain activity during sleep, as well as sleep regulation, are tightly linked with synaptic function and network excitability at the local and global levels. We previously reported that a mutation in synaptobrevin 2 (Vamp2) in restless (rlss) mice results in a marked increase of wakefulness and suppression of sleep, in particular REM sleep (REMS), as well as increased consolidation of sleep and wakefulness. In this study, using finer-scale in vivo electrophysiology recordings, we report that spontaneous cortical activity in rlss mice during NREM sleep (NREMS) is characterized by an occurrence of abnormally prolonged periods of complete neuronal silence (OFF-periods), often lasting several seconds, similar to the burst suppression pattern typically seen under deep anesthesia. Increased incidence of prolonged network OFF-periods was not specific to NREMS but also present in REMS and wake in rlss mice. Slow-wave activity (SWA) was generally increased in rlss mice relative to controls, while higher frequencies, including theta-frequency activity, were decreased, further resulting in diminished differences between vigilance states. The relative increase in SWA after sleep deprivation was attenuated in rlss mice, suggesting either that rlss mice experience persistently elevated sleep pressure or, alternatively, that the intrusion of sleep-like patterns of activity into the wake state attenuates the accumulation of sleep drive. We propose that a deficit in global synaptic neurotransmitter release leads to "state inertia," reflected in an abnormal propensity of brain networks to enter and remain in a persistent "default state" resembling coma or deep anesthesia.
Collapse
Affiliation(s)
- Mathilde C C Guillaumin
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Christian D Harding
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Lukas B Krone
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK; University Hospital of Psychiatry and Psychotherapy, University of Bern, Hochschulstrasse 6, Bern 3012, Switzerland
| | - Tomoko Yamagata
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin C Kahn
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Cristina Blanco-Duque
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Gareth T Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Didcot OX11 0RD, UK
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Cecilia Diniz Behn
- Department of Applied Mathematics & Statistics, Colorado School of Mines, 1301 19(th) Street, Golden, CO 80401, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 East 17(th) Place, Aurora, CO 80045, USA
| | - Patrick M Nolan
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Didcot OX11 0RD, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Vladyslav V Vyazovskiy
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
2
|
Alipour M, Rausch J, Mednick SC, Cook JD, Plante DT, Malerba P. The Space-Time Organisation of Sleep Slow Oscillations as Potential Biomarker for Hypersomnolence. J Sleep Res 2025:e70059. [PMID: 40170232 DOI: 10.1111/jsr.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Research suggests that the spatial profile of slow wave activity (SWA) could be altered in hypersomnolence. Slow oscillations (SOs; 0.5-1.5 Hz), single waveform events contributing to SWA, can be labelled as Global, Frontal, or Local depending on their presentation on the scalp. We showed that SO space-time types differentiate in their amplitudes, coordination with sleep spindles, and propagation patterns. This study applies our data-driven analysis to the nocturnal sleep of adults with and without hypersomnolence and major depressive disorder (MDD) to explore the potential relevance of SO space-time patterns as hypersomnolence signatures in the sleep EEG. We leverage an existing dataset of nocturnal polysomnography with high-density EEG in 83 adults, organised in four groups depending on the presence/absence of hypersomnolence and on the presence/absence of MDD. Group comparisons were conducted considering either two groups (hypersomnolence status) or the four groups separately. Data shows enhanced Frontal SO activity compared with Global activity in hypersomnolence, with or without MDD, and a loss of Global SO amplitude at central regions in hypersomnolence without MDD compared to controls. As Global SOs travel fronto-parietally, we interpret these results as likely driven by a loss of coordination of Global SO activity in hypersomnolence without MDD, resulting in an overabundance of Frontal SOs. This study suggests that characteristics of Frontal SO and Global SOs may have the potential to differentiate individuals with hypersomnolence without MDD, and that the space-time organisation of SOs could be a mechanistically relevant indicator of changes in sleep brain dynamics related to hypersomnolence.
Collapse
Affiliation(s)
- Mahmoud Alipour
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Joseph Rausch
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, California, USA
| | - Jesse D Cook
- Department of Psychiatry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David T Plante
- Department of Psychiatry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paola Malerba
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University, College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
3
|
Sheybani L, Frauscher B, Bernard C, Walker MC. Mechanistic insights into the interaction between epilepsy and sleep. Nat Rev Neurol 2025; 21:177-192. [PMID: 40065066 DOI: 10.1038/s41582-025-01064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 04/04/2025]
Abstract
Epidemiological evidence has demonstrated associations between sleep and epilepsy, but we lack a mechanistic understanding of these associations. If sleep affects the pathophysiology of epilepsy and the risk of seizures, as suggested by correlative evidence, then understanding these effects could provide crucial insight into the basic mechanisms that underlie the development of epilepsy and the generation of seizures. In this Review, we provide in-depth discussion of the associations between epilepsy and sleep at the cellular, network and system levels and consider the mechanistic underpinnings of these associations. We also discuss the clinical relevance of these associations, highlighting how they could contribute to improvements in the management of epilepsy. A better understanding of the mechanisms that govern the interactions between epilepsy and sleep could guide further research and the development of novel approaches to the management of epilepsy.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| | - Birgit Frauscher
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Christophe Bernard
- Aix Marseille Université, INSERM, INS, Institute Neurosciences des Systèmes, Marseille, France
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
4
|
Ng T, Noh E, Spencer RMC. Does slow oscillation-spindle coupling contribute to sleep-dependent memory consolidation? A Bayesian meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610060. [PMID: 39257832 PMCID: PMC11383665 DOI: 10.1101/2024.08.28.610060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The active system consolidation theory suggests that information transfer between the hippocampus and cortex during sleep underlies memory consolidation. Neural oscillations during sleep, including the temporal coupling between slow oscillations (SO) and sleep spindles (SP), may play a mechanistic role in memory consolidation. However, differences in analytical approaches and the presence of physiological and behavioral moderators have led to inconsistent conclusions. This meta-analysis, comprising 23 studies and 297 effect sizes, focused on four standard phase-amplitude coupling measures including coupling phase, strength, percentage, and SP amplitude, and their relationship with memory retention. We developed a standardized approach to incorporate non-normal circular-linear correlations. We found strong evidence supporting that precise and strong SO-fast SP coupling in the frontal lobe predicts memory consolidation. The strength of this association is mediated by memory type, aging, and dynamic spatio-temporal features, including SP frequency and cortical topography. In conclusion, SO-SP coupling should be considered as a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Thea Ng
- Neuroscience & Behavior Program, Mount Holyoke College
- Department of Mathematics & Statistics, Mount Holyoke College
| | - Eunsol Noh
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
| | - Rebecca M. C. Spencer
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst
- Institute of Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
5
|
van der Heijden AC, van der Werf YD, van den Heuvel OA, Talamini LM, van Marle HJF. Targeted memory reactivation to augment treatment in post-traumatic stress disorder. Curr Biol 2024; 34:3735-3746.e5. [PMID: 39116885 DOI: 10.1016/j.cub.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder with traumatic memories at its core. Post-treatment sleep may offer a unique time window to increase therapeutic efficacy through consolidation of therapeutically modified traumatic memories. Targeted memory reactivation (TMR) enhances memory consolidation by presenting reminder cues (e.g., sounds associated with a memory) during sleep. Here, we applied TMR in PTSD patients to strengthen therapeutic memories during sleep after one treatment session with eye movement desensitization and reprocessing (EMDR). PTSD patients received either slow oscillation (SO) phase-targeted TMR, using modeling-based closed-loop neurostimulation (M-CLNS) with EMDR clicks as a reactivation cue (n = 17), or sham stimulation (n = 16). Effects of TMR on sleep were assessed through high-density polysomnography. Effects on treatment outcome were assessed through subjective, autonomic, and fMRI responses to script-driven imagery (SDI) of the targeted traumatic memory and overall PTSD symptom level. Compared to sham stimulation, TMR led to stimulus-locked increases in SO and spindle dynamics, which correlated positively with PTSD symptom reduction in the TMR group. Given the role of SOs and spindles in memory consolidation, these findings suggest that TMR may have strengthened the consolidation of the EMDR-treatment memory. Clinically, TMR vs. sham stimulation resulted in a larger reduction of avoidance level during SDI. TMR did not disturb sleep or trigger nightmares. Together, these data provide first proof of principle that TMR may be a safe and viable future treatment augmentation strategy for PTSD. The required follow-up studies may implement multi-night TMR or TMR during REM sleep to further establish the clinical effect of TMR for traumatic memories.
Collapse
Affiliation(s)
- Anna C van der Heijden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Lucia M Talamini
- University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands; University of Amsterdam, Amsterdam Brain and Cognition, Nieuwe Achtergracht 1001 NK Amsterdam, the Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Oldenaller 1081 HJ Amsterdam, the Netherlands; ARQ National Psychotrauma Center, Nienoord 1112 XE Diemen, the Netherlands.
| |
Collapse
|
6
|
Hajnal B, Szabó JP, Tóth E, Keller CJ, Wittner L, Mehta AD, Erőss L, Ulbert I, Fabó D, Entz L. Intracortical mechanisms of single pulse electrical stimulation (SPES) evoked excitations and inhibitions in humans. Sci Rep 2024; 14:13784. [PMID: 38877093 PMCID: PMC11178858 DOI: 10.1038/s41598-024-62433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Cortico-cortical evoked potentials (CCEPs) elicited by single-pulse electric stimulation (SPES) are widely used to assess effective connectivity between cortical areas and are also implemented in the presurgical evaluation of epileptic patients. Nevertheless, the cortical generators underlying the various components of CCEPs in humans have not yet been elucidated. Our aim was to describe the laminar pattern arising under SPES evoked CCEP components (P1, N1, P2, N2, P3) and to evaluate the similarities between N2 and the downstate of sleep slow waves. We used intra-cortical laminar microelectrodes (LMEs) to record CCEPs evoked by 10 mA bipolar 0.5 Hz electric pulses in seven patients with medically intractable epilepsy implanted with subdural grids. Based on the laminar profile of CCEPs, the latency of components is not layer-dependent, however their rate of appearance varies across cortical depth and stimulation distance, while the seizure onset zone does not seem to affect the emergence of components. Early neural excitation primarily engages middle and deep layers, propagating to the superficial layers, followed by mainly superficial inhibition, concluding in a sleep slow wave-like inhibition and excitation sequence.
Collapse
Affiliation(s)
- Boglárka Hajnal
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
| | - Johanna Petra Szabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Emília Tóth
- Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Corey J Keller
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
- Department of Neuroscience, Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, 94304, USA
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Loránd Erőss
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| | - István Ulbert
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Dániel Fabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary.
| | - László Entz
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| |
Collapse
|
7
|
Wang J, Huffman D, Ajwad A, McLouth CJ, Bachstetter A, Kohler K, Murphy MP, O'Hara BF, Duncan MJ, Sunderam S. Thermoneutral temperature exposure enhances slow-wave sleep with a correlated improvement in amyloid pathology in a triple-transgenic mouse model of Alzheimer's disease. Sleep 2024; 47:zsae078. [PMID: 38512801 DOI: 10.1093/sleep/zsae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
Accumulation of amyloid-β (Aβ) plays an important role in Alzheimer's disease (AD) pathology. There is growing evidence that disordered sleep may accelerate AD pathology by impeding the physiological clearance of Aβ from the brain that occurs in normal sleep. Therapeutic strategies for improving sleep quality may therefore help slow disease progression. It is well documented that the composition and dynamics of sleep are sensitive to ambient temperature. We therefore compared Aβ pathology and sleep metrics derived from polysomnography in 12-month-old female 3xTg-AD mice (n = 8) exposed to thermoneutral temperatures during the light period over 4 weeks to those of age- and sex-matched controls (n = 8) that remained at normal housing temperature (22°C) during the same period. The treated group experienced greater proportions of slow wave sleep (SWS)-i.e. epochs of elevated 0.5-2 Hz EEG slow wave activity during non-rapid eye movement (NREM) sleep-compared to controls. Assays performed on mouse brain tissue harvested at the end of the experiment showed that exposure to thermoneutral temperatures significantly reduced levels of DEA-soluble (but not RIPA- or formic acid-soluble) Aβ40 and Aβ42 in the hippocampus, though not in the cortex. With both groups pooled together and without regard to treatment condition, NREM sleep continuity and any measure of SWS within NREM at the end of the treatment period were inversely correlated with DEA-soluble Aβ40 and Aβ42 levels, again in the hippocampus but not in the cortex. These findings suggest that experimental manipulation of SWS could offer useful clues into the mechanisms and treatment of AD.
Collapse
Affiliation(s)
- Jun Wang
- F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Dillon Huffman
- F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Asma'a Ajwad
- F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Diyala College of Medicine, Diyala, Iraq
| | | | - Adam Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Katarina Kohler
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - M Paul Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Marilyn J Duncan
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Sridhar Sunderam
- F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
8
|
Dimulescu C, Donle L, Cakan C, Goerttler T, Khakimova L, Ladenbauer J, Flöel A, Obermayer K. Improving the detection of sleep slow oscillations in electroencephalographic data. Front Neuroinform 2024; 18:1338886. [PMID: 38375447 PMCID: PMC10875054 DOI: 10.3389/fninf.2024.1338886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Study objectives We aimed to build a tool which facilitates manual labeling of sleep slow oscillations (SOs) and evaluate the performance of traditional sleep SO detection algorithms on such a manually labeled data set. We sought to develop improved methods for SO detection. Method SOs in polysomnographic recordings acquired during nap time from ten older adults were manually labeled using a custom built graphical user interface tool. Three automatic SO detection algorithms previously used in the literature were evaluated on this data set. Additional machine learning and deep learning algorithms were trained on the manually labeled data set. Results Our custom built tool significantly decreased the time needed for manual labeling, allowing us to manually inspect 96,277 potential SO events. The three automatic SO detection algorithms showed relatively low accuracy (max. 61.08%), but results were qualitatively similar, with SO density and amplitude increasing with sleep depth. The machine learning and deep learning algorithms showed higher accuracy (best: 99.20%) while maintaining a low prediction time. Conclusions Accurate detection of SO events is important for investigating their role in memory consolidation. In this context, our tool and proposed methods can provide significant help in identifying these events.
Collapse
Affiliation(s)
- Cristiana Dimulescu
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Leonhard Donle
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
| | - Caglar Cakan
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Thomas Goerttler
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
| | - Lilia Khakimova
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Julia Ladenbauer
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Klaus Obermayer
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
9
|
Zheng Y, Kang S, O'Neill J, Bojak I. Spontaneous slow wave oscillations in extracellular field potential recordings reflect the alternating dominance of excitation and inhibition. J Physiol 2024; 602:713-736. [PMID: 38294945 DOI: 10.1113/jp284587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
In the resting state, cortical neurons can fire action potentials spontaneously but synchronously (Up state), followed by a quiescent period (Down state) before the cycle repeats. Extracellular recordings in the infragranular layer of cortex with a micro-electrode display a negative deflection (depth-negative) during Up states and a positive deflection (depth-positive) during Down states. The resulting slow wave oscillation (SWO) has been studied extensively during sleep and under anaesthesia. However, recent research on the balanced nature of synaptic excitation and inhibition has highlighted our limited understanding of its genesis. Specifically, are excitation and inhibition balanced during SWOs? We analyse spontaneous local field potentials (LFPs) during SWOs recorded from anaesthetised rats via a multi-channel laminar micro-electrode and show that the Down state consists of two distinct synaptic states: a Dynamic Down state associated with depth-positive LFPs and a prominent dipole in the extracellular field, and a Static Down state with negligible (≈ 0 mV $ \approx 0{\mathrm{\;mV}}$ ) LFPs and a lack of dipoles extracellularly. We demonstrate that depth-negative and -positive LFPs are generated by a shift in the balance of synaptic excitation and inhibition from excitation dominance (depth-negative) to inhibition dominance (depth-positive) in the infragranular layer neurons. Thus, although excitation and inhibition co-tune overall, differences in their timing lead to an alternation of dominance, manifesting as SWOs. We further show that Up state initiation is significantly faster if the preceding Down state is dynamic rather than static. Our findings provide a coherent picture of the dependence of SWOs on synaptic activity. KEY POINTS: Cortical neurons can exhibit repeated cycles of spontaneous activity interleaved with periods of relative silence, a phenomenon known as 'slow wave oscillation' (SWO). During SWOs, recordings of local field potentials (LFPs) in the neocortex show depth-negative deflection during the active period (Up state) and depth-positive deflection during the silent period (Down state). Here we further classified the Down state into a dynamic phase and a static phase based on a novel method of classification and revealed non-random, stereotypical sequences of the three states occurring with significantly different transitional kinetics. Our results suggest that the positive and negative deflections in the LFP reflect the shift of the instantaneous balance between excitatory and inhibitory synaptic activity of the local cortical neurons. The differences in transitional kinetics may imply distinct synaptic mechanisms for Up state initiation. The study may provide a new approach for investigating spontaneous brain rhythms.
Collapse
Affiliation(s)
- Ying Zheng
- School of Biological Sciences, Whiteknights, University of Reading, Reading, UK
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
| | - Sungmin Kang
- School of Psychology, Cardiff University, Cardiff, UK
| | | | - Ingo Bojak
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
- School of Psychology and Clinical Language Science, Whiteknights, University of Reading, Reading, UK
| |
Collapse
|
10
|
Horváth C, Ulbert I, Fiáth R. Propagating population activity patterns during spontaneous slow waves in the thalamus of rodents. Neuroimage 2024; 285:120484. [PMID: 38061688 DOI: 10.1016/j.neuroimage.2023.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Slow waves (SWs) represent the most prominent electrophysiological events in the thalamocortical system under anesthesia and during deep sleep. Recent studies have revealed that SWs have complex spatiotemporal dynamics and propagate across neocortical regions. However, it is still unclear whether neuronal activity in the thalamus exhibits similar propagation properties during SWs. Here, we report propagating population activity in the thalamus of ketamine/xylazine-anesthetized rats and mice visualized by high-density silicon probe recordings. In both rodent species, propagation of spontaneous thalamic activity during up-states was most frequently observed in dorsal thalamic nuclei such as the higher order posterior (Po), lateral posterior (LP) or laterodorsal (LD) nuclei. The preferred direction of thalamic activity spreading was along the dorsoventral axis, with over half of the up-states exhibiting a gradual propagation in the ventral-to-dorsal direction. Furthermore, simultaneous neocortical and thalamic recordings collected under anesthesia demonstrated that there is a weak but noticeable interrelation between propagation patterns observed during cortical up-states and those displayed by thalamic population activity. In addition, using chronically implanted silicon probes, we detected propagating activity patterns in the thalamus of naturally sleeping rats during slow-wave sleep. However, in comparison to propagating up-states observed under anesthesia, these propagating patterns were characterized by a reduced rate of occurrence and a faster propagation speed. Our findings suggest that the propagation of spontaneous population activity is an intrinsic property of the thalamocortical network during synchronized brain states such as deep sleep or anesthesia. Additionally, our data implies that the neocortex may have partial control over the formation of propagation patterns within the dorsal thalamus under anesthesia.
Collapse
Affiliation(s)
- Csaba Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
11
|
Andrillon T, Oudiette D. What is sleep exactly? Global and local modulations of sleep oscillations all around the clock. Neurosci Biobehav Rev 2023; 155:105465. [PMID: 37972882 DOI: 10.1016/j.neubiorev.2023.105465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Wakefulness, non-rapid eye-movement (NREM) and rapid eye-movement (REM) sleep differ from each other along three dimensions: behavioral, phenomenological, physiological. Although these dimensions often fluctuate in step, they can also dissociate. The current paradigm that views sleep as made of global NREM and REM states fail to account for these dissociations. This conundrum can be dissolved by stressing the existence and significance of the local regulation of sleep. We will review the evidence in animals and humans, healthy and pathological brains, showing different forms of local sleep and the consequences on behavior, cognition, and subjective experience. Altogether, we argue that the notion of local sleep provides a unified account for a host of phenomena: dreaming in REM and NREM sleep, NREM and REM parasomnias, intrasleep responsiveness, inattention and mind wandering in wakefulness. Yet, the physiological origins of local sleep or its putative functions remain unclear. Exploring further local sleep could provide a unique and novel perspective on how and why we sleep.
Collapse
Affiliation(s)
- Thomas Andrillon
- Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris 75013, France; Monash Centre for Consciousness & Contemplative Studies, Monash University, Melbourne, VIC 3800, Australia.
| | - Delphine Oudiette
- Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris 75013, France
| |
Collapse
|
12
|
Sheybani L, Vivekananda U, Rodionov R, Diehl B, Chowdhury FA, McEvoy AW, Miserocchi A, Bisby JA, Bush D, Burgess N, Walker MC. Wake slow waves in focal human epilepsy impact network activity and cognition. Nat Commun 2023; 14:7397. [PMID: 38036557 PMCID: PMC10689494 DOI: 10.1038/s41467-023-42971-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Slow waves of neuronal activity are a fundamental component of sleep that are proposed to have homeostatic and restorative functions. Despite this, their interaction with pathology is unclear and there is only indirect evidence of their presence during wakefulness. Using intracortical recordings from the temporal lobe of 25 patients with epilepsy, we demonstrate the existence of local wake slow waves (LoWS) with key features of sleep slow waves, including a down-state of neuronal firing. Consistent with a reduction in neuronal activity, LoWS were associated with slowed cognitive processing. However, we also found that LoWS showed signatures of a homeostatic relationship with interictal epileptiform discharges (IEDs): exhibiting progressive adaptation during the build-up of network excitability before an IED and reducing the impact of subsequent IEDs on network excitability. We therefore propose an epilepsy homeostasis hypothesis: that slow waves in epilepsy reduce aberrant activity at the price of transient cognitive impairment.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Umesh Vivekananda
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Roman Rodionov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Fahmida A Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - James A Bisby
- Division of Psychiatry, University College London, London, UK
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Neil Burgess
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
13
|
Joechner AK, Hahn MA, Gruber G, Hoedlmoser K, Werkle-Bergner M. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife 2023; 12:e83565. [PMID: 37999945 PMCID: PMC10672804 DOI: 10.7554/elife.83565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
The synchronization of canonical fast sleep spindle activity (12.5-16 Hz, adult-like) precisely during the slow oscillation (0.5-1 Hz) up peak is considered an essential feature of adult non-rapid eye movement sleep. However, there is little knowledge on how this well-known coalescence between slow oscillations and sleep spindles develops. Leveraging individualized detection of single events, we first provide a detailed cross-sectional characterization of age-specific patterns of slow and fast sleep spindles, slow oscillations, and their coupling in children and adolescents aged 5-6, 8-11, and 14-18 years, and an adult sample of 20- to 26-year-olds. Critically, based on this, we then investigated how spindle and slow oscillation maturity substantiate age-related differences in their precise orchestration. While the predominant type of fast spindles was development-specific in that it was still nested in a frequency range below the canonical fast spindle range for the majority of children, the well-known slow oscillation-spindle coupling pattern was evident for sleep spindles in the adult-like canonical fast spindle range in all four age groups-but notably less precise in children. To corroborate these findings, we linked personalized measures of fast spindle maturity, which indicate the similarity between the prevailing development-specific and adult-like canonical fast spindles, and slow oscillation maturity, which reflects the extent to which slow oscillations show frontal dominance, with individual slow oscillation-spindle coupling patterns. Importantly, we found that fast spindle maturity was uniquely associated with enhanced slow oscillation-spindle coupling strength and temporal precision across the four age groups. Taken together, our results suggest that the increasing ability to generate adult-like canonical fast sleep spindles actuates precise slow oscillation-spindle coupling patterns from childhood through adolescence and into young adulthood.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
- Hertie-Institute for Clinical Brain Research, University Medical Center Tuebingen, Tuebingen, Germany
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- The Siesta Group, Vienna, Austria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
14
|
Memon AA, Edney BS, Baumgartner AJ, Gardner AJ, Catiul C, Irwin ZT, Joop A, Miocinovic S, Amara AW. Effects of deep brain stimulation on quantitative sleep electroencephalogram during non-rapid eye movement in Parkinson's disease. Front Hum Neurosci 2023; 17:1269864. [PMID: 37810765 PMCID: PMC10551142 DOI: 10.3389/fnhum.2023.1269864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Sleep dysfunction is frequently experienced by people with Parkinson's disease (PD) and negatively influences quality of life. Although subthalamic nucleus (STN) deep brain stimulation (DBS) can improve sleep in PD, sleep microstructural features such as sleep spindles provide additional insights about healthy sleep. For example, sleep spindles are important for better cognitive performance and for sleep consolidation in healthy adults. We hypothesized that conventional STN DBS settings would yield a greater enhancement in spindle density compared to OFF and low frequency DBS. Methods In a previous within-subject, cross-sectional study, we evaluated effects of low (60 Hz) and conventional high (≥130 Hz) frequency STN DBS settings on sleep macroarchitectural features in individuals with PD. In this post hoc, exploratory analysis, we conducted polysomnography (PSG)-derived quantitative electroencephalography (qEEG) assessments in a cohort of 15 individuals with PD who had undergone STN DBS treatment a median 13.5 months prior to study participation. Fourteen participants had unilateral DBS and 1 had bilateral DBS. During three nonconsecutive nights of PSG, the participants were assessed under three different DBS conditions: DBS OFF, DBS LOW frequency (60 Hz), and DBS HIGH frequency (≥130 Hz). The primary objective of this study was to investigate the changes in sleep spindle density across the three DBS conditions using repeated-measures analysis of variance. Additionally, we examined various secondary outcomes related to sleep qEEG features. For all participants, PSG-derived EEG data underwent meticulous manual inspection, with the exclusion of any segments affected by movement artifact. Following artifact rejection, sleep qEEG analysis was conducted on frontal and central leads. The measures included slow wave (SW) and spindle density and morphological characteristics, SW-spindle phase-amplitude coupling, and spectral power analysis during non-rapid eye movement (NREM) sleep. Results The analysis revealed that spindle density was significantly higher in the DBS HIGH condition compared to the DBS LOW condition. Surprisingly, we found that SW amplitude during NREM was significantly higher in the DBS LOW condition compared to DBS OFF and DBS HIGH conditions. However, no significant differences were observed in the other sleep qEEG features during sleep at different DBS conditions. Conclusion This study presents preliminary evidence suggesting that conventional HIGH frequency DBS settings enhance sleep spindle density in PD. Conversely, LOW frequency settings may have beneficial effects on increasing slow wave amplitude during sleep. These findings may inform mechanisms underlying subjective improvements in sleep quality reported in association with DBS. Moreover, this work supports the need for additional research on the influence of surgical interventions on sleep disorders, which are prevalent and debilitating non-motor symptoms in PD.
Collapse
Affiliation(s)
- Adeel A. Memon
- Department of Neurology, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Brandon S. Edney
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander J. Baumgartner
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alan J. Gardner
- Neuroscience Undergraduate Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zachary T. Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Allen Joop
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Amy W. Amara
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Lee YF, Russ AN, Zhao Q, Perle SJ, Maci M, Miller MR, Hou SS, Algamal M, Zhao Z, Li H, Gelwan N, Liu Z, Gomperts SN, Araque A, Galea E, Bacskai BJ, Kastanenka KV. Optogenetic targeting of astrocytes restores slow brain rhythm function and slows Alzheimer's disease pathology. Sci Rep 2023; 13:13075. [PMID: 37567942 PMCID: PMC10421876 DOI: 10.1038/s41598-023-40402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023] Open
Abstract
Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP/PS1 mice. The power but not the frequency of astrocytic calcium transients was reduced in APP/PS1 mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.
Collapse
Affiliation(s)
- Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alyssa N Russ
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Megi Maci
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Moustafa Algamal
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zhuoyang Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Noah Gelwan
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zhe Liu
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Elena Galea
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
16
|
Contreras MP, Fechner J, Born J, Inostroza M. Accelerating Maturation of Spatial Memory Systems by Experience: Evidence from Sleep Oscillation Signatures of Memory Processing. J Neurosci 2023; 43:3509-3519. [PMID: 36931711 PMCID: PMC10184732 DOI: 10.1523/jneurosci.1967-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 03/19/2023] Open
Abstract
During early development, memory systems gradually mature over time, in parallel with the gradual accumulation of knowledge. Yet, it is unknown whether and to what extent maturation is driven by discrete experience. Sleep is thought to contribute to the formation of long-term memory and knowledge through a systems consolidation process that is driven by specific sleep oscillations (i.e., ripples, spindles, and slow oscillations) in cortical and hippocampal networks. Based on these oscillatory signatures, we show here in rats that discrete spatial experience speeds the functional maturation of spatial memory systems during development. Juvenile male rats were exposed for 5 min periods to changes in the spatial configuration of two identical objects on postnatal day (PD)25, PD27, and PD29 (Spatial experience group), while a Control group was exposed on these occasions to the same two objects without changing their positions. On PD31, both groups were tested on a classical Object Place Recognition (OPR) task with a 3 h retention interval during which the sleep-associated EEG and hippocampal local field potentials were recorded. On PD31, consistent with forgoing studies, Control rats still did not express OPR memory. By contrast, rats with Spatial experience formed significant OPR memory and, in parallel, displayed an increased percentage of hippocampal ripples coupled to parietal slow oscillation-spindle complexes, and a stronger ripple-spindle phase-locking during the retention sleep. Our findings support the idea that experience promotes the maturation of memory systems during development by enhancing cortico-hippocampal information exchange and the formation of integrated knowledge representations during sleep.SIGNIFICANCE STATEMENT Cognitive and memory capabilities mature early in life. We show here that and how discrete spatial experience contributes to this process. Using a simple recognition paradigm in developing rats, we found that exposure of the rat pups to three short-lasting experiences enhances spatial memory capabilities to adult-like levels. The adult-like capability of building spatial memory was connected to a more precise coupling of ripples in the hippocampus with slow oscillation-spindle complexes in the thalamo-cortical system when the memory was formed during sleep. Our findings support the view that discrete experience accelerates maturation of cognitive and memory capabilities by enhancing the dialogue between hippocampus and cortex when these experiences are reprocessed during sleep.
Collapse
Affiliation(s)
- María P Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
| | - Julia Fechner
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
- German Center for Diabetes Research, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, 72076, Germany
- Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
17
|
Lee YF, Russ AN, Zhao Q, Maci M, Miller MR, Hou SS, Algamal M, Zhao Z, Li H, Gelwan N, Gomperts SN, Araque A, Galea E, Bacskai BJ, Kastanenka KV. Optogenetic Targeting of Astrocytes Restores Slow Brain Rhythm Function and Slows Alzheimer's Disease Pathology. RESEARCH SQUARE 2023:rs.3.rs-2813056. [PMID: 37163040 PMCID: PMC10168443 DOI: 10.21203/rs.3.rs-2813056/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP mice. The power but not the frequency of astrocytic calcium transients was reduced in APP mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.
Collapse
Affiliation(s)
| | - Alyssa N Russ
- Massachusetts General Hospital, Harvard Medical School
| | - Qiuchen Zhao
- Massachusetts General Hospital, Harvard Medical School
| | - Megi Maci
- Massachusetts General Hospital, Harvard Medical School
| | | | - Steven S Hou
- Massachusetts General Hospital, Harvard Medical School
| | | | - Zhuoyang Zhao
- Massachusetts General Hospital, Harvard Medical School
| | - Hanyan Li
- Massachusetts General Hospital, Harvard Medical School
| | - Noah Gelwan
- Massachusetts General Hospital, Harvard Medical School
| | | | | | - Elena Galea
- Massachusetts General Hospital, Harvard Medical School
| | | | | |
Collapse
|
18
|
Castelnovo A, Lividini A, Riedner BA, Avvenuti G, Jones SG, Miano S, Tononi G, Manconi M, Bernardi G. Origin, synchronization, and propagation of sleep slow waves in children. Neuroimage 2023; 274:120133. [PMID: 37094626 DOI: 10.1016/j.neuroimage.2023.120133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
STUDY OBJECTIVES Sleep slow wave activity, as measured using EEG delta power (<4 Hz), undergoes significant changes throughout development, mirroring changes in brain function and anatomy. Yet, age-dependent variations in the characteristics of individual slow waves have not been thoroughly investigated. Here we aimed at characterizing individual slow wave properties such as origin, synchronization, and cortical propagation at the transition between childhood and adulthood. METHODS We analyzed overnight high-density (256 electrodes) EEG recordings of healthy typically developing children (N=21, 10.3±1.5 years old) and young healthy adults (N=18, 31.1±4.4 years old). All recordings were preprocessed to reduce artifacts, and NREM slow waves were detected and characterized using validated algorithms. The threshold for statistical significance was set at p=0.05. RESULTS The slow waves of children were larger and steeper, but less widespread than those of adults. Moreover, they tended to mainly originate from and spread over more posterior brain areas. Relative to those of adults, the slow waves of children also displayed a tendency to more strongly involve and originate from the right than the left hemisphere. The separate analysis of slow waves characterized by high and low synchronization efficiency showed that these waves undergo partially distinct maturation patterns, consistent with their possible dependence on different generation and synchronization mechanisms. CONCLUSIONS Changes in slow wave origin, synchronization, and propagation at the transition between childhood and adulthood are consistent with known modifications in cortico-cortical and subcortico-cortical brain connectivity. In this light, changes in slow-wave properties may provide a valuable yardstick to assess, track, and interpret physiological and pathological development.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Althea Lividini
- Epilepsy Center - Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST SS. Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Brady A Riedner
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| | - Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Stephanie G Jones
- Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison(,) Madison, WI, USA
| | - Silvia Miano
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giulio Tononi
- Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison(,) Madison, WI, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
19
|
Memon AA, Catiul C, Irwin Z, Pilkington J, Memon RA, Joop A, Wood KH, Cutter G, Miocinovic S, Amara AW. Quantitative Sleep Electroencephalogram in Parkinson's Disease: A Case-Control Study. JOURNAL OF PARKINSON'S DISEASE 2023; 13:351-365. [PMID: 37066921 DOI: 10.3233/jpd-223565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Sleep disorders are common in Parkinson's disease (PD) and include alterations in sleep-related EEG oscillations. OBJECTIVE This case-control study tested the hypothesis that patients with PD would have a lower density of Scalp-Slow Wave (SW) oscillations and higher slow-to-fast frequencies ratio in rapid eye movement (REM) sleep than non-PD controls. Other sleep-related quantitative EEG (qEEG) features were also examined, including SW morphology, sleep spindles, and Scalp-SW spindle phase-amplitude coupling. METHODS Polysomnography (PSG)-derived sleep EEG was compared between PD participants (n = 56) and non-PD controls (n = 30). Following artifact rejection, sleep qEEG analysis was performed in frontal and central leads. Measures included SW density and morphological features of SW and sleep spindles, SW-spindle phase-amplitude coupling, and spectral power analysis in Non-REM (NREM) and REM. Differences in qEEG features between PD and non-PD controls were compared using two-tailed Welch's t-tests, and correction for multiple comparisons was performed per the Benjamini-Hochberg method. RESULTS SW density was lower in PD than in non-PD controls (F = 13.5, p' = 0.003). The PD group also exhibited higher ratio of slow REM EEG frequencies (F = 4.23, p' = 0.013), higher slow spindle peak frequency (F = 24.7, p' < 0.002), and greater SW-spindle coupling angle distribution non-uniformity (strength) (F = 7.30, p' = 0.034). CONCLUSION This study comprehensively evaluates sleep qEEG including SW-spindle phase amplitude coupling in PD compared to non-PD controls. These findings provide novel insights into how neurodegenerative disease disrupts electrophysiological sleep rhythms. Considering the role of sleep oscillatory activity on neural plasticity, future studies should investigate the influence of these qEEG markers on cognition in PD.
Collapse
Affiliation(s)
- Adeel A Memon
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Neuroengineering Ph.D. program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zachary Irwin
- Neuroengineering Ph.D. program, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer Pilkington
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raima A Memon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Allen Joop
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kimberly H Wood
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychology, Samford University, Birmingham, AL, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabamaat Birmingham, Birmingham, AL, USA
| | | | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurology, University of Colorado, Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
20
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Lafrenière A, Lina JM, Hernandez J, Bouchard M, Gosselin N, Carrier J. Sleep slow waves' negative-to-positive-phase transition: a marker of cognitive and apneic status in aging. Sleep 2023; 46:zsac246. [PMID: 36219687 PMCID: PMC9832517 DOI: 10.1093/sleep/zsac246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/12/2022] [Indexed: 11/07/2022] Open
Abstract
The sleep slow-wave (SW) transition between negative and positive phases is thought to mirror synaptic strength and likely depends on brain health. This transition shows significant age-related changes but has not been investigated in pathological aging. The present study aimed at comparing the transition speed and other characteristics of SW between older adults with amnestic mild cognitive impairment (aMCI) and cognitively normal (CN) controls with and without obstructive sleep apnea (OSA). We also examined the association of SW characteristics with the longitudinal changes of episodic memory and executive functions and the degree of subjective cognitive complaints. aMCI (no/mild OSA = 17; OSA = 15) and CN (no/mild OSA = 20; OSA = 17) participants underwent a night of polysomnography and a neuropsychological evaluation at baseline and 18 months later. Participants with aMCI had a significantly slower SW negative-to-positive-phase transition speed and a higher proportion of SW that are "slow-switchers" than CN participants. These SW measures in the frontal region were significantly correlated with memory decline and cognitive complaints in aMCI and cognitive improvements in CN participants. The transition speed of the SW that are "fast-switchers" was significantly slower in OSA compared to no or mild obstructive sleep apnea participants. The SW transition-related metrics showed opposite correlations with the longitudinal episodic memory changes depending on the participants' cognitive status. These relationships were particularly strong in participants with aMCI. As the changes of the SW transition-related metrics in pathological aging might reflect synaptic alterations, future studies should investigate whether these new metrics covary with biomarker levels of synaptic integrity in this population.
Collapse
Affiliation(s)
- Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, Canada
| | - Jimmy Hernandez
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Canada
| | - Maude Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| |
Collapse
|
22
|
Beaugrand M, Muehlematter C, Markovic A, Camos V, Kurth S. Sleep as a protective factor of children's executive functions: A study during COVID-19 confinement. PLoS One 2023; 18:e0279034. [PMID: 36630329 PMCID: PMC9833525 DOI: 10.1371/journal.pone.0279034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
Confinements due to the COVID-19 outbreak affected sleep and mental health of adults, adolescents and children. Already preschool children experienced acutely worsened sleep, yet the possible resulting effects on executive functions remain unexplored. Longitudinally, sleep quality predicts later behavioral-cognitive outcomes. Accordingly, we propose children's sleep behavior as essential for healthy cognitive development. By using the COVID-19 confinement as an observational-experimental intervention, we tested whether worsened children's sleep affects executive functions outcomes 6 months downstream. We hypothesized that acutely increased night awakenings and sleep latency relate to reduced later executive functions. With an online survey during the acute confinement phase we analyzed sleep behavior in 45 children (36-72 months). A first survey referred to the (retrospective) time before and (acute) situation during confinement, and a follow-up survey assessed executive functions 6 months later (6 months retrospectively). Indeed, acutely increased nighttime awakenings related to reduced inhibition at FOLLOW-UP. Associations were specific to the confinement-induced sleep-change and not the sleep behavior before confinement. These findings highlight that specifically acute changes of children's nighttime sleep during sensitive periods are associated with behavioral outcome consequences. This aligns with observations in animals that inducing poor sleep during developmental periods affects later brain function.
Collapse
Affiliation(s)
| | | | - Andjela Markovic
- University of Fribourg, Department of Psychology, Fribourg, Switzerland
- University Hospital Zurich, Department of Pulmonology, Zurich, Switzerland
| | - Valérie Camos
- University of Fribourg, Department of Psychology, Fribourg, Switzerland
| | - Salome Kurth
- University of Fribourg, Department of Psychology, Fribourg, Switzerland
- University Hospital Zurich, Department of Pulmonology, Zurich, Switzerland
| |
Collapse
|
23
|
Wilson DA, Fleming G, Williams CRO, Teixeira CM, Smiley JF, Saito M. Somatostatin neuron contributions to cortical slow wave dysfunction in adult mice exposed to developmental ethanol. Front Neurosci 2023; 17:1127711. [PMID: 37021136 PMCID: PMC10067632 DOI: 10.3389/fnins.2023.1127711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction Transitions between sleep and waking and sleep-dependent cortical oscillations are heavily dependent on GABAergic neurons. Importantly, GABAergic neurons are especially sensitive to developmental ethanol exposure, suggesting a potential unique vulnerability of sleep circuits to early ethanol. In fact, developmental ethanol exposure can produce long-lasting impairments in sleep, including increased sleep fragmentation and decreased delta wave amplitude. Here, we assessed the efficacy of optogenetic manipulations of somatostatin (SST) GABAergic neurons in the neocortex of adult mice exposed to saline or ethanol on P7, to modulate cortical slow-wave physiology. Methods SST-cre × Ai32 mice, which selectively express channel rhodopsin in SST neurons, were exposed to ethanol or saline on P7. This line expressed similar developmental ethanol induced loss of SST cortical neurons and sleep impairments as C57BL/6By mice. As adults, optical fibers were implanted targeting the prefrontal cortex (PFC) and telemetry electrodes were implanted in the neocortex to monitor slow-wave activity and sleep-wake states. Results Optical stimulation of PFC SST neurons evoked slow-wave potentials and long-latency single-unit excitation in saline treated mice but not in ethanol mice. Closed-loop optogenetic stimulation of PFC SST neuron activation on spontaneous slow-waves enhanced cortical delta oscillations, and this manipulation was more effective in saline mice than P7 ethanol mice. Discussion Together, these results suggest that SST cortical neurons may contribute to slow-wave impairment after developmental ethanol.
Collapse
Affiliation(s)
- Donald A Wilson
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States
| | - G Fleming
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - C R O Williams
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - C M Teixeira
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
| | - J F Smiley
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
24
|
Yoshida K, Toyoizumi T. Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep. PNAS NEXUS 2022; 2:pgac286. [PMID: 36712943 PMCID: PMC9833047 DOI: 10.1093/pnasnexus/pgac286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Slow waves during the non-rapid eye movement (NREM) sleep reflect the alternating up and down states of cortical neurons; global and local slow waves promote memory consolidation and forgetting, respectively. Furthermore, distinct spike-timing-dependent plasticity (STDP) operates in these up and down states. The contribution of different plasticity rules to neural information coding and memory reorganization remains unknown. Here, we show that optimal synaptic plasticity for information maximization in a cortical neuron model provides a unified explanation for these phenomena. The model indicates that the optimal synaptic plasticity is biased toward depression as the baseline firing rate increases. This property explains the distinct STDP observed in the up and down states. Furthermore, it explains how global and local slow waves predominantly potentiate and depress synapses, respectively, if the background firing rate of excitatory neurons declines with the spatial scale of waves as the model predicts. The model provides a unifying account of the role of NREM sleep, bridging neural information coding, synaptic plasticity, and memory reorganization.
Collapse
|
25
|
Rodrigues FR, Papanikolaou A, Holeniewska J, Phillips KG, Saleem AB, Solomon SG. Altered low-frequency brain rhythms precede changes in gamma power during tauopathy. iScience 2022; 25:105232. [PMID: 36274955 PMCID: PMC9579020 DOI: 10.1016/j.isci.2022.105232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative disorders are associated with widespread disruption to brain activity and brain rhythms. Some disorders are linked to dysfunction of the membrane-associated protein Tau. Here, we ask how brain rhythms are affected in rTg4510 mouse model of tauopathy, at an early stage of tauopathy (5 months), and at a more advanced stage (8 months). We measured brain rhythms in primary visual cortex in presence or absence of visual stimulation, while monitoring pupil diameter and locomotion to establish behavioral state. At 5 months, we found increased low-frequency rhythms during resting state in tauopathic animals, associated with periods of abnormally increased neural synchronization. At 8 months, this increase in low-frequency rhythms was accompanied by a reduction of power in the gamma range. Our results therefore show that slower rhythms are impaired earlier than gamma rhythms in this model of tauopathy, and suggest that electrophysiological measurements can track the progression of tauopathic neurodegeneration.
Collapse
Affiliation(s)
- Fabio R. Rodrigues
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Amalia Papanikolaou
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Joanna Holeniewska
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | | | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Samuel G. Solomon
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
26
|
Lokhandwala S, Spencer RMC. Relations between sleep patterns early in life and brain development: A review. Dev Cogn Neurosci 2022; 56:101130. [PMID: 35779333 PMCID: PMC9254005 DOI: 10.1016/j.dcn.2022.101130] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Sleep supports healthy cognitive functioning in adults. Over the past decade, research has emerged advancing our understanding of sleep's role in cognition during development. Infancy and early childhood are marked by unique changes in sleep physiology and sleep patterns as children transition from biphasic to monophasic sleep. Growing evidence suggests that, during development, there are parallel changes in sleep and the brain and that sleep may modulate brain structure and activity and vice versa. In this review, we survey studies of sleep and brain development across childhood. By summarizing these findings, we provide a unique understanding of the importance of healthy sleep for healthy brain and cognitive development. Moreover, we discuss gaps in our understanding, which will inform future research.
Collapse
Affiliation(s)
- Sanna Lokhandwala
- Department of Psychological & Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States; Developmental Sciences Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States; Developmental Sciences Program, University of Massachusetts Amherst, Amherst, MA, United States; Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States; Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
27
|
Bian WJ, Brewer CL, Kauer JA, de Lecea L. Adolescent sleep shapes social novelty preference in mice. Nat Neurosci 2022; 25:912-923. [PMID: 35618950 PMCID: PMC9283223 DOI: 10.1038/s41593-022-01076-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
Sleep disturbances frequently occur in neurodevelopmental disorders such as autism, but the developmental role of sleep is largely unexplored, and a causal relationship between developmental sleep defects and behavioral consequences in adulthood remains elusive. Here, we show that in mice, sleep disruption (SD) in adolescence, but not in adulthood, causes long-lasting impairment in social novelty preference. Furthermore, adolescent SD alters the activation and release patterns of dopaminergic neurons in the ventral tegmental area (VTA) in response to social novelty. This developmental sleep function is mediated by balanced VTA activity during adolescence; chemogenetic excitation mimics, whereas silencing rescues, the social deficits of adolescent SD. Finally, we show that in Shank3-mutant mice, improving sleep or rectifying VTA activity during adolescence ameliorates adult social deficits. Together, our results identify a critical role of sleep and dopaminergic activity in the development of social interaction behavior.
Collapse
Affiliation(s)
- Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Chelsie L Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Smith GA, Kistamgari S, Splaingard M. Age-Dependent Responsiveness to Smoke Alarm Signals Among Children. Pediatrics 2022; 149:186861. [PMID: 35466358 DOI: 10.1542/peds.2022-056460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Although it has been established that smoke alarms have more difficulty awakening children from sleep than adults, no attempt has been previously made to characterize how smoke alarm responsiveness changes with age during childhood. The objective of this study is to evaluate the age-dependent responsiveness to various smoke alarm signals among children 5 to 12 years old. METHODS The effect of age on children's response to 4 types of smoke alarms (human voice, hybrid voice-tone, low-frequency tone, and high-frequency tone) was evaluated using combined data from 3 previous studies. RESULTS There were 540 subjects (median age 9 years; 51.7% male). The proportion of children who awakened demonstrated a statistically significant (P < .001) increase of 3.1% to 7.6% for each additional year of age between 5 and 12 years old for the 4 alarm types. Similarly, child age showed a statistically significant (P < .001) effect on the proportion who escaped for each of the 4 alarm types. The proportion of subjects who awakened or escaped did not differ significantly by sex for any of the alarm types. Median time-to-awaken and median time-to-escape decreased with increase in child age for all alarm types. CONCLUSIONS This study demonstrates the substantial influence of child age on the effectiveness of audible smoke alarms during childhood. Among 12-year-olds, only 56.3% escaped within 1 minute (and 67.6% within 2 minutes) to a high-frequency tone. However, a hybrid voice-low-frequency tone alarm is >96% effective at awakening and prompting escape within 1 minute among children 9 years and older.
Collapse
Affiliation(s)
- Gary A Smith
- Center for Injury Research and Policy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.,Child Injury Prevention Alliance, Columbus, Ohio
| | - Sandhya Kistamgari
- Center for Injury Research and Policy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mark Splaingard
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.,Sleep Disorders Center, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
29
|
Traumatic Brain Injury Characteristics Predictive of Subsequent Sleep-Wake Disturbances in Pediatric Patients. BIOLOGY 2022; 11:biology11040600. [PMID: 35453799 PMCID: PMC9030185 DOI: 10.3390/biology11040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Traumatic brain injury is a leading cause of death and disabilities in children and adolescents. Poor sleep after brain injury can slow recovery and worsen outcomes. We investigated clinical sleep problems following pediatric brain injury. We examined characteristics of the injury and details about the patients that may be risk factors for developing sleep problems. The number of patients that developed problems with their sleep after a brain injury was similar between genders. The probability of insomnia increased with increasing patient age. The probability of ‘difficulty sleeping’ was highest in 7–9 year-old brain-injured patients. Older patients had a shorter time between brain injury and sleep problems compared to younger patients. Patients with severe brain injury had the shortest time between brain injury and development of sleep problems, whereas patients with mild or moderate brain injury had comparable times between brain injury and the onset of poor sleep. Multiple characteristics of brain injury and patient details were identified as risk factors for developing sleep problems following a brain injury in children. Untreated sleep problems after a brain injury can worsen symptoms, lengthen hospital stays, and delay return to school. Identifying risk factors could improve the diagnosis, management, and treatment of sleep problems in survivors of pediatric brain injury. Abstract The objective of this study was to determine the prevalence of sleep-wake disturbances (SWD) following pediatric traumatic brain injury (TBI), and to examine characteristics of TBI and patient demographics that might be predictive of subsequent SWD development. This single-institution retrospective study included patients diagnosed with a TBI during 2008–2019 who also had a subsequent diagnosis of an SWD. Data were collected using ICD-9/10 codes for 207 patients and included the following: age at initial TBI, gender, TBI severity, number of TBIs diagnosed prior to SWD diagnosis, type of SWD, and time from initial TBI to SWD diagnosis. Multinomial logit and negative-binomial models were fit to investigate whether the multiple types of SWD and the time to onset of SWD following TBI could be predicted by patient variables. Distributions of SWD diagnosed after TBI were similar between genders. The probability of insomnia increased with increasing patient age. The probability of ‘difficulty sleeping’ was highest in 7–9 year-old TBI patients. Older TBI patients had shorter time to SWD onset than younger patients. Patients with severe TBI had the shortest time to SWD onset, whereas patients with mild or moderate TBI had comparable times to SWD onset. Multiple TBI characteristics and patient demographics were predictive of a subsequent SWD diagnosis in the pediatric population. This is an important step toward increasing education among providers, parents, and patients about the risk of developing SWD following TBI.
Collapse
|
30
|
Hoedlmoser K, Peigneux P, Rauchs G. Recent advances in memory consolidation and information processing during sleep. J Sleep Res 2022; 31:e13607. [DOI: 10.1111/jsr.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience (CCNS), Laboratory for “Sleep, Cognition and Consciousness Research” University of Salzburg Salzburg Austria
| | - Philippe Peigneux
- UR2NF – Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI – ULB Neuroscience Institute Bruxelles Belgium
| | - Géraldine Rauchs
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen‐Normandie Normandie Univ Caen France
| |
Collapse
|
31
|
Miyamoto D. Optical imaging and manipulation of sleeping-brain dynamics in memory processing. Neurosci Res 2022; 181:9-16. [DOI: 10.1016/j.neures.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|
32
|
Nieto M, Motos B, Navarro B, Jimeno MV, Fernández‐Aguilar L, Ros L, Ricarte JJ, Latorre JM. Relation between nighttime sleep duration and executive functioning in a nonclinical sample of preschool children. Scand J Psychol 2022; 63:191-198. [DOI: 10.1111/sjop.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/03/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Marta Nieto
- Department of Psychology University of Castilla La Mancha Albacete Spain
- Applied Cognitive Psychology Unit University of Castilla‐La Mancha Albacete Spain
| | - Beatriz Motos
- Department of Psychology University of Castilla La Mancha Albacete Spain
| | - Beatriz Navarro
- Department of Psychology University of Castilla La Mancha Albacete Spain
- Applied Cognitive Psychology Unit University of Castilla‐La Mancha Albacete Spain
| | - María V. Jimeno
- Department of Psychology University of Castilla La Mancha Albacete Spain
- Applied Cognitive Psychology Unit University of Castilla‐La Mancha Albacete Spain
- School of Law University of Castilla‐La Mancha Albacete Spain
| | - Luz Fernández‐Aguilar
- Department of Psychology University of Castilla La Mancha Albacete Spain
- Applied Cognitive Psychology Unit University of Castilla‐La Mancha Albacete Spain
| | - Laura Ros
- Department of Psychology University of Castilla La Mancha Albacete Spain
- Applied Cognitive Psychology Unit University of Castilla‐La Mancha Albacete Spain
| | - Jorge J. Ricarte
- Department of Psychology University of Castilla La Mancha Albacete Spain
- Applied Cognitive Psychology Unit University of Castilla‐La Mancha Albacete Spain
| | - Jose M. Latorre
- Department of Psychology University of Castilla La Mancha Albacete Spain
- Applied Cognitive Psychology Unit University of Castilla‐La Mancha Albacete Spain
| |
Collapse
|
33
|
Avvenuti G, Bernardi G. Local sleep: A new concept in brain plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:35-52. [PMID: 35034748 DOI: 10.1016/b978-0-12-819410-2.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Traditionally, sleep and wakefulness have been considered as two global, mutually exclusive states. However, this view has been challenged by the discovery that sleep and wakefulness are actually locally regulated and that islands of these two states may often coexist in the same individual. Importantly, such a local regulation seems to be the key for many essential functions of sleep, including the maintenance of cognitive efficiency and the consolidation of new skills and memories. Indeed, local changes in sleep-related oscillations occur in brain areas that are used and involved in learning during wakefulness. In turn, these changes directly modulate experience-dependent brain adaptations and the consolidation of newly acquired memories. In line with these observations, alterations in the regional balance between wake- and sleep-like activity have been shown to accompany many pathologic conditions, including psychiatric and neurologic disorders. In the last decade, experimental research has started to shed light on the mechanisms involved in the local regulation of sleep and wakefulness. The results of this research have opened new avenues of investigation regarding the function of sleep and have revealed novel potential targets for the treatment of several pathologic conditions.
Collapse
Affiliation(s)
- Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
34
|
Page J, Wakschlag LS, Norton ES. Nonrapid eye movement sleep characteristics and relations with motor, memory, and cognitive ability from infancy to preadolescence. Dev Psychobiol 2021; 63:e22202. [PMID: 34813099 PMCID: PMC8898567 DOI: 10.1002/dev.22202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
Sleep plays a critical role in neural neurodevelopment. Hallmarks of sleep reflected in the electroencephalogram during nonrapid eye movement (NREM) sleep are associated with learning processes, cognitive ability, memory, and motor functioning. Research in adults is well-established; however, the role of NREM sleep in childhood is less clear. Growing evidence suggests the importance of two NREM sleep features: slow-wave activity and sleep spindles. These features may be critical for understanding maturational change and the functional role of sleep during development. Here, we review the literature on NREM sleep from infancy to preadolescence to provide insight into the network dynamics of the developing brain. The reviewed findings show distinct relations between topographical and maturational aspects of slow waves and sleep spindles; however, the direction and consistency of these relationships vary, and associations with cognitive ability remain unclear. Future research investigating the role of NREM sleep and development would benefit from longitudinal approaches, increased control for circadian and homeostatic influences, and in early childhood, studies recording daytime naps and overnight sleep to yield increased precision for detecting age-related change. Such evidence could help explicate the role of NREM sleep and provide putative physiological markers of neurodevelopment.
Collapse
Affiliation(s)
- Jessica Page
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
| | - Lauren S. Wakschlag
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| |
Collapse
|
35
|
Klinzing JG, Tashiro L, Ruf S, Wolff M, Born J, Ngo HVV. Auditory stimulation during sleep suppresses spike activity in benign epilepsy with centrotemporal spikes. Cell Rep Med 2021; 2:100432. [PMID: 34841286 PMCID: PMC8606903 DOI: 10.1016/j.xcrm.2021.100432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/12/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is a common form of childhood epilepsy linked to diverse cognitive abnormalities. The electroencephalogram of patients shows focal interictal epileptic spikes, particularly during non-rapid eye movement (NonREM) sleep. Spike formation involves thalamocortical networks, which also contribute to the generation of sleep slow oscillations (SOs) and spindles. Motivated by evidence that SO-spindle activity can be controlled through closed-loop auditory stimulation, here, we show in seven patients that auditory stimulation also reduces spike rates in BECTS. Stimulation during NonREM sleep decreases spike rates, with most robust reductions when tones are presented 1.5 to 3.5 s after spikes. Stimulation further reduces the amplitude of spikes closely following tones. Sleep spindles are negatively correlated with spike rates, suggesting that tone-evoked spindle activity mediates the spike suppression. We hypothesize spindle-related refractoriness in thalamocortical circuits as a potential mechanism. Our results open an avenue for the non-pharmacological treatment of BECTS. Spikes in BECTS epilepsy and sleep spindles may share thalamocortical generation Auditory stimulation during sleep evokes sleep spindles and suppresses spikes Stimulation may reduce spiking by inducing thalamocortical refractoriness
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Lilian Tashiro
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Susanne Ruf
- University Children's Hospital Tübingen, 72076 Tübingen, Germany
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, 12351 Berlin, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Hong-Viet V Ngo
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.,Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
36
|
Chowdhury MH, Eldaly ABM, Agadagba SK, Cheung RCC, Chan LLH. Machine Learning Based Hardware Architecture for DOA Measurement from Mice EEG. IEEE Trans Biomed Eng 2021; 69:314-324. [PMID: 34351851 DOI: 10.1109/tbme.2021.3093037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This research aims to design a hardware optimized machine learning based Depth of Anesthesia (DOA) measurement framework for mice and its FPGA implementation. METHODS Electroencephalography or EEG signal is acquired from 16 mice in the Neural Interface Research (NIR) Laboratory of the City University of Hong Kong. We present a logistic regression based approach with mathematically uncomplicated feature extraction techniques for efficient hardware implementation to estimate the DOA. RESULTS With the extraction of only two features, the proposed system can classify the state of consciousness with 94% accuracy for a 1 second EEG epoch, leading to a 100% accurate channel prediction after a 7 second run-time on average. CONCLUSION Through performance evaluation and comparative study confirmed the efficacy of the prototype. SIGNIFICANCE Traditionally the DOA is estimated by checking biophysical responses of a patient during the surgery. However, the physical symptoms can be misleading for a decisive conclusion due to the patient's health condition or as a side-effect of anesthetic drugs. Recently, several neuroscientific research works are correlating the EEG signal with conscious states, which is likely to have less interference with the patient's medical condition. This research presents the first-of-its-kind hardware implemented automatic DOA computation system for mice.
Collapse
|
37
|
Byron N, Semenova A, Sakata S. Mutual Interactions between Brain States and Alzheimer's Disease Pathology: A Focus on Gamma and Slow Oscillations. BIOLOGY 2021; 10:707. [PMID: 34439940 PMCID: PMC8389330 DOI: 10.3390/biology10080707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Brain state varies from moment to moment. While brain state can be defined by ongoing neuronal population activity, such as neuronal oscillations, this is tightly coupled with certain behavioural or vigilant states. In recent decades, abnormalities in brain state have been recognised as biomarkers of various brain diseases and disorders. Intriguingly, accumulating evidence also demonstrates mutual interactions between brain states and disease pathologies: while abnormalities in brain state arise during disease progression, manipulations of brain state can modify disease pathology, suggesting a therapeutic potential. In this review, by focusing on Alzheimer's disease (AD), the most common form of dementia, we provide an overview of how brain states change in AD patients and mouse models, and how controlling brain states can modify AD pathology. Specifically, we summarise the relationship between AD and changes in gamma and slow oscillations. As pathological changes in these oscillations correlate with AD pathology, manipulations of either gamma or slow oscillations can modify AD pathology in mouse models. We argue that neuromodulation approaches to target brain states are a promising non-pharmacological intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicole Byron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Anna Semenova
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
38
|
Joechner AK, Wehmeier S, Werkle-Bergner M. Electrophysiological indicators of sleep-associated memory consolidation in 5- to 6-year-old children. Psychophysiology 2021; 58:e13829. [PMID: 33951193 DOI: 10.1111/psyp.13829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
In adults, the synchronized interplay of sleep spindles (SP) and slow oscillations (SO) supports memory consolidation. Given tremendous developmental changes in SP and SO morphology, it remains elusive whether across childhood the same mechanisms as identified in adults are functional. Based on topography and frequency, we characterize slow and fast SPs and their temporal coupling to SOs in 24 pre-school children. Further, we ask whether slow and fast SPs and their modulation during SOs are associated with behavioral indicators of declarative memory consolidation as suggested by the literature on adults. Employing an individually tailored approach, we reliably identify an inherent, development-specific fast centro-parietal SP type, nested in the adult-like slow SP frequency range, along with a dominant slow frontal SP type. Further, we provide evidence that the modulation of fast centro-parietal SPs during SOs is already present in pre-school children. However, the temporal coordination between fast centro-parietal SPs and SOs is weaker and less precise than expected from research on adults. While we do not find evidence for a critical contribution of SP-SO coupling for memory consolidation, crucially, slow frontal and fast centro-parietal SPs are each differentially related to sleep-associated consolidation of items of varying quality. Whereas a higher number of slow frontal SPs is associated with stronger maintenance of medium-quality memories, a higher number of fast centro-parietal SPs is linked to a greater gain of low-quality items. Our results demonstrate two functionally relevant inherent SP types in pre-school children although SP-SO coupling is not yet fully mature.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sarah Wehmeier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
39
|
Betta M, Handjaras G, Leo A, Federici A, Farinelli V, Ricciardi E, Siclari F, Meletti S, Ballotta D, Benuzzi F, Bernardi G. Cortical and subcortical hemodynamic changes during sleep slow waves in human light sleep. Neuroimage 2021; 236:118117. [PMID: 33940148 DOI: 10.1016/j.neuroimage.2021.118117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.
Collapse
Affiliation(s)
- Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Giacomo Handjaras
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Andrea Leo
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Alessandra Federici
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Valentina Farinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emiliano Ricciardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy.
| |
Collapse
|
40
|
Simon KC, Malerba P, Nakra N, Harrison A, Mednick SC, Nagel M. Slow oscillation density and amplitude decrease across development in pediatric Duchenne and Becker muscular dystrophy. Sleep 2021; 44:5986496. [PMID: 33202016 DOI: 10.1093/sleep/zsaa240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES From childhood through adolescence, brain rhythms during non-rapid eye movement (NREM) sleep show dramatic development that mirror underlying brain maturation. For example, the function and characteristics of slow oscillations (SOs, <1 Hz) in healthy children are linked to brain development, motor skill, and cognition. However, little is known of possible changes in pediatric populations with neurologic abnormalities. METHODS We measured slow oscillations in 28 Duchenne and Becker muscular dystrophy male patients from age 4 to 20 years old during overnight in-lab clinical sleep studies. We compared our pediatric patients by age to evaluate the developmental changes of SOs from childhood to early and late adolescence. RESULTS Consistent with the current neuro- and physically typical literature, we found greater slow oscillation density (count of SOs per minute of each sleep stage) in NREM N3 than N2, and significantly greater slow oscillation density in frontal compared to central and occipital regions. However, separating patients into age-defined groups (child, early adolescent, and late adolescent) revealed a significant age effect, with a specific decline in the rate and amplitude of SOs. CONCLUSIONS We found that with age, pediatric patients with Duchenne muscular dystrophy show a significant decline in slow oscillation density. Given the role that slow oscillations play in memory formation and retention, it is critical to developmentally characterize these brain rhythms in medically complex populations. Our work converges with previous pediatric sleep literature that promotes the use of sleep electroencephalographic markers as prognostic tools and identifies potential targets to promote our patients' quality of life.
Collapse
Affiliation(s)
- Katharine C Simon
- Cognitive Science Department, University of California, Irvine, Irvine, CA
| | - Paola Malerba
- Battelle Center for Mathematical Medicine, Nationwide's Children Hospital, Columbus, OH
| | - Neal Nakra
- Pulmonology Department, Children's Hospital of Orange County, Orange, CA
| | - Amy Harrison
- Pulmonology Department, Children's Hospital of Orange County, Orange, CA
| | - Sara C Mednick
- Cognitive Science Department, University of California, Irvine, Irvine, CA
| | - Marni Nagel
- Pulmonology Department, Children's Hospital of Orange County, Orange, CA.,Psychology Department, Children's Hospital of Orange County, Orange, CA
| |
Collapse
|
41
|
Luongo A, Lukowski A, Protho T, Van Vorce H, Pisani L, Edgin J. Sleep's role in memory consolidation: What can we learn from atypical development? ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 60:229-260. [PMID: 33641795 DOI: 10.1016/bs.acdb.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research conducted over the last century has suggested a role for sleep in the processes guiding healthy cognition and development, including memory consolidation. Children with intellectual and developmental disabilities (IDDs) tend to have higher rates of sleep disturbances, which could relate to behavior issues, developmental delays, and learning difficulties. While several studies examine whether sleep exacerbates daytime difficulties and attention deficits in children with IDDs, this chapter focuses on the current state of knowledge regarding sleep and memory consolidation in typically developing (TD) groups and those at risk for learning difficulties. In particular, this chapter summarizes the current literature on sleep-dependent learning across developmental disabilities, including Down syndrome, Williams syndrome, Autism Spectrum Disorder, and Learning Disabilities (Attention-Deficit/Hyperactivity Disorder and Dyslexia). We also highlight the gaps in the current literature and identify challenges in studying sleep-dependent memory in children with different IDDs. This burgeoning new field highlights the importance of considering the role of sleep in memory retention across long delays when evaluating children's memory processes. Further, an understanding of typical and atypical development can mutually inform recent theories of sleep's role in memory.
Collapse
Affiliation(s)
- A Luongo
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - A Lukowski
- Department of Psychological Sciences, University of California Irvine, Irvine, CA, United States
| | - T Protho
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - H Van Vorce
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - L Pisani
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - J Edgin
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States; University of Arizona Sonoran UCEDD, Tucson, AZ, United States.
| |
Collapse
|
42
|
Abstract
Abstract
Purpose of Review
This short review article aims at emphasizing interesting and important new insights about investigating sleep and memory in children aged between 6 and 13 years (middle childhood).
Recent Findings
That sleep in comparison to wakefulness benefits the consolidation of memories is well established—especially for the adult population. However, the underlying theoretical frameworks trying to explain the benefits of sleep for memory still strive for more substantiate findings including biological and physiological correlates.
Summary
Based on the most recent literature about sleep-related memory consolidation and its physiological markers during middle childhood, this article provides a review and highlights recent updates in this field.
Collapse
|
43
|
Lee YF, Gerashchenko D, Timofeev I, Bacskai BJ, Kastanenka KV. Slow Wave Sleep Is a Promising Intervention Target for Alzheimer's Disease. Front Neurosci 2020; 14:705. [PMID: 32714142 PMCID: PMC7340158 DOI: 10.3389/fnins.2020.00705] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia, characterized by the presence of amyloid-beta plaques and neurofibrillary tau tangles. Plaques and tangles are associated with sleep-wake cycle disruptions, including the disruptions in non-rapid eye movement (NREM) slow wave sleep (SWS). Alzheimer's patients spend less time in NREM sleep and exhibit decreased slow wave activity (SWA). Consistent with the critical role of SWS in memory consolidation, reduced SWA is associated with impaired memory consolidation in AD patients. The aberrant SWA can be modeled in transgenic mouse models of amyloidosis and tauopathy. Animal models exhibited slow wave impairments early in the disease progression, prior to the deposition of amyloid-beta plaques, however, in the presence of abundant oligomeric amyloid-beta. Optogenetic rescue of SWA successfully halted the amyloid accumulation and restored intraneuronal calcium levels in mice. On the other hand, optogenetic acceleration of slow wave frequency exacerbated amyloid deposition and disrupted neuronal calcium homeostasis. In this review, we summarize the evidence and the mechanisms underlying the existence of a positive feedback loop between amyloid/tau pathology and SWA disruptions that lead to further accumulations of amyloid and tau in AD. Moreover, since SWA disruptions occur prior to the plaque deposition, SWA disruptions may provide an early biomarker for AD. Finally, we propose that therapeutic targeting of SWA in AD might lead to an effective treatment for Alzheimer's patients.
Collapse
Affiliation(s)
- Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Dmitry Gerashchenko
- Harvard Medical School/VA Boston Healthcare System, West Roxbury, MA, United States
| | - Igor Timofeev
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval, Québec, QC, Canada
- CERVO Brain Research Center, Québec, QC, Canada
| | - Brian J. Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|