1
|
Wang H, Yang Y, Li T, Chang S, Zhu Y, Liu C. Drinking Water Temperature Impacts the Pathogenesis of DSS-Induced Ulcerative Colitis by Regulating Intestinal Barrier Function and Remodeling the Gut Microbiota Composition. FASEB J 2025; 39:e70645. [PMID: 40377203 DOI: 10.1096/fj.202500062r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/18/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Environmental factors, including poor dietary habits and unhealthy drinking patterns, contribute to ulcerative colitis (UC). While the relationship between diet-related malnutrition and UC has been extensively explored, the impact of drinking water temperature remains largely overlooked, prompting us to investigate its influence on UC pathogenesis and explore the underlying mechanisms. In the present study, we observed that, unlike external thermal and cold therapy, varying drinking water temperatures transiently altered the internal body temperature of the digestive tract. Specifically, chronic drinking of 0°C water had significant anti-inflammatory effects and preserved the integrity of the mucosal barrier in a colitis mouse model. Mechanistically, this temperature spectrum changed the composition of the gut microbiota from inflammation-prone (25°C drinking water) to a resting pattern similar to that of the negative control. Specifically, the abundances of Blautia and Parasutterella, two beneficial genera, were strongly increased in response to 0°C water, accompanied by elevated levels of short-chain fatty acids. In contrast, drinking 40°C water had opposite effects on all the examined parameters and generally aggravated the development of colitis. This study is the first to demonstrate how modifying the temperature of habitual drinking water can modulate colitis progression, providing a novel and noninvasive approach to UC management. Specifically, chronic consumption of 0°C water alleviated the severity of colitis, whereas 40°C water aggravated the disease. Therefore, by focusing on commonly consumed drinking water temperatures, our findings suggest that this simple intervention could be a safe, convenient, and effective therapeutic strategy.
Collapse
Affiliation(s)
- Huiting Wang
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| | - Yiheng Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Li
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| | - Shengyu Chang
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| | - Yao Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| | - Chang Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Ribeiro FL, Zhu X, Ye X, Tu S, Ngo ST, Henderson RD, Steyn FJ, Kiernan MC, Barth M, Bollmann S, Shaw TB. An Annotated Multi-Site and Multi-Contrast Magnetic Resonance Imaging Dataset for the study of the Human Tongue Musculature. Sci Data 2025; 12:790. [PMID: 40368940 PMCID: PMC12078697 DOI: 10.1038/s41597-025-05092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
This dataset provides the first annotated, openly available MRI-based imaging dataset for investigations of tongue musculature, including multi-contrast and multi-site MRI data from non-disease participants. The present dataset includes 47 participants collated from three studies: BeLong (four participants; T2-weighted images), EATT4MND (19 participants; T2-weighted images), and BMC (24 participants; T1-weighted images). We provide manually corrected segmentations of five key tongue muscles: the superior longitudinal, combined transverse/vertical, genioglossus, and inferior longitudinal muscles. Other phenotypic measures, including age, sex, weight, height, and tongue muscle volume, are also available for use. This dataset will benefit researchers across domains interested in the structure and function of the tongue in health and disease. For instance, researchers can use this data to train new machine learning models for tongue segmentation, which can be leveraged for segmentation and tracking of different tongue muscles engaged in speech formation in health and disease. Altogether, this dataset provides the means to the scientific community for investigation of the intricate tongue musculature and its role in physiological processes and speech production.
Collapse
Affiliation(s)
- Fernanda L Ribeiro
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - Xiangyun Zhu
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia
- Griffith School of Medicine and Dentistry, Brisbane, Queensland, Australia
| | - Xincheng Ye
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Sicong Tu
- Neuroscience Research Australia, Sydney, NSW, Australia
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Shyuan T Ngo
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert D Henderson
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Frederik J Steyn
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew C Kiernan
- Neuroscience Research Australia, Sydney, NSW, Australia
- Scientia Professor of Neuroscience, The University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, Southeastern Sydney Local Health District, Sydney, NSW, Australia
| | - Markus Barth
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging and Technology (CIBIT), Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging and Technology (CIBIT), Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Digital Health Centre (QDHeC), The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas B Shaw
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Queensland, Australia.
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Nash AN, Shakeshaft M, Bouaichi CG, Odegaard KE, Needham T, Bauer M, Bertram R, Vincis R. Cortical coding of gustatory and thermal signals in active licking mice. J Physiol 2025; 603:909-928. [PMID: 39827405 DOI: 10.1113/jp287499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Eating behaviours are influenced by the integration of gustatory, olfactory and somatosensory signals, which all contribute to the perception of flavour. Although extensive research has explored the neural correlates of taste in the gustatory cortex (GC), less is known about its role in encoding thermal information. This study investigates the encoding of oral thermal and chemosensory signals by GC neurons compared to the oral somatosensory cortex. In this study we recorded the spiking activity of more than 900 GC neurons and 500 neurons from the oral somatosensory cortex in mice allowed to freely lick small drops of gustatory stimuli or deionized water at varying non-nociceptive temperatures. We then developed and used a Bayesian-based analysis technique to assess neural classification scores based on spike rate and phase timing within the lick cycle. Our results indicate that GC neurons rely predominantly on rate information, although phase information is needed to achieve maximum accuracy, to effectively encode both chemosensory and thermosensory signals. GC neurons can effectively differentiate between thermal stimuli, excelling in distinguishing both large contrasts (14 vs. 36°C) and, although less effectively, more subtle temperature differences. Finally a direct comparison of the decoding accuracy of thermosensory signals between the two cortices reveals that whereas the somatosensory cortex exhibited higher overall accuracy, the GC still encodes significant thermosensory information. These findings highlight the GC's dual role in processing taste and temperature, emphasizing the importance of considering temperature in future studies of taste processing. KEY POINTS: Flavour perception relies on gustatory, olfactory and somatosensory integration, with the gustatory cortex (GC) central to taste processing. GC neurons also respond to temperature, but the specifics of how the GC processes taste and oral thermal stimuli remain unclear. The focus of this study is on the role of GC neurons in the encoding of oral thermal information, particularly compared to the coding functions of the oral somatosensory cortex. We found that whereas the somatosensory cortex shows a higher classification accuracy for distinguishing water temperature, the GC still encodes a substantial amount of thermosensory information. These results emphasize the importance of including temperature as a key factor in future studies of cortical taste coding.
Collapse
Affiliation(s)
- Audrey N Nash
- Department of Mathematics, Florida State University, Tallahassee, Florida, USA
| | - Morgan Shakeshaft
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Cecilia G Bouaichi
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Katherine E Odegaard
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Tom Needham
- Department of Mathematics, Florida State University, Tallahassee, Florida, USA
| | - Martin Bauer
- Department of Mathematics, Florida State University, Tallahassee, Florida, USA
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Roberto Vincis
- Department of Biological Science, Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
4
|
Nash AN, Shakeshaft M, Bouaichi CG, Odegaard KE, Needham T, Bauer M, Bertram R, Vincis R. Cortical Coding of Gustatory and Thermal Signals in Active Licking Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591293. [PMID: 39185224 PMCID: PMC11343142 DOI: 10.1101/2024.04.27.591293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Eating behaviors are influenced by the integration of gustatory, olfactory, and somatosensory signals, which all contribute to the perception of flavor. Although extensive research has explored the neural correlates of taste in the gustatory cortex (GC), less is known about its role in encoding thermal information. This study investigates the encoding of oral thermal and chemosensory signals by GC neurons compared to the oral somatosensory cortex. In this study, we recorded the spiking activity of more than 900 GC neurons and 500 neurons from the oral somatosensory cortex in mice allowed to freely lick small drops of gustatory stimuli or deionized water at varying non-nociceptive temperatures. We then developed and used a Bayesian-based analysis technique to assess neural classification scores based on spike rate and phase timing within the lick cycle. Our results indicate that GC neurons rely predominantly on rate information, although phase information is needed to achieve maximum accuracy, to effectively encode both chemosensory and thermosensory signals. GC neurons can effectively differentiate between thermal stimuli, excelling in distinguishing both large contrasts (14°C vs. 36°C) and, although less effectively, more subtle temperature differences. Finally, a direct comparison of the decoding accuracy of thermosensory signals between the two cortices reveals that while the somatosensory cortex showed higher overall accuracy, the GC still encodes significant thermosensory information. These findings highlight the GC's dual role in processing taste and temperature, emphasizing the importance of considering temperature in future studies of taste processing.
Collapse
Affiliation(s)
| | - Morgan Shakeshaft
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Cecilia G. Bouaichi
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Katherine E. Odegaard
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Tom Needham
- Florida State University, Department of Mathematics
| | - Martin Bauer
- Florida State University, Department of Mathematics
| | - Richard Bertram
- Florida State University, Department of Mathematics and Programs in Neuroscience and Molecular Biophysics
| | - Roberto Vincis
- Florida State University, Department of Biological Science, Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology
| |
Collapse
|
5
|
Coca M, Besançon L, Erblang M, Bourdon S, Gruel A, Lepetit B, Beauchamps V, Tavard B, Oustric P, Finlayson GS, Thivel D, Malgoyre A, Tardo-Dino PE, Bourrilhon C, Charlot K. Twenty four-hour passive heat and cold exposures did not modify energy intake and appetite but strongly modify food reward. Br J Nutr 2024; 132:209-226. [PMID: 38634266 DOI: 10.1017/s0007114524000825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Effects of acute thermal exposures on appetite appear hypothetical in reason of very heterogeneous methodologies. The aim of this study was therefore to clearly define the effects of passive 24-h cold (16°C) and heat (32°C) exposures on appetitive responses compared with a thermoneutral condition (24°C). Twenty-three healthy, young and active male participants realised three sessions (from 13.00) in a laboratory conceived like an apartment dressed with the same outfit (Clo = 1). Three meals composed of three or four cold or warm dishes were served ad libitum to assess energy intake (EI). Leeds Food Preference Questionnaires were used before each meal to assess food reward. Subjective appetite was regularly assessed, and levels of appetitive hormones (acylated ghrelin, glucagon-like peptite-1, leptin and peptide YY) were assessed before and after the last meal (lunch). Contrary to the literature, total EI was not modified by cold or heat exposure (P = 0·120). Accordingly, hunger scores (P = 0·554) were not altered. Levels of acylated ghrelin and leptin were marginally higher during the 16 (P = 0·032) and 32°C (P < 0·023) sessions, respectively. Interestingly, implicit wanting for cold and low-fat foods at 32°C and for warm and high-fat foods at 16°C were increased during the whole exposure (P < 0·024). Moreover, cold entrées were more consumed at 32°C (P < 0·062) and warm main dishes more consumed at 16°C (P < 0·025). Thus, passive cold and hot exposures had limited effects on appetite, and it seems that offering some choice based on food temperature may help individuals to express their specific food preferences and maintain EI.
Collapse
Affiliation(s)
- Maxime Coca
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223 Brétigny Cedex, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Louis Besançon
- Hôpital d'instruction des armées Percy, 92140 Clamart, France
| | - Mégane Erblang
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Stéphanie Bourdon
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223 Brétigny Cedex, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Arnaud Gruel
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223 Brétigny Cedex, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Benoît Lepetit
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223 Brétigny Cedex, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Vincent Beauchamps
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223 Brétigny Cedex, France
- EA 7330 VIFASOM, Université de Paris, 75004 Paris, France
| | - Blandine Tavard
- Centre Interarmées du Soutien « Equipements Commissariats », Service du commissariat des armées, 78120 Rambouillet, France
| | - Pauline Oustric
- Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Centre Léon Bérard, 28 rue Laënnec, 69008 Lyon, France
| | - Graham S Finlayson
- Appetite Control Energy Balance Research Group, School of Psychology, Faculty of Medicine and Health, University of Leeds, LeedsLS2 9JT, UK
| | - David Thivel
- Laboratoire des adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (EA 3533), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Alexandra Malgoyre
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223 Brétigny Cedex, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Pierre-Emmanuel Tardo-Dino
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223 Brétigny Cedex, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Cyprien Bourrilhon
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223 Brétigny Cedex, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Keyne Charlot
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223 Brétigny Cedex, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| |
Collapse
|
6
|
Li J, Zumpano KT, Lemon CH. Separation of Oral Cooling and Warming Requires TRPM8. J Neurosci 2024; 44:e1383232024. [PMID: 38316563 PMCID: PMC10941239 DOI: 10.1523/jneurosci.1383-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Cooling sensations arise inside the mouth during ingestive and homeostasis behaviors. Oral presence of cooling temperature engages the cold and menthol receptor TRPM8 (transient receptor potential melastatin 8) on trigeminal afferents. Yet, how TRPM8 influences brain and behavioral responses to oral temperature is undefined. Here we used in vivo neurophysiology to record action potentials stimulated by cooling and warming of oral tissues from trigeminal nucleus caudalis neurons in female and male wild-type and TRPM8 gene deficient mice. Using these lines, we also measured orobehavioral licking responses to cool and warm water in a novel, temperature-controlled fluid choice test. Capture of antidromic electrophysiological responses to thalamic stimulation identified that wild-type central trigeminal neurons showed diverse responses to oral cooling. Some neurons displayed relatively strong excitation to cold <10°C (COLD neurons) while others responded to only a segment of mild cool temperatures below 30°C (COOL neurons). Notably, TRPM8 deficient mice retained COLD-type but lacked COOL cells. This deficit impaired population responses to mild cooling temperatures below 30°C and allowed warmth-like (≥35°C) neural activity to pervade the normally innocuous cool temperature range, predicting TRPM8 deficient mice would show anomalously similar orobehavioral responses to warm and cool temperatures. Accordingly, TRPM8 deficient mice avoided both warm (35°C) and mild cool (≤30°C) water and sought colder temperatures in fluid licking tests, whereas control mice avoided warm but were indifferent to mild cool and colder water. Results imply TRPM8 input separates cool from warm temperature sensing and suggest other thermoreceptors also participate in oral cooling sensation.
Collapse
Affiliation(s)
- Jinrong Li
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019
| | - Kyle T Zumpano
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019
| | - Christian H Lemon
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
7
|
Riul A, de Barros A, Gaál G, Braunger ML, Martinez Jimenez MJ, Avila-Avendano C, Rodrigues V, de Andrade MJ, Quevedo-Lopez M, Alvarez F, Baughman RH. Self-Healing E-tongue. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55073-55081. [PMID: 37967325 DOI: 10.1021/acsami.3c11590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Self-healing materials inspire the next generation of multifunctional wearables and Internet of Things appliances. They expand the realm of thin film fabrication, enabling seamless conformational coverage irrespective of the shape complexity and surface geometry for electronic skins, smart textiles, soft robotics, and energy storage devices. Within this context, the layer-by-layer (LbL) technique is versatile for homogeneously dispersing materials onto various matrices. Moreover, it provides molecular level thickness control and coverage on practically any surface, with poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA) being the most used materials primarily employed in self-healing LbL structures operating at room temperature. However, achieving thin film composites displaying controlled conductivity and healing ability is still challenging under ambient conditions. Here, PEI and PAA are mixed with conductive fillers (gold nanorods, poly(3,4-ethylene dioxythiophene): polystyrenesulfonate (PEDOT:PSS), reduced graphene oxides, and multiwalled carbon nanotubes) in distinct LbL film architectures. Electrical (AC and DC), optical (Raman spectroscopy), and mechanical (nanoindentation) measurements are used for characterizing composite structures and properties. A delicate balance among electrical, mechanical, and structural characteristics must be accomplished for a controlled design of conductive self-healing composites. As a proof-of-concept, four LbL composites were chosen as sensing units in the first reported self-healing e-tongue. The sensor can easily distinguish basic tastes at low molar concentrations and differentiate trace levels of glucose in artificial sweat. The formed nanostructures enable smart coverages that have unique features for solving current technological challenges.
Collapse
Affiliation(s)
- Antonio Riul
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
- Alan MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Anerise de Barros
- Universidade Estadual de Campinas, Instituto de Química, Campinas, SP 13083-970, Brazil
- Materials Science and Engineering Department, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Gabriel Gaál
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Maria L Braunger
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Mawin J Martinez Jimenez
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Carlos Avila-Avendano
- Materials Science and Engineering Department, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Varlei Rodrigues
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Mônica Jung de Andrade
- Alan MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Manuel Quevedo-Lopez
- Materials Science and Engineering Department, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Fernando Alvarez
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Ray H Baughman
- Alan MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
8
|
Bouaichi CG, Odegaard KE, Neese C, Vincis R. Intraoral thermal processing in the gustatory cortex of awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.526681. [PMID: 36798208 PMCID: PMC9934522 DOI: 10.1101/2023.02.06.526681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally-sourced thermal inputs are represented in the gustatory cortex (GC) we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally-sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva. Analysis of thermal-evoked responses showed broadly tuned neurons that responded to temperature in a mostly monotonic manner. Spatial location may play a minor role regarding thermosensory activity; aside from the most ventral GC, neurons reliably responded to and encoded thermal information across the dorso-ventral and antero-postero cortical axes. Additional analysis revealed that more than half of GC neurons that encoded chemosensory taste stimuli also accurately discriminated thermal information, providing additional evidence of the GC's involvement in processing thermosensory information important for ingestive behaviors. In terms of convergence, we found that GC neurons encoding information about both taste and temperature were broadly tuned and carried more information than taste-selective only neurons; both groups encoded similar information about the palatability of stimuli. Altogether, our data reveal new details of the cortical code for the mammalian intraoral thermosensory system in behaving mice and pave the way for future investigations on GC functions and operational principles with respect to thermogustation.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Florida State University, Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics
| | - Katherine E Odegaard
- Florida State University, Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics
| | - Camden Neese
- Florida State University, Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics
| | - Roberto Vincis
- Florida State University, Department of Biological Science and Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology
| |
Collapse
|
9
|
Xu X, Yang Y, Cao T, Nie T, Lian Z. Four kinds of body temperatures and their relationships with thermal perception. J Therm Biol 2023; 114:103600. [PMID: 37302285 DOI: 10.1016/j.jtherbio.2023.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Body temperature serves as the principal factor in thermal perception determination. Current thermal comfort researches mainly focused on skin temperature, while other kinds of body temperatures were often ignored. In laboratory with strictly controlled environment, 26 subjects (13 males and 13 females) remained seated for a duration of 130 min in two thermal environments (19 °C and 35 °C), arranged in a particular order; four kinds of body temperatures (skin temperature, oral temperature, auditory canal temperature and breath temperature) and three kinds of thermal perception votes (thermal sensation, thermal comfort and thermal acceptable) were regularly collected. The analysis results showed that, skin temperature and breath temperature significantly changed with ambient temperature (p < 0.001); the difference between average value of core temperature in two conditions was small (≤0.3 °C), but a significant difference was almost observed in auditory canal temperature of males (p = 0.07). Both skin temperature and breath temperature were significantly related with three subjective votes (p < 0.001), meanwhile, the prediction accuracy of breath temperature for thermal perception was in no way inferior to skin temperature. Although oral temperature and auditory canal temperature had partial significant correlations with thermal perception, they were difficult to be carried out in practical application due to their weak explanatory powers (correlation coefficient <0.3). In summary, this research tried to establish correlation laws between body temperatures and thermal perception votes during a temperature step-change experiment, while finding the potential of utilizing breath temperature for thermal perception prediction, which is expected to be further promoted in the future.
Collapse
Affiliation(s)
- Xinbo Xu
- Department of Architecture, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuxin Yang
- Department of Architecture, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Cao
- Department of Architecture, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Nie
- Department of Architecture, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwei Lian
- Department of Architecture, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Bouaichi CG, Odegaard KE, Neese C, Vincis R. Oral thermal processing in the gustatory cortex of awake mice. Chem Senses 2023; 48:bjad042. [PMID: 37850853 PMCID: PMC10630187 DOI: 10.1093/chemse/bjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/19/2023] Open
Abstract
Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally sourced thermal inputs are represented in the gustatory cortex (GC), we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, and 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva. Analysis of thermal-evoked responses showed broadly tuned neurons that responded to temperature in a mostly monotonic manner. Spatial location may play a minor role regarding thermosensory activity; aside from the most ventral GC, neurons reliably responded to and encoded thermal information across the dorso-ventral and antero-postero cortical axes. Additional analysis revealed that more than half of the GC neurons that encoded chemosensory taste stimuli also accurately discriminated thermal information, providing additional evidence of the GC's involvement in processing thermosensory information important for ingestive behaviors. In terms of convergence, we found that GC neurons encoding information about both taste and temperature were broadly tuned and carried more information than taste-selective-only neurons; both groups encoded similar information about the palatability of stimuli. Altogether, our data reveal new details of the cortical code for the mammalian oral thermosensory system in behaving mice and pave the way for future investigations on GC functions and operational principles with respect to thermogustation.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Katherine E Odegaard
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Camden Neese
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Roberto Vincis
- Department of Biological Science and Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
11
|
Localization of TRP Channels in Healthy Oral Mucosa from Human Donors. eNeuro 2022; 9:ENEURO.0328-21.2022. [PMID: 36635242 PMCID: PMC9797210 DOI: 10.1523/eneuro.0328-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The oral cavity is exposed to a remarkable range of noxious and innocuous conditions, including temperature fluctuations, mechanical forces, inflammation, and environmental and endogenous chemicals. How such changes in the oral environment are sensed is not completely understood. Transient receptor potential (TRP) ion channels are a diverse family of molecular receptors that are activated by chemicals, temperature changes, and tissue damage. In non-neuronal cells, TRP channels play roles in inflammation, tissue development, and maintenance. In somatosensory neurons, TRP channels mediate nociception, thermosensation, and chemosensation. To assess whether TRP channels might be involved in environmental sensing in the human oral cavity, we investigated their distribution in human tongue and hard palate biopsies. TRPV3 and TRPV4 were expressed in epithelial cells with inverse expression patterns where they likely contribute to epithelial development and integrity. TRPA1 immunoreactivity was present in fibroblasts, immune cells, and neuronal afferents, consistent with known roles of TRPA1 in sensory transduction and response to damage and inflammation. TRPM8 immunoreactivity was found in lamina propria and neuronal subpopulations including within the end bulbs of Krause, consistent with a role in thermal sensation. TRPV1 immunoreactivity was identified in intraepithelial nerve fibers and end bulbs of Krause, consistent with roles in nociception and thermosensation. TRPM8 and TRPV1 immunoreactivity in end bulbs of Krause suggest that these structures contain a variety of neuronal afferents, including those that mediate nociception, thermosensation, and mechanotransduction. Collectively, these studies support the role of TRP channels in oral environmental surveillance and response.
Collapse
|
12
|
Charlot K, Millet J, Pasquier F, Oustric P, Finlayson G, Van Beers P, Monin J, Sauvet F, Tardo-Dino PE, Malgoyre A. The impact of 16-h heat exposure on appetite and food reward in adults. Appetite 2022; 177:106144. [PMID: 35753442 DOI: 10.1016/j.appet.2022.106144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Heat exposure is thought to reduce energy intake (EI) but studies are sparse and results not always concordant. The aim of this study was to examine whether a 16-h exposure to 32 °C leads to reduced EI compared to a control session (22 °C) and whether modifications in appetite sensations or food reward are implied. Sixteen healthy, lean, and active participants (9 women and 7 men, 25 ± 5 yo, body mass index: 22.0 ± 2.4 kg.m-2) were passively exposed to two different thermal temperatures from 4:00 pm to 8:00 am under controlled conditions. Hunger and thirst scores were regularly assessed using visual analogue scales. A fixed dinner meal (3670 ± 255 kJ) was consumed at 7:30 pm and an ad libitum breakfast buffet (20 foods/drinks varying in temperature, fat, and carbohydrate content) at 7:30 am. Components of reward (explicit liking [EL] and implicit wanting [EI]) for fat and sweet properties of food were assessed before each meal using the Leeds Food Preference Questionnaire (LFPQ). Ad libitum EI at breakfast did not differ between sessions (2319 ± 1108 vs 2329 ± 1141 kJ, in 22 and 32 °C sessions, respectively; p = 0.955). While thirst scores were higher in the 32 than the 22 °C session (p < 0.001), hunger scores did not differ (p = 0.580). EL and IW for high fat foods relative to low fat foods were decreased in 32 compared to 22 °C before dinner and breakfast (p < 0.001 for all). Although EI and hunger were not affected by a 16-h exposure to heat, modifications in food reward suggested a reduction in the preference of high-fat foods. Future research should investigate whether reduced EI in response to heat exposure is due to spontaneous selection of low-fat foods rather than altered appetite sensations.
Collapse
Affiliation(s)
- Keyne Charlot
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France.
| | - Juliette Millet
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Florane Pasquier
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance, EA, 7370, Paris, France
| | - Pauline Oustric
- Appetite Control Energy Balance Research Group, School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Graham Finlayson
- Appetite Control Energy Balance Research Group, School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Pascal Van Beers
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; EA 7330 VIFASOM, Université de Paris, 75004, Paris, France
| | - Jonathan Monin
- Centre d'expertise principal du personnel naviguant, Hôpital d'instruction des armées Percy, 94140, Clamart, France
| | - Fabien Sauvet
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; EA 7330 VIFASOM, Université de Paris, 75004, Paris, France
| | - Pierre-Emmanuel Tardo-Dino
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | - Alexandra Malgoyre
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, 1 place Général Valérie André, 91223, Brétigny Cedex, France; LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025, Evry, France
| | | |
Collapse
|