1
|
Rodríguez-Barrios C, Gutiérrez-Rosa I, Lubián-Gutiérrez M, Trimarco E, Jafrasteh B, Lubián-López S, Benavente-Fernández I. Severity of Germinal Matrix-Intraventricular Hemorrhage Impacts Thalamic Growth and Neurodevelopmental Outcomes in Preterm Infants: A Longitudinal Magnetic Resonance Study. Pediatr Neurol 2025; 167:117-124. [PMID: 40288051 DOI: 10.1016/j.pediatrneurol.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Preterm birth and germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) can significantly affect neurodevelopment in very-low-birth-weight infants (VLBWI). This study examined the impact of GMH-IVH on thalamic volume (TV) during the neonatal period and its relationship with cognitive, motor, and language outcomes at two years corrected age. METHODS Preterm infants admitted to the neonatal intensive care unit at Hospital Puerta del Mar underwent early (<36 weeks postmenstrual age) and term-equivalent magnetic resonance imaging to assess thalamic growth. Neurodevelopmental outcomes were evaluated using the Bayley Scales of Infant and Toddler Development. RESULTS The severity of GMH-IVH correlated with greater reductions in TV. At term, infants without GMH-IVH had a mean TV of 3.72 ± 0.65 cm3, compared with 2.76 ± 0.55 cm3 in those with grade III GMH-IVH (P = 0.0001). Grade III GMH-IVH and parenchymal hemorrhagic infarction were linked to significantly lower cognitive (P = 0.024), language (P = 0.001), and motor scores (P = 0.006) at two years, with reduced TV contributing to poorer language outcomes (β = 9.857; P = 0.028). Our findings suggest that GMH-IVH negatively affects thalamic growth, which in turn leads to neurodevelopmental delays in preterm infants. CONCLUSIONS The severity of GMH-IVH is associated with decreased TV and adverse cognitive, language, and motor outcomes, highlighting the need for early identification and targeted interventions in this vulnerable population. Further research should explore additional brain structures affected by GMH-IVH to better understand the mechanisms driving these impairments.
Collapse
Affiliation(s)
- Carmen Rodríguez-Barrios
- Department of Pediatrics, Puerta del Mar University Hospital, C'adiz, Spain; Biomedical Research and Innovation Institute of C'adiz (INiBICA) Research Unit, Puerta del Mar University, C'adiz, Spain
| | - Irene Gutiérrez-Rosa
- Department of Pediatrics, Puerta del Mar University Hospital, C'adiz, Spain; Biomedical Research and Innovation Institute of C'adiz (INiBICA) Research Unit, Puerta del Mar University, C'adiz, Spain
| | - Manuel Lubián-Gutiérrez
- Department of Pediatrics, Puerta del Mar University Hospital, C'adiz, Spain; Biomedical Research and Innovation Institute of C'adiz (INiBICA) Research Unit, Puerta del Mar University, C'adiz, Spain
| | - Emiliano Trimarco
- Biomedical Research and Innovation Institute of C'adiz (INiBICA) Research Unit, Puerta del Mar University, C'adiz, Spain
| | - Bahram Jafrasteh
- Biomedical Research and Innovation Institute of C'adiz (INiBICA) Research Unit, Puerta del Mar University, C'adiz, Spain
| | - Simón Lubián-López
- Department of Pediatrics, Puerta del Mar University Hospital, C'adiz, Spain; Biomedical Research and Innovation Institute of C'adiz (INiBICA) Research Unit, Puerta del Mar University, C'adiz, Spain; Division of Neonatology, Department of Pediatrics, Puerta del Mar University Hospital, C'adiz, Spain.
| | - Isabel Benavente-Fernández
- Department of Pediatrics, Puerta del Mar University Hospital, C'adiz, Spain; Biomedical Research and Innovation Institute of C'adiz (INiBICA) Research Unit, Puerta del Mar University, C'adiz, Spain; Division of Neonatology, Department of Pediatrics, Puerta del Mar University Hospital, C'adiz, Spain; Area of Pediatrics, Department of Child and Mother Health and Radiology, Medical School, University of C'adiz, C'adiz, Spain
| |
Collapse
|
2
|
Arrazola R, Espinosa-Jeffrey A, Serafín N, Harmony T, Quirarte GL. Excitotoxic lesion in the corpus callosum of neonatal rats: A model for encephalopathy of prematurity. Neuroscience 2025; 573:198-213. [PMID: 40096962 DOI: 10.1016/j.neuroscience.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Encephalopathy of prematurity (EP) can develop in preterm infants exposed to risk factors like extreme prematurity, low birth weight, hypoxia, infections, and inflammation. These factors can induce excitotoxicity in the brain's gray and white matter, leading to the death of neurons and oligodendrocyte progenitors. Understanding the brain mechanisms of EP requires animal models. In this study, we generated an EP model by injecting N-methyl-D-aspartic acid (NMDA) into the corpus callosum (CC) of neonatal male rats on postnatal day (PND) 5. Rats were divided into five groups: Intact, Vehicle, and three doses of NMDA (3, 4, or 5 μg). On PND 20, we measured the volumes of the CC, motor cortex (MC), and lateral ventricles. The 5 µg NMDA dose caused the largest lesion. We later assessed these structures on PNDs 6, 10, 20, and 30 to monitor lesion progression. We also analyzed myelin basic protein (MBP) expression and counted NeuN-positive cells using immunofluorescent markers. NMDA groups showed reduced MBP expression and fewer NeuN-positive cells in the MC. Additionally, NMDA-treated rats exhibited increased motor activity in the open field and reduced fall latencies in the rotarod task compared to controls. In conclusion, our perinatal excitotoxic lesion model in rats demonstrates structural abnormalities, including decreased MBP and loss of NeuN-positive cells, alongside motor and habituation impairments, resembling those seen in human EP.
Collapse
Affiliation(s)
- Rafael Arrazola
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. Mexico
| | - Araceli Espinosa-Jeffrey
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Norma Serafín
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. Mexico
| | - Thalía Harmony
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, Mexico.
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. Mexico.
| |
Collapse
|
3
|
Rogachov A, Carlson HL, Robertson A, Domi T, Kirton A, Dlamini N. Thalamic oscillatory dysrhythmia and disrupted functional connectivity in thalamocortical loops in perinatal stroke. Sci Rep 2025; 15:12542. [PMID: 40216875 PMCID: PMC11992091 DOI: 10.1038/s41598-025-95560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Periventricular venous infarction (PVI) is a subtype of perinatal stroke localized to subcortical white matter occurring before 34 weeks of gestation. An emerging body of literature has reported life-long motor impairments and compromised quality of life in patients with PVI. However, there remains a paucity of foundational knowledge regarding the underlying neurobiological mechanisms that underpin these outcomes. Recent studies (Ferradal et al. in Cereb Cortex 29:1218-1229, 2019) in brain imaging suggest that healthy development of thalamocortical connections is instrumental in coordinating brain connectivity in both prenatal and postnatal periods given the central role the thalamus and basal ganglia play in motor circuitry. Therefore, we provide a regional and cross-network approach to the analysis of interactive pathways of the thalamus, basal ganglia, and cortex to explore possible neurobiological disruptions responsible for clinical motor function in children with PVI. A resting-state fMRI protocol was administered to children with left periventricular venous infarction (PVI) (n = 23) and typically developing children (TDC) (n = 22) to characterize regional oscillatory and thalamocortical disturbances and compare them to clinical motor function. We hypothesized that PVI would affect resting-state measures of both regional and global brain function, marked by abnormally high amplitudes of regional oscillatory activity, as well as lower local and cross-network communication. Using a combination of robust functional metrics to assess spontaneous, oscillatory activity (Amplitude of Low-Frequency Fluctuations [ALFF] and fractional ALFF), as well as local (Regional Homogeneity [ReHo]) and cross-network connectivity (Degree Centrality [DC] and Functional Connectivity [FC]). We found that compared with TDC, children with PVI exhibited higher levels of ALFF, and these functional differences were associated with the severity of motor impairment. Moreover, the thalamus in children with PVI also showed lower connectivity in relaying thalamocortical pathways. These disruptions in thalamocortical pathways from the thalamus were localized to the medial prefrontal cortex (mPFC), a key hub of the default mode network). Collectively, our findings suggest that heightened levels of regional, oscillatory activity in the thalamus may disrupt more widespread thalamocortical cross-network circuity, possibly contributing to motor impairments in children with PVI.
Collapse
Affiliation(s)
- Anton Rogachov
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 175 Elizabeth Street | 19th floor, Toronto, ON, M5G 2G3, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Amanda Robertson
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 175 Elizabeth Street | 19th floor, Toronto, ON, M5G 2G3, Canada
- Neurosciences and Mental Health Department, The Hospital for Sick Children, Toronto, ON, Canada
| | - Trish Domi
- Neurosciences and Mental Health Department, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatric and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nomazulu Dlamini
- Division of Neurology, The Hospital for Sick Children, University of Toronto, 175 Elizabeth Street | 19th floor, Toronto, ON, M5G 2G3, Canada.
- Neurosciences and Mental Health Department, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
4
|
Champaud JLY, Asite S, Fabrizi L. Development of brain metastable dynamics during the equivalent of the third gestational trimester. Dev Cogn Neurosci 2025; 73:101556. [PMID: 40252359 PMCID: PMC12023897 DOI: 10.1016/j.dcn.2025.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/21/2025] Open
Abstract
Metastability, a concept from dynamical systems theory, provides a framework for understanding how the brain shifts between various functional states and underpins essential cognitive, behavioural, and social function. While studied in adults, metastability in early brain development has only received recent attention. As the brain undergoes dramatic functional and structural changes over the third gestational trimester, here we review how these are reflected in changes in brain metastable dynamics in preterm, preterm at term-equivalent and full-term neonates. We synthesize findings from EEG, fMRI, fUS, and computational models, focusing on the spatial distribution and temporal dynamics of metastable states, which include functional integration and segregation, signal predictability and complexity. Despite fragmented evidence, studies suggest that neonatal metastability develops over the equivalent of the third gestational trimester, with increasing ability for integration-segregation, broader range of metastable states, faster metastable state transitions and greater signal complexity. Preterms at term-equivalent age exhibit immature metastability features compared to full-terms. We explain and interpret these changes in terms of maturation of the brain in a free energy landscape and establishment of cognitive functions.
Collapse
Affiliation(s)
- Juliette L Y Champaud
- Department of Neuroscience, Psychology and Pharmacology, University College London, UK; Centre for the Developing Brain, King's College London, UK
| | - Samanta Asite
- Department of Neuroscience, Psychology and Pharmacology, University College London, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Psychology and Pharmacology, University College London, UK.
| |
Collapse
|
5
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2025; 97:880-897. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Ayzenberg V, Song C, Arcaro MJ. An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate. Curr Biol 2025; 35:300-314.e5. [PMID: 39709961 DOI: 10.1016/j.cub.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The thalamus plays a crucial role in the development of the neocortex, with the pulvinar being particularly important for visual development due to its involvement in various functions that emerge early in infancy. The development of connections between the pulvinar and the cortex constrains its role in infant visual processing and the maturation of associated cortical networks. However, the extent to which adult-like pulvino-cortical pathways are present at birth remains largely unknown, limiting our understanding of how the thalamus may support early vision. To address this gap, we investigated the organization of pulvino-cortical connections in human neonates using probabilistic tractography analyses on diffusion imaging data. Our analyses identified white matter pathways between the pulvinar and areas across occipital, ventral, lateral, and dorsal visual cortices at birth. These pathways exhibited specificity in their connections within the pulvinar, reflecting both an intra-areal retinotopic organization and a hierarchical structure across areas of visual cortical pathways. This organization suggests that even at birth, the pulvinar could facilitate detailed processing of sensory information and communication between distinct processing pathways. Comparative analyses revealed that while the large-scale organization of pulvino-cortical connectivity in neonates mirrored that of adults, connectivity with the ventral visual cortex was less mature than other cortical pathways, consistent with the protracted development of the visual recognition pathway. These findings advance our understanding of the developmental trajectory of thalamocortical connections and provide a framework for how subcortical structures may support early perceptual abilities and scaffold the development of cortex.
Collapse
Affiliation(s)
- Vladislav Ayzenberg
- Temple University, Department of Psychology and Neuroscience, North 13th Street, Philadelphia, PA 19122, USA; University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Chenjie Song
- University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA
| | - Michael J Arcaro
- University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Morin C, Faure F, Mollet J, Guenoun D, Heydari-Olya A, Sautet I, Diao S, Faivre V, Pansiot J, Tabet L, Hua J, Schwendimann L, Mokhtari A, Martin-Rosique R, Chadi S, Laforge M, Demené C, Delahaye-Duriez A, Diaz-Heijtz R, Fleiss B, Matrot B, Auger S, Tanter M, Van Steenwinckel J, Gressens P, Bokobza C. C-section and systemic inflammation synergize to disrupt the neonatal gut microbiota and brain development in a model of prematurity. Brain Behav Immun 2025; 123:824-837. [PMID: 39442636 DOI: 10.1016/j.bbi.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Infants born very preterm (below 28 weeks of gestation) are at high risk of developing neurodevelopmental disorders, such as intellectual deficiency, autism spectrum disorders, and attention deficit. Preterm birth often occurs in the context of perinatal systemic inflammation due to chorioamnionitis and postnatal sepsis. In addition, C-section is often performed for very preterm neonates to avoid hypoxia during a vaginal delivery. We have developed and characterized a mouse model based on intraperitoneal injections of IL-1β between postnatal days one and five to reproduce perinatal systemic inflammation. This model replicates several neuropathological, brain imaging, and behavioral deficits observed in preterm infants. We hypothesized that C-sections could synergize with systemic inflammation to induce more severe brain abnormalities. We observed that C-sections significantly exacerbated the deleterious effects of IL-1β on reduced gut microbial diversity, increased levels of circulating peptidoglycans, abnormal microglia/macrophage reactivity, impaired myelination, and reduced functional connectivity in the brain relative to vaginal delivery plus intraperitoneal saline. These data demonstrate the deleterious synergistic effects of C-section and neonatal systemic inflammation on brain maldevelopment and malfunction, two conditions frequently observed in very preterm infants, who are at high risk of developing neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cécile Morin
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Department of Obstetrics and Gynecology, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Flora Faure
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | - Julie Mollet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - David Guenoun
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Department of Pharmacy, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | | | - Irvin Sautet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Sihao Diao
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; Fudan University, Department of Neonatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Valérie Faivre
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Julien Pansiot
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Lara Tabet
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Jennifer Hua
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | | | - Amazigh Mokhtari
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Rebeca Martin-Rosique
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Sead Chadi
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Mireille Laforge
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Charlie Demené
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | - Andrée Delahaye-Duriez
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France; UFR Santé Médecine et Biologie Humaine, Université Sorbonne Paris Nord, 93000 Bobigny, France; Unité Fonctionnelle de Médecine Génomique et Génétique Clinique, Hôpital Jean Verdier, Hôpitaux Universitaires Paris Seine Saint-Denis, Assistance Publique des Hôpitaux de Paris, 93140 Bondy, France
| | | | - Bobbi Fleiss
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Boris Matrot
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Sandrine Auger
- INRAE, Université Paris-Saclay, AgroParisTech, UMR1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris-PSL, CNRS, 75015 Paris, France
| | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France.
| |
Collapse
|
8
|
Prasad J, Van Steenwinckel J, Gunn AJ, Bennet L, Korzeniewski SJ, Gressens P, Dean JM. Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae. Int J Mol Sci 2024; 25:12999. [PMID: 39684715 PMCID: PMC11640791 DOI: 10.3390/ijms252312999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life.
Collapse
Affiliation(s)
- Jaya Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | | | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Steven J. Korzeniewski
- C.S. Mott Center for Human Growth and Development, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Pierre Gressens
- Inserm, Neurodiderot, Université de Paris, 75019 Paris, France;
- Centre for the Developing Brain, Division of Imaging Sciences and Department of Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| |
Collapse
|
9
|
White P, Ranasinghe S, Chen J, Van de Looij Y, Sizonenko S, Prasad J, Berry M, Bennet L, Gunn A, Dean J. Comparative utility of MRI and EEG for early detection of cortical dysmaturation after postnatal systemic inflammation in the neonatal rat. Brain Behav Immun 2024; 121:104-118. [PMID: 39043347 DOI: 10.1016/j.bbi.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Exposure to postnatal systemic inflammation is associated with increased risk of brain injury in preterm infants, leading to impaired maturation of the cerebral cortex and adverse neurodevelopmental outcomes. However, the optimal method for identifying cortical dysmaturation is unclear. Herein, we compared the utility of electroencephalography (EEG), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) at different recovery times after systemic inflammation in newborn rats. METHODS Sprague Dawley rat pups of both sexes received single-daily lipopolysaccharide (LPS; 0.3 mg/kg i.p.; n = 51) or saline (n = 55) injections on postnatal days (P)1, 2, and 3. A subset of these animals were implanted with EEG electrodes. Cortical EEG was recorded for 30 min from unanesthetized, unrestrained pups at P7, P14, and P21, and in separate groups, brain tissues were collected at these ages for ex-vivo MRI analysis (9.4 T) and Golgi-Cox staining (to assess neuronal morphology) in the motor cortex. RESULTS Postnatal inflammation was associated with reduced cortical pyramidal neuron arborization from P7, P14, and P21. These changes were associated with dysmature EEG features (e.g., persistence of delta waveforms, higher EEG amplitude, reduced spectral edge frequency) at P7 and P14, and higher EEG power in the theta and alpha ranges at P21. By contrast, there were no changes in cortical DTI or NODDI in LPS rats at P7 or P14, while there was an increase in cortical fractional anisotropy (FA) and decrease in orientation dispersion index (ODI) at P21. CONCLUSIONS EEG may be useful for identifying the early evolution of impaired cortical development after early life postnatal systemic inflammation, while DTI and NODDI seem to be more suited to assessing established cortical changes.
Collapse
Affiliation(s)
- Petra White
- University of Auckland, Auckland, New Zealand
| | | | - Joseph Chen
- University of Auckland, Auckland, New Zealand
| | - Yohan Van de Looij
- University of Geneva, Geneva, Switzerland; Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | | | - Jaya Prasad
- University of Auckland, Auckland, New Zealand
| | - Mary Berry
- University of Otago, Wellington, New Zealand
| | | | | | - Justin Dean
- University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Thalhammer M, Nimpal M, Schulz J, Meedt V, Menegaux A, Schmitz-Koep B, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Hedderich D, Sorg C. Consistently lower volumes across thalamus nuclei in very premature-born adults. Neuroimage 2024; 297:120732. [PMID: 39004408 DOI: 10.1016/j.neuroimage.2024.120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Lasting thalamus volume reduction after preterm birth is a prominent finding. However, whether thalamic nuclei volumes are affected differentially by preterm birth and whether nuclei aberrations are relevant for cognitive functioning remains unknown. Using T1-weighted MR-images of 83 adults born very preterm (≤ 32 weeks' gestation; VP) and/or with very low body weight (≤ 1,500 g; VLBW) as well as of 92 full-term born (≥ 37 weeks' gestation) controls, we compared thalamic nuclei volumes of six subregions (anterior, lateral, ventral, intralaminar, medial, and pulvinar) across groups at the age of 26 years. To characterize the functional relevance of volume aberrations, cognitive performance was assessed by full-scale intelligence quotient using the Wechsler Adult Intelligence Scale and linked to volume reductions using multiple linear regression analyses. Thalamic volumes were significantly lower across all examined nuclei in VP/VLBW adults compared to controls, suggesting an overall rather than focal impairment. Lower nuclei volumes were linked to higher intensity of neonatal treatment, indicating vulnerability to stress exposure after birth. Furthermore, we found that single results for lateral, medial, and pulvinar nuclei volumes were associated with full-scale intelligence quotient in preterm adults, albeit not surviving correction for multiple hypotheses testing. These findings provide evidence that lower thalamic volume in preterm adults is observable across all subregions rather than focused on single nuclei. Data suggest the same mechanisms of aberrant thalamus development across all nuclei after premature birth.
Collapse
Affiliation(s)
- Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany.
| | - Mehul Nimpal
- Faculty of Biology, Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Veronica Meedt
- Faculty of Biology, Ludwig Maximilian University of Munich
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Marcel Daamen
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Clinical Functional Imaging Group, Bonn, Germany; Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Clinical Functional Imaging Group, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Josef Priller
- Department of Psychiatry, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Dennis Hedderich
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany; Department of Psychiatry, Technical University of Munich, School of Medicine and Health, Munich, Germany
| |
Collapse
|
11
|
Li H, Liu M, Zhang J, Liu S, Fang Z, Pan M, Sui X, Rang W, Xiao H, Jiang Y, Zheng Y, Ge X. The effect of preterm birth on thalamic development based on shape and structural covariance analysis. Neuroimage 2024; 297:120708. [PMID: 38950664 DOI: 10.1016/j.neuroimage.2024.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Acting as a central hub in regulating brain functions, the thalamus plays a pivotal role in controlling high-order brain functions. Considering the impact of preterm birth on infant brain development, traditional studies focused on the overall development of thalamus other than its subregions. In this study, we compared the volumetric growth and shape development of the thalamic hemispheres between the infants born preterm and full-term (Left volume: P = 0.027, Left normalized volume: P < 0.0001; Right volume: P = 0.070, Right normalized volume: P < 0.0001). The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus exhibit higher vulnerability to alterations induced by preterm birth. The structural covariance (SC) between the thickness of thalamus and insula in preterm infants (Left: corrected P = 0.0091, Right: corrected P = 0.0119) showed significant increase as compared to full-term controls. Current findings suggest that preterm birth affects the development of the thalamus and has differential effects on its subregions. The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus are more susceptible to the impacts of preterm birth.
Collapse
Affiliation(s)
- Hongzhuang Li
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Mengting Liu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
| | - Jianfeng Zhang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Shujuan Liu
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Zhicong Fang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Minmin Pan
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Xiaodan Sui
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Wei Rang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Hang Xiao
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Yanyun Jiang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Shandong, China.
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Shandong, China.
| |
Collapse
|
12
|
Trimarco E, Jafrasteh B, Jiménez-Luque N, Marín Almagro Y, Román Ruiz M, Lubián Gutiérrez M, Ruiz González E, Segado Arenas A, Lubián-López SP, Benavente-Fernández I. Thalamic volume in very preterm infants: associations with severe brain injury and neurodevelopmental outcome at two years. Front Neurol 2024; 15:1427273. [PMID: 39206295 PMCID: PMC11349527 DOI: 10.3389/fneur.2024.1427273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Several studies demonstrate the relationship between preterm birth and a reduced thalamus volume at term-equivalent age. In contrast, this study aims to investigate the link between the thalamic growth trajectory during the early postnatal period and neurodevelopment at two years of age. Methods Thalamic volume was extracted from 84 early MRI scans at postmenstrual age of 32.33 (± 2.63) weeks and 93 term-equivalent age MRI scans at postmenstrual age of 42.05 (± 3.33) weeks of 116 very preterm infants (56% male) with gestational age at birth of 29.32 (± 2.28) weeks and a birth weight of 1158.92 (± 348.59) grams. Cognitive, motor, and language outcomes at two years of age were assessed with Bayley Scales of Infant and Toddler Development Third Edition. Bivariate analysis was used to describe the clinical variables according to neurodevelopmental outcomes and multilevel linear regression models were used to examine the impact of these variables on thalamic volume and its relationship with neurodevelopmental outcomes. Results The results suggest an association between severe brain injury and thalamic growth trajectory (β coef = -0.611; p < 0.001). Moreover, thalamic growth trajectory during early postnatal life was associated with the three subscale scores of the neurodevelopmental assessment (cognitive: β coef = 6.297; p = 0.004; motor: β coef = 7.283; p = 0.001; language: β coeficient = 9.053; p = 0.002). Discussion These findings highlight (i) the impact of severe brain injury on thalamic growth trajectory during early extrauterine life after preterm birth and (ii) the relationship of thalamic growth trajectory with cognitive, motor, and language outcomes.
Collapse
Affiliation(s)
- Emiliano Trimarco
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Bahram Jafrasteh
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Natalia Jiménez-Luque
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Yolanda Marín Almagro
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Macarena Román Ruiz
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Manuel Lubián Gutiérrez
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
| | - Estefanía Ruiz González
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
| | - Antonio Segado Arenas
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
| | - Simón Pedro Lubián-López
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
| | - Isabel Benavente-Fernández
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cádiz, Cádiz, Spain
| |
Collapse
|
13
|
Wilson S, Christiaens D, Yun H, Uus A, Cordero-Grande L, Karolis V, Price A, Deprez M, Tournier JD, Rutherford M, Grant E, Hajnal JV, Edwards AD, Arichi T, O'Muircheartaigh J, Im K. Dynamic changes in subplate and cortical plate microstructure at the onset of cortical folding in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562524. [PMID: 38979235 PMCID: PMC11230247 DOI: 10.1101/2023.10.16.562524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cortical gyrification takes place predominantly during the second to third trimester, alongside other fundamental developmental processes, such as the development of white matter connections, lamination of the cortex and formation of neural circuits. The mechanistic biology that drives the formation cortical folding patterns remains an open question in neuroscience. In our previous work, we modelled the in utero diffusion signal to quantify the maturation of microstructure in transient fetal compartments, identifying patterns of change in diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester. In this work, we apply the same modelling approach to explore whether microstructural maturation of these compartments is correlated with the process of gyrification. We quantify the relationship between sulcal depth and tissue anisotropy within the cortical plate (CP) and underlying subplate (SP), key transient fetal compartments often implicated in mechanistic hypotheses about the onset of gyrification. Using in utero high angular resolution multi-shell diffusion-weighted imaging (HARDI) from the Developing Human Connectome Project (dHCP), our analysis reveals that the anisotropic, tissue component of the diffusion signal in the SP and CP decreases immediately prior to the formation of sulcal pits in the fetal brain. By back-projecting a map of folded brain regions onto the unfolded brain, we find evidence for cytoarchitectural differences between gyral and sulcal areas in the late second trimester, suggesting that regional variation in the microstructure of transient fetal compartments precedes, and thus may have a mechanistic function, in the onset of cortical folding in the developing human brain.
Collapse
Affiliation(s)
- Siân Wilson
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daan Christiaens
- Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium
| | - Hyukjin Yun
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alena Uus
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom
| | | | - Vyacheslav Karolis
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
| | - Anthony Price
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
| | - Maria Deprez
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom
| | - Jacques-Donald Tournier
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom
| | - Mary Rutherford
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
| | - Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V Hajnal
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom
| | - A David Edwards
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
| | - Tomoki Arichi
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, United Kingdom
- Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Jonathan O'Muircheartaigh
- Research Department of Early Life Imaging, Kings College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, King's College London, United Kingdom
| | - Kiho Im
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Damera SR, De Asis-Cruz J, Cook KM, Kapse K, Spoehr E, Murnick J, Basu S, Andescavage N, Limperopoulos C. Regional homogeneity as a marker of sensory cortex dysmaturity in preterm infants. iScience 2024; 27:109662. [PMID: 38665205 PMCID: PMC11043889 DOI: 10.1016/j.isci.2024.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Atypical perinatal sensory experience in preterm infants is thought to increase their risk of neurodevelopmental disabilities by altering the development of the sensory cortices. Here, we used resting-state fMRI data from preterm and term-born infants scanned between 32 and 48 weeks post-menstrual age to assess the effect of early ex-utero exposure on sensory cortex development. Specifically, we utilized a measure of local correlated-ness called regional homogeneity (ReHo). First, we demonstrated that the brain-wide distribution of ReHo mirrors the known gradient of cortical maturation. Next, we showed that preterm birth differentially reduces ReHo across the primary sensory cortices. Finally, exploratory analyses showed that the reduction of ReHo in the primary auditory cortex of preterm infants is related to increased risk of autism at 18 months. In sum, we show that local connectivity within sensory cortices has different developmental trajectories, is differentially affected by preterm birth, and may be associated with later neurodevelopment.
Collapse
Affiliation(s)
- Srikanth R. Damera
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kevin M. Cook
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Emma Spoehr
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jon Murnick
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Sudeepta Basu
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
15
|
Jang YH, Ham J, Kasani PH, Kim H, Lee JY, Lee GY, Han TH, Kim BN, Lee HJ. Predicting 2-year neurodevelopmental outcomes in preterm infants using multimodal structural brain magnetic resonance imaging with local connectivity. Sci Rep 2024; 14:9331. [PMID: 38653988 DOI: 10.1038/s41598-024-58682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The neurodevelopmental outcomes of preterm infants can be stratified based on the level of prematurity. We explored brain structural networks in extremely preterm (EP; < 28 weeks of gestation) and very-to-late (V-LP; ≥ 28 and < 37 weeks of gestation) preterm infants at term-equivalent age to predict 2-year neurodevelopmental outcomes. Using MRI and diffusion MRI on 62 EP and 131 V-LP infants, we built a multimodal feature set for volumetric and structural network analysis. We employed linear and nonlinear machine learning models to predict the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) scores, assessing predictive accuracy and feature importance. Our findings revealed that models incorporating local connectivity features demonstrated high predictive performance for BSID-III subsets in preterm infants. Specifically, for cognitive scores in preterm (variance explained, 17%) and V-LP infants (variance explained, 17%), and for motor scores in EP infants (variance explained, 15%), models with local connectivity features outperformed others. Additionally, a model using only local connectivity features effectively predicted language scores in preterm infants (variance explained, 15%). This study underscores the value of multimodal feature sets, particularly local connectivity, in predicting neurodevelopmental outcomes, highlighting the utility of machine learning in understanding microstructural changes and their implications for early intervention.
Collapse
Affiliation(s)
- Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Jusung Ham
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| | - Payam Hosseinzadeh Kasani
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Gang Yi Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Tae Hwan Han
- Division of Neurology, Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Galdi P, Cabez MB, Farrugia C, Vaher K, Williams LZJ, Sullivan G, Stoye DQ, Quigley AJ, Makropoulos A, Thrippleton MJ, Bastin ME, Richardson H, Whalley H, Edwards AD, Bajada CJ, Robinson EC, Boardman JP. Feature similarity gradients detect alterations in the neonatal cortex associated with preterm birth. Hum Brain Mapp 2024; 45:e26660. [PMID: 38488444 PMCID: PMC10941526 DOI: 10.1002/hbm.26660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multimodal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared with term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.
Collapse
Affiliation(s)
- Paola Galdi
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- School of InformaticsUniversity of EdinburghEdinburghUK
| | | | - Christine Farrugia
- Faculty of EngineeringUniversity of MaltaVallettaMalta
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
| | - Kadi Vaher
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - Logan Z. J. Williams
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - Gemma Sullivan
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - David Q. Stoye
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | | | | | | | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Hilary Richardson
- School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - Heather Whalley
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for Genomic and Experimental MedicineUniversity of EdinburghEdinburghUK
| | - A. David Edwards
- Centre for the Developing BrainKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Claude J. Bajada
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
- Department of Physiology and Biochemistry, Faculty of Medicine and SurgeryUniversity of MaltaVallettaMalta
| | - Emma C. Robinson
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - James P. Boardman
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
17
|
Hadaya L, Vanes L, Karolis V, Kanel D, Leoni M, Happé F, Edwards AD, Counsell SJ, Batalle D, Nosarti C. Distinct Neurodevelopmental Trajectories in Groups of Very Preterm Children Screening Positively for Autism Spectrum Conditions. J Autism Dev Disord 2024; 54:256-269. [PMID: 36273367 DOI: 10.1007/s10803-022-05789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 10/24/2022]
Abstract
Very preterm (VPT; < 33 weeks' gestation) toddlers screening positively for autism spectrum conditions (ASC) may display heterogenous neurodevelopmental trajectories. Here we studied neonatal brain volumes and childhood ASC traits evaluated with the Social Responsiveness Scale (SRS-2) in VPT-born toddlers (N = 371; median age 20.17 months) sub-divided into three groups based on their Modified-Checklist for Autism in Toddlers scores. These were: those screening positively failing at least 2 critical items (critical-positive); failing any 3 items, but less than 2 critical items (non-critical-positive); and screening negatively. Critical-positive scorers had smaller neonatal cerebellar volumes compared to non-critical-positive and negative scorers. However, both positive screening groups exhibited higher childhood ASC traits compared to the negative screening group, suggesting distinct aetiological trajectories associated with ASC outcomes.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Lucy Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Vyacheslav Karolis
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Dana Kanel
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Marguerite Leoni
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
18
|
Laureano B, Irzan H, O'Reilly H, Ourselin S, Marlow N, Melbourne A. Myelination of preterm brain networks at adolescence. Magn Reson Imaging 2024; 105:114-124. [PMID: 37984490 DOI: 10.1016/j.mri.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Prematurity and preterm stressors severely affect the development of infants born before 37 weeks of gestation, with increasing effects seen at earlier gestations. Although preterm mortality rates have declined due to the advances in neonatal care, disability rates, especially in middle-income settings, continue to grow. With the advances in MR imaging technology, there has been a focus on safely imaging the preterm brain to better understand its development and discover the brain regions and networks affected by prematurity. Such studies aim to support interventions and improve the neurodevelopment of preterm infants and deliver accurate prognoses. Few studies, however, have focused on the fully developed brain of preterm born infants, especially in extremely preterm subjects. To assess the long-term effect of prematurity on the adult brain, myelin related biomarkers such as myelin water fraction and g-ratio are measured for a cohort of 19-year-old extremely preterm born subjects. Using multi-modal imaging techniques that combine T2 relaxometry and neurite density information, the results show that specific brain regions associated with white matter injuries due to preterm birth, such as the posterior limb of the internal capsule and corpus callosum, are still less myelinated in adulthood. Furthermore, a weak positive relationship between myelin water fraction values and Full-Scale Intelligence Quotient (FSIQ) scores was found in multiple brain regions previously defined as less myelinated in the Extremely Preterm (EPT) cohort. These findings might suggest altered connectivity in the adult preterm brain and explain differences in cognitive outcomes.
Collapse
Affiliation(s)
- Beatriz Laureano
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK.
| | - Hassna Irzan
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK; Dept. of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Helen O'Reilly
- Children's Disability Network Team, St. Michael's House, Dublin, Ireland
| | - Sebastian Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK; Dept. of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Neil Marlow
- Institute for Women's Health, University College London, London, UK
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences, King's College London, UK; Dept. of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
19
|
Hijman AIS, Wehrle FM, Latal B, Hagmann CF, O'Gorman RL. Cerebral perfusion differences are linked to executive function performance in very preterm-born children and adolescents. Neuroimage 2024; 285:120500. [PMID: 38135171 DOI: 10.1016/j.neuroimage.2023.120500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Children and adolescents born very preterm are at risk of cognitive impairment, particularly affecting executive functions. To date, the neural correlates of these cognitive differences are not yet fully understood, although converging evidence points to a pattern of structural and functional brain alterations, including reduced brain volumes, altered connectivity, and altered brain activation patterns. In very preterm neonates, alterations in brain perfusion have also been reported, but the extent to which these perfusion alterations persist into later childhood is not yet known. This study evaluated global and regional brain perfusion, measured with arterial spin labelling (ASL) MRI, in 26 very preterm children and adolescents and 34 term-born peers. Perfusion was compared between groups and relative to executive function (EF) scores, derived from an extensive EF battery assessing working memory, cognitive flexibility, and planning. Very preterm children and adolescents showed regions of altered perfusion, some of which were also related to EF scores. Most of these regions were located in the right hemisphere and included regions like the thalamus and hippocampus, which are known to play a role in executive functioning and can be affected by prematurity. In addition, perfusion decreased with age during adolescence and showed a significant interaction between birth status and sex, such that very preterm girls showed lower perfusion than term-born girls, but this trend was not seen in boys. Taken together, our results indicate a regionally altered perfusion in very preterm children and adolescents, with age and sex related changes during adolescence.
Collapse
Affiliation(s)
| | - Flavia M Wehrle
- Department of Neonatology, University Hospital Zürich, Zürich, Switzerland; Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland; Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland; Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Cornelia F Hagmann
- Department of Neonatology, University Hospital Zürich, Zürich, Switzerland; Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Ruth L O'Gorman
- Center for MR Research, University Children's Hospital Zürich, Zürich, Switzerland; Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland; Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
20
|
Filippa M, Benis D, Adam-Darque A, Grandjean D, Hüppi PS. Preterm infants show an atypical processing of the mother's voice. Brain Cogn 2023; 173:106104. [PMID: 37949001 DOI: 10.1016/j.bandc.2023.106104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
To understand the consequences of prematurity on language perception, it is fundamental to determine how atypical early sensory experience affects brain development. At term equivalent age, ten preterm and ten full-term newborns underwent high-density EEG during mother or stranger speech presentation, in the forward or backward order. A general group effect terms > preterms is evident in the theta frequency band, in the left temporal area, with preterms showing significant activation for strangers' and terms for the mother's voice. A significant group contrast in the low and high theta in the right temporal regions indicates higher activations for the stranger's voice in preterms. Finally, only full terms presented a late gamma band increase for the maternal voice, indicating a more mature brain response. EEG time-frequency analysis demonstrate that preterm infants are selectively responsive to stranger voices in both temporal hemispheres, and that they lack selective brain responses to their mother's forward voice.
Collapse
Affiliation(s)
- Manuela Filippa
- Division of Development and Growth, Child and Adolescent Department, Rue Willy-Donzé 1205 Genève, University of Geneva, Geneva, Switzerland; Swiss Center for Affective Sciences, Department of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101 Genève, Geneva, Switzerland.
| | - Damien Benis
- Division of Development and Growth, Child and Adolescent Department, Rue Willy-Donzé 1205 Genève, University of Geneva, Geneva, Switzerland; Swiss Center for Affective Sciences, Department of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101 Genève, Geneva, Switzerland
| | - Alexandra Adam-Darque
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neuroscience, Division of Neurorehabilitation, University Hospital of Geneva and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva, Switzerland
| | - Didier Grandjean
- Swiss Center for Affective Sciences, Department of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101 Genève, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Child and Adolescent Department, Rue Willy-Donzé 1205 Genève, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
van 't Westende C, Twilhaar ES, Stam CJ, de Kieviet JF, van Elburg RM, Oosterlaan J, van de Pol LA. The influence of very preterm birth on adolescent EEG connectivity, network organization and long-term outcome. Clin Neurophysiol 2023; 154:49-59. [PMID: 37549613 DOI: 10.1016/j.clinph.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVE The aim of this study was to explore differences in functional connectivity and network organization between very preterm born adolescents and term born controls and to investigate if these differences might explain the relation between preterm birth and adverse long-term outcome. METHODS Forty-seven very preterm born adolescents (53% males) and 54 controls (54% males) with matching age, sex and parental educational levels underwent high-density electroencephalography (EEG) at 13 years of age. Long-term outcome was assessed by Intelligence Quotient (IQ), motor, attentional functioning and academic performance. Two minutes of EEG data were analysed within delta, theta, lower alpha, upper alpha and beta frequency bands. Within each frequency band, connectivity was assessed using the Phase Lag Index (PLI) and Amplitude Envelope Correlation, corrected for volume conduction (AEC-c). Brain networks were constructed using the minimum spanning tree method. RESULTS Very preterm born adolescents had stronger beta PLI connectivity and less differentiated network organization. Beta AEC-c and differentiation of AEC-c based networks were negatively associated with long-term outcomes. EEG measures did not mediate the relation between preterm birth and outcomes. CONCLUSIONS This study shows that very preterm born adolescents may have altered functional connectivity and brain network organization in the beta frequency band. Alterations in measures of functional connectivity and network topologies, especially its differentiating characteristics, were associated with neurodevelopmental functioning. SIGNIFICANCE The findings indicate that EEG connectivity and network analysis is a promising tool for investigating underlying mechanisms of impaired functioning.
Collapse
Affiliation(s)
- C van 't Westende
- Amsterdam UMC, Department of Child Neurology, Amsterdam, the Netherlands
| | - E S Twilhaar
- Université de Paris, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team, EPOPé, INSERM, INRAE, F-75004 Paris, France
| | - C J Stam
- Amsterdam UMC, Department of Clinical Neurophysiology, Amsterdam, the Netherlands
| | - J F de Kieviet
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, the Netherlands
| | - R M van Elburg
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Emma Children's Hospital Amsterdam UMC Follow-Me Program & Emma Neuroscience Group, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC, Department of Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands
| | - J Oosterlaan
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Emma Children's Hospital Amsterdam UMC Follow-Me Program & Emma Neuroscience Group, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Amsterdam Rehabilitation Research Center, Reade, Amsterdam, the Netherlands
| | - L A van de Pol
- Amsterdam UMC, Department of Child Neurology, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Molloy MF, Yu EJ, Mattson WI, Hoskinson KR, Taylor HG, Osher DE, Nelson EE, Saygin ZM. Effect of Extremely Preterm Birth on Adolescent Brain Network Organization. Brain Connect 2023; 13:394-409. [PMID: 37312515 DOI: 10.1089/brain.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Introduction: Extremely preterm (EPT) birth, defined as birth at a gestational age (GA) <28 weeks, can have a lasting impact on cognition throughout the life span. Previous investigations reveal differences in brain structure and connectivity between infants born preterm and full-term (FT), but how does preterm birth impact the adolescent connectome? Methods: In this study, we investigate how EPT birth can alter broadscale network organization later in life by comparing resting-state functional magnetic resonance imaging connectome-based parcellations of the entire cortex in adolescents born EPT (N = 22) to age-matched adolescents born FT (GA ≥37 weeks, N = 28). We compare these parcellations to adult parcellations from previous studies and explore the relationship between an individual's network organization and behavior. Results: Primary (occipital and sensorimotor) and frontoparietal networks were observed in both groups. However, there existed notable differences in the limbic and insular networks. Surprisingly, the connectivity profile of the limbic network of EPT adolescents was more adultlike than the same network in FT adolescents. Finally, we found a relationship between adolescents' overall cognition score and their limbic network maturity. Discussion: Overall, preterm birth may contribute to the atypical development of broadscale network organization in adolescence and may partially explain the observed cognitive deficits.
Collapse
Affiliation(s)
- M Fiona Molloy
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Emily J Yu
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Whitney I Mattson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - H Gerry Taylor
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David E Osher
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Eric E Nelson
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Zeynep M Saygin
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Conole ELS, Vaher K, Cabez MB, Sullivan G, Stevenson AJ, Hall J, Murphy L, Thrippleton MJ, Quigley AJ, Bastin ME, Miron VE, Whalley HC, Marioni RE, Boardman JP, Cox SR. Immuno-epigenetic signature derived in saliva associates with the encephalopathy of prematurity and perinatal inflammatory disorders. Brain Behav Immun 2023; 110:322-338. [PMID: 36948324 DOI: 10.1016/j.bbi.2023.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/12/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Preterm birth is closely associated with a phenotype that includes brain dysmaturation and neurocognitive impairment, commonly termed Encephalopathy of Prematurity (EoP), of which systemic inflammation is considered a key driver. DNA methylation (DNAm) signatures of inflammation from peripheral blood associate with poor brain imaging outcomes in adult cohorts. However, the robustness of DNAm inflammatory scores in infancy, their relation to comorbidities of preterm birth characterised by inflammation, neonatal neuroimaging metrics of EoP, and saliva cross-tissue applicability are unknown. METHODS Using salivary DNAm from 258 neonates (n = 155 preterm, gestational age at birth 23.28 - 34.84 weeks, n = 103 term, gestational age at birth 37.00 - 42.14 weeks), we investigated the impact of a DNAm surrogate for C-reactive protein (DNAm CRP) on brain structure and other clinically defined inflammatory exposures. We assessed i) if DNAm CRP estimates varied between preterm infants at term equivalent age and term infants, ii) how DNAm CRP related to different types of inflammatory exposure (maternal, fetal and postnatal) and iii) whether elevated DNAm CRP associated with poorer measures of neonatal brain volume and white matter connectivity. RESULTS Higher DNAm CRP was linked to preterm status (-0.0107 ± 0.0008, compared with -0.0118 ± 0.0006 among term infants; p < 0.001), as well as perinatal inflammatory diseases, including histologic chorioamnionitis, sepsis, bronchopulmonary dysplasia, and necrotising enterocolitis (OR range |2.00 | to |4.71|, p < 0.01). Preterm infants with higher DNAm CRP scores had lower brain volume in deep grey matter, white matter, and hippocampi and amygdalae (β range |0.185| to |0.218|). No such associations were observed for term infants. Association magnitudes were largest for measures of white matter microstructure among preterms, where elevated epigenetic inflammation associated with poorer global measures of white matter integrity (β range |0.206| to |0.371|), independent of other confounding exposures. CONCLUSIONS Inflammatory-related DNAm captures the allostatic load of inflammatory burden in preterm infants. Such DNAm measures complement biological and clinical metrics when investigating the determinants of neurodevelopmental differences.
Collapse
Affiliation(s)
- Eleanor L S Conole
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Kadi Vaher
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Manuel Blesa Cabez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jill Hall
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alan J Quigley
- Imaging Department, Royal Hospital for Children and Young People, Edinburgh, EH16 4TJ, UK
| | - Mark E Bastin
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - James P Boardman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
24
|
Taymourtash A, Schwartz E, Nenning KH, Sobotka D, Licandro R, Glatter S, Diogo MC, Golland P, Grant E, Prayer D, Kasprian G, Langs G. Fetal development of functional thalamocortical and cortico-cortical connectivity. Cereb Cortex 2023; 33:5613-5624. [PMID: 36520481 PMCID: PMC10152101 DOI: 10.1093/cercor/bhac446] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/23/2022] Open
Abstract
Measuring and understanding functional fetal brain development in utero is critical for the study of the developmental foundations of our cognitive abilities, possible early detection of disorders, and their prevention. Thalamocortical connections are an intricate component of shaping the cortical layout, but so far, only ex-vivo studies provide evidence of how axons enter the sub-plate and cortex during this highly dynamic phase. Evidence for normal in-utero development of the functional thalamocortical connectome in humans is missing. Here, we modeled fetal functional thalamocortical connectome development using in-utero functional magnetic resonance imaging in fetuses observed from 19th to 40th weeks of gestation (GW). We observed a peak increase of thalamocortical functional connectivity strength between 29th and 31st GW, right before axons establish synapses in the cortex. The cortico-cortical connectivity increases in a similar time window, and exhibits significant functional laterality in temporal-superior, -medial, and -inferior areas. Homologous regions exhibit overall similar mirrored connectivity profiles, but this similarity decreases during gestation giving way to a more diverse cortical interconnectedness. Our results complement the understanding of structural development of the human connectome and may serve as the basis for the investigation of disease and deviations from a normal developmental trajectory of connectivity development.
Collapse
Affiliation(s)
- Athena Taymourtash
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140, Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Daniel Sobotka
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Roxane Licandro
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Laboratory for Computational Neuroimaging, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Bldg. 149, 13th Street, Charlestown, MA 02129, United States
| | - Sarah Glatter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Mariana Cardoso Diogo
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Radiology Department, Hospital CUF Tejo, Av. 24 de Julho 171A, 1350-352 Lisboa, Portugal
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300, Longwood Avenue, Boston, MA 02115, United States
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
25
|
Piccirilli E, Chiarelli AM, Sestieri C, Mascali D, Calvo Garcia D, Primavera A, Salomone R, Wise RG, Ferretti A, Caulo M. Cerebral blood flow patterns in preterm and term neonates assessed with pseudo-continuous arterial spin labeling perfusion MRI. Hum Brain Mapp 2023; 44:3833-3844. [PMID: 37186355 DOI: 10.1002/hbm.26315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/21/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
In preterm (PT) infants, regional cerebral blood flow (CBF) disturbances may predispose to abnormal brain maturation even without overt brain injury. Therefore, it would be informative to determine the spatial distribution of grey matter (GM) CBF in PT and full-term (FT) newborns at term-equivalent age (TEA) and to assess the relationship between the features of the CBF pattern and both prematurity and prematurity-related brain lesions. In this prospective study, we obtained measures of CBF in 66 PT (51 without and 15 with prematurity-related brain lesions) and 38 FT newborns through pseudo-continuous arterial spin labeling (pCASL) MRI acquired at TEA. The pattern of GM CBF was characterized by combining an atlas-based automated segmentation of structural MRI with spatial normalization and hierarchical clustering. The effects of gestational age (GA) at birth and brain injury on the CBF pattern were investigated. We identified 4 physiologically-derived clusters of brain regions that were labeled Fronto-Temporal, Parieto-Occipital, Insular-Deep GM (DGM) and Sensorimotor, from the least to the most perfused. We demonstrated that GM perfusion was associated with GA at birth in the Fronto-Temporal and Sensorimotor clusters, positively and negatively, respectively. Moreover, the presence of periventricular leukomalacia was associated with significantly increased Fronto-Temporal GM perfusion and decreased Insular-DGM perfusion, while the presence of germinal matrix hemorrhage appeared to mildly decrease the Insular-DGM perfusion. Prematurity and prematurity-related brain injury heterogeneously affect brain perfusion. ASL MRI may, therefore, have strong potential as a noninvasive tool for the accurate stratification of individuals at risk of domain-specific impairment.
Collapse
Affiliation(s)
- Eleonora Piccirilli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonio M Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Daniele Mascali
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Darien Calvo Garcia
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Adele Primavera
- Department of Paediatrics, Neonatology and Neonatal Intensive Care Unit, University Hospital of Chieti, Chieti, Italy
| | - Rita Salomone
- Department of Paediatrics, Neonatology and Neonatal Intensive Care Unit, University Hospital of Chieti, Chieti, Italy
| | - Richard G Wise
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Radiology, SS. Annunziata Hospital, Chieti, Italy
| |
Collapse
|
26
|
Wilson S, Pietsch M, Cordero-Grande L, Christiaens D, Uus A, Karolis VR, Kyriakopoulou V, Colford K, Price AN, Hutter J, Rutherford MA, Hughes EJ, Counsell SJ, Tournier JD, Hajnal JV, Edwards AD, O’Muircheartaigh J, Arichi T. Spatiotemporal tissue maturation of thalamocortical pathways in the human fetal brain. eLife 2023; 12:e83727. [PMID: 37010273 PMCID: PMC10125021 DOI: 10.7554/elife.83727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
The development of connectivity between the thalamus and maturing cortex is a fundamental process in the second half of human gestation, establishing the neural circuits that are the basis for several important brain functions. In this study, we acquired high-resolution in utero diffusion magnetic resonance imaging (MRI) from 140 fetuses as part of the Developing Human Connectome Project, to examine the emergence of thalamocortical white matter over the second to third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using diffusion tractography. We then quantify microstructural tissue components along the tracts in fetal compartments that are critical substrates for white matter maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal in transient fetal compartments provide a normative reference to complement histological knowledge, facilitating future studies to establish how developmental disruptions in these regions contribute to pathophysiology.
Collapse
Affiliation(s)
- Siân Wilson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de MadridMadridSpain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)MadridSpain
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Department of Electrical Engineering (ESAT/PSI), Katholieke Universiteit LeuvenLeuvenBelgium
| | - Alena Uus
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' HospitalLondonUnited Kingdom
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
- Department of Forensic and Neurodevelopmental Sciences, King’s College LondonLondonUnited Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation TrustLondonUnited Kingdom
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
27
|
Adrian J, Sawyer C, Bakeman R, Haist F, Akshoomoff N. Longitudinal Structural and Diffusion-Weighted Neuroimaging of Young Children Born Preterm. Pediatr Neurol 2023; 141:34-41. [PMID: 36773405 DOI: 10.1016/j.pediatrneurol.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Children born preterm are at risk for diffuse injury to subcortical gray and white matter. METHODS We used a longitudinal cohort study to examine the development of subcortical gray matter and white matter volumes, and diffusivity measures of white matter tracts following preterm birth. Our participants were 47 children born preterm (24 to 32 weeks gestational age) and 28 children born at term. None of the children born preterm had significant neonatal brain injury. Children received structural and diffusion weighted magnetic resonance imaging scans at ages five, six, and seven years. We examined volumes of amygdala, hippocampus, caudate nucleus, putamen, thalamus, brainstem, cerebellar white matter, intracranial space, and ventricles, and volumes, fractional anisotropy, and mean diffusivity of anterior thalamic radiation, cingulum, corticospinal tract, corpus callosum, inferior frontal occipital fasciculus, inferior longitudinal fasciculus, temporal and parietal superior longitudinal fasciculus, and uncinate fasciculus. RESULTS Children born preterm had smaller volumes of thalamus, brainstem, cerebellar white matter, cingulum, corticospinal tract, inferior frontal occipital fasciculus, uncinate fasciculus, and temporal superior longitudinal fasciculus, whereas their ventricles were larger compared with term-born controls. We found no significant effect of preterm birth on diffusivity measures. Despite developmental changes and growth, group differences were present and similarly strong at all three ages. CONCLUSION Even in the absence of significant neonatal brain injury, preterm birth has a persistent impact on early brain development. The lack of a significant term status by age interaction suggests a delayed developmental trajectory.
Collapse
Affiliation(s)
- Julia Adrian
- Department of Cognitive Science, University of California, San Diego, La Jolla, California; Center for Human Development, University of California, San Diego, La Jolla, California.
| | - Carolyn Sawyer
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Roger Bakeman
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Frank Haist
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Natacha Akshoomoff
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
28
|
Gilchrist CP, Kelly CE, Cumberland A, Dhollander T, Treyvaud K, Lee K, Cheong JLY, Doyle LW, Inder TE, Thompson DK, Tolcos M, Anderson PJ. Fiber-Specific Measures of White Matter Microstructure and Macrostructure Are Associated With Internalizing and Externalizing Symptoms in Children Born Very Preterm and Full-term. Biol Psychiatry 2023; 93:575-585. [PMID: 36481064 DOI: 10.1016/j.biopsych.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Tensor-based investigations suggest that delayed or disrupted white matter development may relate to adverse behavioral outcomes in individuals born very preterm (VP); however, metrics derived from such models lack specificity. Here, we applied a fixel-based analysis framework to examine white matter microstructural and macrostructural correlates of concurrent internalizing and externalizing problems in VP and full-term (FT) children at 7 and 13 years. METHODS Diffusion imaging data were collected in a longitudinal cohort of VP and FT individuals (130 VP and 29 FT at 7 years, 125 VP and 44 FT at 13 years). Fixel-based measures of fiber density, fiber-bundle cross-section, and fiber density and cross-section were extracted from 21 white matter tracts previously implicated in psychopathology. Internalizing and externalizing symptoms were assessed using the Strengths and Difficulties Questionnaire parent report at 7 and 13 years. RESULTS At age 7 years, widespread reductions in fiber-bundle cross-section and fiber density and cross-section and tract-specific reductions in fiber density were related to more internalizing and externalizing symptoms irrespective of birth group. At age 13 years, fixel-based measures were not related to internalizing symptoms, while tract-specific reductions in fiber density, fiber-bundle cross-section, and fiber density and cross-section measures were related to more externalizing symptoms in the FT group only. CONCLUSIONS Age-specific neurobiological markers of internalizing and externalizing problems identified in this study extend previous tensor-based findings to inform pathophysiological models of behavior problems and provide the foundation for investigations into novel preventative and therapeutic interventions to mitigate risk in VP and other high-risk infant populations.
Collapse
Affiliation(s)
- Courtney P Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia; Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Claire E Kelly
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karli Treyvaud
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Psychology and Counselling, La Trobe University, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Katherine Lee
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Terrie E Inder
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Deanne K Thompson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Spatiotemporal Developmental Gradient of Thalamic Morphology, Microstructure, and Connectivity fromthe Third Trimester to Early Infancy. J Neurosci 2023; 43:559-570. [PMID: 36639904 PMCID: PMC9888512 DOI: 10.1523/jneurosci.0874-22.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/19/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Thalamus is a critical component of the limbic system that is extensively involved in both basic and high-order brain functions. However, how the thalamic structure and function develops at macroscopic and microscopic scales during the perinatal period development is not yet well characterized. Here, we used multishell high-angular resolution diffusion MRI of 144 preterm-born and full-term infants in both sexes scanned at 32-44 postmenstrual weeks (PMWs) from the Developing Human Connectome Project database to investigate the thalamic development in morphology, microstructure, associated connectivity, and subnucleus division. We found evident anatomic expansion and linear increases of fiber integrity in the lateral side of thalamus compared with the medial part. The tractography results indicated that thalamic connection to the frontal cortex developed later than the other thalamocortical connections (parieto-occipital, motor, somatosensory, and temporal). Using a connectivity-based segmentation strategy, we revealed that functional partitions of thalamic subdivisions were formed at 32 PMWs or earlier, and the partition developed toward the adult pattern in a lateral-to-medial pattern. Collectively, these findings revealed faster development of the lateral thalamus than the central part as well as a posterior-to-anterior developmental gradient of thalamocortical connectivity from the third trimester to early infancy.SIGNIFICANCE STATEMENT This is the first study that characterizes the spatiotemporal developmental pattern of thalamus during the third trimester to early infancy. We found that thalamus develops in a lateral-to-medial pattern for both thalamic microstructures and subdivisions; and thalamocortical connectivity develops in a posterior-to-anterior gradient that thalamofrontal connectivity appears later than the other thalamocortical connections. These findings may enrich our understanding of the developmental principles of thalamus and provide references for the atypical brain growth in neurodevelopmental disorders.
Collapse
|
30
|
Ren Q, Wan B, Luo X, Liu Q, Gong H, Li H, Luo M, Xu D, Liu P, Wang J, Yin Z, Li X. Glutamate alterations in the premature infant brain during different gestational ages with glutamate chemical exchange saturation transfer imaging: a pilot study. Eur Radiol 2023; 33:4214-4222. [PMID: 36600123 DOI: 10.1007/s00330-022-09374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To elucidate the change in glutamate levels in preterm infants at different gestational ages by glutamate chemical exchange saturated transfer (GluCEST) magnetic resonance imaging and to compare the difference in glutamate levels among different brain regions between very early preterm infants and middle and late preterm infants. METHODS Fifty-three preterm infants (59% males; median gestational age = 33.6 weeks) underwent MRI, including conventional MRI and GluCEST. The original data were postprocessed in MATLAB. Correlation analysis was used to determine the relationship between the MTRasym and gestational age. The differences in MTRasym signals among different ROIs were statistically analysed by one-way analysis of variance (ANOVA). The MTRasym difference of the bilateral hemispherical ROI was compared by a paired T test. RESULTS In all ROIs, glutamate concentration was positively correlated with gestational age. The glutamate concentration in the thalamus was higher than that in the frontal lobe in very early, middle and late preterm infants. A difference in glutamate concentration was not found in the bilateral ROIs. CONCLUSIONS The concentration of glutamate in the brains of preterm infants of different gestational ages increased with gestational age, which may be one of the factors contributing to the higher incidence of neurodevelopmental dysfunction in very early preterm infants compared to that in middle and late preterm infants. Meanwhile, the glutamate concentrations among different brain regions were also diverse. KEY POINTS • The glutamate concentration was positively correlated with gestational age in preterm infants of the brain. • Glutamate concentrations were dissimilar in different brain regions of preterm infants. • Glutamate concentration during the process of brain development in premature infants was not found to be asymmetric.
Collapse
Affiliation(s)
- Qingfa Ren
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Bin Wan
- Neonatal Intensive Care Unit, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - Xunrong Luo
- Department of Radiology, Affiliated Cancer Hospital of Chongqing University, No. 181 Hanyu Road, Shapingba District, Chongqing, 400016, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Mingfang Luo
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Donghao Xu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Pan Liu
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China.
| | - Zhijie Yin
- Department of Radiology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Bincheng District, Binzhou, 256600, China.
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, No. 346 Guanhai Road, Laishan District, Yantai, 264003, China.
| |
Collapse
|
31
|
Neumane S, Gondova A, Leprince Y, Hertz-Pannier L, Arichi T, Dubois J. Early structural connectivity within the sensorimotor network: Deviations related to prematurity and association to neurodevelopmental outcome. Front Neurosci 2022; 16:932386. [PMID: 36507362 PMCID: PMC9732267 DOI: 10.3389/fnins.2022.932386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Consisting of distributed and interconnected structures that interact through cortico-cortical connections and cortico-subcortical loops, the sensorimotor (SM) network undergoes rapid maturation during the perinatal period and is thus particularly vulnerable to preterm birth. However, the impact of prematurity on the development and integrity of the emerging SM connections and their relationship to later motor and global impairments are still poorly understood. In this study we aimed to explore to which extent the early microstructural maturation of SM white matter (WM) connections at term-equivalent age (TEA) is modulated by prematurity and related with neurodevelopmental outcome at 18 months corrected age. We analyzed 118 diffusion MRI datasets from the developing Human Connectome Project (dHCP) database: 59 preterm (PT) low-risk infants scanned near TEA and a control group of full-term (FT) neonates paired for age at MRI and sex. We delineated WM connections between the primary SM cortices (S1, M1 and paracentral region) and subcortical structures using probabilistic tractography, and evaluated their microstructure with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. To go beyond tract-specific univariate analyses, we computed a maturational distance related to prematurity based on the multi-parametric Mahalanobis distance of each PT infant relative to the FT group. Our results confirmed the presence of microstructural differences in SM tracts between PT and FT infants, with effects increasing with lower gestational age at birth. Maturational distance analyses highlighted that prematurity has a differential effect on SM tracts with higher distances and thus impact on (i) cortico-cortical than cortico-subcortical connections; (ii) projections involving S1 than M1 and paracentral region; and (iii) the most rostral cortico-subcortical tracts, involving the lenticular nucleus. These different alterations at TEA suggested that vulnerability follows a specific pattern coherent with the established WM caudo-rostral progression of maturation. Finally, we highlighted some relationships between NODDI-derived maturational distances of specific tracts and fine motor and cognitive outcomes at 18 months. As a whole, our results expand understanding of the significant impact of premature birth and early alterations on the emerging SM network even in low-risk infants, with possible relationship with neurodevelopmental outcomes. This encourages further exploration of these potential neuroimaging markers for prediction of neurodevelopmental disorders, with special interest for subtle neuromotor impairments frequently observed in preterm-born children.
Collapse
Affiliation(s)
- Sara Neumane
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Andrea Gondova
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Yann Leprince
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Lucie Hertz-Pannier
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Tomoki Arichi
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
- Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jessica Dubois
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| |
Collapse
|
32
|
Jang YH, Kim H, Lee JY, Ahn JH, Chung AW, Lee HJ. Altered development of structural MRI connectome hubs at near-term age in very and moderately preterm infants. Cereb Cortex 2022; 33:5507-5523. [PMID: 36408630 DOI: 10.1093/cercor/bhac438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract
Preterm infants may exhibit altered developmental patterns of the brain structural network by endogenous and exogenous stimuli, which are quantifiable through hub and modular network topologies that develop in the third trimester. Although preterm brain networks can compensate for white matter microstructural abnormalities of core connections, less is known about how the network developmental characteristics of preterm infants differ from those of full-term infants. We identified 13 hubs and 4 modules and revealed subtle differences in edgewise connectivity and local network properties between 134 preterm and 76 full-term infants, identifying specific developmental patterns of the brain structural network in preterm infants. The modules of preterm infants showed an imbalanced composition. The edgewise connectivity in preterm infants showed significantly decreased long- and short-range connections and local network properties in the dorsal superior frontal gyrus. In contrast, the fusiform gyrus and several nonhub regions showed significantly increased wiring of short-range connections and local network properties. Our results suggested that decreased local network in the frontal lobe and excessive development in the occipital lobe may contribute to the understanding of brain developmental deviances in preterm infants.
Collapse
Affiliation(s)
- Yong Hun Jang
- Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea
| | - Hyuna Kim
- Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea
| | - Joo Young Lee
- Hanyang University Graduate School of Biomedical Science and Engineering Department of Translational Medicine, , Seoul 04763 , Republic of Korea
| | - Ja-Hye Ahn
- Hanyang University College of Medicine Department of Pediatrics, Hanyang University Hospital, , Seoul 04763 , Republic of Korea
| | - Ai Wern Chung
- Harvard Medical School Fetal Neonatal-Neuroimaging and Developmental Science Center, Boston Children’s Hospital, , Boston, MA 02115 , USA
- Harvard Medical School Department of Pediatrics, Boston Children’s Hospital, , Boston, MA 02115 , USA
| | - Hyun Ju Lee
- Hanyang University College of Medicine Department of Pediatrics, Hanyang University Hospital, , Seoul 04763 , Republic of Korea
| |
Collapse
|
33
|
León-Ortiz P, Reyes-Madrigal F, Kochunov P, Gómez-Cruz G, Moncada-Habib T, Malacara M, Mora-Durán R, Rowland LM, de la Fuente-Sandoval C. White matter alterations and the conversion to psychosis: A combined diffusion tensor imaging and glutamate 1H MRS study. Schizophr Res 2022; 249:85-92. [PMID: 32595100 PMCID: PMC10025976 DOI: 10.1016/j.schres.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Widespread white matter abnormalities and alterations in glutamate levels have been reported in patients with schizophrenia. We hypothesized that alterations in white matter integrity and glutamate levels in individuals at clinical high risk (CHR) for psychosis are associated with the subsequent development of psychosis. METHODS Participants included 33 antipsychotic naïve CHR (Female 7/Male 26, Age 19.55 (4.14) years) and 38 healthy controls (Female 10/Male 28, Age 20.92 (3.37) years). Whole brain diffusion tensor imaging for fractional anisotropy (FA) and right frontal white matter proton magnetic resonance spectroscopy for glutamate levels were acquired. CHR participants were clinically followed for 2 years to determine conversion to psychosis. RESULTS CHR participants that transitioned to psychosis (N = 7, 21%) were characterized by significantly lower FA values in the posterior thalamic radiation compared to those who did not transition and healthy controls. In the CHR group that transitioned to psychosis only, positive exploratory correlations between glutamate levels and FA values of the posterior thalamic radiation and the retrolenticular part of the internal capsule and a negative correlation between glutamate levels and the cingulum FA values were found. CONCLUSION The results of the present study highlight that alterations in white matter structure and glutamate are related with the conversion to psychosis.
Collapse
Affiliation(s)
- Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Department of Education, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States of America
| | - Gladys Gómez-Cruz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Tomás Moncada-Habib
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Melanie Malacara
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ricardo Mora-Durán
- Emergency Department, Hospital Fray Bernardino Álvarez, Mexico City, Mexico
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States of America
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
34
|
Warrington S, Thompson E, Bastiani M, Dubois J, Baxter L, Slater R, Jbabdi S, Mars RB, Sotiropoulos SN. Concurrent mapping of brain ontogeny and phylogeny within a common space: Standardized tractography and applications. SCIENCE ADVANCES 2022; 8:eabq2022. [PMID: 36260675 PMCID: PMC9581484 DOI: 10.1126/sciadv.abq2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Developmental and evolutionary effects on brain organization are complex, yet linked, as evidenced by the correspondence in cortical area expansion across these vastly different time scales. However, it is still not possible to study concurrently the ontogeny and phylogeny of cortical areal connections, which is arguably more relevant to brain function than allometric measurements. Here, we propose a novel framework that allows the integration of structural connectivity maps from humans (adults and neonates) and nonhuman primates (macaques) onto a common space. We use white matter bundles to anchor the common space and use the uniqueness of cortical connection patterns to these bundles to probe area specialization. This enabled us to quantitatively study divergences and similarities in connectivity over evolutionary and developmental scales, to reveal brain maturation trajectories, including the effect of premature birth, and to translate cortical atlases between diverse brains. Our findings open new avenues for an integrative approach to imaging neuroanatomy.
Collapse
Affiliation(s)
- Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Elinor Thompson
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica Dubois
- Université Paris Cité, Inserm, NeuroDiderot Unit, Paris, France
- University Paris-Saclay, CEA, NeuroSpin, Gif-sur-Yvette, France
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Stamatios N. Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| |
Collapse
|
35
|
Vanes LD, Murray RM, Nosarti C. Adult outcome of preterm birth: Implications for neurodevelopmental theories of psychosis. Schizophr Res 2022; 247:41-54. [PMID: 34006427 DOI: 10.1016/j.schres.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth is associated with an elevated risk of developmental and adult psychiatric disorders, including psychosis. In this review, we evaluate the implications of neurodevelopmental, cognitive, motor, and social sequelae of preterm birth for developing psychosis, with an emphasis on outcomes observed in adulthood. Abnormal brain development precipitated by early exposure to the extra-uterine environment, and exacerbated by neuroinflammation, neonatal brain injury, and genetic vulnerability, can result in alterations of brain structure and function persisting into adulthood. These alterations, including abnormal regional brain volumes and white matter macro- and micro-structure, can critically impair functional (e.g. frontoparietal and thalamocortical) network connectivity in a manner characteristic of psychotic illness. The resulting executive, social, and motor dysfunctions may constitute the basis for behavioural vulnerability ultimately giving rise to psychotic symptomatology. There are many pathways to psychosis, but elucidating more precisely the mechanisms whereby preterm birth increases risk may shed light on that route consequent upon early neurodevelopmental insult.
Collapse
Affiliation(s)
- Lucy D Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, King's College London, UK; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
36
|
Jang YH, Kim J, Kim S, Lee K, Na JY, Ahn JH, Kim H, Kim BN, Lee HJ. Abnormal thalamocortical connectivity of preterm infants with elevated thyroid stimulating hormone identified with diffusion tensor imaging. Sci Rep 2022; 12:9257. [PMID: 35661740 PMCID: PMC9166724 DOI: 10.1038/s41598-022-12864-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
While thyroid disturbances during perinatal and postnatal periods in preterm infants with congenital hypothyroidism reportedly disrupt neuronal development, no study has considered the effect of thyroid disturbances in premature infants with subclinical hypothyroidism with elevations of thyroid stimulating hormone. We aimed to identify altered fiber integrity from the thalamus to cortices in preterm infants with subclinical hypothyroidism. All preterm infants born were categorized according to thyroid stimulating hormone levels through serial thyroid function tests (36 preterm controls and 29 preterm infants with subclinical hypothyroidism). Diffusion tensor images were acquired to determine differences in thalamocortical fiber lengths between the groups, and cerebral asymmetries were investigated to observe neurodevelopmental changes. Thalamocortical fiber lengths in the subclinical hypothyroidism group were significantly reduced in the bilateral superior temporal gyrus, heschl's gyrus, lingual gyrus, and calcarine cortex (all p < 0.05). According to the asymmetric value in the orbitofrontal regions, there is a left dominance in the subclinical hypothyroidism group contrary to the controls (p = 0.012), and that of the cuneus areas showed significant decreases in the subclinical hypothyroidism group (p = 0.035). These findings could reflect altered neurodevelopment, which could help treatment plans using biomarkers for subclinical hypothyroidism.
Collapse
Affiliation(s)
- Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Jinsup Kim
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Radiological Science, Daewon University College, Jecheon, Republic of Korea
| | - Kyungmi Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jae Yoon Na
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Child Psychotherapy, Hanyang University Graduate School of Medicine, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea.
- Clinical Research Institute of Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Taoudi-Benchekroun Y, Christiaens D, Grigorescu I, Gale-Grant O, Schuh A, Pietsch M, Chew A, Harper N, Falconer S, Poppe T, Hughes E, Hutter J, Price AN, Tournier JD, Cordero-Grande L, Counsell SJ, Rueckert D, Arichi T, Hajnal JV, Edwards AD, Deprez M, Batalle D. Predicting age and clinical risk from the neonatal connectome. Neuroimage 2022; 257:119319. [PMID: 35589001 DOI: 10.1016/j.neuroimage.2022.119319] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/28/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The development of perinatal brain connectivity underpins motor, cognitive and behavioural abilities in later life. Diffusion MRI allows the characterisation of subtle inter-individual differences in structural brain connectivity. Individual brain connectivity maps (connectomes) are by nature high in dimensionality and complex to interpret. Machine learning methods are a powerful tool to uncover properties of the connectome which are not readily visible and can give us clues as to how and why individual developmental trajectories differ. In this manuscript we used Deep Neural Networks and Random Forests to predict demographic and neurodevelopmental characteristics from neonatal structural connectomes in a large sample of babies (n = 524) from the developing Human Connectome Project. We achieved an accurate prediction of post menstrual age (PMA) at scan in term-born infants (mean absolute error (MAE) = 0.72 weeks, r = 0.83 and p<0.001). We also achieved good accuracy when predicting gestational age at birth in a cohort of term and preterm babies scanned at term equivalent age (MAE = 2.21 weeks, r = 0.82, p<0.001). We subsequently used sensitivity analysis to obtain feature relevance from our prediction models, with the most important connections for prediction of PMA and GA found to predominantly involve frontal and temporal regions, thalami, and basal ganglia. From our models of PMA at scan for infants born at term, we computed a brain maturation index (predicted age minus actual age) of individual preterm neonates and found a significant correlation between this index and motor outcome at 18 months corrected age. Our results demonstrate the applicability of machine learning techniques in analyses of the neonatal connectome and suggest that a neural substrate of brain maturation with implications for future neurodevelopment is detectable at term equivalent age from the neonatal connectome.
Collapse
Affiliation(s)
- Yassine Taoudi-Benchekroun
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Irina Grigorescu
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Oliver Gale-Grant
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Nicholas Harper
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Tanya Poppe
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - Serena J Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Institute for Artificial Intelligence and Informatics in Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Bioengineering, Imperial College London, London, United Kingdom; Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Maria Deprez
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
38
|
Soni R, Tscherning Wel-Wel C, Robertson NJ. Neuroscience meets nurture: challenges of prematurity and the critical role of family-centred and developmental care as a key part of the neuroprotection care bundle. Arch Dis Child Fetal Neonatal Ed 2022; 107:242-249. [PMID: 33972264 DOI: 10.1136/archdischild-2020-319450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Advances in neonatal-perinatal medicine have resulted in increased survival at lower gestations. Although the incidence of germinal matrix haemorrhage-intraventricular haemorrhage and cystic periventricular leucomalacia is reducing, a new phenotype of preterm brain injury has emerged consisting of a combination of destructive and dysmaturational effects. Consequently, severe neurological disability is reported at a lower rate than previously, but the overall morbidity associated with premature birth continues to present a large global burden and contributes significantly to increased financial costs to health systems and families. In this review, we examine the developmental milestones of fetal brain development and how preterm birth can disrupt this trajectory. We review common morbidities associated with premature birth today. Although drug-based and cell-based neuroprotective therapies for the preterm brain are under intense study, we outline basic, sustainable and effective non-medical, family-centred and developmental care strategies which have the potential to improve neurodevelopmental outcomes for this population and need to be considered part of the future neuroprotection care bundle.
Collapse
Affiliation(s)
- Roopali Soni
- Neonatology, Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar .,Department of Neonatology, Mediclinic Parkview Hospital, Dubai, UAE
| | - Charlotte Tscherning Wel-Wel
- Neonatology, Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar.,Center of Physiopathology Toulouse-Purpan(CPTP), University of Toulouse, Toulouse, France
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Vo Van P, Alison M, Morel B, Beck J, Bednarek N, Hertz-Pannier L, Loron G. Advanced Brain Imaging in Preterm Infants: A Narrative Review of Microstructural and Connectomic Disruption. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030356. [PMID: 35327728 PMCID: PMC8947160 DOI: 10.3390/children9030356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Preterm birth disrupts the in utero environment, preventing the brain from fully developing, thereby causing later cognitive and behavioral disorders. Such cerebral alteration occurs beneath an anatomical scale, and is therefore undetectable by conventional imagery. Prematurity impairs the microstructure and thus the histological process responsible for the maturation, including the myelination. Cerebral MRI diffusion tensor imaging sequences, based on water’s motion into the brain, allows a representation of this maturation process. Similarly, the brain’s connections become disorganized. The connectome gathers structural and anatomical white matter fibers, as well as functional networks referring to remote brain regions connected one over another. Structural and functional connectivity is illustrated by tractography and functional MRI, respectively. Their organizations consist of core nodes connected by edges. This basic distribution is already established in the fetal brain. It evolves greatly over time but is compromised by prematurity. Finally, cerebral plasticity is nurtured by a lifetime experience at microstructural and macrostructural scales. A preterm birth causes a negative and early disruption, though it can be partly mitigated by positive stimuli based on developmental neonatal care.
Collapse
Affiliation(s)
- Philippe Vo Van
- Department of Neonatology, Hospices Civils de Lyon, Femme Mère Enfant Hospital, 59 Boulevard Pinel, 69500 Bron, France
- Correspondence:
| | - Marianne Alison
- Service d’Imagerie Pédiatrique, Hôpital Robert Debré, APHP, 75019 Paris, France;
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
| | - Baptiste Morel
- Pediatric Radiology Department, Clocheville Hospital, CHRU of Tours, 37000 Tours, France;
- UMR 1253, iB-Rain, Université de Tours, Inserm, 37000 Tours, France
| | - Jonathan Beck
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Nathalie Bednarek
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Lucie Hertz-Pannier
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
- NeuroSpin, CEA-Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Gauthier Loron
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| |
Collapse
|
40
|
Kanel D, Vanes LD, Ball G, Hadaya L, Falconer S, Counsell SJ, Edwards AD, Nosarti C. OUP accepted manuscript. Brain Commun 2022; 4:fcac009. [PMID: 35178519 PMCID: PMC8846580 DOI: 10.1093/braincomms/fcac009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Very preterm children are more likely to exhibit difficulties in socio-emotional processing than their term-born peers. Emerging socio-emotional problems may be partly due to alterations in limbic system development associated with infants’ early transition to extrauterine life. The amygdala is a key structure in this system and plays a critical role in various aspects of socio-emotional development, including emotion regulation. The current study tested the hypothesis that amygdala resting-state functional connectivity at term-equivalent age would be associated with socio-emotional outcomes in childhood. Participants were 129 very preterm infants (<33 weeks' gestation) who underwent resting-state functional MRI at term and received a neurodevelopmental assessment at 4–7 years (median = 4.64). Using the left and right amygdalae as seed regions, we investigated associations between whole-brain seed-based functional connectivity and three socio-emotional outcome factors which were derived using exploratory factor analysis (Emotion Moderation, Social Function and Empathy), controlling for sex, neonatal sickness, post-menstrual age at scan and social risk. Childhood Emotion Moderation scores were significantly associated with neonatal resting-state functional connectivity of the right amygdala with right parahippocampal gyrus and right middle occipital gyrus, as well as with functional connectivity of the left amygdala with the right thalamus. No significant associations were found between amygdalar resting-state functional connectivity and either Social Function or Empathy scores. The current findings show that amygdalar functional connectivity assessed at term is associated with later socio-emotional outcomes in very preterm children.
Collapse
Affiliation(s)
- Dana Kanel
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Lucy D. Vanes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gareth Ball
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Laila Hadaya
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | | | - Chiara Nosarti
- Correspondence to: Chiara Nosarti Centre for the Developing Brain School of Bioengineering and Imaging Sciences King’s College London and Evelina Children’s Hospital London SE1 7EH, UK E-mail:
| |
Collapse
|
41
|
What Do We Know About Motor Development of Preterm Children Without Major Neurological Damage and Disorder? A Narrative Review. JOURNAL OF MOTOR LEARNING AND DEVELOPMENT 2021. [DOI: 10.1123/jmld.2020-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review addresses the question of a possible specificity of motor development of preterm children with no diagnosis of neurological impairment or major cerebral lesion. With that goal, we proceed with a narrative review on the basis of nine studies. All the studies used standardized assessments of motor abilities with a comparison methodology of preterm and full-term groups aged between 3 and 8 years. The review stresses three major findings in the preterm groups as compared with the full-term groups: (a) inferior fine motor abilities; (b) heterogeneity in motor skills; and (c) differences in efficiency of cognitive, perceptual, and mobilization of perceptual motor processes, which do not necessarily result in lower scores in global performances. These findings suggest the need of long-term medical follow-up for all preterm children whether or not they are at risk for neurodevelopmental disorder. Focusing attention on the use of sensory information for motor control in preterm children could also lead to more precise evaluations of motor abilities, which will then provide more detailed parameters for improved learning and rehabilitation programs.
Collapse
|
42
|
Pascoali Rodovanski G, Bêz Reus BA, Cechinel Damiani AV, Franco Mattos K, Moreira RS, Neves Dos Santos A. Home-based early stimulation program targeting visual and motor functions for preterm infants with delayed tracking: Feasibility of a Randomized Clinical Trial. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 116:104037. [PMID: 34293634 DOI: 10.1016/j.ridd.2021.104037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
AIMS To verify the feasibility of a home-based early stimulation program targeting visual and motor functions in preterm infants with delayed visual tracking. METHOD We applied a randomized controlled trial. We included thirty low-risk preterm infants, from both genders, with delayed visual tracking, gestational between 28-37 weeks, and age at entrance between 1-2 months of corrected age, and absence of visual impairments. Infants were divided into two groups as follows: a) standard care group (SC) that received general orientation about sensory and motor development (16 infants); b) experimental group, that received a four-week home-based early stimulation program targeting visual and motor functions (ESPVM) applied by the caregivers (14 infants). The feasibility outcomes were retention and loss rates, adherence, adverse events, and stress signals. We obtained preliminary data by comparing visual tracking, motor development, and sensory behavior between groups at the end of the intervention. RESULTS Retention rate was high, 90 % of the caregivers provided ESPVM at least 22 days, and 70 % provided SC at least 17 days. No adverse events were reported. At the end of intervention, the ESPVM group presented higher frequencies of complete visual tracking for cards 7 (ESPVM = 57.3 %, SC = 6.3 %, p = 0.006) and 8 (ESPVM = 64.3 %, SC = 12.2 %, p = 0.013), and lower scores for total sensory profile (ESPVM: median = 58, range = 46-69; SC: median = 71, range = 54-90; p = 0.016). The groups were similar for motor development. CONCLUSIONS The protocol was feasible, and the results encourage a larger randomized controlled trial.
Collapse
Affiliation(s)
| | | | | | - Karina Franco Mattos
- Department of Health Science, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Rafaela Silva Moreira
- Department of Health Science, Federal University of Santa Catarina, Araranguá, SC, Brazil
| | | |
Collapse
|
43
|
Abstract
Faces hold a substantial value for effective social interactions and sharing. Covering faces with masks, due to COVID-19 regulations, may lead to difficulties in using social signals, in particular, in individuals with neurodevelopmental conditions. Daily-life social participation of individuals who were born preterm is of immense importance for their quality of life. Here we examined face tuning in individuals (aged 12.79 ± 1.89 years) who were born preterm and exhibited signs of periventricular leukomalacia (PVL), a dominant form of brain injury in preterm birth survivors. For assessing the face sensitivity in this population, we implemented a recently developed experimental tool, a set of Face-n-Food images bordering on the style of Giuseppe Arcimboldo. The key benefit of these images is that single components do not trigger face processing. Although a coarse face schema is thought to be hardwired in the brain, former preterms exhibit substantial shortages in the face tuning not only compared with typically developing controls but also with individuals with autistic spectrum disorders. The lack of correlations between the face sensitivity and other cognitive abilities indicates that these deficits are domain-specific. This underscores impact of preterm birth sequelae for social functioning at large. Comparison of the findings with data in individuals with other neurodevelopmental and neuropsychiatric conditions provides novel insights into the origins of deficient face processing.
Collapse
|
44
|
Menegaux A, Meng C, Bäuml JG, Berndt MT, Hedderich DM, Schmitz-Koep B, Schneider S, Nuttall R, Zimmermann J, Daamen M, Zimmer C, Boecker H, Bartmann P, Wolke D, Sorg C. Aberrant cortico-thalamic structural connectivity in premature-born adults. Cortex 2021; 141:347-362. [PMID: 34126289 DOI: 10.1016/j.cortex.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Premature birth is associated with alterations in brain structure, particularly in white matter. Among white matter, alterations in cortico-thalamic connections are present in premature-born infants, and they have been suggested both to last until adulthood and to contribute to impaired cognitive functions. To test these hypotheses, 70 very premature-born adults and 67 full-term controls underwent cognitive testing and diffusion-weighted imaging. Each cortical hemisphere was parcellated into six lobes, from which probabilistic tractography was performed to the thalamus. Connection probability was chosen as metric of structural connectivity. We found increased cortico-thalamic connection probability between left prefrontal cortices and left medio-dorsal thalamus and reduced connection probability between bilateral temporal cortices and bilateral anterior thalami in very premature-born adults. Aberrant prefronto- and temporo-thalamic connection probabilities were correlated with birth weight and days on ventilation, respectively, supporting the suggestion that these connectivity changes relate with the degree of prematurity. Moreover, an increase in left prefronto-thalamic connection probability also correlated with lower verbal comprehension index indicating its relevance for verbal cognition. Together, our results demonstrate that cortico-thalamic structural connectivity is aberrant in premature-born adults, with these changes being linked with impairments in verbal cognitive abilities. Due to corresponding findings in infants, data suggest aberrant development of cortico-thalamic connectivity after premature birth with lasting effects into adulthood.
Collapse
Affiliation(s)
- Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Chun Meng
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maria T Berndt
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Schneider
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
45
|
Chiarelli AM, Sestieri C, Navarra R, Wise RG, Caulo M. Distinct effects of prematurity on MRI metrics of brain functional connectivity, activity, and structure: Univariate and multivariate analyses. Hum Brain Mapp 2021; 42:3593-3607. [PMID: 33955622 PMCID: PMC8249887 DOI: 10.1002/hbm.25456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022] Open
Abstract
Premature birth affects the developmental trajectory of the brain during a period of intense maturation with possible lifelong consequences. To better understand the effect of prematurity on brain structure and function, we performed blood‐oxygen‐level dependent (BOLD) and anatomical magnetic resonance imaging (MRI) at 40 weeks of postmenstrual age on 88 newborns with variable gestational age (GA) at birth and no evident radiological alterations. We extracted measures of resting‐state functional connectivity and activity in a set of 90 cortical and subcortical brain regions through the evaluation of BOLD correlations between regions and of fractional amplitude of low‐frequency fluctuation (fALFF) within regions, respectively. Anatomical information was acquired through the assessment of regional volumes. We performed univariate analyses on each metric to examine the association with GA at birth, the spatial distribution of the effects, and the consistency across metrics. Moreover, a data‐driven multivariate analysis (i.e., Machine Learning) framework exploited the high dimensionality of the data to assess the sensitivity of each metric to the effect of premature birth. Prematurity was associated with bidirectional alterations of functional connectivity and regional volume and, to a lesser extent, of fALFF. Notably, the effects of prematurity on functional connectivity were spatially diffuse, mainly within cortical regions, whereas effects on regional volume and fALFF were more focal, involving subcortical structures. While the two analytical approaches delivered consistent results, the multivariate analysis was more sensitive in capturing the complex pattern of prematurity effects. Future studies might apply multivariate frameworks to identify premature infants at risk of a negative neurodevelopmental outcome.
Collapse
Affiliation(s)
- Antonio M Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Riccardo Navarra
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Richard G Wise
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| |
Collapse
|
46
|
Irzan H, Molteni E, Hütel M, Ourselin S, Marlow N, Melbourne A. White matter analysis of the extremely preterm born adult brain. Neuroimage 2021; 237:118112. [PMID: 33940145 PMCID: PMC8285592 DOI: 10.1016/j.neuroimage.2021.118112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
The preterm brain has been analysed after birth by a large body of neuroimaging studies; however, few studies have focused on white matter alterations in preterm subjects beyond infancy, especially in individuals born at extremely low gestation age - before 28 completed weeks. Neuroimaging data of extremely preterm young adults are now available to investigate the long-term structural alterations of disrupted neurodevelopment. We examined white matter hierarchical organisation and microstructure in extremely preterm young adults. Specifically, we first identified the putative hubs and peripheral regions in 85 extremely preterm young adults and compared them with 53 socio-economically matched and full-term born peers. Moreover, we analysed Fractional Anisotropy (FA), Mean Diffusivity (MD), Neurite Density Index (NDI), and Orientation Dispersion Index (ODI) of white matter in hubs, peripheral regions, and over the whole brain. Our results suggest that the hierarchical organisation of the extremely preterm adult brain remains intact. However, there is evidence of significant alteration of white matter connectivity at both the macro- and microstructural level, with overall diminished connectivity, reduced FA and NDI, increased MD, and comparable ODI; suggesting that, although the spatial configuration of WM fibres is comparable, there are less WM fibres per voxel. These alterations are found throughout the brain and are more prevalent along the pathways between deep grey matter regions, frontal regions and cerebellum. This work provides evidence that white matter abnormalities associated with the premature exposure to the extrauterine environment not only are present at term equivalent age but persist into early adulthood.
Collapse
Affiliation(s)
- Hassna Irzan
- Dept. Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom.
| | - Erika Molteni
- School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| | - Michael Hütel
- School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| | - Sebastien Ourselin
- Dept. Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| | - Neil Marlow
- Institute for Women's Health, University College London, United Kingdom
| | - Andrew Melbourne
- Dept. Medical Physics and Biomedical Engineering, University College London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| |
Collapse
|
47
|
Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J Perinatol 2021; 41:689-706. [PMID: 33099576 DOI: 10.1038/s41372-020-00865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Very preterm birth (<32 weeks of gestation) has been associated with lifelong difficulties in a variety of neurocognitive functions. Magnetic resonance imaging (MRI) combined with advanced analytical approaches have been employed in order to increase our understanding of the neurodevelopmental problems that many very preterm born individuals face as they grow up. In this review, we will focus on two novel imaging techniques that have explored relationships between specific brain mechanisms and behavioural outcomes. These are functional MRI, which maps regional, time-varying changes in brain metabolism and diffusion-weighted MRI, which measures the displacement of water molecules in tissue and provides quantitative information about tissue microstructure. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth could inform the development and implementation of preventative interventions (before any cognitive problem emerges) and could facilitate the identification of behavioural targets for improving the life course outcomes of very preterm individuals.
Collapse
|
48
|
Sexual Dimorphisms and Asymmetries of the Thalamo-Cortical Pathways and Subcortical Grey Matter of Term Born Healthy Neonates: An Investigation with Diffusion Tensor MRI. Diagnostics (Basel) 2021; 11:diagnostics11030560. [PMID: 33804771 PMCID: PMC8003947 DOI: 10.3390/diagnostics11030560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Diffusion-tensor-MRI was performed on 28 term born neonates. For each hemisphere, we quantified separately the axial and the radial diffusion (AD, RD), the apparent diffusion coefficient (ADC) and the fractional anisotropy (FA) of the thalamo-cortical pathway (THC) and four structures: thalamus (TH), putamen (PT), caudate nucleus (CN) and globus-pallidus (GP). There was no significant difference between boys and girls in either the left or in the right hemispheric THC, TH, GP, CN and PT. In the combined group (boys + girls) significant left greater than right symmetry was observed in the THC (AD, RD and ADC), and TH (AD, ADC). Within the same group, we reported left greater than right asymmetry in the PT (FA), CN (RD and ADC). Different findings were recorded when we split the group of neonates by gender. Girls exhibited right > left AD, RD and ADC in the THC and left > right FA in the PT. In the group of boys, we observed right > left RD and ADC. We also reported left > right FA in the PT and left > right RD in the CN. These results provide insights into normal asymmetric development of sensory-motor networks within boys and girls.
Collapse
|
49
|
Eyre M, Fitzgibbon SP, Ciarrusta J, Cordero-Grande L, Price AN, Poppe T, Schuh A, Hughes E, O'Keeffe C, Brandon J, Cromb D, Vecchiato K, Andersson J, Duff EP, Counsell SJ, Smith SM, Rueckert D, Hajnal JV, Arichi T, O'Muircheartaigh J, Batalle D, Edwards AD. The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity. Brain 2021; 144:2199-2213. [PMID: 33734321 PMCID: PMC8370420 DOI: 10.1093/brain/awab118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
The Developing Human Connectome Project is an Open Science project that provides the
first large sample of neonatal functional MRI data with high temporal and spatial
resolution. These data enable mapping of intrinsic functional connectivity between
spatially distributed brain regions under normal and adverse perinatal circumstances,
offering a framework to study the ontogeny of large-scale brain organization in humans.
Here, we characterize in unprecedented detail the maturation and integrity of resting
state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm).
First, we applied group independent component analysis to define 11 RSNs in term-born
infants scanned at 43.5–44.5 weeks postmenstrual age (PMA). Adult-like topography was
observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among
six higher-order, association RSNs, analogues of the adult networks for language and
ocular control were identified, but a complete default mode network precursor was not.
Next, we regressed the subject-level datasets from an independent cohort of infants
scanned at 37–43.5 weeks PMA against the group-level RSNs to test for the effects of age,
sex and preterm birth. Brain mapping in term-born infants revealed areas of positive
association with age across four of six association RSNs, indicating active maturation in
functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased
connectivity in inferotemporal regions of the visual association network. Preterm birth
was associated with striking impairments of functional connectivity across all RSNs in a
dose-dependent manner; conversely, connectivity of the superior parietal lobules within
the lateral motor network was abnormally increased in preterm infants, suggesting a
possible mechanism for specific difficulties such as developmental coordination disorder,
which occur frequently in preterm children. Overall, we found a robust, modular,
symmetrical functional brain organization at normal term age. A complete set of
adult-equivalent primary RSNs is already instated, alongside emerging connectivity in
immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence
of brain development. The early developmental disruption imposed by preterm birth is
associated with extensive alterations in functional connectivity.
Collapse
Affiliation(s)
- Michael Eyre
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tanya Poppe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Andreas Schuh
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Camilla O'Keeffe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Jakki Brandon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK.,Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| |
Collapse
|
50
|
Baranger J, Demene C, Frerot A, Faure F, Delanoë C, Serroune H, Houdouin A, Mairesse J, Biran V, Baud O, Tanter M. Bedside functional monitoring of the dynamic brain connectivity in human neonates. Nat Commun 2021; 12:1080. [PMID: 33597538 PMCID: PMC7889933 DOI: 10.1038/s41467-021-21387-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Clinicians have long been interested in functional brain monitoring, as reversible functional losses often precedes observable irreversible structural insults. By characterizing neonatal functional cerebral networks, resting-state functional connectivity is envisioned to provide early markers of cognitive impairments. Here we present a pioneering bedside deep brain resting-state functional connectivity imaging at 250-μm resolution on human neonates using functional ultrasound. Signal correlations between cerebral regions unveil interhemispheric connectivity in very preterm newborns. Furthermore, fine-grain correlations between homologous pixels are consistent with white/grey matter organization. Finally, dynamic resting-state connectivity reveals a significant occurrence decrease of thalamo-cortical networks for very preterm neonates as compared to control term newborns. The same method also shows abnormal patterns in a congenital seizure disorder case compared with the control group. These results pave the way to infants' brain continuous monitoring and may enable the identification of abnormal brain development at the bedside.
Collapse
Affiliation(s)
- Jerome Baranger
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France.
| | - Charlie Demene
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Alice Frerot
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France.,Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | - Flora Faure
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Catherine Delanoë
- Assistance Publique Hôpitaux de Paris, Neurophysiology Unit, Robert Debré Children's hospital, Paris, France
| | - Hicham Serroune
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Alexandre Houdouin
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Jerome Mairesse
- Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | - Valerie Biran
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France.,Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | - Olivier Baud
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France. .,Delegation Paris 7, Inserm U1141, University of Paris, Paris, France. .,Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland.
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France.
| |
Collapse
|