1
|
Bryant KL, Camilleri J, Warrington S, Blazquez Freches G, Sotiropoulos SN, Jbabdi S, Eickhoff S, Mars RB. Connectivity profile and function of uniquely human cortical areas. J Neurosci 2025; 45:e2017242025. [PMID: 40097185 PMCID: PMC11984073 DOI: 10.1523/jneurosci.2017-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
Determining the brain specializations unique to humans requires directly comparative anatomical information from other primates, especially our closest relatives. Human (Homo sapiens) (m/f), chimpanzee (Pan troglodytes) (f), and rhesus macaque (Macaca mulatta) (m/f) white matter atlases were used to create connectivity blueprints, i.e., descriptions of the cortical grey matter in terms of the connectivity with homologous white matter tracts. This allowed a quantitative comparative of cortical organization across the species. We identified human-unique connectivity profiles concentrated in temporal and parietal cortices, and hominid-unique organization in prefrontal cortex. Functional decoding revealed human-unique hotspots correlated with language processing and social cognition. Overall, our results counter models that assign primacy to prefrontal cortex for human uniqueness.Significance statement Understanding what makes the human brain unique requires direct comparisons with other primates, particularly our closest relatives. Using connectivity blueprints, we compared to cortical organization of the human to that of the macaque and, for the first time, the chimpanzee. This approach revealed human-specific connectivity patterns in the temporal and parietal lobes, regions linked to language and social cognition. These findings challenge traditional views that prioritize the prefrontal cortex in defining human cognitive uniqueness, emphasizing instead the importance of temporal and parietal cortical evolution in shaping our species' abilities.
Collapse
Affiliation(s)
- Katherine L. Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
- Institute for Language, Cognition and the Brain (ILCB), Aix-Marseille University, Marseille 13604, France
| | - Julia Camilleri
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Center Jülich, Jülich 52428, Germany
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, United Kingdom
| | - Guilherme Blazquez Freches
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HD, The Netherlands
| | - Stamatios N. Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham NG1 5DU, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Center Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HD, The Netherlands
| |
Collapse
|
2
|
Roelofs A. On the role of the arcuate fasciculus in word production and repetition: a reply to Van den Hoven et al. (2024). Brain Struct Funct 2024; 229:2379-2383. [PMID: 39136726 DOI: 10.1007/s00429-024-02849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 04/01/2025]
Abstract
Van den Hoven et al. contested my interpretation of Wernicke regarding the role of the arcuate fasciculus (AF) in word production. Here, I clarify and defend my interpretation. They also questioned the assumption of AF subtracts in my modern account, stating that subtracts are difficult to distinguish anatomically due to overlapping terminations. Here, I make clear that overlap in terminations was actually part of my account, in which differentially damaged subtracts explained patients' differential naming and repetition performance as well as types of repetition performance.
Collapse
Affiliation(s)
- Ardi Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, Nijmegen, 6525 GD, The Netherlands.
| |
Collapse
|
3
|
Roelofs A. Wernicke's functional neuroanatomy model of language turns 150: what became of its psychological reflex arcs? Brain Struct Funct 2024; 229:2079-2096. [PMID: 38581582 PMCID: PMC11611947 DOI: 10.1007/s00429-024-02785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024]
Abstract
Wernicke (Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis. Cohn und Weigert, Breslau. https://wellcomecollection.org/works/dwv5w9rw , 1874) proposed a model of the functional neuroanatomy of spoken word repetition, production, and comprehension. At the heart of this epoch-making model are psychological reflex arcs underpinned by fiber tracts connecting sensory to motor areas. Here, I evaluate the central assumption of psychological reflex arcs in light of what we have learned about language in the brain during the past 150 years. I first describe Wernicke's 1874 model and the evidence he presented for it. Next, I discuss his updates of the model published in 1886 and posthumously in 1906. Although the model had an enormous immediate impact, it lost influence after the First World War. Unresolved issues included the anatomical underpinnings of the psychological reflex arcs, the role of auditory images in word production, and the sufficiency of psychological reflex arcs, which was questioned by Wundt (Grundzüge der physiologischen Psychologie. Engelmann, Leipzig. http://vlp.mpiwg-berlin.mpg.de/references?id=lit46 , 1874; Grundzüge der physiologischen Psychologie (Vol. 1, 5th ed.). Engelmann, Leipzig. http://vlp.mpiwg-berlin.mpg.de/references?id=lit806 , 1902). After a long dormant period, Wernicke's model was revived by Geschwind (Science 170:940-944. https://doi.org/10.1126/science.170.3961.940 , 1970; Selected papers on language and the brain. Reidel, Dordrecht, 1974), who proposed a version of it that differed in several important respects from Wernicke's original. Finally, I describe how new evidence from modern research has led to a novel view on language in the brain, supplementing contemporary equivalents of psychological reflex arcs by other mechanisms such as attentional control and assuming different neuroanatomical underpinnings. In support of this novel view, I report new analyses of patient data and computer simulations using the WEAVER++/ARC model (Roelofs 2014, 2022) that incorporates attentional control and integrates the new evidence.
Collapse
Affiliation(s)
- Ardi Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Dresang HC, Warren T, Hula WD, Dickey MW. Rational adaptation in word production: Strong conceptual ability reduces the effect of lexical impairments on verb retrieval in aphasia. Neuropsychologia 2024; 201:108938. [PMID: 38880385 PMCID: PMC11236503 DOI: 10.1016/j.neuropsychologia.2024.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Language users rely on both linguistic and conceptual processing abilities to efficiently comprehend or produce language. According to the principle of rational adaptation, the degree to which a cognitive system relies on one process vs. another can change under different conditions or disease states with the goal of optimizing behavior. In this study, we investigated rational adaptation in reliance on linguistic versus conceptual processing in aphasia, an acquired disorder of language. In individuals living with aphasia, verb-retrieval impairments are a pervasive deficit that negatively impacts communicative function. As such, we examined evidence of adaptation in verb production, using parallel measures to index impairment in two of verb naming's critical subcomponents: conceptual and linguistic processing. These component processes were evaluated using a standardized assessment battery designed to contrast non-linguistic (picture input) and linguistic (word input) tasks of conceptual action knowledge. The results indicate that non-linguistic conceptual action processing can be impaired in people with aphasia and contributes to verb-retrieval impairments. Furthermore, relatively unimpaired conceptual action processing can ameliorate the influence of linguistic processing deficits on verb-retrieval impairments. These findings are consistent with rational adaptation accounts, indicating that conceptual processing plays a key role in language function and can be leveraged in rehabilitation to improve verb retrieval in adults with chronic aphasia.
Collapse
Affiliation(s)
- Haley C Dresang
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, Madison, WI, USA.
| | - Tessa Warren
- Learning Research & Development Center, Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michael Walsh Dickey
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Camerino I, Ferreira J, Vonk JM, Kessels RPC, de Leeuw FE, Roelofs A, Copland D, Piai V. Systematic Review and Meta-Analyses of Word Production Abilities in Dysfunction of the Basal Ganglia: Stroke, Small Vessel Disease, Parkinson's Disease, and Huntington's Disease. Neuropsychol Rev 2024; 34:1-26. [PMID: 36564612 DOI: 10.1007/s11065-022-09570-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/25/2022]
Abstract
Clinical populations with basal ganglia pathologies may present with language production impairments, which are often described in combination with comprehension measures or attributed to motor, memory, or processing-speed problems. In this systematic review and meta-analysis, we studied word production in four (vascular and non-vascular) pathologies of the basal ganglia: stroke affecting the basal ganglia, small vessel disease, Parkinson's disease, and Huntington's disease. We compared scores of these clinical populations with those of matched cognitively unimpaired adults on four well-established production tasks, namely picture naming, category fluency, letter fluency, and past-tense verb inflection. We conducted a systematic search in PubMed and PsycINFO with terms for basal ganglia structures, basal ganglia disorders and language production tasks. A total of 114 studies were included, containing results for one or more of the tasks of interest. For each pathology and task combination, effect sizes (Hedges' g) were extracted comparing patient versus control groups. For all four populations, performance was consistently worse than that of cognitively unimpaired adults across the four language production tasks (p-values < 0.010). Given that performance in picture naming and verb inflection across all pathologies was quantified in terms of accuracy, our results suggest that production impairments cannot be fully explained by motor or processing-speed deficits. Our review shows that while language production difficulties in these clinical populations are not negligible, more evidence is necessary to determine the exact mechanism that leads to these deficits and whether this mechanism is the same across different pathologies.
Collapse
Affiliation(s)
- Ileana Camerino
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | - João Ferreira
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands.
| | - Jet M Vonk
- Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roy P C Kessels
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
- Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ardi Roelofs
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | - David Copland
- School of Health and Rehabilitation Sciences, The University of Queensland, Saint Lucia, QLD, Australia
- Queensland Aphasia Research Centre, The University of Queensland, Herston, QLD, Australia
| | - Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
- Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Titus A, Dijkstra T, Willems RM, Peeters D. Beyond the tried and true: How virtual reality, dialog setups, and a focus on multimodality can take bilingual language production research forward. Neuropsychologia 2024; 193:108764. [PMID: 38141963 DOI: 10.1016/j.neuropsychologia.2023.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Bilinguals possess the ability of expressing themselves in more than one language, and typically do so in contextually rich and dynamic settings. Theories and models have indeed long considered context factors to affect bilingual language production in many ways. However, most experimental studies in this domain have failed to fully incorporate linguistic, social, or physical context aspects, let alone combine them in the same study. Indeed, most experimental psycholinguistic research has taken place in isolated and constrained lab settings with carefully selected words or sentences, rather than under rich and naturalistic conditions. We argue that the most influential experimental paradigms in the psycholinguistic study of bilingual language production fall short of capturing the effects of context on language processing and control presupposed by prominent models. This paper therefore aims to enrich the methodological basis for investigating context aspects in current experimental paradigms and thereby move the field of bilingual language production research forward theoretically. After considering extensions of existing paradigms proposed to address context effects, we present three far-ranging innovative proposals, focusing on virtual reality, dialog situations, and multimodality in the context of bilingual language production.
Collapse
Affiliation(s)
- Alex Titus
- Radboud University, Centre for Language Studies, Nijmegen, the Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.
| | - Ton Dijkstra
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands
| | - Roel M Willems
- Radboud University, Centre for Language Studies, Nijmegen, the Netherlands
| | - David Peeters
- Tilburg University, Department of Communication and Cognition, TiCC, Tilburg, the Netherlands
| |
Collapse
|
7
|
Ferreira J, Roelofs A, Freches GB, Piai V. An fMRI study of inflectional encoding in spoken word production: Role of domain-general inhibition. Neuropsychologia 2023; 188:108653. [PMID: 37499792 DOI: 10.1016/j.neuropsychologia.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
A major issue concerning inflectional encoding in spoken word production is whether or not regular forms (e.g., past tense walked) are encoded by rule application and irregular forms (e.g., swam) by retrieval from associative memory and inhibition of the regular rule. We used functional magnetic resonance imaging (fMRI) to examine the involvement of domain-general inhibition, thought to be underpinned by right inferior frontal gyrus (IFG), right pre-supplementary motor area (SMA), and right basal ganglia. Participants were presented with infinitive verbs that take either regular or irregular past tense. They switched between producing the past tense of these regular and irregular verbs in one block, and between inflecting or reading these infinitive verbs aloud in another block. As concerns corticobasal areas, compared to reading, inflecting activated left IFG and left preSMA/SMA. Regulars yielded higher activation than irregulars in these frontal areas, both on switch and repeat trials, which did not differ in activation. Switching between inflecting and reading activated left preSMA/SMA. These results indicate that inflectional encoding, and switching between inflecting and reading, engage frontal areas in the left hemisphere, including left preSMA/SMA for both and left IFG for inflecting, without recruiting the domain-general inhibition circuitry in the right hemisphere. We advance an account of inflectional encoding in spoken word production that assumes a distinction between regulars and irregulars, but without engaging domain-general inhibition.
Collapse
Affiliation(s)
- João Ferreira
- Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands.
| | - Ardi Roelofs
- Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands.
| | - Guilherme Blazquez Freches
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Radboud University, Donders Centre for Neuroscience, Heyendaalseweg, 135 6525, AJ Nijmegen, the Netherlands.
| | - Vitória Piai
- Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands; Radboudumc, Donders Centre for Medical Neuroscience, Dept. of Medical Psychology, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
8
|
McCall JD, DeMarco AT, Mandal AS, Fama ME, van der Stelt CM, Lacey EH, Laks AB, Snider SF, Friedman RB, Turkeltaub PE. Listening to Yourself and Watching Your Tongue: Distinct Abilities and Brain Regions for Monitoring Semantic and Phonological Speech Errors. J Cogn Neurosci 2023; 35:1169-1194. [PMID: 37159232 PMCID: PMC10273223 DOI: 10.1162/jocn_a_02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite the many mistakes we make while speaking, people can effectively communicate because we monitor our speech errors. However, the cognitive abilities and brain structures that support speech error monitoring are unclear. There may be different abilities and brain regions that support monitoring phonological speech errors versus monitoring semantic speech errors. We investigated speech, language, and cognitive control abilities that relate to detecting phonological and semantic speech errors in 41 individuals with aphasia who underwent detailed cognitive testing. Then, we used support vector regression lesion symptom mapping to identify brain regions supporting detection of phonological versus semantic errors in a group of 76 individuals with aphasia. The results revealed that motor speech deficits as well as lesions to the ventral motor cortex were related to reduced detection of phonological errors relative to semantic errors. Detection of semantic errors selectively related to auditory word comprehension deficits. Across all error types, poor cognitive control related to reduced detection. We conclude that monitoring of phonological and semantic errors relies on distinct cognitive abilities and brain regions. Furthermore, we identified cognitive control as a shared cognitive basis for monitoring all types of speech errors. These findings refine and expand our understanding of the neurocognitive basis of speech error monitoring.
Collapse
Affiliation(s)
- Joshua D McCall
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Rehabilitation Medicine Department, Georgetown University Medical Center, Washington, DC
| | - Ayan S Mandal
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Brain-Gene Development Lab, Psychiatry Department, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mackenzie E Fama
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC
| | - Candace M van der Stelt
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
| | - Elizabeth H Lacey
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
| | - Alycia B Laks
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
| | - Sarah F Snider
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC
| | - Rhonda B Friedman
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Rehabilitation Medicine Department, Georgetown University Medical Center, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
9
|
Yuan B, Xie H, Wang Z, Xu Y, Zhang H, Liu J, Chen L, Li C, Tan S, Lin Z, Hu X, Gu T, Lu J, Liu D, Wu J. The domain-separation language network dynamics in resting state support its flexible functional segregation and integration during language and speech processing. Neuroimage 2023; 274:120132. [PMID: 37105337 DOI: 10.1016/j.neuroimage.2023.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Modern linguistic theories and network science propose that language and speech processing are organized into hierarchical, segregated large-scale subnetworks, with a core of dorsal (phonological) stream and ventral (semantic) stream. The two streams are asymmetrically recruited in receptive and expressive language or speech tasks, which showed flexible functional segregation and integration. We hypothesized that the functional segregation of the two streams was supported by the underlying network segregation. A dynamic conditional correlation approach was employed to construct framewise time-varying language networks and k-means clustering was employed to investigate the temporal-reoccurring patterns. We found that the framewise language network dynamics in resting state were robustly clustered into four states, which dynamically reconfigured following a domain-separation manner. Spatially, the hub distributions of the first three states highly resembled the neurobiology of speech perception and lexical-phonological processing, speech production, and semantic processing, respectively. The fourth state was characterized by the weakest functional connectivity and was regarded as a baseline state. Temporally, the first three states appeared exclusively in limited time bins (∼15%), and most of the time (> 55%), state 4 was dominant. Machine learning-based dFC-linguistics prediction analyses showed that dFCs of the four states significantly predicted individual linguistic performance. These findings suggest a domain-separation manner of language network dynamics in resting state, which forms a dynamic "meta-network" framework to support flexible functional segregation and integration during language and speech processing.
Collapse
Affiliation(s)
- Binke Yuan
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
| | - Hui Xie
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Zhihao Wang
- CNRS - Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, France
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38123, Italy
| | - Hanqing Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jiaxuan Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lifeng Chen
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Chaoqun Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Shiyao Tan
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Zonghui Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xin Hu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Tianyi Gu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Dongqiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, PR China.
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
10
|
Piai V, Eikelboom D. Brain Areas Critical for Picture Naming: A Systematic Review and Meta-Analysis of Lesion-Symptom Mapping Studies. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:280-296. [PMID: 37229507 PMCID: PMC10205157 DOI: 10.1162/nol_a_00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
Lesion-symptom mapping (LSM) studies have revealed brain areas critical for naming, typically finding significant associations between damage to left temporal, inferior parietal, and inferior fontal regions and impoverished naming performance. However, specific subregions found in the available literature vary. Hence, the aim of this study was to perform a systematic review and meta-analysis of published lesion-based findings, obtained from studies with unique cohorts investigating brain areas critical for accuracy in naming in stroke patients at least 1 month post-onset. An anatomic likelihood estimation (ALE) meta-analysis of these LSM studies was performed. Ten papers entered the ALE meta-analysis, with similar lesion coverage over left temporal and left inferior frontal areas. This small number is a major limitation of the present study. Clusters were found in left anterior temporal lobe, posterior temporal lobe extending into inferior parietal areas, in line with the arcuate fasciculus, and in pre- and postcentral gyri and middle frontal gyrus. No clusters were found in left inferior frontal gyrus. These results were further substantiated by examining five naming studies that investigated performance beyond global accuracy, corroborating the ALE meta-analysis results. The present review and meta-analysis highlight the involvement of left temporal and inferior parietal cortices in naming, and of mid to posterior portions of the temporal lobe in particular in conceptual-lexical retrieval for speaking.
Collapse
Affiliation(s)
- Vitória Piai
- Radboud University, Donders Centre for Cognition, Nijmegen, Netherlands
- Radboudumc, Donders Centre for Medical Neuroscience, Department of Medical Psychology, Nijmegen, Netherlands
| | - Dilys Eikelboom
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| |
Collapse
|
11
|
Janssen N, Kessels RPC, Mars RB, Llera A, Beckmann CF, Roelofs A. Dissociating the functional roles of arcuate fasciculus subtracts in speech production. Cereb Cortex 2023; 33:2539-2547. [PMID: 35709759 PMCID: PMC10016035 DOI: 10.1093/cercor/bhac224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022] Open
Abstract
Recent tractography and microdissection studies have shown that the left arcuate fasciculus (AF)-a fiber tract thought to be crucial for speech production-consists of a minimum of 2 subtracts directly connecting the temporal and frontal cortex. These subtracts link the posterior superior temporal gyrus (STG) and middle temporal gyrus (MTG) to the inferior frontal gyrus. Although they have been hypothesized to mediate different functions in speech production, direct evidence for this hypothesis is lacking. To functionally segregate the 2 AF segments, we combined functional magnetic resonance imaging with diffusion-weighted imaging and probabilistic tractography using 2 prototypical speech production tasks, namely spoken pseudoword repetition (tapping sublexical phonological mapping) and verb generation (tapping lexical-semantic mapping). We observed that the repetition of spoken pseudowords is mediated by the subtract of STG, while generating an appropriate verb to a spoken noun is mediated by the subtract of MTG. Our findings provide strong evidence for a functional dissociation between the AF subtracts, namely a sublexical phonological mapping by the STG subtract and a lexical-semantic mapping by the MTG subtract. Our results contribute to the unraveling of a century-old controversy concerning the functional role in speech production of a major fiber tract involved in language.
Collapse
Affiliation(s)
- Nikki Janssen
- Corresponding author: Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 3, 6525 GD, Nijmegen, the Netherlands.
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, PO Box 9104, 6500 HE Nijmegen, the Netherlands
- Department of Medical Psychology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
- Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, D'n Herk 90, 5803 DN, Venray, the Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, PO Box 9104, 6500 HE Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, United Kingdom
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, PO Box 9104, 6500 HE Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Postbus 9101, Nijmegen, 6500 HB, the Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, PO Box 9104, 6500 HE Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Postbus 9101, Nijmegen, 6500 HB, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, United Kingdom
| | - Ardi Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
12
|
Huber E, Corrigan NM, Yarnykh VL, Ferjan Ramírez N, Kuhl PK. Language Experience during Infancy Predicts White Matter Myelination at Age 2 Years. J Neurosci 2023; 43:1590-1599. [PMID: 36746626 PMCID: PMC10008053 DOI: 10.1523/jneurosci.1043-22.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Parental input is considered a key predictor of language achievement during the first years of life, yet relatively few studies have assessed the effects of parental language input and parent-infant interactions on early brain development. We examined the relationship between measures of parent and child language, obtained from naturalistic home recordings at child ages 6, 10, 14, 18, and 24 months, and estimates of white matter myelination, derived from quantitative MRI at age 2 years (mean = 26.30 months, SD = 1.62, N = 22). Analysis of the white matter focused on dorsal pathways associated with expressive language development and long-term language ability, namely, the left arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF). Frequency of parent-infant conversational turns (CT) uniquely predicted myelin density estimates in both the AF and SLF. Moreover, the effect of CT remained significant while controlling for total adult speech and child speech-related utterances, suggesting a specific role for interactive language experience, rather than simply speech exposure or production. An exploratory analysis of 18 additional tracts, including the right AF and SLF, indicated a high degree of anatomic specificity. Longitudinal analyses of parent and child language variables indicated an effect of CT as early as 6 months of age, as well as an ongoing effect over infancy. Together, these results link parent-infant conversational turns to white matter myelination at age 2 years, and suggest that early, interactive experiences with language uniquely contribute to the development of white matter associated with long-term language ability.SIGNIFICANCE STATEMENT Children's earliest experiences with language are thought to have profound and lasting developmental effects. Recent studies suggest that intervention can increase the quality of parental language input and improve children's learning outcomes. However, important questions remain about the optimal timing of intervention, and the relationship between specific aspects of language experience and brain development. We report that parent-infant turn-taking during home language interactions correlates with myelination of language related white matter pathways through age 2 years. Effects were independent of total speech exposure and infant vocalizations and evident starting at 6 months of age, suggesting that structured language interactions throughout infancy may uniquely support the ongoing development of brain systems critical to long-term language ability.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington 98195
| | - Naja Ferjan Ramírez
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Linguistics, University of Washington, Seattle, Washington 98195
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
13
|
Roelofs A. Word production and comprehension in frontotemporal degeneration: A neurocognitive computational Pickian account. Cortex 2023; 163:42-56. [PMID: 37058880 DOI: 10.1016/j.cortex.2023.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/27/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Over a century ago, Arnold Pick reported deterioration of word production and comprehension in frontotemporal degeneration, now a common finding. Individuals with semantic dementia (SD) and behavioral variant frontotemporal dementia (bvFTD) present with word retrieval difficulty, while their comprehension is less affected. Computational models have illuminated naming and comprehension in poststroke and progressive aphasias, including SD, but there are no simulations for bvFTD. Here, the WEAVER++/ARC model, previously applied to poststroke and progressive aphasias, is extended to bvFTD. Simulations tested the hypothesis of a loss of activation capacity in semantic memory in SD and bvFTD, caused by network atrophy (Pick, 1908a). The outcomes revealed that capacity loss explains 97% of the variance in naming and comprehension of 100 individual patients. Moreover, capacity loss correlates with individual ratings of atrophy in the left anterior temporal lobe. These results support a unified account of word production and comprehension in SD and bvFTD.
Collapse
|
14
|
Roelofs A. Accounting for word production, comprehension, and repetition in semantic dementia, Alzheimer's dementia, and mild cognitive impairment. BRAIN AND LANGUAGE 2023; 238:105243. [PMID: 36868157 DOI: 10.1016/j.bandl.2023.105243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
It has been known since Pick (1892, 1904) that word retrieval is commonly impaired in left temporal lobe degeneration. Individuals with semantic dementia (SD), Alzheimer's dementia (AD), and mild cognitive impairment (MCI) present with word retrieval difficulty, while comprehension is less affected and repetition is preserved. Whereas computational models have elucidated performance in poststroke and progressive aphasias, including SD, simulations are lacking for AD and MCI. Here, the WEAVER++/ARC model, which has provided neurocognitive computational accounts of poststroke and progressive aphasias, is extended to AD and MCI. Assuming a loss of activation capacity in semantic memory in SD, AD, and MCI, the simulations showed that severity variation accounts for 99% of the variance in naming, comprehension, and repetition at the group level and 95% at the individual patient level (N = 49). Other plausible assumptions do less well. This supports a unified account of performance in SD, AD, and MCI.
Collapse
Affiliation(s)
- Ardi Roelofs
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Functional neuroanatomy of lexical access in contextually and visually guided spoken word production. Cortex 2023; 159:254-267. [PMID: 36641964 DOI: 10.1016/j.cortex.2022.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/09/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
Lexical access is commonly studied using bare picture naming, which is visually guided, but in real-life conversation, lexical access is more commonly contextually guided. In this fMRI study, we examined the underlying functional neuroanatomy of contextually and visually guided lexical access, and its consistency across sessions. We employed a context-driven picture naming task with fifteen healthy speakers reading incomplete sentences (word-by-word) and subsequently naming the picture depicting the final word. Sentences provided either a constrained or unconstrained lead-in setting for the picture to be named, thereby approximating lexical access in natural language use. The picture name could be planned either through sentence context (constrained) or picture appearance (unconstrained). This procedure was repeated in an equivalent second session two to four weeks later with the same sample to test for test-retest consistency. Picture naming times showed a strong context effect, confirming that constrained sentences speed up production of the final word depicted as an image. fMRI results showed that the areas common to contextually and visually guided lexical access were left fusiform and left inferior frontal gyrus (both consistently active across-sessions), and middle temporal gyrus. However, non-overlapping patterns were also found, notably in the left temporal and parietal cortices, suggesting a different neural circuit for contextually versus visually guided lexical access.
Collapse
|
16
|
Quartarone C, Navarrete E, Budisavljević S, Peressotti F. Exploring the ventral white matter language network in bimodal and unimodal bilinguals. BRAIN AND LANGUAGE 2022; 235:105187. [PMID: 36244164 DOI: 10.1016/j.bandl.2022.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
We used diffusion magnetic resonance imaging tractography to investigate the effect of language modality on the anatomy of the ventral white matter language network by comparing unimodal (Italian/English) and bimodal bilinguals (Italian/Italian Sign Language). We extracted the diffusion tractography measures of the Inferior Longitudinal fasciculus (ILF), Uncinate fasciculus (UF) and Inferior Fronto-Occipital fasciculus (IFOF) and we correlated them with the degree of bilingualism and the individual performance in fluency tasks. For both groups of bilinguals, the microstructural properties of the right ILF were correlated with individual level of proficiency in L2, confirming the involvement of this tract in bilingualism. In addition, we found that the degree of left lateralization of the ILF predicted the performance in semantic fluency in L1. The microstructural properties of the right UF correlated with performance in phonological fluency in L1, only for bimodal bilinguals. Overall, the pattern shows both similarities and differences between the two groups of bilinguals.
Collapse
Affiliation(s)
- Cinzia Quartarone
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione - University of Padua, Via Venezia, 8, 35137 Padova, Italy
| | - Eduardo Navarrete
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione - University of Padua, Via Venezia, 8, 35137 Padova, Italy
| | - Sanja Budisavljević
- School of Medicine, St. Andrews University, College Gate, St Andrews KY16, 9AJ, UK
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione - University of Padua, Via Venezia, 8, 35137 Padova, Italy.
| |
Collapse
|
17
|
Chupina I, Sierpowska J, Zheng XY, Dewenter A, Piastra M, Piai V. Time course of right-hemisphere recruitment during word production following left-hemisphere damage: A single case of young stroke. Eur J Neurosci 2022; 56:5235-5259. [PMID: 36028218 PMCID: PMC9826534 DOI: 10.1111/ejn.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Our understanding of post-stroke language function is largely based on older age groups, who show increasing age-related brain pathology and neural reorganisation. To illustrate language outcomes in the young-adult brain, we present the case of J., a 23-year-old woman with chronic aphasia from a left-hemisphere stroke affecting the temporal lobe. Diffusion MRI-based tractography indicated that J.'s language-relevant white-matter structures were severely damaged. Employing magnetoencephalography (MEG), we explored J.'s conceptual preparation and word planning abilities using context-driven and bare picture-naming tasks. These revealed naming deficits, manifesting as word-finding difficulties and semantic paraphasias about half of the time. Naming was however facilitated by semantically constraining lead-in sentences. Altogether, this pattern indicates disrupted lexical-semantic and phonological retrieval abilities. MEG revealed that J.'s conceptual and naming-related neural responses were supported by the right hemisphere, compared to the typical left-lateralised brain response of a matched control. Differential recruitment of right-hemisphere structures (330-440 ms post-picture onset) was found concurrently during successful naming (right mid-to-posterior temporal lobe) and word-finding attempts (right inferior frontal gyrus). Disconnection of the temporal lobes via corpus callosum was not critical for recruitment of the right hemisphere in visually guided naming, possibly due to neural activity right lateralising from the outset. Although J.'s right hemisphere responded in a timely manner during word planning, its lexical and phonological retrieval abilities remained modest.
Collapse
Affiliation(s)
- Irina Chupina
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands
| | - Joanna Sierpowska
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands,Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational PsychologyInstitut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Xiaochen Y. Zheng
- Donders Centre for Cognitive NeuroimagingRadboud UniversityNijmegenThe Netherlands
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD)University Hospital, LMU MunichMunichGermany
| | - Maria‐Carla Piastra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands,Department of Neuroinformatics, Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands,Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Vitória Piai
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands,Department of Medical Psychology, Donders Centre for Medical NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
18
|
Liégeois‐Chauvel C, Dubarry A, Wang I, Chauvel P, Gonzalez‐Martinez JA, Alario F. Inter-individual variability in dorsal stream dynamics during word production. Eur J Neurosci 2022; 56:5070-5089. [PMID: 35997580 PMCID: PMC9804493 DOI: 10.1111/ejn.15807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Accepted: 08/14/2022] [Indexed: 01/05/2023]
Abstract
The current standard model of language production involves a sensorimotor dorsal stream connecting areas in the temporo-parietal junction with those in the inferior frontal gyrus and lateral premotor cortex. These regions have been linked to various aspects of word production such as phonological processing or articulatory programming, primarily through neuropsychological and functional imaging group studies. Most if not all the theoretical descriptions of this model imply that the same network should be identifiable across individual speakers. We tested this hypothesis by quantifying the variability of activation observed across individuals within each dorsal stream anatomical region. This estimate was based on electrical activity recorded directly from the cerebral cortex with millisecond accuracy in awake epileptic patients clinically implanted with intracerebral depth electrodes for pre-surgical diagnosis. Each region's activity was quantified using two different metrics-intra-cerebral evoked related potentials and high gamma activity-at the level of the group, the individual and the recording contact. The two metrics show simultaneous activation of parietal and frontal regions during a picture naming task, in line with models that posit interactive processing during word retrieval. They also reveal different levels of between-patient variability across brain regions, except in core auditory and motor regions. The independence and non-uniformity of cortical activity estimated through the two metrics push the current model towards sub-second and sub-region explorations focused on individualized language speech production. Several hypotheses are considered for this within-region heterogeneity.
Collapse
Affiliation(s)
- Catherine Liégeois‐Chauvel
- Epilepsy Center, Neurological InstituteCleveland Clinic FoundationClevelandOhioUSA,Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Present address:
Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Irene Wang
- Epilepsy Center, Neurological InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Jorge A. Gonzalez‐Martinez
- Present address:
Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - F.‐Xavier Alario
- Present address:
Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA,Aix Marseille Univ, CNRS, LPCMarseilleFrance
| |
Collapse
|
19
|
Comparing human and chimpanzee temporal lobe neuroanatomy reveals modifications to human language hubs beyond the frontotemporal arcuate fasciculus. Proc Natl Acad Sci U S A 2022; 119:e2118295119. [PMID: 35787056 PMCID: PMC9282369 DOI: 10.1073/pnas.2118295119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The biological foundation for the language-ready brain in the human lineage remains a debated subject. In humans, the arcuate fasciculus (AF) white matter and the posterior portions of the middle temporal gyrus are crucial for language. Compared with other primates, the human AF has been shown to dramatically extend into the posterior temporal lobe, which forms the basis of a number of models of the structural connectivity basis of language. Recent advances in both language research and comparative neuroimaging invite a reassessment of the anatomical differences in language streams between humans and our closest relatives. Here, we show that posterior temporal connectivity via the AF in humans compared with chimpanzees is expanded in terms of its connectivity not just to the ventral frontal cortex but also to the parietal cortex. At the same time, posterior temporal regions connect more strongly to the ventral white matter in chimpanzees as opposed to humans. This pattern is present in both brain hemispheres. Additionally, we show that the anterior temporal lobe harbors a combination of connections present in both species through the inferior fronto-occipital fascicle and human-unique expansions through the uncinate and middle and inferior longitudinal fascicles. These findings elucidate structural changes that are unique to humans and may underlie the anatomical foundations for full-fledged language capacity.
Collapse
|
20
|
Hwang YE, Kim YB, Son YD. Finding Cortical Subregions Regarding the Dorsal Language Pathway Based on the Structural Connectivity. Front Hum Neurosci 2022; 16:784340. [PMID: 35585994 PMCID: PMC9108242 DOI: 10.3389/fnhum.2022.784340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although the language-related fiber pathways in the human brain, such as the superior longitudinal fasciculus (SLF) and arcuate fasciculus (AF), are already well-known, understanding more sophisticated cortical regions connected by the fiber tracts is essential to scrutinize the structural connectivity of language circuits. With the regions of interest that were selected based on the Brainnetome atlas, the fiber orientation distribution estimation method for tractography was used to produce further elaborate connectivity information. The results indicated that both fiber bundles had two distinct connections with the prefrontal cortex (PFC). The SLF-II and dorsal AF are mainly connected to the rostrodorsal part of the inferior parietal cortex (IPC) and lateral part of the fusiform gyrus with the inferior frontal junction (IFJ), respectively. In contrast, the SLF-III and ventral AF were primarily linked to the anterior part of the supramarginal gyrus and superior part of the temporal cortex with the inferior frontal cortex, including the Broca's area. Moreover, the IFJ in the PFC, which has rarely been emphasized as a language-related subregion, also had the strongest connectivity with the previously known language-related subregions among the PFC; consequently, we proposed that these specific regions are interconnected via the SLF and AF within the PFC, IPC, and temporal cortex as language-related circuitry.
Collapse
Affiliation(s)
- Young-Eun Hwang
- Neuroscience Convergence Center, Korea University, Seoul, South Korea
- Department of Health Sciences and Technology, Gachion Advanced Institute for Health Sciences & Technology (GAHIST), Gachon University, Incheon, South Korea
- Department of Biomedical Engineering, Gachon University, Incheon, South Korea
| | - Young-Bo Kim
- Department of Neurosurgery, Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Young-Don Son
- Department of Health Sciences and Technology, Gachion Advanced Institute for Health Sciences & Technology (GAHIST), Gachon University, Incheon, South Korea
- Department of Biomedical Engineering, Gachon University, Incheon, South Korea
- *Correspondence: Young-Don Son
| |
Collapse
|
21
|
Roelofs A. A neurocognitive computational account of word production, comprehension, and repetition in primary progressive aphasia. BRAIN AND LANGUAGE 2022; 227:105094. [PMID: 35202892 DOI: 10.1016/j.bandl.2022.105094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/15/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Computational models have elucidated word production, comprehension, and repetition in poststroke aphasia syndromes, but simulations are lacking for primary progressive aphasia (PPA) resulting from neurodegenerative disease. Here, the WEAVER++/ARC model, which has previously been applied to poststroke aphasia, is extended to the three major PPA variants: nonfluent/agrammatic, semantic, and logopenic. Following a seminal suggestion by Pick (1892/1977) and modern empirical insights, the model assumes that PPA arises from a progressive loss of activation capacity in portions of the language network with neurocognitive epicenters specific to each PPA variant. Computer simulations revealed that the model succeeds reasonably well in capturing the patterns of impaired and spared naming, comprehension, and repetition performance, at both group and individual patient levels. Moreover, it captures the worsening of performance with progression of the disease. The model explains about 90% of the variance, lending computational support to Pick's suggestion and modern insights.
Collapse
Affiliation(s)
- Ardi Roelofs
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands.
| |
Collapse
|
22
|
McCall JD, Vivian Dickens J, Mandal AS, DeMarco AT, Fama ME, Lacey EH, Kelkar A, Medaglia JD, Turkeltaub PE. Structural disconnection of the posterior medial frontal cortex reduces speech error monitoring. Neuroimage Clin 2022; 33:102934. [PMID: 34995870 PMCID: PMC8739872 DOI: 10.1016/j.nicl.2021.102934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/25/2021] [Accepted: 12/31/2021] [Indexed: 11/29/2022]
Abstract
Optimal performance in any task relies on the ability to detect and correct errors. The anterior cingulate cortex and the broader posterior medial frontal cortex (pMFC) are active during error processing. However, it is unclear whether damage to the pMFC impairs error monitoring. We hypothesized that successful error monitoring critically relies on connections between the pMFC and broader cortical networks involved in executive functions and the task being monitored. We tested this hypothesis in the context of speech error monitoring in people with post-stroke aphasia. Diffusion weighted images were collected in 51 adults with chronic left-hemisphere stroke and 37 age-matched control participants. Whole-brain connectomes were derived using constrained spherical deconvolution and anatomically-constrained probabilistic tractography. Support vector regressions identified white matter connections in which lost integrity in stroke survivors related to reduced error detection during confrontation naming. Lesioned connections to the bilateral pMFC were related to reduce error monitoring, including many connections to regions associated with speech production and executive function. We conclude that connections to the pMFC support error monitoring. Error monitoring in speech production is supported by the structural connectivity between the pMFC and regions involved in speech production, comprehension, and executive function. Interactions between pMFC and other task-relevant processors may similarly be critical for error monitoring in other task contexts.
Collapse
Affiliation(s)
- Joshua D McCall
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA
| | - J Vivian Dickens
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ayan S Mandal
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Psychiatry Department, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Rehabilitation Medicine Department, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Mackenzie E Fama
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Department of Speech, Language, and Hearing Sciences, The George Washington University, DC 20052, USA
| | - Elizabeth H Lacey
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20010, USA
| | - Apoorva Kelkar
- Psychology Department, Drexel University, Philadelphia, PA 19104, USA
| | - John D Medaglia
- Psychology Department, Drexel University, Philadelphia, PA 19104, USA; Neurology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20010, USA; Rehabilitation Medicine Department, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
23
|
Braunsdorf M, Blazquez Freches G, Roumazeilles L, Eichert N, Schurz M, Uithol S, Bryant KL, Mars RB. Does the temporal cortex make us human? A review of structural and functional diversity of the primate temporal lobe. Neurosci Biobehav Rev 2021; 131:400-410. [PMID: 34480913 DOI: 10.1016/j.neubiorev.2021.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Temporal cortex is a primate specialization that shows considerable variation in size, morphology, and connectivity across species. Human temporal cortex is involved in many behaviors that are considered especially well developed in humans, including semantic processing, language, and theory of mind. Here, we ask whether the involvement of temporal cortex in these behaviors can be explained in the context of the 'general' primate organization of the temporal lobe or whether the human temporal lobe contains unique specializations indicative of a 'step change' in the lineage leading to modern humans. We propose that many human behaviors can be explained as elaborations of temporal cortex functions observed in other primates. However, changes in temporal lobe white matter suggest increased integration of information within temporal cortex and between posterior temporal cortex and other association areas, which likely enable behaviors not possible in other species.
Collapse
Affiliation(s)
- Marius Braunsdorf
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Guilherme Blazquez Freches
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Matthias Schurz
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Sebo Uithol
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Ivanova MV, Zhong A, Turken A, Baldo JV, Dronkers NF. Functional Contributions of the Arcuate Fasciculus to Language Processing. Front Hum Neurosci 2021; 15:672665. [PMID: 34248526 PMCID: PMC8267805 DOI: 10.3389/fnhum.2021.672665] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022] Open
Abstract
Current evidence strongly suggests that the arcuate fasciculus (AF) is critical for language, from spontaneous speech and word retrieval to repetition and comprehension abilities. However, to further pinpoint its unique and differential role in language, its anatomy needs to be explored in greater detail and its contribution to language processing beyond that of known cortical language areas must be established. We address this in a comprehensive evaluation of the specific functional role of the AF in a well-characterized cohort of individuals with chronic aphasia (n = 33) following left hemisphere stroke. To evaluate macro- and microstructural integrity of the AF, tractography based on the constrained spherical deconvolution model was performed. The AF in the left and right hemispheres were then manually reconstructed using a modified 3-segment model (Catani et al., 2005), and a modified 2-segment model (Glasser and Rilling, 2008). The normalized volume and a measure of microstructural integrity of the long and the posterior segments of the AF were significantly correlated with language indices while controlling for gender and lesion volume. Specific contributions of AF segments to language while accounting for the role of specific cortical language areas – inferior frontal, inferior parietal, and posterior temporal – were tested using multiple regression analyses. Involvement of the following tract segments in the left hemisphere in language processing beyond the contribution of cortical areas was demonstrated: the long segment of the AF contributed to naming abilities; anterior segment – to fluency and naming; the posterior segment – to comprehension. The results highlight the important contributions of the AF fiber pathways to language impairments beyond that of known cortical language areas. At the same time, no clear role of the right hemisphere AF tracts in language processing could be ascertained. In sum, our findings lend support to the broader role of the left AF in language processing, with particular emphasis on comprehension and naming, and point to the posterior segment of this tract as being most crucial for supporting residual language abilities.
Collapse
Affiliation(s)
- Maria V Ivanova
- Aphasia Recovery Lab, Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.,Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States
| | - Allison Zhong
- Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States.,School of Medicine, New York Medical College, Valhalla, NY, United States
| | - And Turken
- Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States
| | - Juliana V Baldo
- Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States
| | - Nina F Dronkers
- Aphasia Recovery Lab, Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.,Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States.,Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
25
|
Dresang HC, Hula WD, Yeh FC, Warren T, Dickey MW. White-Matter Neuroanatomical Predictors of Aphasic Verb Retrieval. Brain Connect 2021; 11:319-330. [PMID: 33470167 DOI: 10.1089/brain.2020.0921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Current neurocognitive models of language function have been primarily built from evidence regarding object naming, and their hypothesized white-matter circuit mechanisms tend to be coarse grained. Methods: In this cross-sectional, observational study, we used novel correlational tractography to assess the white-matter circuit mechanism behind verb retrieval, measured through action picture-naming performance in adults with chronic aphasia. Results: The analysis identified tracts implicated in current neurocognitive dual-stream models of language function, including the left inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, and arcuate fasciculus. However, the majority of tracts associated with verb retrieval were not ones included in dual-stream models of language function. Instead, they were projection pathways that connect frontal and parietal cortices to subcortical regions associated with motor functions, including the left corticothalamic pathway, frontopontine tract, parietopontine tract, corticostriatal pathway, and corticospinal tract. Conclusions: These results highlight that corticosubcortical projection pathways implicated in motor functions may be importantly related to language function. This finding is consistent with grounded accounts of cognition and may furthermore inform neurocognitive models. Impact statement This study suggests that in addition to traditional dual-stream language fiber tracts, the integrity of projection pathways that connect frontal and parietal cortices to subcortical motor regions may be critically associated with verb-retrieval impairments in adults with aphasia. This finding challenges neurological models of language function.
Collapse
Affiliation(s)
- Haley C Dresang
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - William D Hula
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tessa Warren
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Walsh Dickey
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Hula WD, Panesar S, Gravier ML, Yeh FC, Dresang HC, Dickey MW, Fernandez-Miranda JC. Structural white matter connectometry of word production in aphasia: an observational study. Brain 2020; 143:2532-2544. [PMID: 32705146 DOI: 10.1093/brain/awaa193] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
While current dual-steam neurocognitive models of language function have coalesced around the view that distinct neuroanatomical networks subserve semantic and phonological processing, respectively, the specific white matter components of these networks remain a matter of debate. To inform this debate, we investigated relationships between structural white matter connectivity and word production in a cross-sectional study of 42 participants with aphasia due to unilateral left hemisphere stroke. Specifically, we reconstructed a local connectome matrix for each participant from diffusion spectrum imaging data and regressed these matrices on indices of semantic and phonological ability derived from their responses to a picture-naming test and a computational model of word production. These connectometry analyses indicated that both dorsally located (arcuate fasciculus) and ventrally located (inferior frontal-occipital, uncinate, and middle longitudinal fasciculi) tracts were associated with semantic ability, while associations with phonological ability were more dorsally situated, including the arcuate and middle longitudinal fasciculi. Associations with limbic pathways including the posterior cingulum bundle and the fornix were also found. All analyses controlled for total lesion volume and all results showing positive associations obtained false discovery rates < 0.05. These results challenge dual-stream accounts that deny a role for the arcuate fasciculus in semantic processing, and for ventral-stream pathways in language production. They also illuminate limbic contributions to both semantic and phonological processing for word production.
Collapse
Affiliation(s)
- William D Hula
- Geriatric Research, Education, and Clinical Center and Audiology and Speech Pathology Service, VA Pittsburgh Healthcare System, Pittsburgh PA, USA.,Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh PA, USA
| | - Sandip Panesar
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Michelle L Gravier
- Department of Speech, Language, and Hearing Sciences, California State East Bay, Hayward, CA, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haley C Dresang
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh PA, USA
| | - Michael Walsh Dickey
- Geriatric Research, Education, and Clinical Center and Audiology and Speech Pathology Service, VA Pittsburgh Healthcare System, Pittsburgh PA, USA.,Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh PA, USA
| | | |
Collapse
|
27
|
Kröger BJ, Stille CM, Blouw P, Bekolay T, Stewart TC. Hierarchical Sequencing and Feedforward and Feedback Control Mechanisms in Speech Production: A Preliminary Approach for Modeling Normal and Disordered Speech. Front Comput Neurosci 2020; 14:573554. [PMID: 33262697 PMCID: PMC7686541 DOI: 10.3389/fncom.2020.573554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 12/02/2022] Open
Abstract
Our understanding of the neurofunctional mechanisms of speech production and their pathologies is still incomplete. In this paper, a comprehensive model of speech production based on the Neural Engineering Framework (NEF) is presented. This model is able to activate sensorimotor plans based on cognitive-functional processes (i.e., generation of the intention of an utterance, selection of words and syntactic frames, generation of the phonological form and motor plan; feedforward mechanism). Since the generation of different states of the utterance are tied to different levels in the speech production hierarchy, it is shown that different forms of speech errors as well as speech disorders can arise at different levels in the production hierarchy or are linked to different levels and different modules in the speech production model. In addition, the influence of the inner feedback mechanisms on normal as well as on disordered speech is examined in terms of the model. The model uses a small number of core concepts provided by the NEF, and we show that these are sufficient to create this neurobiologically detailed model of the complex process of speech production in a manner that is, we believe, clear, efficient, and understandable.
Collapse
Affiliation(s)
- Bernd J. Kröger
- Department for Phoniatrics, Pedaudiology and Communication Disorders, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Catharina Marie Stille
- Department for Phoniatrics, Pedaudiology and Communication Disorders, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Peter Blouw
- Applied Brain Research, Waterloo, ON, Canada
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada
| | - Trevor Bekolay
- Applied Brain Research, Waterloo, ON, Canada
- Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada
| | - Terrence C. Stewart
- National Research Council of Canada, University of Waterloo Collaboration Centre, Waterloo, ON, Canada
| |
Collapse
|
28
|
How the speed of word finding depends on ventral tract integrity in primary progressive aphasia. NEUROIMAGE-CLINICAL 2020; 28:102450. [PMID: 33395954 PMCID: PMC7586239 DOI: 10.1016/j.nicl.2020.102450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022]
Abstract
Noise words influence naming time, but not accuracy, more in PPA than in controls. Noise effect difference between PPA and controls reflects ventral tract integrity. The noise effect is smaller when ventral tract integrity is lower in the individuals with PPA. Simulations reveal that propagation of noise is reduced when tract integrity is low.
Primary progressive aphasia (PPA) is a clinical neurodegenerative syndrome with word finding problems as a core clinical symptom. Many aspects of word finding have been clarified in psycholinguistics using picture naming and a picture-word interference (PWI) paradigm, which emulates naming under contextual noise. However, little is known about how word finding depends on white-matter tract integrity, in particular, the atrophy of tracts located ventrally to the Sylvian fissure. To elucidate this question, we examined word finding in individuals with PPA and healthy controls employing PWI, tractography, and computer simulations using the WEAVER++ model of word finding. Twenty-three individuals with PPA and twenty healthy controls named pictures in two noise conditions. Mixed-effects modelling was performed on naming accuracy and reaction time (RT) and fixel-based tractography analyses were conducted to assess the relation between ventral white-matter integrity and naming performance. Naming RTs were longer for individuals with PPA compared to controls and, critically, individuals with PPA showed a larger noise effect compared to controls. Moreover, this difference in noise effect was differentially related to tract integrity. Whereas the noise effect did not depend much on tract integrity in controls, a lower tract integrity was related to a smaller noise effect in individuals with PPA. Computer simulations supported an explanation of this paradoxical finding in terms of reduced propagation of noise when tract integrity is low. By using multimodal analyses, our study indicates the significance of the ventral pathway for naming and the importance of RT measurement in the clinical assessment of PPA.
Collapse
|
29
|
Abstract
Speakers occasionally make speech errors, which may be detected and corrected. According to the comprehension-based account proposed by Levelt, Roelofs, and Meyer (1999) and Roelofs (2004), speakers detect errors by using their speech comprehension system for the monitoring of overt as well as inner speech. According to the production-based account of Nozari, Dell, and Schwartz (2011), speakers may use their comprehension system for external monitoring but error detection in internal monitoring is based on the amount of conflict within the speech production system, assessed by the anterior cingulate cortex (ACC). Here, I address three main arguments of Nozari et al. and Nozari and Novick (2017) against a comprehension-based account of internal monitoring, which concern cross-talk interference between inner and overt speech, a double dissociation between comprehension and self-monitoring ability in patients with aphasia, and a domain-general error-related negativity in the ACC that is allegedly independent of conscious awareness. I argue that none of the arguments are conclusive, and conclude that comprehension-based monitoring remains a viable account of self-monitoring in speaking.
Collapse
|
30
|
Roos NM, Piai V. Across-session consistency of context-driven language processing: A magnetoencephalography study. Eur J Neurosci 2020; 52:3457-3469. [PMID: 32432366 PMCID: PMC7586931 DOI: 10.1111/ejn.14785] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
Changes in brain organization following damage are commonly observed, but they remain poorly understood. These changes are often studied with imaging techniques that overlook the temporal granularity at which language processes occur. By contrast, electrophysiological measures provide excellent temporal resolution. To test the suitability of magnetoencephalography (MEG) to track language‐related neuroplasticity, the present study aimed at establishing the spectro‐temporo‐spatial across‐session consistency of context‐driven picture naming in healthy individuals, using MEG in two test–retest sessions. Spectro‐temporo‐spatial test–retest consistency in a healthy population is a prerequisite for studying neuronal changes in clinical populations over time. For this purpose, 15 healthy speakers were tested with MEG while performing a context‐driven picture‐naming task at two time points. Participants read a sentence missing the final word and named a picture completing the sentence. Sentences were constrained or unconstrained toward the picture, such that participants could either retrieve the picture name through sentence context (constrained sentences), or could only name it after the picture appeared (unconstrained sentences). The context effect (constrained versus unconstrained) in picture‐naming times had a strong effect size and high across‐session consistency. The context MEG results revealed alpha–beta power decreases (10–20 Hz) in the left temporal and inferior parietal lobule that were consistent across both sessions. As robust spectro‐temporo‐spatial findings in a healthy population are required for working toward longitudinal patient studies, we conclude that using context‐driven language production and MEG is a suitable way to examine language‐related neuroplasticity after brain damage.
Collapse
Affiliation(s)
| | - Vitória Piai
- Donders Center for Cognition, Radboud University, Nijmegen, The Netherlands.,Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Eichert N, Robinson EC, Bryant KL, Jbabdi S, Jenkinson M, Li L, Krug K, Watkins KE, Mars RB. Cross-species cortical alignment identifies different types of anatomical reorganization in the primate temporal lobe. eLife 2020; 9:e53232. [PMID: 32202497 PMCID: PMC7180052 DOI: 10.7554/elife.53232] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/19/2020] [Indexed: 01/03/2023] Open
Abstract
Evolutionary adaptations of temporo-parietal cortex are considered to be a critical specialization of the human brain. Cortical adaptations, however, can affect different aspects of brain architecture, including local expansion of the cortical sheet or changes in connectivity between cortical areas. We distinguish different types of changes in brain architecture using a computational neuroanatomy approach. We investigate the extent to which between-species alignment, based on cortical myelin, can predict changes in connectivity patterns across macaque, chimpanzee, and human. We show that expansion and relocation of brain areas can predict terminations of several white matter tracts in temporo-parietal cortex, including the middle and superior longitudinal fasciculus, but not the arcuate fasciculus. This demonstrates that the arcuate fasciculus underwent additional evolutionary modifications affecting the temporal lobe connectivity pattern. This approach can flexibly be extended to include other features of cortical organization and other species, allowing direct tests of comparative hypotheses of brain organization.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Emma C Robinson
- Biomedical Engineering Department, King’s College LondonLondonUnited Kingdom
| | - Katherine L Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory UniversityAtlantaUnited States
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
- Institute of Biology, Otto-von-Guericke-Universität MagdeburgMagdeburgGermany
- Leibniz-Insitute for NeurobiologyMagdeburgGermany
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
32
|
Hagoort P. The meaning-making mechanism(s) behind the eyes and between the ears. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190301. [PMID: 31840590 PMCID: PMC6939349 DOI: 10.1098/rstb.2019.0301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/10/2019] [Indexed: 11/12/2022] Open
Abstract
In this contribution, the following four questions are discussed: (i) where is meaning?; (ii) what is meaning?; (iii) what is the meaning of mechanism?; (iv) what are the mechanisms of meaning? I will argue that meanings are in the head. Meanings have multiple facets, but minimally one needs to make a distinction between single word meanings (lexical meaning) and the meanings of multi-word utterances. The latter ones cannot be retrieved from memory, but need to be constructed on the fly. A mechanistic account of the meaning-making mind requires an analysis at both a functional and a neural level, the reason being that these levels are causally interdependent. I will show that an analysis exclusively focusing on patterns of brain activation lacks explanatory power. Finally, I shall present an initial sketch of how the dynamic interaction between temporo-parietal areas and inferior frontal cortex might instantiate the interpretation of linguistic utterances in the context of a multimodal setting and ongoing discourse information. This article is part of the theme issue 'Towards mechanistic models of meaning composition'.
Collapse
Affiliation(s)
- Peter Hagoort
- Max Planck Institute for Psycholinguistics, PO Box 310, 6500 AH Nijmegen, The Netherlands
| |
Collapse
|
33
|
Martin N, Dell GS. Maintenance Versus Transmission Deficits: The Effect of Delay on Naming Performance in Aphasia. Front Hum Neurosci 2019; 13:406. [PMID: 31827429 PMCID: PMC6890832 DOI: 10.3389/fnhum.2019.00406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/01/2019] [Indexed: 11/13/2022] Open
Abstract
We propose that deficits in lexical retrieval can involve difficulty in transmission of activation between processing levels, or difficulty in maintaining activation. In support, we present an investigation of picture naming by persons with aphasia in which the naming response is generated after a 1 s (sec) cue to respond in one condition or a 5 s cue to respond in another. Some individuals did better after 5 s, some did worse after 5 s, and some were not impacted by the delay. It is suggested that better performance after 5 s indicates a transmission deficit and that worse performance after 5 s indicates a maintenance deficit. To support this hypothesis, we adapted the two-step semantic-phonological model of lexical retrieval (Schwartz et al., 2006) so that it can simulate the passage of time and can simulate lesions in transmission (its semantic and phonological connection strength parameters) and/or maintenance (its decay parameter). The naming error patterns after 1 and 5 s for each participant were successfully fit to the model. Persons who did better after 5 s were found to have low connection strength parameters, persons who did worse after 5 s were simulated with an increased decay rate, and persons whose performance did not differ with delay were found to have lesions of both types. Some potential theoretical and clinical implications are discussed.
Collapse
Affiliation(s)
- Nadine Martin
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, United States
| | - Gary S. Dell
- Beckman Institute and Department of Psychology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
34
|
Eichert N, Verhagen L, Folloni D, Jbabdi S, Khrapitchev AA, Sibson NR, Mantini D, Sallet J, Mars RB. What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex 2019; 118:107-115. [PMID: 29937266 PMCID: PMC6699597 DOI: 10.1016/j.cortex.2018.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 11/27/2022]
Abstract
Evolutionary adaptations of the human brain are the basis for our unique abilities such as language. An expansion of the arcuate fasciculus (AF), the dorsal language tract, in the human lineage involving left lateralization is considered canonical, but this hypothesis has not been tested in relation to other architectural adaptations in the human brain. Using diffusion-weighted MRI, we examined AF in the human and macaque and quantified species differences in white matter architecture and surface representations. To compare surface results in the two species, we transformed macaque representations to human space using a landmark-based monkey-to-human cortical expansion model. We found that the human dorsal AF, but not the ventral inferior fronto-occipital fasciculus (IFO), is left-lateralized. In the monkey AF is not lateralized. Moreover, compared to the macaque, human AF is relatively increased with respect to IFO. A comparison of human and transformed macaque surface representations suggests that cortical expansion alone cannot account for the species differences in the surface representation of AF. Our results show that the human AF has undergone critical anatomical modifications in comparison with the macaque AF. More generally, this work demonstrates that studies on the human brain specializations underlying the language connectome can benefit from current methodological advances in comparative neuroanatomy.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Dante Mantini
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Research Centre for Motor Control and Neuroplasticity, KU Leuven, Heverlee, Belgium
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
35
|
Akinina Y, Dragoy O, Ivanova MV, Iskra EV, Soloukhina OA, Petryshevsky AG, Fedinа ON, Turken AU, Shklovsky VM, Dronkers NF. Grey and white matter substrates of action naming. Neuropsychologia 2019; 131:249-265. [PMID: 31129278 PMCID: PMC6650369 DOI: 10.1016/j.neuropsychologia.2019.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Despite a persistent interest in verb processing, data on the neural underpinnings of verb retrieval are fragmentary. The present study is the first to analyze the contributions of both grey and white matter damage affecting verb retrieval through action naming in stroke. We used voxel-based lesion-symptom mapping (VLSM) with an action naming task in 40 left-hemisphere stroke patients. Within the grey matter, we revealed the critical involvement of the left precentral and inferior frontal gyri, insula, and parts of basal ganglia. An overlay of white matter tract probability masks on the VLSM lesion map revealed involvement of left-hemisphere long and short association tracts with terminations in the frontal areas; and several projection tracts. The involvement of these structures is interpreted in the light of existing picture naming models, semantic control processes, and the embodiment cognition framework. Our results stress the importance of both cortico-cortical and cortico-subcortical networks of language processing.
Collapse
Affiliation(s)
- Yu Akinina
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; University of Groningen, Graduate School for the Humanities, P.O. Box 716, NL-9700, AS Groningen, Groningen, the Netherlands.
| | - O Dragoy
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; Federal Center for Cerebrovascular Pathology and Stroke, Department of Medical Rehabilitation, 1/10 Ostrovityanova Street, 117342, Moscow, Russia
| | - M V Ivanova
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; University of California, Berkeley, Dept. of Psychology, 2121 Berkeley Way, 94704, Berkeley, CA, USA; Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road 126R, 94553, Martinez, CA, USA
| | - E V Iskra
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia
| | - O A Soloukhina
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia
| | - A G Petryshevsky
- Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia
| | - O N Fedinа
- Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia; Medicine and Nuclear Technology Ltd., 1/133 Akademika Kurchatova Street, 123182, Moscow, Russia
| | - A U Turken
- Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road 126R, 94553, Martinez, CA, USA
| | - V M Shklovsky
- Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia
| | - N F Dronkers
- University of California, Berkeley, Dept. of Psychology, 2121 Berkeley Way, 94704, Berkeley, CA, USA; Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road 126R, 94553, Martinez, CA, USA; University of California, Davis, Dept. of Neurology, Sacramento, CA, USA
| |
Collapse
|
36
|
Moulton E, Magno S, Valabregue R, Amor-Sahli M, Pires C, Lehéricy S, Leger A, Samson Y, Rosso C. Acute Diffusivity Biomarkers for Prediction of Motor and Language Outcome in Mild-to-Severe Stroke Patients. Stroke 2019; 50:2050-2056. [DOI: 10.1161/strokeaha.119.024946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and Purpose—
Early severity of stroke symptoms—especially in mild-to-severe stroke patients—are imperfect predictors of long-term motor and aphasia outcome. Motor function and language processing heavily rely on the preservation of important white matter fasciculi in the brain. Axial diffusivity (AD) from the diffusion tensor imaging model has repeatedly shown to accurately reflect acute axonal damage and is thus optimal to probe the integrity of important white matter bundles and their relationship with long-term outcome. Our aim was to investigate the independent prognostic value of the AD of white matter tracts in the motor and language network evaluated at 24 hours poststroke for motor and aphasia outcome at 3 months poststroke.
Methods—
Seventeen (motor cohort) and 28 (aphasia cohort) thrombolyzed patients with initial mild-to-severe stroke underwent a diffusion tensor imaging sequence at 24 hours poststroke. Motor and language outcome were evaluated at 3 months poststroke with a composite motor score and the aphasia handicap scale. We first used stepwise regression to determine which classic (age, initial motor or aphasia severity, and lesion volume) and imaging (ratio of affected/unaffected AD of motor and language fasciculi) factors were related to outcome. Second, to determine the specificity of our a priori choices of fasciculi, we performed voxel-based analyses to determine if the same, additional, or altogether new regions were associated with long-term outcome.
Results—
The ratio of AD in the corticospinal tract was the sole predictor of long-term motor outcome, and the ratio of AD in the arcuate fasciculus—along with age and initial aphasia severity—was an independent predictor of 3-month aphasia outcome. White matter regions overlapping with these fasciculi naturally emerged in the corresponding voxel-based analyses.
Conclusions—
AD of the corticospinal tract and arcuate fasciculus are effective biomarkers of long-term motor and aphasia outcome, respectively.
Collapse
Affiliation(s)
- Eric Moulton
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
| | - Serena Magno
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
| | - Romain Valabregue
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France (S.L., R.V.)
| | - Melika Amor-Sahli
- Department of Neuroradiology, AP-HP (M.A.-S., S.L.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Christine Pires
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- Centre de Neuro-Imagerie de Recherche, CENIR, ICM, Paris, France (S.L., R.V.)
- ICM team Movement Investigation and Therapeutics (S.L., C.R.)
- Department of Neuroradiology, AP-HP (M.A.-S., S.L.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Leger
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Yves Samson
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| | - Charlotte Rosso
- From the Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France (E.M., S.M., R.V., S.L., Y.S., C.R.)
- ICM team Movement Investigation and Therapeutics (S.L., C.R.)
- AP-HP, Urgences Cérébro-Vasculaires (C.P., A.L., Y.S., C.R.), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
37
|
Ries SK, Piai V, Perry D, Griffin S, Jordan K, Henry R, Knight RT, Berger MS. Roles of ventral versus dorsal pathways in language production: An awake language mapping study. BRAIN AND LANGUAGE 2019; 191:17-27. [PMID: 30769167 PMCID: PMC6402581 DOI: 10.1016/j.bandl.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Human language is organized along two main processing streams connecting posterior temporal cortex and inferior frontal cortex in the left hemisphere, travelling dorsal and ventral to the Sylvian fissure. Some views propose a dorsal motor versus ventral semantic division. Others propose division by combinatorial mechanism, with the dorsal stream responsible for combining elements into a sequence and the ventral stream for forming semantic dependencies independent of sequential order. We acquired data from direct cortical stimulation in the left hemisphere in 17 neurosurgical patients and subcortical resection in a subset of 10 patients as part of awake language mapping. Two language tasks were employed: a sentence generation (SG) task tested the ability to form sequential and semantic dependencies, and a picture-word interference (PWI) task manipulated semantic interference. Results show increased error rates in the SG versus PWI task during subcortical testing in the dorsal stream territory, and high error rates in both tasks in the ventral stream territory. Connectivity maps derived from diffusion imaging and seeded in the tumor sites show that patients with more errors in the SG than in the PWI task had tumor locations associated with a dorsal stream connectivity pattern. Patients with the opposite pattern of results had tumor locations associated with a more ventral stream connectivity pattern. These findings provide initial evidence using fiber tract disruption with electrical stimulation that the dorsal pathways are critical for organizing words in a sequence necessary for sentence generation, and the ventral pathways are critical for processing semantic dependencies.
Collapse
Affiliation(s)
- S K Ries
- School of Speech, Language, and Hearing Sciences, San Diego State University, United States; Center for Clinical and Cognitive Neuroscience, San Diego State University, United States; Joint Doctoral Program in Language and Communicative Disorders, San Diego State University and University of California San Diego, United States.
| | - V Piai
- Radboud University, Donders Institute for Brain Cognition and Behaviour, Donders Centre for Cognition, Nijmegen, the Netherlands; Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Psychology, Nijmegen, the Netherlands
| | - D Perry
- University of California San Francisco, Department of Neurological Surgery, United States
| | - S Griffin
- University of California Berkeley, Department of Psychology and the Helen Wills Neuroscience Institute, United States
| | - K Jordan
- University of California San Francisco, Department of Neurology, United States; Joint Doctoral Program in Bioengineering, University of California San Francisco and Berkeley, United States
| | - R Henry
- University of California San Francisco, Department of Neurology, United States
| | - R T Knight
- University of California Berkeley, Department of Psychology and the Helen Wills Neuroscience Institute, United States
| | - M S Berger
- University of California San Francisco, Department of Neurological Surgery, United States
| |
Collapse
|
38
|
Abstract
According to the competition account of lexical selection in word production, conceptually driven word retrieval involves the activation of a set of candidate words in left temporal cortex and competitive selection of the intended word from this set, regulated by frontal cortical mechanisms. However, the relative contribution of these brain regions to competitive lexical selection is uncertain. In the present study, five patients with left prefrontal cortex lesions (overlapping in ventral and dorsal lateral cortex), eight patients with left lateral temporal cortex lesions (overlapping in middle temporal gyrus), and 13 matched controls performed a picture-word interference task. Distractor words were semantically related or unrelated to the picture, or the name of the picture (congruent condition). Semantic interference (related vs. unrelated), tapping into competitive lexical selection, was examined. An overall semantic interference effect was observed for the control and left-temporal groups separately. The left-frontal patients did not show a reliable semantic interference effect as a group. The left-temporal patients had increased semantic interference in the error rates relative to controls. Error distribution analyses indicated that these patients had more hesitant responses for the related than for the unrelated condition. We propose that left middle temporal lesions affect the lexical activation component, making lexical selection more susceptible to errors.
Collapse
|
39
|
Roelofs A. One hundred fifty years after Donders: Insights from unpublished data, a replication, and modeling of his reaction times. Acta Psychol (Amst) 2018; 191:228-233. [PMID: 30343095 DOI: 10.1016/j.actpsy.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/25/2022] Open
Abstract
Mental processes take a measurable amount of time, which was discovered by Donders one hundred fifty years ago. He reports process durations in his classic study with the a-, b-, and c-methods (i.e., simple, choice, go/no-go) using a speech repetition task. His reaction time pattern was a < c < b. He reasoned that the c - a difference gives the discrimination duration, and the b - c difference the choice duration. A few years later, Wundt criticized the c-method by arguing that it does involve a choice (i.e., whether or not to respond, which is an act of executive control), whereas Donders maintained that it may not involve full discrimination. The substance of this historical controversy relates closely to modern issues in the study of reaction times. Here, I show that an analysis of unpublished data from a handwritten laboratory notebook of Donders reveals no b - c difference for his students, supporting Wundt's concern. Moreover, a replication of Donders' study using his original stimulus lists yielded only a small b - c difference for myself, supporting Wundt. A computer simulation using a modern model of speech repetition indicates that the difference between Donders and his students may plausibly result from choice in the c-method. To conclude, unpublished data, a replication, and modern modeling resolve a 150-year-old issue, stressing the importance of examining individual differences and executive control in performance.
Collapse
|
40
|
An intracerebral exploration of functional connectivity during word production. J Comput Neurosci 2018; 46:125-140. [DOI: 10.1007/s10827-018-0699-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022]
|
41
|
Botezatu MR, Mirman D. Impaired Lexical Selection and Fluency in Post-Stroke Aphasia. APHASIOLOGY 2018; 33:667-688. [PMID: 31598028 PMCID: PMC6785054 DOI: 10.1080/02687038.2018.1508637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/26/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Deficits in fluent language production are a hallmark of aphasia and may arise from impairments at different levels in the language system. It has been proposed that difficulty resolving lexical competition contributes to fluency deficits. AIMS The present study tested this hypothesis in a novel way: by examining whether narrative speech production fluency is associated with difficulty resolving lexical competition in spoken word recognition as measured by sensitivity to phonological neighborhood density. METHODS & PROCEDURES Nineteen participants with aphasia and 15 neurologically intact older adults identified spoken words that varied in phonological neighborhood density and were presented in moderate noise. OUTCOMES & RESULTS Neurologically intact participants exhibited the standard inhibitory effect of phonological neighborhood density on response times: slower recognition of spoken words from denser neighborhoods. Among participants with aphasia, the inhibitory effect of phonological neighborhood density (less accurate recognition of spoken words from denser neighborhoods) was smaller for participants with greater fluency. The neighborhood effect was larger for participants with greater receptive vocabulary knowledge, indicating that the fluency effect was not a result of general lexical deficits. CONCLUSIONS These results are consistent with the hypothesis that impaired lexical selection is a contributing factor in fluency deficits in post-stroke aphasia.
Collapse
Affiliation(s)
- Mona Roxana Botezatu
- Department of Communication Science and Disorders, University of Missouri, Columbia, MO, 65211, USA, ,
| | - Daniel Mirman
- Department of Psychology, University of Alabama, Birmingham, AL, 35294, USA, ;
- Moss Rehabilitation Research Institute, Elkins Park, PA, 19027, USA
| |
Collapse
|
42
|
Okada K, Matchin W, Hickok G. Phonological Feature Repetition Suppression in the Left Inferior Frontal Gyrus. J Cogn Neurosci 2018; 30:1549-1557. [PMID: 29877763 DOI: 10.1162/jocn_a_01287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Models of speech production posit a role for the motor system, predominantly the posterior inferior frontal gyrus, in encoding complex phonological representations for speech production, at the phonemic, syllable, and word levels [Roelofs, A. A dorsal-pathway account of aphasic language production: The WEAVER++/ARC model. Cortex, 59(Suppl. C), 33-48, 2014; Hickok, G. Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13, 135-145, 2012; Guenther, F. H. Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39, 350-365, 2006]. However, phonological theory posits subphonemic units of representation, namely phonological features [Chomsky, N., & Halle, M. The sound pattern of English, 1968; Jakobson, R., Fant, G., & Halle, M. Preliminaries to speech analysis. The distinctive features and their correlates. Cambridge, MA: MIT Press, 1951], that specify independent articulatory parameters of speech sounds, such as place and manner of articulation. Therefore, motor brain systems may also incorporate phonological features into speech production planning units. Here, we add support for such a role with an fMRI experiment of word sequence production using a phonemic similarity manipulation. We adapted and modified the experimental paradigm of Oppenheim and Dell [Oppenheim, G. M., & Dell, G. S. Inner speech slips exhibit lexical bias, but not the phonemic similarity effect. Cognition, 106, 528-537, 2008; Oppenheim, G. M., & Dell, G. S. Motor movement matters: The flexible abstractness of inner speech. Memory & Cognition, 38, 1147-1160, 2010]. Participants silently articulated words cued by sequential visual presentation that varied in degree of phonological feature overlap in consonant onset position: high overlap (two shared phonological features; e.g., /r/ and /l/) or low overlap (one shared phonological feature, e.g., /r/ and /b/). We found a significant repetition suppression effect in the left posterior inferior frontal gyrus, with increased activation for phonologically dissimilar words compared with similar words. These results suggest that phonemes, particularly phonological features, are part of the planning units of the motor speech system.
Collapse
|
43
|
Mars RB, Eichert N, Jbabdi S, Verhagen L, Rushworth MF. Connectivity and the search for specializations in the language-capable brain. Curr Opin Behav Sci 2018; 21:19-26. [PMID: 33898657 PMCID: PMC7610656 DOI: 10.1016/j.cobeha.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The search for the anatomical basis of language has traditionally been a search for specializations. More recently such research has focused both on aspects of brain organization that are unique to humans and aspects shared with other primates. This work has mostly concentrated on the architecture of connections between brain areas. However, as specializations can take many guises, comparison of anatomical organization across species is often complicated. We demonstrate how viewing different types of specializations within a common framework allows one to better appreciate both shared and unique aspects of brain organization. We illustrate this point by discussing recent insights into the anatomy of the dorsal language pathway to the frontal cortex and areas for laryngeal control in the motor cortex.
Collapse
Affiliation(s)
- Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Matthew Fs Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Lee DK, Fedorenko E, Simon MV, Curry WT, Nahed BV, Cahill DP, Williams ZM. Neural encoding and production of functional morphemes in the posterior temporal lobe. Nat Commun 2018; 9:1877. [PMID: 29760465 PMCID: PMC5951905 DOI: 10.1038/s41467-018-04235-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 04/13/2018] [Indexed: 11/17/2022] Open
Abstract
Morphemes are the smallest meaning-carrying units in human language, and are among the most basic building blocks through which humans express specific ideas and concepts. By using time-resolved cortical stimulations, neural recordings, and focal lesion evaluations, we show that inhibition of a small cortical area within the left dominant posterior–superior temporal lobe selectively impairs the ability to produce appropriate functional morphemes but does not distinctly affect semantic and lexical retrieval, comprehension, or articulation. Additionally, neural recordings within this area reveal the localized encoding of morphological properties and their planned production prior to speech onset. Finally, small lesions localized to the gray matter in this area result in a selective functional morpheme-production deficit. Collectively, these findings reveal a detailed division of linguistic labor within the posterior–superior temporal lobe and suggest that functional morpheme processing constitutes an operationally discrete step in the series of computations essential to language production. Functional morphemes allow us to express details about objects, events, and their relationships. Here, authors show that inhibiting a small cortical area within left posterior superior temporal lobe selectively impairs the ability to produce functional morphemes but does not impair other linguistic abilities.
Collapse
Affiliation(s)
- Daniel K Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - Evelina Fedorenko
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA.,Harvard Program in Speech and Hearing Bioscience, Cambridge, 02138, MA, USA.,Massachusetts Institute of Technology, McGovern Institute for Brain Research, Cambridge, 02139, MA, USA
| | - Mirela V Simon
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - Dan P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA. .,Harvard-MIT Division of Health Sciences and Technology, Boston, 02115, MA, USA. .,Program in Neuroscience, Harvard Medical School, Boston, 02115, MA, USA.
| |
Collapse
|
45
|
Roelofs A. A unified computational account of cumulative semantic, semantic blocking, and semantic distractor effects in picture naming. Cognition 2018; 172:59-72. [DOI: 10.1016/j.cognition.2017.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
|
46
|
Chen Q, Middleton E, Mirman D. Words fail: Lesion-symptom mapping of errors of omission in post-stroke aphasia. J Neuropsychol 2018; 13:183-197. [PMID: 29411521 DOI: 10.1111/jnp.12148] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Impaired object naming is a core deficit in post-stroke aphasia, which can manifest as errors of commission - producing an incorrect word or a non-word - or as errors of omission - failing to attempt to name the object. Detailed behavioural, computational, and neurological investigations of errors of commission have played a key role in the development of neurocognitive models of word production. In contrast, the neurocognitive basis of omission errors is radically underspecified despite being a prevalent phenomenon in aphasia and other populations. The prevalence of omission errors makes their neurocognitive basis important for characterizing an individual's deficits and, ideally, for personalizing treatment and evaluating treatment outcomes. This study leveraged established relationships between lesion location and errors of commission to investigate omission errors in picture naming. Omission error rates from the Philadelphia Naming Test for 123 individuals with post-stroke aphasia were analysed using support vector regression lesion-symptom mapping. Omission errors were most strongly associated with left frontal and mid-anterior temporal lobe lesions. Computational model analysis further showed that omission errors were positively associated with impaired semantically driven lexical retrieval rather than phonological retrieval. These results suggest that errors of omission in aphasia predominantly arise from lexical-semantic deficits in word retrieval and selection from a competitor set.
Collapse
Affiliation(s)
- Qi Chen
- School of Psychology, Center for Studies of Psychological Application and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Erica Middleton
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Daniel Mirman
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA.,Department of Psychology, University of Alabama at Birmingham, USA
| |
Collapse
|
47
|
Rossi E, Cheng H, Kroll JF, Diaz MT, Newman SD. Changes in White-Matter Connectivity in Late Second Language Learners: Evidence from Diffusion Tensor Imaging. Front Psychol 2017; 8:2040. [PMID: 29209263 PMCID: PMC5702476 DOI: 10.3389/fpsyg.2017.02040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/07/2017] [Indexed: 01/20/2023] Open
Abstract
Morphological brain changes as a consequence of new learning have been widely established. Learning a second language (L2) is one such experience that can lead to rapid structural neural changes. However, still relatively little is known about how levels of proficiency in the L2 and the age at which the L2 is learned influence brain neuroplasticity. The goal of this study is to provide novel evidence for the effect of bilingualism on white matter structure in relatively proficient but late L2 learners who acquired the second language after early childhood. Overall, the results demonstrate a significant effect on white matter fractional anisotropy (FA) as a function of L2 learning. Higher FA values were found in a broad white matter network including the anterior thalamic radiation (ATR), the inferior fronto-occipital fasciculus (IFOF), the Uncinate Fasciculus (UF), and the inferior longitudinal fasciculus (ILF). Moreover, FA values were correlated with age of L2 acquisition, suggesting that learning an L2, even past childhood, induces neural changes. Finally, these results provide some initial evidence that variability in the age of L2 acquisition has important consequences for neural plasticity.
Collapse
Affiliation(s)
- Eleonora Rossi
- Department of Psychology and Sociology, California State Polytechnic University, Pomona, Pomona, CA, United States
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Hu Cheng
- Department of Psychology, Indiana University, Bloomington, IN, United States
| | - Judith F. Kroll
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Michele T. Diaz
- Department of Psychology, Pennsylvania State University, University Park, PA, United States
| | - Sharlene D. Newman
- Department of Psychology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
48
|
Berthier ML, De-Torres I, Paredes-Pacheco J, Roé-Vellvé N, Thurnhofer-Hemsi K, Torres-Prioris MJ, Alfaro F, Moreno-Torres I, López-Barroso D, Dávila G. Cholinergic Potentiation and Audiovisual Repetition-Imitation Therapy Improve Speech Production and Communication Deficits in a Person with Crossed Aphasia by Inducing Structural Plasticity in White Matter Tracts. Front Hum Neurosci 2017; 11:304. [PMID: 28659776 PMCID: PMC5470532 DOI: 10.3389/fnhum.2017.00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Donepezil (DP), a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014). Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia). A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day) which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy) during 8 weeks (Endpoint 1). Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR) during 3 months (Endpoint 2). Language evaluations, diffusion weighted imaging (DWI), and voxel-based morphometry (VBM) were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these tracts. In conclusion, cholinergic potentiation alone and combined with a model-based aphasia therapy improved language deficits by promoting structural plastic changes in right white matter tracts.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain
| | - Irene De-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Unit of Physical Medicine and Rehabilitation, Regional University Hospital, MalagaMalaga, Spain
| | - José Paredes-Pacheco
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Núria Roé-Vellvé
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Karl Thurnhofer-Hemsi
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain.,Department of Computer Languages and Computer Science, Superior Technical School of Engineering in Informatics, University of MalagaMalaga, Spain
| | - María J Torres-Prioris
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Francisco Alfaro
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of MalagaMalaga, Spain
| | - Ignacio Moreno-Torres
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Spanish Language I, University of MalagaMalaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga, University of MalagaMalaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of MalagaMalaga, Spain
| |
Collapse
|
49
|
Hoedemaker RS, Ernst J, Meyer AS, Belke E. Language production in a shared task: Cumulative Semantic Interference from self- and other-produced context words. Acta Psychol (Amst) 2017; 172:55-63. [PMID: 27907879 DOI: 10.1016/j.actpsy.2016.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/17/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022] Open
Abstract
This study assessed the effects of semantic context in the form of self-produced and other-produced words on subsequent language production. Pairs of participants performed a joint picture naming task, taking turns while naming a continuous series of pictures. In the single-speaker version of this paradigm, naming latencies have been found to increase for successive presentations of exemplars from the same category, a phenomenon known as Cumulative Semantic Interference (CSI). As expected, the joint-naming task showed a within-speaker CSI effect, such that naming latencies increased as a function of the number of category exemplars named previously by the participant (self-produced items). Crucially, we also observed an across-speaker CSI effect, such that naming latencies slowed as a function of the number of category members named by the participant's task partner (other-produced items). The magnitude of the across-speaker CSI effect did not vary as a function of whether or not the listening participant could see the pictures their partner was naming. The observation of across-speaker CSI suggests that the effect originates at the conceptual level of the language system, as proposed by Belke's (2013) Conceptual Accumulation account. Whereas self-produced and other-produced words both resulted in a CSI effect on naming latencies, post-experiment free recall rates were higher for self-produced than other-produced items. Together, these results suggest that both speaking and listening result in implicit learning at the conceptual level of the language system but that these effects are independent of explicit learning as indicated by item recall.
Collapse
|
50
|
Bridging computational approaches to speech production: The semantic-lexical-auditory-motor model (SLAM). Psychon Bull Rev 2016. [PMID: 26223468 DOI: 10.3758/s13423-015-0903-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Speech production is studied from both psycholinguistic and motor-control perspectives, with little interaction between the approaches. We assessed the explanatory value of integrating psycholinguistic and motor-control concepts for theories of speech production. By augmenting a popular psycholinguistic model of lexical retrieval with a motor-control-inspired architecture, we created a new computational model to explain speech errors in the context of aphasia. Comparing the model fits to picture-naming data from 255 aphasic patients, we found that our new model improves fits for a theoretically predictable subtype of aphasia: conduction. We discovered that the improved fits for this group were a result of strong auditory-lexical feedback activation, combined with weaker auditory-motor feedforward activation, leading to increased competition from phonologically related neighbors during lexical selection. We discuss the implications of our findings with respect to other extant models of lexical retrieval.
Collapse
|