1
|
Clewett D, Huang R, Davachi L. Locus coeruleus activation "resets" hippocampal event representations and separates adjacent memories. Neuron 2025:S0896-6273(25)00360-5. [PMID: 40482639 DOI: 10.1016/j.neuron.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/13/2025] [Accepted: 05/13/2025] [Indexed: 06/11/2025]
Abstract
Memories reflect the ebb and flow of experiences, capturing distinct events from our lives. Using a combination of functional magnetic resonance imaging (fMRI), neuromelanin imaging, and pupillometry, we show that arousal and locus coeruleus (LC) activation segment continuous experiences into discrete memories. As sequences unfold, encountering a context shift or event boundary triggers pupil-linked arousal and LC processes that predict later memory separation. Boundaries, furthermore, promote temporal pattern separation within the left hippocampal dentate gyrus, which correlates with heightened LC responses to those same transition points. Unlike transient LC effects, indirect structural and functional markers of elevated background LC activation correlate with reduced arousal-related LC and pupil responses at boundaries, suggesting that hyperarousal disrupts event segmentation. Our findings support the idea that arousal mechanisms initiate a neural and memory "reset" in response to significant changes, fundamentally shaping the episodes that define episodic memory.
Collapse
Affiliation(s)
- David Clewett
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA.
| | - Ringo Huang
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY 10027, USA; Nathan Kline Institute, Orangeburg, NY 10962, USA
| |
Collapse
|
2
|
Smegal LF, Baillet M, Schneider C, Jutten RJ, Boyle R, Rentz DM, Johnson KA, Sperling RA, Papp KV, Jacobs HIL. Lower locus coeruleus integrity is associated with diminished practice effects in clinically unimpaired older individuals. Neurobiol Aging 2025; 152:13-24. [PMID: 40315539 DOI: 10.1016/j.neurobiolaging.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 05/04/2025]
Abstract
The locus coeruleus (LC), one of the earliest structures affected by tau pathology in Alzheimer's disease (AD), plays an important role in modulating arousal and learning. In asymptomatic early stages of AD, more sensitive measures to identify subtle cognitive changes are needed. Previous studies indicate that practice effects can signal initial AD-related learning deficits. Here, we assessed the association between LC integrity and practice effects. We combined dedicated LC-MRI methods with at-home computerized face-name letter task (FNLT), a Mnemonic Similarity Task (MST), and a one card learning task (OCL) performed monthly over one year in 76 older participants from the Harvard Aging Brain Study. Higher LC integrity was related to lower MST reaction times at baseline, and lower MST and FNLT reaction times over one year. No significant associations were found with the OCL. Participants with low accuracy practice effect trajectories exhibited low baseline PACC-5 scores, whereas those with higher reaction times over time displayed low LC integrity, high entorhinal, and high amygdala tau at baseline. These findings suggest reaction times measured monthly may be a sensitive measure for early AD-related biomarkers such as LC integrity and tau burden in preclinical AD.
Collapse
Affiliation(s)
- Lindsay F Smegal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
| | - Marion Baillet
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christoph Schneider
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Roos J Jutten
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rory Boyle
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn V Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Heidi I L Jacobs
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht 6200MD, the Netherlands.
| |
Collapse
|
3
|
Moran CN, McGovern DP, Melnychuk M, Smeaton AF, Dockree PM. Oscillations of the Wandering Mind: Neural Evidence for Distinct Exploration/Exploitation Strategies in Younger and Older Adults. Hum Brain Mapp 2025; 46:e70174. [PMID: 40287841 PMCID: PMC12034160 DOI: 10.1002/hbm.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 04/29/2025] Open
Abstract
This study traced the neurophysiological signals of fluctuating attention and task-related processing to ascertain the mechanistic basis of transient strategic shifts between competing task focus and mind-wandering, as expressed by the 'exploitation/exploration' framework, and explored how they are differentially affected with age. Thirty-four younger (16 female, mean age 22 years) and 34 healthy older (20 female, mean age 71 years) adults performed the Gradual Contrast Change Detection task; monitoring a continuously presented flickering annulus for intermittent gradual contrast reductions and responding to experience sampling probes to discriminate the nature of their thoughts at discrete moments. Electroencephalography and pupillometry were concurrently recorded during target- and probe-related intervals. Older adults tracked the downward stimulus trajectory with greater sensory integrity (reduced target SSVEP amplitude) and demonstrated earlier initiation of evidence accumulation (earlier onset CPP), attenuated variability in the attentional signal (posterior alpha) and more robust phasic pupillary responses to the target, suggesting steadier attentional engagement with age. Younger adults only exhibited intermittent sensory encoding, indexed by greater variability in the sensory (SSVEP) and attentional (alpha) signals before mind-wandering relative to focused states. Attentional variability was accompanied by disrupted behavioural performance and reduced task-related neural processing, independent of age group. Together, this elucidates distinct performance strategies employed by both groups. Older adults suspended mind-wandering and implemented an exploitative oscillation strategy to circumvent their reduced cognitive resources and allay potential behavioural costs. Conversely, younger adults exhibited greater exploration through mind-wandering, utilising their greater cognitive resources to flexibly alternate between competing goal-directed and mind-wandering strategies, with limited costs.
Collapse
Affiliation(s)
- Catherine N. Moran
- Trinity College Institute of Neuroscience & School of PsychologyTrinity College DublinDublinIreland
- School of Population HealthRCSI University of Medicine & Health SciencesDublinIreland
| | - David P. McGovern
- Trinity College Institute of Neuroscience & School of PsychologyTrinity College DublinDublinIreland
- School of PsychologyDublin City UniversityDublinIreland
| | - Mike Melnychuk
- Trinity College Institute of Neuroscience & School of PsychologyTrinity College DublinDublinIreland
| | - Alan F. Smeaton
- Insight Centre for Data AnalyticsDublin City UniversityDublinIreland
| | - Paul M. Dockree
- Trinity College Institute of Neuroscience & School of PsychologyTrinity College DublinDublinIreland
| |
Collapse
|
4
|
Wu J, Toporek A, Lin Q, Goldstein FC, Loring DW, Kelberman MA, Weinshenker D, Levey AI, Lah JJ, Qiu D. Probing locus coeruleus functional network in healthy aging and its association with Alzheimer's disease biomarkers using pupillometry. Alzheimers Res Ther 2025; 17:53. [PMID: 40016783 PMCID: PMC11866666 DOI: 10.1186/s13195-025-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia, and the early detection of the disease-associated changes allows early interventions. The locus coeruleus (LC) has been reported to be the first brain region to develop tau pathology in AD. However, the functional brain network of the LC in both healthy aging and AD pathology is largely unknown due to technical difficulties associated with the small size of the LC. In this study, we used the measurement of spontaneous pupil constriction/dilation as a surrogate for LC activity to study LC brain network changes during healthy aging. METHODS Thirty-seven healthy younger and thirty-nine healthy older adults were included from the Emory Healthy Brain Study and underwent resting-state functional MRI while simultaneously tracking pupil diameter. The measurements of pupil diameter dynamics were used as reference signals in brain connectivity analysis. The connectivity of the identified networks was then compared between younger and older participants. Correlations of the identified regions with neuropsychological assessments and cerebrospinal fluid (CSF) biomarkers were also evaluated. RESULTS A brain network of 20 clusters associated with pupil diameter dynamics was identified, including the LC as well as brain regions functionally connected to the LC. The pupil diameter network was found to positively correlate with the salience network and negatively correlate with the central executive network. Functional connectivity decreased within the pupil diameter network with healthy aging. The pupil diameter connectivity was associated with memory, executive, and visuospatial functioning. CSF total tau closely correlated with pupil diameter network. CONCLUSIONS Pupil diameter dynamics provide valuable insights into LC-related processes. While they are not solely influenced by LC activity, spontaneous pupil constrictor/dilatory activity shows promise as a non-invasive approach to probe the LC network and warrants further studies to evaluate its value as an early biomarker of AD.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Aaron Toporek
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Qixiang Lin
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Felicia C Goldstein
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - David W Loring
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Michael A Kelberman
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David Weinshenker
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA.
- Joint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
5
|
Andrews R, Melnychuk M, Moran S, Walsh T, Boylan S, Dockree P. Paced Breathing Associated With Pupil Diameter Oscillations at the Same Rate and Reduced Lapses in Attention. Psychophysiology 2025; 62:e70003. [PMID: 39905564 PMCID: PMC11794674 DOI: 10.1111/psyp.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/10/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025]
Abstract
A dynamical systems model proposes that respiratory, locus coeruleus-noradrenaline (LC-NA), and cortical attentional systems interact, producing emergent states of attention. We tested a prediction that fixing respiratory pace (versus spontaneous respiration) stabilizes oscillations in pupil diameter (LC-NA proxy) and attentional state. Primary comparisons were between 'Instructed Breath' (IB) and 'No Instructed Breath' (NIB) groups. Secondarily, we investigated the effects of shifting respiratory frequency in the IB group from 0.15 to 0.1-0.15 Hz in Experiment 1 (n = 55) and 0.15-0.1 Hz only in Experiment 2 (n = 48) (replication). In the Paced Auditory Cue Entrainment (PACE) task, participants heard two auditory tones, alternating higher and lower pitches, cycling continuously. Tones acted as a breath guide for IB and an attention monitor for both groups. Participants gave rhythmic mouse responses to the transition points between tones (left for high-to-low, right for low-to-high). We derived accuracy of mouse click timing (RTm), variability in click timing (RTVL), and counts of erroneously inverting the left/right rhythm (IRs and Switches). Despite no differences between groups in RTm or RTVL, IB committed significantly fewer IRs and switches, indicating less lapses in attention during paced breathing. Differences in behavioral metrics were present across tone cycle frequencies but not exclusive to IB, so breath frequency did not appear to have a specific effect. Pupil diameter oscillations in IB closely tracked the frequency of the instructed breathing, implicating LC-NA activity as being entrained by the breath intervention. We conclude that pacing respiratory frequency did stabilize attention, possibly through stabilizing fluctuations in LC-NA.
Collapse
Affiliation(s)
- Ralph Andrews
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Michael Melnychuk
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Sarah Moran
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Teigan Walsh
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Sophie Boylan
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| | - Paul Dockree
- Trinity College Dublin, Trinity Institute of Neuroscience (TCIN)DublinIreland
| |
Collapse
|
6
|
Liu KY, Betts MJ, Hämmerer D, Düzel E, Mather M, Roiser JP, Schneider A, Spottke A, Rostamzadeh A, Schott BH, Rauchmann BS, Laske C, Janowitz D, Spruth EJ, Ersözlü E, Lüsebrink F, Jessen F, Frommann I, Kilimann I, Wiltfang J, Brustkern J, Priller J, Hellman-Regen J, Buerger K, Fliessbach K, Scheffler K, Kleineidam L, Stark M, Ewers M, Wagner M, Peters O, Dechent P, Perneczky R, Sodenkamp S, Hetzer S, Teipel S, Glanz W, Howard R. Locus coeruleus signal intensity and emotion regulation in agitation in Alzheimer's disease. Brain Commun 2024; 7:fcae457. [PMID: 39801712 PMCID: PMC11724426 DOI: 10.1093/braincomms/fcae457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Hyperphosphorylated tau accumulation is seen in the noradrenergic locus coeruleus from the earliest stages of Alzheimer's disease onwards and has been associated with symptoms of agitation. It is hypothesized that compensatory locus coeruleus-noradrenaline system overactivity and impaired emotion regulation could underlie agitation propensity, but to our knowledge this has not previously been investigated. A better understanding of the neurobiological underpinnings of agitation would help the development of targeted prevention and treatment strategies. Using a sample of individuals with amnestic mild cognitive impairment and probable mild Alzheimer's disease dementia from the German Center for Neurodegenerative Diseases (DZNE)-Longitudinal Cognitive Impairment and Dementia (DELCODE) study cohort (N = 309, aged 67-96 years, 51% female), we assessed cross-sectional relationships between a latent factor representing the functional integrity of an affect-related executive regulation network and agitation point prevalence and severity scores. In a subsample of individuals with locus coeruleus MRI imaging data (N = 37, aged 68-93 years, 49% female), we also investigated preliminary associations between locus coeruleus MRI contrast ratios (a measure of structural integrity, whole or divided into rostral, middle, and caudal thirds) and individual affect-related regulation network factor scores and agitation measures. Regression models controlled for effects of age and clinical disease severity and, for models including resting-state functional MRI connectivity variables, grey matter volume and education years. Agitation point prevalence showed a positive relationship with a latent factor representing the functional integrity (and a negative relationship with a corresponding structural measure) of the affect-related executive regulation network. Locus coeruleus MRI contrast ratios were positively associated with agitation severity (but only for the rostral third, in N = 13) and negatively associated with the functional affect-related executive regulation latent factor scores. Resting-state functional connectivity between a medial prefrontal cortex region and the left amygdala was related to locus coeruleus MRI contrast ratios. These findings implicate the involvement of locus coeruleus integrity and emotion dysregulation in agitation in Alzheimer's disease and support the presence of potential compensatory processes. At the neural level, there may be a dissociation between mechanisms underlying agitation risk per se and symptom severity. Further studies are needed to replicate and extend these findings, incorporating longitudinal designs, measures of autonomic function and non-linear modelling approaches to explore potential causal and context-dependent relationships across Alzheimer's disease stages.
Collapse
Affiliation(s)
- Kathy Y Liu
- Division of Psychiatry, University College London, London W1T 7NF, UK
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, 39120 Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Dorothea Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, 39120 Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
- Department of Psychology, University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, 39120 Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, 50924 Cologne, Germany
| | - Björn H Schott
- CBBS Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, 80336 Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
- Department of Neuroradiology, University Hospital LMU, 81377 Munich, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, 81377 Munich, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, 10117 Berlin, Germany
| | - Ersin Ersözlü
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, 10117 Berlin, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), 18147 Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Johanna Brustkern
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh EH16 4SB, UK
| | - Julian Hellman-Regen
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Neurosciences, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin, 10117 Berlin, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research (ISD), University Hospital, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), 81377 Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Melina Stark
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE, Munich), 81377 Munich, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department for Cognitive Disorders and Old Age Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, 10117 Berlin, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, 81377 Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London W6 8RP, UK
| | - Sebastian Sodenkamp
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), 18147 Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Robert Howard
- Division of Psychiatry, University College London, London W1T 7NF, UK
| |
Collapse
|
7
|
Zhou J, Lin M, Xu W. Individual differences in baseline eye movement indices: Examining the relationships between baseline pupil size, inhibitory control, and fixation stability. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1084-1095. [PMID: 39198300 DOI: 10.3758/s13415-024-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
The relationship among baseline pupil size, fixation stability, and inhibitory control were examined in this study. Participants performed a baseline eye measure in which they were instructed to stare at a fixation dot on screen for 2 min. Following the baseline eye measure, participants completed an antisaccade task to measure inhibitory control ability. We found a correlation between baseline pupil size variability and inhibitory control, as well as between fixation stability and inhibitory control. We showed that participants with better inhibitory control exhibited larger variability in pupil size, and those with better fixation stability showed superior inhibitory control ability. Overall, our results indicate that there are significant correlations between inhibitory control and baseline pupil size, as well as between inhibitory control and fixation stability.
Collapse
Affiliation(s)
- Junyi Zhou
- School of Physical Education and Sport Science, Fujian Normal University, 1 Keji Rd., Minhou District, Fuzhou, 350117, Fujian, China
| | - Min Lin
- School of Physical Education and Sport Science, Fujian Normal University, 1 Keji Rd., Minhou District, Fuzhou, 350117, Fujian, China
- Nanxing Middle School, 18 Binxi Rd., Shuitou Town, Nan'an City, Quanzhou, 362342, Fujian, China
| | - Wenxin Xu
- School of Physical Education and Sport Science, Fujian Normal University, 1 Keji Rd., Minhou District, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
8
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Identifying the bioimaging features of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. Nat Commun 2024; 15:9657. [PMID: 39511186 PMCID: PMC11543808 DOI: 10.1038/s41467-024-53878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients show potential as biomarkers for brain degeneration. To investigate AD-specific PLR and its underlying neuromodulatory sources, we combine high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction (P c ) and post-illumination pupil dilation recovery (amplitude,P d , and time, T). TheP c -driven differential analysis reveals altered visual signal processing and reduced thalamocortical activation in AD mice in comparison with wild-type (WT) control mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlights multiple brain areas associated with AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Additionally, the brain-wide functional connectivity analysis highlights the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work integrates non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on brain-wide functional changes, including neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
Affiliation(s)
- Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Weitao Man
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
9
|
Kelberman MA, Rodberg E, Arabzadeh E, Bair-Marshall CJ, Berridge CW, Berrocoso E, Breton-Provencher V, Chandler DJ, Che A, Davy O, Devilbiss DM, Downs AM, Drummond G, Dvorkin R, Fazlali Z, Froemke RC, Glennon E, Gold JI, Ito H, Jiang X, Johansen JP, Kaye AP, Kim JR, Kuo CC, Liu RJ, Liu Y, Llorca-Torralba M, McCall JG, McElligott ZA, McKinney AM, Miguelez C, Min MY, Nowlan AC, Omrani M, Poe GR, Pickering AE, Ranjbar-Slamloo Y, Razquin J, Rodenkirch C, Sales AC, Satyasambit R, Shea SD, Sur M, Tkaczynski JA, Torres-Sanchez S, Uematsu A, Vazquez CR, Vreven A, Wang Q, Waterhouse BD, Yang HW, Yang JH, Zhao L, Zouridis IS, Weinshenker D, Vazey E, Totah NK. Diversity of ancestral brainstem noradrenergic neurons across species and multiple biological factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618224. [PMID: 39464004 PMCID: PMC11507722 DOI: 10.1101/2024.10.14.618224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The brainstem region, locus coeruleus (LC), has been remarkably conserved across vertebrates. Evolution has woven the LC into wide-ranging neural circuits that influence functions as broad as autonomic systems, the stress response, nociception, sleep, and high-level cognition among others. Given this conservation, there is a strong possibility that LC activity is inherently similar across species, and furthermore that age, sex, and brain state influence LC activity similarly across species. The degree to which LC activity is homogenous across these factors, however, has never been assessed due to the small sample size of individual studies. Here, we pool data from 20 laboratories (1,855 neurons) and show diversity across both intrinsic and extrinsic factors such as species, age, sex and brain state. We use a negative binomial regression model to compare activity from male monkeys, and rats and mice of both sexes that were recorded across brain states from brain slices ex vivo or under different anesthetics or during wakefulness in vivo. LC activity differed due to complex interactions of species, sex, and brain state. The LC became more active during aging, independent of sex. Finally, in contrast to the foundational principle that all species express two distinct LC firing modes ("tonic" or "phasic"), we discovered great diversity within spontaneous LC firing patterns. Different factors were associated with higher incidence of some firing modes. We conclude that the activity of the evolutionarily-ancient LC is not conserved. Inherent differences due to age and species-sex-brain state interactions have implications for understanding the role of LC in species-specific naturalistic behavior, as well as in psychiatric disorders, cardiovascular disease, immunology, and metabolic disorders.
Collapse
Affiliation(s)
- Michael A. Kelberman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Ellen Rodberg
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, AUS
| | - Chloe J. Bair-Marshall
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Craig W. Berridge
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, School of Medicine, Biomedical Research and Innovation Institute of Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Oscar Davy
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | - Anthony M. Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabrielle Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roman Dvorkin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zeinab Fazlali
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Robert C. Froemke
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
- Department of Otolaryngology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin Glennon
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
- Department of Neurology, Weill Cornell Medicine, New York
| | - Joshua I. Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiroki Ito
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine Neurological Research Institute at Texas Children’s Hospital, 1250, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine Neurological Research Institute at Texas Children’s Hospital, 1250, Houston, TX, USA
| | | | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, USA
| | - Jenny R. Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Rong-Jian Liu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yang Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, School of Medicine, Biomedical Research and Innovation Institute of Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew M. McKinney
- Department of Neuroscience, Baylor College of Medicine Neurological Research Institute at Texas Children’s Hospital, 1250, Houston, TX, USA
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Alexandra C. Nowlan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohsen Omrani
- Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | - Gina R. Poe
- Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Anthony Edward Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Yadollah Ranjbar-Slamloo
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Jone Razquin
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Anna C. Sales
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rath Satyasambit
- RIKEN Center for Brain Science, Wako-shi Saitama, Japan
- Department of Computer Science, Tokyo Institute of Technology, Midori, Yokohama, Japan
| | | | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Sonia Torres-Sanchez
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, School of Medicine, Biomedical Research and Innovation Institute of Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Akira Uematsu
- Human Informatics and Information Research Institute, National Institute of Advanced Industrial Science and Technology, Japan
| | - Chayla R. Vazquez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Amelien Vreven
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Hsiu-Wen Yang
- Department of Biomedical Sciences, Chung-Shan Medical University, Taichung, Taiwan
| | - Jen-Hau Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Doctoral Program of Clinical and Experimental Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Liping Zhao
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Ioannis S. Zouridis
- Graduate Training Centre of Neuroscience, International Max Planck Research School (IMPRS), University of Tübingen, Tübingen, Germany
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | - Elena Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Nelson K. Totah
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
10
|
Baldock J, Kapadia S, van Steenbrugge W, McCarley J. The Effects of Light Level and Signal-to-Noise Ratio on the Task-Evoked Pupil Response in a Speech-in-Noise Task. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1964-1975. [PMID: 38690971 DOI: 10.1044/2024_jslhr-23-00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE There is increasing interest in the measurement of cognitive effort during listening tasks, for both research and clinical purposes. Quantification of task-evoked pupil responses (TEPRs) is a psychophysiological method that can be used to study cognitive effort. However, light level during cognitively demanding listening tasks may affect TEPRs, complicating interpretation of listening-related changes. The objective of this study was to examine the effects of light level on TEPRs during effortful listening across a range of signal-to-noise ratios (SNRs). METHOD Thirty-six adults without hearing loss were asked to repeat target sentences presented in background babble noise while their pupil diameter was recorded. Light level and SNRs were manipulated in a 4 × 4 repeated-measures design. Repeated-measures analyses of variance were used to measure the effects. RESULTS Peak and mean dilation were typically larger in more adverse SNR conditions (except for SNR -6 dB) and smaller in higher light levels. Differences in mean and peak dilation between SNR conditions were larger in dim light than in brighter light. CONCLUSIONS Brighter light conditions make TEPRs less sensitive to variations in listening effort across levels of SNR. Therefore, light level must be considered and reported in detail to ensure sensitivity of TEPRs and for comparisons of findings across different studies. It is recommended that TEPR testing be conducted in relatively low light conditions, considering both background illumination and screen luminance. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25676538.
Collapse
Affiliation(s)
| | - Sarosh Kapadia
- Flinders University, Adelaide, South Australia, Australia
| | | | - Jason McCarley
- Flinders University, Adelaide, South Australia, Australia
- Oregon State University, Corvallis
| |
Collapse
|
11
|
Kim AJ, Nguyen K, Mather M. Eye movements reveal age differences in how arousal modulates saliency priority but not attention processing speed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592619. [PMID: 38766110 PMCID: PMC11100628 DOI: 10.1101/2024.05.06.592619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The arousal-biased competition theory posits that inducing arousal increases attentional priority of salient stimuli while reducing priority of non-pertinent stimuli. However, unlike in young adults, older adults rarely exhibit shifts in priority under increased arousal, and prior studies have proposed different neural mechanisms to explain how arousal differentially modulates selective attention in older adults. Therefore, we investigated how the threat of unpredictable shock differentially modulates attentional control mechanisms in young and older adults by observing eye movements. Participants completed two oculomotor search tasks in which the salient distractor was typically captured by attention (singleton search) or proactively suppressed (feature search). We found that arousal did not modulate attentional priority for any stimulus among older adults nor affect the speed of attention processing in either age group. Furthermore, we observed that arousal modulated pupil sizes and found a correlation between evoked pupil responses and oculomotor function. Our findings suggest age differences in how the locus coeruleus-noradrenaline system interacts with neural networks of attention and oculomotor function.
Collapse
Affiliation(s)
- Andy Jeesu Kim
- University of Southern California, School of Gerontology
| | | | - Mara Mather
- University of Southern California, School of Gerontology
| |
Collapse
|
12
|
Johns MA, Calloway RC, Karunathilake IMD, Decruy LP, Anderson S, Simon JZ, Kuchinsky SE. Attention Mobilization as a Modulator of Listening Effort: Evidence From Pupillometry. Trends Hear 2024; 28:23312165241245240. [PMID: 38613337 PMCID: PMC11015766 DOI: 10.1177/23312165241245240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Listening to speech in noise can require substantial mental effort, even among younger normal-hearing adults. The task-evoked pupil response (TEPR) has been shown to track the increased effort exerted to recognize words or sentences in increasing noise. However, few studies have examined the trajectory of listening effort across longer, more natural, stretches of speech, or the extent to which expectations about upcoming listening difficulty modulate the TEPR. Seventeen younger normal-hearing adults listened to 60-s-long audiobook passages, repeated three times in a row, at two different signal-to-noise ratios (SNRs) while pupil size was recorded. There was a significant interaction between SNR, repetition, and baseline pupil size on sustained listening effort. At lower baseline pupil sizes, potentially reflecting lower attention mobilization, TEPRs were more sustained in the harder SNR condition, particularly when attention mobilization remained low by the third presentation. At intermediate baseline pupil sizes, differences between conditions were largely absent, suggesting these listeners had optimally mobilized their attention for both SNRs. Lastly, at higher baseline pupil sizes, potentially reflecting overmobilization of attention, the effect of SNR was initially reversed for the second and third presentations: participants initially appeared to disengage in the harder SNR condition, resulting in reduced TEPRs that recovered in the second half of the story. Together, these findings suggest that the unfolding of listening effort over time depends critically on the extent to which individuals have successfully mobilized their attention in anticipation of difficult listening conditions.
Collapse
Affiliation(s)
- M. A. Johns
- Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - R. C. Calloway
- Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - I. M. D. Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - L. P. Decruy
- Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - S. Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, USA
| | - J. Z. Simon
- Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - S. E. Kuchinsky
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, USA
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| |
Collapse
|
13
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Mapping the bioimaging marker of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572613. [PMID: 38187675 PMCID: PMC10769340 DOI: 10.1101/2023.12.20.572613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients may be used as biomarkers of brain degeneration. To characterize AD-specific PLR and its underlying neuromodulatory sources, we combined high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction ( P c ) and post-illumination pupil dilation recovery (amplitude, P d , and time, T ). The P c -driven differential analysis revealed altered visual signal processing coupled with reduced thalamocortical activation in AD mice compared with the wild-type normal mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlighted multiple brain areas related to AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Also, brain-wide functional connectivity analysis highlighted the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work combined non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
|
14
|
Koshmanova E, Berger A, Beckers E, Campbell I, Mortazavi N, Sharifpour R, Paparella I, Balda F, Berthomier C, Degueldre C, Salmon E, Lamalle L, Bastin C, Van Egroo M, Phillips C, Maquet P, Collette F, Muto V, Chylinski D, Jacobs HI, Talwar P, Sherif S, Vandewalle G. Locus coeruleus activity while awake is associated with REM sleep quality in older individuals. JCI Insight 2023; 8:e172008. [PMID: 37698926 PMCID: PMC10619502 DOI: 10.1172/jci.insight.172008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUNDThe locus coeruleus (LC) is the primary source of norepinephrine in the brain and regulates arousal and sleep. Animal research shows that it plays important roles in the transition between sleep and wakefulness, and between slow wave sleep and rapid eye movement sleep (REMS). It is unclear, however, whether the activity of the LC predicts sleep variability in humans.METHODSWe used 7-Tesla functional MRI, sleep electroencephalography (EEG), and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 33 healthy younger (~22 years old; 28 women, 5 men) and 19 older (~61 years old; 14 women, 5 men) individuals.RESULTSWe found that, in older but not in younger participants, higher LC activity, as probed during an auditory attentional task, was associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS. The results remained robust even when accounting for the age-related changes in the integrity of the LC.CONCLUSIONThese findings suggest that LC activity correlates with the perception of the sleep quality and an essential oscillatory mode of REMS, and we found that the LC may be an important target in the treatment of sleep- and age-related diseases.FUNDINGThis work was supported by Fonds National de la Recherche Scientifique (FRS-FNRS, T.0242.19 & J. 0222.20), Action de Recherche Concertée - Fédération Wallonie-Bruxelles (ARC SLEEPDEM 17/27-09), Fondation Recherche Alzheimer (SAO-FRA 2019/0025), ULiège, and European Regional Development Fund (Radiomed & Biomed-Hub).
Collapse
Affiliation(s)
- Ekaterina Koshmanova
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Alexandre Berger
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Islay Campbell
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Nasrin Mortazavi
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Roya Sharifpour
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Ilenia Paparella
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Fermin Balda
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | | | - Christian Degueldre
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Eric Salmon
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
- PsyNCog and
| | - Laurent Lamalle
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Christine Bastin
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- PsyNCog and
| | - Maxime Van Egroo
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Christophe Phillips
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- In Silico Medicine Unit, GIGA-Institute, ULiège, Liège, Belgium
| | - Pierre Maquet
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Fabienne Collette
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- PsyNCog and
| | - Vincenzo Muto
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Daphne Chylinski
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Heidi I.L. Jacobs
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Puneet Talwar
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
15
|
Bell TR, Elman JA, Beck A, Fennema-Notestine C, Gustavson DE, Hagler DJ, Jak AJ, Lyons MJ, Puckett OK, Toomey R, Franz CE, Kremen WS. Rostral-middle locus coeruleus integrity and subjective cognitive decline in early old age. J Int Neuropsychol Soc 2023; 29:763-774. [PMID: 36524301 PMCID: PMC10272292 DOI: 10.1017/s1355617722000881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Abnormal tau, a hallmark Alzheimer's disease (AD) pathology, may appear in the locus coeruleus (LC) decades before AD symptom onset. Reports of subjective cognitive decline are also often present prior to formal diagnosis. Yet, the relationship between LC structural integrity and subjective cognitive decline has remained unexplored. Here, we aimed to explore these potential associations. METHODS We examined 381 community-dwelling men (mean age = 67.58; SD = 2.62) in the Vietnam Era Twin Study of Aging who underwent LC-sensitive magnetic resonance imaging and completed the Everyday Cognition scale to measure subjective cognitive decline along with their selected informants. Mixed models examined the associations between rostral-middle and caudal LC integrity and subjective cognitive decline after adjusting for depressive symptoms, physical morbidities, and family. Models also adjusted for current objective cognitive performance and objective cognitive decline to explore attenuation. RESULTS For participant ratings, lower rostral-middle LC contrast to noise ratio (LCCNR) was associated with significantly greater subjective decline in memory, executive function, and visuospatial abilities. For informant ratings, lower rostral-middle LCCNR was associated with significantly greater subjective decline in memory only. Associations remained after adjusting for current objective cognition and objective cognitive decline in respective domains. CONCLUSIONS Lower rostral-middle LC integrity is associated with greater subjective cognitive decline. Although not explained by objective cognitive performance, such a relationship may explain increased AD risk in people with subjective cognitive decline as the LC is an important neural substrate important for higher order cognitive processing, attention, and arousal and one of the first sites of AD pathology.
Collapse
Affiliation(s)
- Tyler R. Bell
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - Jeremy A. Elman
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - Asad Beck
- Center for Neurotechnology, University of Washington, Seattle, WA, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
- Department of Radiology, University of California San Diego, San Diego, La Jolla, CA, 92093
| | - Daniel E. Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
| | - Donald J. Hagler
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Department of Radiology, University of California San Diego, San Diego, La Jolla, CA, 92093
| | - Amy J. Jak
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - Michael J Lyons
- Department of Psychology, Boston University, Boston, MA, USA, 02215
| | - Olivia K. Puckett
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - Rosemary Toomey
- Department of Psychology, Boston University, Boston, MA, USA, 02215
| | - Carol E. Franz
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego, San Diego, La Jolla, CA, 92093
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
16
|
Barry C, Wang E. Racially fair pupillometry measurements for RGB smartphone cameras using the far red spectrum. Sci Rep 2023; 13:13841. [PMID: 37620445 PMCID: PMC10449795 DOI: 10.1038/s41598-023-40796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Pupillometry is a measurement of pupil dilation commonly performed as part of neurological assessments. Prior work have demonstrated the potential for pupillometry in screening or diagnosing a number of neurological disorders including Alzheimer's Disease, Schizophrenia, and Traumatic Brain Injury. Unfortunately, the expense and inaccessibility of specialized pupilometers that image in the near infrared spectrum limit the measurement to high resource clinics or institutions. Ideally, this measurement could be available via ubiquitous devices like smartphones or tablets with integrated visible spectrum imaging systems. In the visible spectrum of RGB cameras, the melanin in the iris absorbs light such that it is difficult to distinguish the pupil aperature that appears black. In this paper, we propose a novel pupillometry technique to enable smartphone RGB cameras to effectively differentiate the pupil from the iris. The proposed system utilizes a 630 nm long-pass filter to image in the far red (630-700 nm) spectrum, where the melanin in the iris reflects light to appear brighter in constrast to the dark pupil. Using a convolutional neural network, the proposed system measures pupil diameter as it dynamically changes in a frame by frame video. Comparing across 4 different smartphone models, the pupil-iris contrast of N = 12 participants increases by an average of 451% with the proposed system. In a validation study of N = 11 participants comparing the relative pupil change in the proposed system to a Neuroptics PLR-3000 Pupillometer during a pupillary light response test, the prototype system acheived a mean absolute error of 2.4%.
Collapse
Affiliation(s)
- Colin Barry
- Electrical and Computer Engineering Department, University of California San Diego, La Jolla, CA, USA.
- Design Lab, University of California San Diego, La Jolla, CA, USA.
| | - Edward Wang
- Electrical and Computer Engineering Department, University of California San Diego, La Jolla, CA, USA
- Design Lab, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Bachman SL, Attanti S, Mather M. Isometric handgrip exercise speeds working memory responses in younger and older adults. Psychol Aging 2023; 38:305-322. [PMID: 36931831 PMCID: PMC10238670 DOI: 10.1037/pag0000728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Physiological arousal affects attention and memory, sometimes enhancing and other times impairing what we attend to and remember. In the present study, we investigated how changes in physiological arousal-induced through short bursts of isometric handgrip exercise-affected subsequent working memory performance. A sample of 57 younger (ages 18-29) and 56 older (ages 65-85) participants performed blocks of isometric handgrip exercise in which they periodically squeezed a therapy ball, alternating with blocks of an auditory working memory task. We found that, compared with those in a control group, participants who performed isometric handgrip had faster reaction times on the working memory task. Handgrip-speeded responses were observed for both younger and older participants, across working memory loads. Analysis of multimodal physiological responses indicated that physiological arousal increased during handgrip. Our findings suggest that performing short bouts of isometric handgrip exercise can improve processing speed, and they offer testable possibilities for the mechanism underlying handgrip's effects on performance. The potential for acute isometric exercise to temporarily improve processing speed may be of particular relevance for older adults who show declines in processing speed and working memory. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Sumedha Attanti
- Davis School of Gerontology, University of Southern California
| | - Mara Mather
- Davis School of Gerontology, University of Southern California
| |
Collapse
|
18
|
Koshmanova E, Berger A, Beckers E, Campbell I, Mortazavi N, Sharifpour R, Paparella I, Balda F, Berthomier C, Degueldre C, Salmon E, Lamalle L, Bastin C, Egroo MV, Phillips C, Maquet P, Collette F, Muto V, Chylinski D, Jacobs HI, Talwar P, Sherif S, Vandewalle G. In vivo Locus Coeruleus activity while awake is associated with REM sleep quality in healthy older individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527974. [PMID: 36993680 PMCID: PMC10054994 DOI: 10.1101/2023.02.10.527974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The locus coeruleus (LC) is the primary source of norepinephrine (NE) in the brain, and the LC-NE system is involved in regulating arousal and sleep. It plays key roles in the transition between sleep and wakefulness, and between slow wave sleep (SWS) and rapid eye movement sleep (REMS). However, it is not clear whether the LC activity during the day predicts sleep quality and sleep properties during the night, and how this varies as a function of age. Here, we used 7 Tesla functional Magnetic Resonance Imaging (7T fMRI), sleep electroencephalography (EEG) and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 52 healthy younger (N=33; ~22y; 28 women) and older (N=19; ~61y; 14 women) individuals. We find that, in older, but not in younger participants, higher LC activity, as probed during an auditory mismatch negativity task, is associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS (4-8Hz), which are two sleep parameters significantly correlated in our sample of older individuals. The results remain robust even when accounting for the age-related changes in the integrity of the LC. These findings suggest that the activity of the LC may contribute to the perception of the sleep quality and to an essential oscillatory mode of REMS, and that the LC may be an important target in the treatment of sleep disorders and age-related diseases.
Collapse
|
19
|
Devos H, Gustafson KM, Liao K, Ahmadnezhad P, Kuhlmann E, Estes BJ, Martin LE, Mahnken JD, Brooks WM, Burns JM. Effect of Cognitive Reserve on Physiological Measures of Cognitive Workload in Older Adults with Cognitive Impairments. J Alzheimers Dis 2023; 92:141-151. [PMID: 36710677 PMCID: PMC10023364 DOI: 10.3233/jad-220890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cognitive reserve may protect against cognitive decline. OBJECTIVE This cross-sectional study investigated the association between cognitive reserve and physiological measures of cognitive workload in older adults with cognitive impairment. METHODS 29 older adults with cognitive impairment (age: 75±6, 11 (38%) women, MoCA: 20±7) and 19 with normal cognition (age: 74±6; 11 (58%) women; MoCA: 28±2) completed a working memory test of increasing task demand (0-, 1-, 2-back). Cognitive workload was indexed using amplitude and latency of the P3 event-related potential (ERP) at electrode sites Fz, Cz, and Pz, and changes in pupillary size, converted to an index of cognitive activity (ICA). The Cognitive Reserve Index questionnaire (CRIq) evaluated Education, Work Activity, and Leisure Time as a proxy of cognitive reserve. Linear mixed models evaluated the main effects of cognitive status, CRIq, and the interaction effect of CRIq by cognitive status on ERP and ICA. RESULTS The interaction effect of CRIq total score by cognitive status on P3 ERP and ICA was not significant. However, higher CRIq total scores were associated with lower ICA (p = 0.03). The interaction effects of CRIq subscores showed that Work Activity affected P3 amplitude (p = 0.03) and ICA (p = 0.03) differently between older adults with and without cognitive impairments. Similarly, Education affected ICA (p = 0.02) differently between the two groups. No associations were observed between CRIq and P3 latency. CONCLUSION Specific components of cognitive reserve affect cognitive workload and neural efficiency differently in older adults with and without cognitive impairments.
Collapse
Affiliation(s)
- Hannes Devos
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kathleen M Gustafson
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ke Liao
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pedram Ahmadnezhad
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily Kuhlmann
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bradley J Estes
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura E Martin
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Population Health, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - William M Brooks
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Zeeman M, Figeys M, Brimmo T, Burnstad C, Hao J, Kim ES. Task-Evoked Pupillary Response as a Potential Biomarker of Dementia and Mild Cognitive Impairment: A Scoping Review. Am J Alzheimers Dis Other Demen 2023; 38:15333175231160010. [PMID: 36896819 PMCID: PMC10580717 DOI: 10.1177/15333175231160010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Pupil dilation functions as a proxy for cognitive effort and can be measured through automated pupillometry. The aim of this scoping review is to examine how individuals with cognitive impairment differ in task-evoked pupillary responses relative to cognitively healthy individuals. A systematic literature search across six databases was conducted to identify studies examining changes in pupillary responses evoked by cognitive tasks comparing patients with dementia to healthy controls. Eight articles met inclusion criteria and were included for review. Differences in task-evoked pupillary response between cognitively impaired and cognitively healthy participants were observed across studies. Pupil dilation is decreased in patients with Alzheimer's Disease compared to controls, with no difference observed in patients with mild cognitive impairment. A mild, non-significant trend towards reduced pupil dilation in patients with either Parkinson's Disease or Dementia with Lewy Bodies suggests a similar but less pronounced effect than in AD patients. Further research is required to examine the utility of task-evoked pupillary responses as a potential biomarker indexing cognitive decline in individuals transitioning to mild cognitive impairment and/or dementia.
Collapse
Affiliation(s)
- Michael Zeeman
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tolani Brimmo
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Cleo Burnstad
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Hao
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Esther S Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Communication Sciences and Disorders, University of Alberta, Edmonton, Canada
| |
Collapse
|
21
|
Hogan AL, Winston M, Barstein J, Losh M. Slower Peak Pupillary Response to Emotional Faces in Parents of Autistic Individuals. Front Psychol 2022; 13:836719. [PMID: 36304881 PMCID: PMC9595282 DOI: 10.3389/fpsyg.2022.836719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Atypical autonomic arousal has been consistently documented in autism spectrum disorder (ASD) and is thought to contribute to the social-communication phenotype of ASD. Some evidence suggests that clinically unaffected first-degree relatives of autistic individuals may also show subtle differences in indices of autonomic arousal, potentially implicating heritable pathophysiological mechanisms in ASD. This study examined pupillary responses in parents of autistic individuals to investigate evidence that atypical autonomic arousal might constitute a subclinical physiological marker of ASD heritability within families of autistic individuals. Methods Pupillary responses to emotional faces were measured in 47 ASD parents and 20 age-matched parent controls. Macro-level pupillary responses (e.g., mean, peak, latency to peak) and dynamic pupillary responses over the course of the stimulus presentation were compared between groups, and in relationship to subclinical ASD-related features in ASD parents. A small ASD group (n = 20) and controls (n = 17) were also included for exploratory analyses of parent–child correlations in pupillary response. Results Parents of autistic individuals differed in the time course of pupillary response, exhibiting a later primary peak response than controls. In ASD parents, slower peak response was associated with poorer pragmatic language and larger peak response was associated with poorer social cognition. Exploratory analyses revealed correlations between peak pupillary responses in ASD parents and mean and peak pupillary responses in their autistic children. Conclusion Differences in pupillary responses in clinically unaffected parents, together with significant correlations with ASD-related features and significant parent–child associations, suggest that pupillary responses to emotional faces may constitute an objective physiological marker of ASD genetic liability, with potential to inform the mechanistic underpinnings of ASD symptomatology.
Collapse
|
22
|
Elman JA, Puckett OK, Hagler DJ, Pearce RC, Fennema-Notestine C, Hatton SN, Lyons MJ, McEvoy LK, Panizzon MS, Reas ET, Dale AM, Franz CE, Kremen WS. Associations between MRI-assessed locus coeruleus integrity and cortical gray matter microstructure. Cereb Cortex 2022; 32:4191-4203. [PMID: 34969072 PMCID: PMC9528780 DOI: 10.1093/cercor/bhab475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/27/2023] Open
Abstract
The locus coeruleus (LC) is one of the earliest sites of tau pathology, making it a key structure in early Alzheimer's disease (AD) progression. As the primary source of norepinephrine for the brain, reduced LC integrity may have negative consequences for brain health, yet macrostructural brain measures (e.g. cortical thickness) may not be sensitive to early stages of neurodegeneration. We therefore examined whether LC integrity was associated with differences in cortical gray matter microstructure among 435 men (mean age = 67.5; range = 62-71.7). LC structural integrity was indexed by contrast-to-noise ratio (LCCNR) from a neuromelanin-sensitive MRI scan. Restriction spectrum imaging (RSI), an advanced multi-shell diffusion technique, was used to characterize cortical microstructure, modeling total diffusion in restricted, hindered, and free water compartments. Higher LCCNR (greater integrity) was associated with higher hindered and lower free water diffusion in multiple cortical regions. In contrast, no associations between LCCNR and cortical thickness survived correction. Results suggest lower LC integrity is associated with patterns of cortical microstructure that may reflect a reduction in cytoarchitectural barriers due to broader neurodegenerative processes. These findings highlight the potential utility for LC imaging and advanced diffusion measures of cortical microstructure in assessing brain health and early identification of neurodegenerative processes.
Collapse
Affiliation(s)
- Jeremy A Elman
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivia K Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rahul C Pearce
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sean N Hatton
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Emilie T Reas
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Health Care System, La Jolla, CA 92161, USA
| |
Collapse
|
23
|
Bast N, Gaigg SB, Bowler DM, Roessner V, Freitag CM, Ring M. Arousal-modulated memory encoding and retrieval in adults with autism spectrum disorder. Autism Res 2022; 15:1609-1620. [PMID: 35906845 DOI: 10.1002/aur.2784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Recently, we have shown that pupil dilation during a recognition memory task can serve as an index of memory retrieval difficulties in autism. At the time of publication, we were unaware of specific data-analysis methods that can be used to shed further light on the origins of such memory related pupil dilation. Specifically, by distinguishing "tonic" from "phasic" changes in pupil dilation and considering their temporal progression, it is possible to draw inferences about the functional integrity of a locus coeruleus-norepinephrine system (LC-NE) that is known to play a key role in regulating memory encoding and retrieval processes. We therefore apply these analyses to our previously published eye-tracking data of adults with ASD (N = 24) and neurotypical development (TD, N = 30) during the recognition memory task. In this re-analysis, we related pupil dilation during encoding and retrieval to recognition accuracy in a per-trial analysis of linear mixed models. In ASD, we replicated attenuated recognition accuracy, which was accompanied by attenuated pupil dilation during encoding and retrieval. Group differences in pupil dilation during retrieval occurred late during the trial (after 1.75 s) and indicated an altered top-down processing like attenuated attribution of semantic salience in response to previously encoded stimuli. In addition, only in the ASD group were higher pupil dilation during encoding and lower pupil dilation during retrieval associated with decreased recognition accuracy. This supports altered modulation of memory encoding and retrieval in ASD, with LC-NE phasic activity as promising underlying mechanism. LAY SUMMARY: We investigated the changes of pupil size during memory testing in autism spectrum disorder. Adults with ASD remembered fewer items correctly than neurotypical individuals (TD). This reduced memory was related to increased pupillary responses at study and decreased pupil dilation at test only for adults with ASD indicating a different modulation of memory by the locus coeruleus.
Collapse
Affiliation(s)
- Nico Bast
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Sebastian B Gaigg
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Dermot M Bowler
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Melanie Ring
- Autism Research Group, Department of Psychology, City, University of London, London, UK.,Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Vargas-Caballero M, Warming H, Walker R, Holmes C, Cruickshank G, Patel B. Vagus Nerve Stimulation as a Potential Therapy in Early Alzheimer's Disease: A Review. Front Hum Neurosci 2022; 16:866434. [PMID: 35572001 PMCID: PMC9098960 DOI: 10.3389/fnhum.2022.866434] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Cognitive dysfunction in Alzheimer's disease (AD) is caused by disturbances in neuronal circuits of the brain underpinned by synapse loss, neuronal dysfunction and neuronal death. Amyloid beta and tau protein cause these pathological changes and enhance neuroinflammation, which in turn modifies disease progression and severity. Vagal nerve stimulation (VNS), via activation of the locus coeruleus (LC), results in the release of catecholamines in the hippocampus and neocortex, which can enhance synaptic plasticity and reduce inflammatory signalling. Vagal nerve stimulation has shown promise to enhance cognitive ability in animal models. Research in rodents has shown that VNS can have positive effects on basal synaptic function and synaptic plasticity, tune inflammatory signalling, and limit the accumulation of amyloid plaques. Research in humans with invasive and non-invasive VNS devices has shown promise for the modulation of cognition. However, the direct stimulation of the vagus nerve afforded with the invasive procedure carries surgical risks. In contrast, non-invasive VNS has the potential to be a broadly available therapy to manage cognitive symptoms in early AD, however, the magnitude and specificity of its effects remains to be elucidated, and the non-inferiority of the effects of non-invasive VNS as compared with invasive VNS still needs to be established. Ongoing clinical trials with healthy individuals and patients with early AD will provide valuable information to clarify the potential benefits of non-invasive VNS in cognition and AD. Whether invasive or non-invasive VNS can produce a significant improvement on memory function and whether its effects can modify the progression of AD will require further investigation.
Collapse
Affiliation(s)
| | - Hannah Warming
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Clive Holmes
- Memory Assessment and Research Centre, Southern Health Foundation Trust, Southampton, United Kingdom
| | - Garth Cruickshank
- Queen Elizabeth Hospital Birmingham, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
25
|
Barry C, De Souza J, Xuan Y, Holden J, Granholm E, Wang EJ. At-Home Pupillometry using Smartphone Facial Identification Cameras. PROCEEDINGS OF THE SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS. CHI CONFERENCE 2022; 2022:235. [PMID: 38031623 PMCID: PMC10686294 DOI: 10.1145/3491102.3502493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
With recent developments in medical and psychiatric research surrounding pupillary response, cheap and accessible pupillometers could enable medical benefits from early neurological disease detection to measurements of cognitive load. In this paper, we introduce a novel smartphone-based pupillometer to allow for future development in clinical research surrounding at-home pupil measurements. Our solution utilizes a NIR front-facing camera for facial recognition paired with the RGB selfie camera to perform tracking of absolute pupil dilation with sub-millimeter accuracy. In comparison to a gold standard pupillometer during a pupillary light reflex test, the smartphone-based system achieves a median MAE of 0.27mm for absolute pupil dilation tracking and a median error of 3.52% for pupil dilation change tracking. Additionally, we remotely deployed the system to older adults as part of a usability study that demonstrates promise for future smartphone deployments to remotely collect data in older, inexperienced adult users operating the system themselves.
Collapse
Affiliation(s)
- Colin Barry
- Department of Electrical and Computer Engineering, University of California: San Diego La Jolla, California, USA
| | - Jessica De Souza
- Department of Electrical and Computer Engineering, University of California: San Diego La Jolla, California, USA
| | - Yinan Xuan
- Department of Electrical and Computer Engineering, University of California: San Diego La Jolla, California, USA
| | - Jason Holden
- Center for Mental Health Technology, University of California: San Diego La Jolla, California, USA
| | - Eric Granholm
- Center for Mental Health Technology, University of California: San Diego La Jolla, California, USA
| | - Edward Jay Wang
- Department of Electrical and Computer Engineering, University of California: San Diego La Jolla, California, USA
| |
Collapse
|
26
|
David M, Malhotra PA. New approaches for the quantification and targeting of noradrenergic dysfunction in Alzheimer's disease. Ann Clin Transl Neurol 2022; 9:582-596. [PMID: 35293158 PMCID: PMC8994981 DOI: 10.1002/acn3.51539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
There is clear, early noradrenergic dysfunction in Alzheimer's disease. This is likely secondary to pathological tau deposition in the locus coeruleus, the pontine nucleus that produces and releases noradrenaline, prior to involvement of cortical brain regions. Disruption of noradrenergic pathways affects cognition, especially attention, impacting memory and broader functioning. Additionally, it leads to autonomic and neuropsychiatric symptoms. Despite the strong evidence of noradrenergic involvement in Alzheimer's, there are no clear trial data supporting the clinical use of any noradrenergic treatments. Several approaches have been tried, including proof-of-principle studies and (mostly small scale) randomised controlled trials. Treatments have included pharmacotherapies as well as stimulation. The lack of clear positive findings is likely secondary to limitations in gauging locus coeruleus integrity and dysfunction at an individual level. However, the recent development of several novel biomarkers holds potential and should allow quantification of dysfunction. This may then inform inclusion criteria and stratification for future trials. Imaging approaches have improved greatly following the development of neuromelanin-sensitive sequences, enabling the use of structural MRI to estimate locus coeruleus integrity. Additionally, functional MRI scanning has the potential to quantify network dysfunction. As well as neuroimaging, EEG, fluid biomarkers and pupillometry techniques may prove useful in assessing noradrenergic tone. Here, we review the development of these biomarkers and how they might augment clinical studies, particularly randomised trials, through identification of patients most likely to benefit from treatment. We outline the biomarkers with most potential, and how they may transform symptomatic therapy for people living with Alzheimer's disease.
Collapse
Affiliation(s)
- Michael David
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| | - Paresh A. Malhotra
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| |
Collapse
|
27
|
Steinhauer SR, Bradley MM, Siegle GJ, Roecklein KA, Dix A. Publication guidelines and recommendations for pupillary measurement in psychophysiological studies. Psychophysiology 2022; 59:e14035. [PMID: 35318693 PMCID: PMC9272460 DOI: 10.1111/psyp.14035] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
A variety of psychological and physical phenomena elicit variations in the diameter of pupil of the eye. Changes in pupil size are mediated by the relative activation of the sphincter pupillae muscle (decrease pupil diameter) and the dilator pupillae muscle (increase pupil diameter), innervated by the parasympathetic and sympathetic branches, respectively, of the autonomic nervous system. The current guidelines are intended to inform and guide psychophysiological research involving pupil measurement by (1) summarizing important aspects concerning the physiology of the pupil, (2) providing methodological and data-analytic guidelines and recommendations, and (3) briefly reviewing psychological phenomena that modulate pupillary reactivity. Because of the increased ease and tractability of pupil measurement, the goal of these guidelines is to promote accurate recording, analysis, and reporting of pupillary data in psychophysiological research.
Collapse
Affiliation(s)
- Stuart R. Steinhauer
- Veterans Affairs Pittsburgh Healthcare System, VISN 4 MIRECC, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Greg J. Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Annika Dix
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
28
|
El Haj M, Chapelet G, Moustafa AA, Boutoleau-Bretonnière C. Pupil size as an indicator of cognitive activity in mild Alzheimer's disease. EXCLI JOURNAL 2022; 21:307-316. [PMID: 35382454 PMCID: PMC8977451 DOI: 10.17179/excli2021-4568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
It is well established that pupil activity indexes cognitive processing. For instance, research has consistently demonstrated that the pupil reacts to working memory span task performance. However, little is known about pupil reaction to cognitive processing in Alzheimer's Disease (AD). We thus investigated whether span tasks can modulate pupil size in patients with AD. We invited 24 patients with AD and 24 healthy older adults to perform backward and forward spans, as well as to count aloud in a control condition, while their pupil activity was recorded with eye tracking glasses. In patients with AD, analysis demonstrated larger pupil size during backward spans (M = 2.12, SD = .39) than during forward spans (M = 1.98, SD = .36) [t(23) = 3.22, p = .004], larger pupil size during forward spans than during counting (M = 1.67, SD = .33) [t(23) = 4.75, p < .001], as well as larger pupil size during backward spans than during counting [t(23) = 10.60, p < .001]. In control participants, analysis demonstrated larger pupil size during backward spans (M = 3.36, SD = .49) than during forward spans (M = 2.85, SD = .68) [t(23) = 5.82, p < .001], larger pupil size during forward spans than during counting (M = 2.09, SD = .62) [t(23) = 5.42, < .001], as well as larger pupil size during backward spans than during counting [t(23) = 9.70, p < .001]. Results also demonstrated a significant interaction effect between groups and conditions [F(2,92) = 16.63, p < .001]; in other words, patients with AD have shown fewer variations on the pupil size across the conditions compared to the control participants. The larger pupil size during backward spans, compared with forward spans or counting, can be attributed to the high cognitive load of backward spans. The modulation of pupil size, as observed across backward/forward spans and counting, can possibly be attributed to sympathetic/adrenergic and parasympathetic/cholinergic activities. Our study demonstrates the value of pupillometry as a potential biomarker of cognitive processing in AD.
Collapse
Affiliation(s)
- Mohamad El Haj
- Nantes Université, Univ. Angers, Laboratoire de Psychologie des Pays de la Loire (LPPL - EA 4638), F-44000 Nantes, France,Unité de Gériatrie, Centre Hospitalier de Tourcoing, Tourcoing, France,Institut Universitaire de France, Paris, France,*To whom correspondence should be addressed: Mohamad El Haj, Faculté de Psychologie, LPPL – Laboratoire de Psychologie des Pays de la Loire, Université de Nantes, Chemin de la Censive du Tertre, BP 81227, 44312 Nantes Cedex 3, France, E-mail:
| | - Guillaume Chapelet
- CHU Nantes, Clinical Gerontology Department, Bd Jacques Monod, F44093, Nantes, France,Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Ahmed A. Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Queensland, Australia,Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
29
|
Chapman LR, Hallowell B. The Unfolding of Cognitive Effort During Sentence Processing: Pupillometric Evidence From People With and Without Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4900-4917. [PMID: 34763522 PMCID: PMC9150667 DOI: 10.1044/2021_jslhr-21-00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Arousal and cognitive effort are relevant yet often overlooked components of attention during language processing. Pupillometry can be used to provide a psychophysiological index of arousal and cognitive effort. Given that much is unknown regarding the relationship between cognition and language deficits seen in people with aphasia (PWA), pupillometry may be uniquely suited to explore those relationships. The purpose of this study was to examine arousal and the time course of the allocation of cognitive effort related to sentence processing in people with and without aphasia. METHOD Nineteen PWA and age- and education-matched control participants listened to relatively easy (subject-relative) and relatively difficult (object-relative) sentences and were required to answer occasional comprehension questions. Tonic and phasic pupillary responses were used to index arousal and the unfolding of cognitive effort, respectively, while sentences were processed. Group differences in tonic and phasic responses were examined. RESULTS Group differences were observed for both tonic and phasic responses. PWA exhibited greater overall arousal throughout the task compared with controls, as evidenced by larger tonic pupil responses. Controls exhibited more effort (greater phasic responses) for difficult compared with easy sentences; PWA did not. Group differences in phasic responses were apparent during end-of-sentence and postsentence time windows. CONCLUSIONS Results indicate that the attentional state of PWA in this study was not consistently supportive of adequate task engagement. PWA in our sample may have relatively limited attentional capacity or may have challenges with allocating existing capacity in ways that support adequate task engagement and performance. This work adds to the body of evidence supporting the validity of pupillometric tasks for the study of aphasia and contributes to a better understanding of the nature of language deficits in aphasia. Supplemental Material https://doi.org/10.23641/asha.16959376.
Collapse
Affiliation(s)
- Laura Roche Chapman
- Department of Communication Sciences and Disorders, Appalachian State University, Boone, NC
| | | |
Collapse
|
30
|
Automated Mouse Pupil Size Measurement System to Assess Locus Coeruleus Activity with a Deep Learning-Based Approach. SENSORS 2021; 21:s21217106. [PMID: 34770410 PMCID: PMC8588114 DOI: 10.3390/s21217106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Strong evidence from studies on primates and rodents shows that changes in pupil diameter may reflect neural activity in the locus coeruleus (LC). Pupillometry is the only available non-invasive technique that could be used as a reliable and easily accessible real-time biomarker of changes in the in vivo activity of the LC. However, the application of pupillometry to preclinical research in rodents is not yet fully standardized. A lack of consensus on the technical specifications of some of the components used for image recording or positioning of the animal and cameras have been recorded in recent scientific literature. In this study, a novel pupillometry system to indirectly assess, in real-time, the function of the LC in anesthetized rodents is presented. The system comprises a deep learning SOLOv2 instance-based fast segmentation framework and a platform designed to place the experimental subject, the video cameras for data acquisition, and the light source. The performance of the proposed setup was assessed and compared to other baseline methods using a validation and an external test set. In the latter, the calculated intersection over the union was 0.93 and the mean absolute percentage error was 1.89% for the selected method. The Bland–Altman analysis depicted an excellent agreement. The results confirmed a high accuracy that makes the system suitable for real-time pupil size tracking, regardless of the pupil’s size, light intensity, or any features typical of the recording process in sedated mice. The framework could be used in any neurophysiological study with sedated or fixed-head animals.
Collapse
|
31
|
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021; 116:108-124. [PMID: 34099360 PMCID: PMC8292227 DOI: 10.1016/j.semcdb.2021.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Many believe that engaging in novel and mentally challenging activities promotes brain health and prevents Alzheimer's disease in later life. However, mental stimulation may also have risks as well as benefits. As neurons release neurotransmitters, they often also release amyloid peptides and tau proteins into the extracellular space. These by-products of neural activity can aggregate into the tau tangle and amyloid plaque signatures of Alzheimer's disease. Over time, more active brain regions accumulate more pathology. Thus, increasing brain activity can have a cost. But the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects. Via its inhibitory and excitatory effects on neurons and microglia, noradrenaline sometimes prevents and sometimes accelerates the production and accumulation of amyloid-β and tau in various brain regions. Both α2A- and β-adrenergic receptors influence amyloid-β production and tau hyperphosphorylation. Adrenergic activity also influences clearance of amyloid-β and tau. Furthermore, some findings suggest that Alzheimer's disease increases noradrenergic activity, at least in its early phases. Because older brains clear the by-products of synaptic activity less effectively, increased synaptic activity in the older brain risks accelerating the accumulation of Alzheimer's pathology more than it does in the younger brain.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, & Department of Biomedical Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States.
| |
Collapse
|
32
|
Breton-Provencher V, Drummond GT, Sur M. Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets. Front Neural Circuits 2021; 15:638007. [PMID: 34163331 PMCID: PMC8215268 DOI: 10.3389/fncir.2021.638007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
The locus coeruleus (LC), a small brainstem nucleus, is the primary source of the neuromodulator norepinephrine (NE) in the brain. The LC receives input from widespread brain regions, and projects throughout the forebrain, brainstem, cerebellum, and spinal cord. LC neurons release NE to control arousal, but also in the context of a variety of sensory-motor and behavioral functions. Despite its brain-wide effects, much about the role of LC-NE in behavior and the circuits controlling LC activity is unknown. New evidence suggests that the modular input-output organization of the LC could enable transient, task-specific modulation of distinct brain regions. Future work must further assess whether this spatial modularity coincides with functional differences in LC-NE subpopulations acting at specific times, and how such spatiotemporal specificity might influence learned behaviors. Here, we summarize the state of the field and present new ideas on the role of LC-NE in learned behaviors.
Collapse
Affiliation(s)
| | | | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
33
|
Kelly L, Seifi M, Ma R, Mitchell SJ, Rudolph U, Viola KL, Klein WL, Lambert JJ, Swinny JD. Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer's patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability. Neuropathol Appl Neurobiol 2021; 47:488-505. [PMID: 33119191 DOI: 10.1111/nan.12674] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
AIMS Amyloid β-oligomers (AβO) are potent modulators of Alzheimer's pathology, yet their impact on one of the earliest brain regions to exhibit signs of the condition, the locus coeruleus (LC), remains to be determined. Of particular importance is whether AβO impact the spontaneous excitability of LC neurons. This parameter determines brain-wide noradrenaline (NA) release, and thus NA-mediated brain functions, including cognition, emotion and immune function, which are all compromised in Alzheimer's patients. Therefore, the aim of the study was to determine the expression profile of AβO in the LC of Alzheimer's patients and to probe their potential impact on the molecular and functional correlates of LC excitability, using a mouse model of increased Aβ production (APP-PSEN1). METHODS AND RESULTS Immunohistochemistry and confocal microscopy, using AβO-specific antibodies, confirmed LC AβO expression both intraneuronally and extracellularly in both Alzheimer's and APP-PSEN1 samples. Patch clamp electrophysiology recordings revealed that APP-PSEN1 LC neuronal hyperexcitability accompanied this AβO expression profile, arising from a diminished inhibitory effect of GABA due to impaired expression and function of the GABA-A receptor (GABAA R) α3 subunit. This altered LC α3-GABAA R expression profile overlapped with AβO expression in samples from both APP-PSEN1 mice and Alzheimer's patients. Finally, strychnine-sensitive glycine receptors (GlyRs) remained resilient to Aβ-induced changes and their activation reversed LC hyperexcitability. CONCLUSIONS The data suggest a close association between AβO and α3-GABAA Rs in the LC of Alzheimer's patients, and their potential to dysregulate LC activity, thereby contributing to the spectrum of pathology of the LC-NA system in this condition.
Collapse
Affiliation(s)
- Louise Kelly
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Mohsen Seifi
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ruolin Ma
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Scott J Mitchell
- Neuroscience, Division of Systems Medicine, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
| | - Jeremy J Lambert
- Neuroscience, Division of Systems Medicine, Ninewells Hospital & Medical School, Dundee University, Dundee, UK
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
34
|
van der Linden D, Tops M, Bakker AB. The Neuroscience of the Flow State: Involvement of the Locus Coeruleus Norepinephrine System. Front Psychol 2021; 12:645498. [PMID: 33935902 PMCID: PMC8079660 DOI: 10.3389/fpsyg.2021.645498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Flow is a state of full task engagement that is accompanied with low-levels of self-referential thinking. Flow is considered highly relevant for human performance and well-being and has, therefore, been studied extensively. Yet, the neurocognitive processes of flow remain largely unclear. In the present mini-review we focus on how the brain's locus coeruleus-norepinephrine (LC-NE) system may be involved in a range of behavioral and subjective manifestations of flow. The LC-NE system regulates decisions regarding task engagement vs. disengagement. This is done via different modes of baseline and stimulus-evoked norepinephrine release. We emphasize the theoretical and empirical overlap between the LC-NE system and flow. For both, a match between a person's skill and task challenge is important in order to induce high levels task-related attention. Moreover, psychophysiological indicators of LC-NE system activity, such as eye pupil diameter and arousal are also sensitive to flow states. Flow is related to arousal in an inverted U-shape. Similarly, in theories on the LC-NE system, task engagement is highest with intermediate levels of arousal. We argue that knowledge about the role of the LC-NE system in establishing the flow experience may help to gain fundamental knowledge of flow and can contribute to unifying various empirical findings on this topic.
Collapse
Affiliation(s)
- Dimitri van der Linden
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Mattie Tops
- Developmental and Educational Psychology Unit, Leiden University, Leiden, Netherlands
| | - Arnold B. Bakker
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
- Department of Industrial Psychology and People Management, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
35
|
LoTemplio S, Silcox J, Federmeier KD, Payne BR. Inter- and intra-individual coupling between pupillary, electrophysiological, and behavioral responses in a visual oddball task. Psychophysiology 2020; 58:e13758. [PMID: 33347634 DOI: 10.1111/psyp.13758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
Although the P3b component of the event-related brain potential is one of the most widely studied components, its underlying generators are not currently well understood. Recent theories have suggested that the P3b is triggered by phasic activation of the locus-coeruleus norepinephrine (LC-NE) system, an important control center implicated in facilitating optimal task-relevant behavior. Previous research has reported strong correlations between pupil dilation and LC activity, suggesting that pupil diameter is a useful indicator for ongoing LC-NE activity. Given the strong relationship between LC activity and pupil dilation, if the P3b is driven by phasic LC activity, there should be a robust trial-to-trial relationship with the phasic pupillary dilation response (PDR). However, previous work examining relationships between concurrently recorded pupillary and P3b responses has not supported this. One possibility is that the relationship between the measures might be carried primarily by either inter-individual (i.e., between-participant) or intra-individual (i.e., within-participant) contributions to coupling, and prior work has not systematically delineated these relationships. Doing so in the current study, we do not find evidence for either inter-individual or intra-individual relationships between the PDR and P3b responses. However, baseline pupil dilation did predict the P3b. Interestingly, both the PDR and P3b independently predicted inter-individual and intra-individual variability in decision response time. Implications for the LC-P3b hypothesis are discussed.
Collapse
Affiliation(s)
- Sara LoTemplio
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Jack Silcox
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Kara D Federmeier
- Department of Psychology, Program in Neuroscience, and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| | - Brennan R Payne
- Department of Psychology, University of Utah, Salt Lake City, UT, USA.,Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
36
|
Quantitative Infrared Pupillometry in Nonconvulsive Status Epilepticus. Neurocrit Care 2020; 35:113-120. [PMID: 33215395 DOI: 10.1007/s12028-020-01149-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nonconvulsive status epilepticus (NCSE) is a frequent disorder in neurocritical care and diagnosing it can be challenging. NCSE patients often show altered pupil function, but nature and extent may vary. Infrared pupillometry allows detection of subtle changes of pupil function. The neurological pupil index (NPi) is considered a surrogate marker of global pupil function which is supposed to be independent of absolute parameters such as the pupil diameter. OBJECTIVE Cross-sectional observational study to assess whether NPi is altered in NCSE. METHODS 128 consecutive adult emergency patients who had experienced a suspected seizure, have not reached their prior functional level regarding level of consciousness, mental status or focal deficits, had no obvious clinical signs of status epilepticus and had an EEG indication as determined by the treating clinician for exclusion of NCSE were examined by routine EEG and pupillometry. Exclusion criteria were ocular comorbidity (n = 21) and poor EEG quality (n = 4). Pupillometry was performed once directly before the beginning of EEG recording. NCSE diagnosis (no NCSE, possible NCSE and confirmed NCSE) was established according to Salzburg consensus criteria blinded to pupillometry results. Group comparison was performed for right NPi, left NPi, lowest NPi of both sides (minNPi) and the absolute difference of both sides (diffNPi) applying non-parametric testing. In post-hoc analysis, receiver operating characteristics (ROC) of NCSE diagnosis (combined confirmed NCSE and possible NCSE) were performed for minNPi and diffNPi. RESULTS From 103 patients included in the final analysis, 5 (4.9%) had confirmed NCSE, 7 (6.8%) had possible NCSE. Right NPi (p = 0.002), left NPi (p < 0.001) and minNPi (p < 0.001) were significantly lower in "confirmed NCSE" and "possible NCSE" compared to "no NCSE"; diffNPi was significantly higher in "confirmed NCSE" and "possible NCSE" compared to "no NCSE" (p < 0.001). There was no significant difference of minNPi and diffNPi between "confirmed NCSE" and "possible NCSE". ROC analysis showed an optimal cut-off of minNPi for NCSE diagnosis of 4.0 (AUC = 0.93, 95% CI 0.86-0.99). Optimal ROC analysis cut-off of diffNPi for NCSE diagnosis was 0.2 (AUC = 0.89, 95% CI 0.80-0.99). CONCLUSIONS NPi was significantly reduced and the difference between left and right NPi was significantly higher in confirmed NCSE. An NPi < 4.0 on either side as well as an NPi difference of both sides > 0.2 may be potential indicators of NCSE. Infrared pupillometry may be a helpful diagnostic tool in the assessment of NCSE and should be studied further in larger populations.
Collapse
|
37
|
Del Cerro I, Martínez-Zalacaín I, Guinea-Izquierdo A, Gascón-Bayarri J, Viñas-Diez V, Urretavizcaya M, Naval-Baudin P, Aguilera C, Reñé-Ramírez R, Ferrer I, Menchón JM, Soria V, Soriano-Mas C. Locus coeruleus connectivity alterations in late-life major depressive disorder during a visual oddball task. NEUROIMAGE-CLINICAL 2020; 28:102482. [PMID: 33371943 PMCID: PMC7649653 DOI: 10.1016/j.nicl.2020.102482] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 11/05/2022]
Abstract
Patients with late-life MDD show lower global LC connectivity in an oddball task. Lower LC connectivity was observed with the ACC, fusiform gyrus and cerebellum. LC-ACC connectivity correlated with two different measures of depression severity.
The Locus Coeruleus (LC) is the major source of noradrenergic neurotransmission. Structural alterations in the LC have been observed in neurodegenerative disorders and at-risk individuals, although functional connectivity studies between the LC and other brain areas have not been yet performed in these populations. Patients with late-life major depressive disorder (MDD) are indeed at increased risk for neurodegenerative disorders, and here we investigated LC connectivity in late-life MDD in comparison to individuals with amnestic type mild cognitive impairment (aMCI) and healthy controls (HCs). We assessed 20 patients with late-life MDD, 16 patients with aMCI, and 26 HCs, who underwent a functional magnetic resonance scan while performing a visual oddball task. We assessed task-related modulations of LC connectivity (i.e., Psychophysiological Interactions, PPI) with other brain areas. A T1-weighted fast spin-echo sequence for LC localization was also obtained. Patients with late-life MDD showed lower global connectivity during target detection in a cluster encompassing the right caudal LC. Specifically, we observed lower LC connectivity with the left anterior cingulate cortex (ACC), the right fusiform gyrus, and different cerebellar clusters. Moreover, alterations in LC-ACC connectivity correlated negatively with depression severity (i.e., Geriatric Depression Scale and number of recurrences). Reduced connectivity of the LC during oddball performance seems to specifically characterize patients with late-life MDD, but not other populations of aged individuals with cognitive alterations. Such alteration is associated with different measures of disease severity, such as the current presence of symptoms and the burden of disease (number of recurrences).
Collapse
Affiliation(s)
- Inés Del Cerro
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Ignacio Martínez-Zalacaín
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Andrés Guinea-Izquierdo
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Jordi Gascón-Bayarri
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Vanesa Viñas-Diez
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Mikel Urretavizcaya
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Pablo Naval-Baudin
- Imaging Diagnostic Institute (IDI), Neuroradiology Unit, Bellvitge University Hospital, Barcelona, Spain
| | - Carlos Aguilera
- Imaging Diagnostic Institute (IDI), Neuroradiology Unit, Bellvitge University Hospital, Barcelona, Spain
| | - Ramón Reñé-Ramírez
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Pathologic Anatomy, Bellvitge University Hospital, Barcelona, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - José M Menchón
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Virginia Soria
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain.
| | - Carles Soriano-Mas
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
38
|
Kelberman M, Keilholz S, Weinshenker D. What's That (Blue) Spot on my MRI? Multimodal Neuroimaging of the Locus Coeruleus in Neurodegenerative Disease. Front Neurosci 2020; 14:583421. [PMID: 33122996 PMCID: PMC7573566 DOI: 10.3389/fnins.2020.583421] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
The locus coeruleus (LC) has long been underappreciated for its role in the pathophysiology of Alzheimer’s disease (AD), Parkinson’s disease (PD), and other neurodegenerative disorders. While AD and PD are distinct in clinical presentation, both are characterized by prodromal protein aggregation in the LC, late-stage degeneration of the LC, and comorbid conditions indicative of LC dysfunction. Many of these early studies were limited to post-mortem histological techniques due to the LC’s small size and location deep in the brainstem. Thus, there is a growing interest in utilizing in vivo imaging of the LC as a predictor of preclinical neurodegenerative processes and biomarker of disease progression. Simultaneously, neuroimaging in animal models of neurodegenerative disease holds promise for identifying early alterations to LC circuits, but has thus far been underutilized. While still in its infancy, a handful of studies have reported effects of single gene mutations and pathology on LC function in disease using various neuroimaging techniques. Furthermore, combining imaging and optogenetics or chemogenetics allows for interrogation of network connectivity in response to changes in LC activity. The purpose of this article is twofold: (1) to review what magnetic resonance imaging (MRI) and positron emission tomography (PET) have revealed about LC dysfunction in neurodegenerative disease and its potential as a biomarker in humans, and (2) to explore how animal models can be used to test hypotheses derived from clinical data and establish a mechanistic framework to inform LC-focused therapeutic interventions to alleviate symptoms and impede disease progression.
Collapse
Affiliation(s)
- Michael Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
39
|
Wu SZ, Masurkar AV, Balcer LJ. Afferent and Efferent Visual Markers of Alzheimer's Disease: A Review and Update in Early Stage Disease. Front Aging Neurosci 2020; 12:572337. [PMID: 33061906 PMCID: PMC7518395 DOI: 10.3389/fnagi.2020.572337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Vision, which requires extensive neural involvement, is often impaired in Alzheimer's disease (AD). Over the last few decades, accumulating evidence has shown that various visual functions and structures are compromised in Alzheimer's dementia and when measured can detect those with dementia from those with normal aging. These visual changes involve both the afferent and efferent parts of the visual system, which correspond to the sensory and eye movement aspects of vision, respectively. There are fewer, but a growing number of studies, that focus on the detection of predementia stages. Visual biomarkers that detect these stages are paramount in the development of successful disease-modifying therapies by identifying appropriate research participants and in identifying those who would receive future therapies. This review provides a summary and update on common afferent and efferent visual markers of AD with a focus on mild cognitive impairment (MCI) and preclinical disease detection. We further propose future directions in this area. Given the ease of performing visual tests, the accessibility of the eye, and advances in ocular technology, visual measures have the potential to be effective, practical, and non-invasive biomarkers of AD.
Collapse
Affiliation(s)
- Shirley Z. Wu
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arjun V. Masurkar
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
40
|
Salvi C, Simoncini C, Grafman J, Beeman M. Oculometric signature of switch into awareness? Pupil size predicts sudden insight whereas microsaccades predict problem-solving via analysis. Neuroimage 2020; 217:116933. [PMID: 32413459 PMCID: PMC7440842 DOI: 10.1016/j.neuroimage.2020.116933] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/26/2020] [Accepted: 05/07/2020] [Indexed: 02/02/2023] Open
Abstract
According to the Gestalt theorists, restructuring is an essential component of insight problem-solving, contributes to the "Aha!" experience, and is similar to the perceptual switch experienced when reinterpreting ambiguous figures. Previous research has demonstrated that pupil diameter increases during the perceptual switch of ambiguous figures, and indexes norepeinephrine functioning mediated by the locus coeruleus. In this study, we investigated if pupil diameter similarly predicts the switch into awareness people experience when solving a problem via insight. Additionally, we explored eye movement dynamics during the same task to investigate if the problem-solving strategies used are linked to specific oculomotor behaviors. In 38 participants, pupil diameter increased about 500 msec prior to solution only in trials for which subjects report having an insight. In contrast, participants increased their microsaccade rate only prior to non-insight solutions. Pupil dilation and microsaccades were not reliably related, but both appear to be robust markers of how people solve problems (with or without insight). The pupil size change seen when people have an "Aha!" moment represents an indicator of the switch into awareness of unconscious processes humans depend upon for insight, and suggests important involvement of norepinephrine, via the locus coeruleus, in sudden insight.
Collapse
Affiliation(s)
- Carola Salvi
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA.
| | - Claudio Simoncini
- Institut de Neurosciences de La Timone, UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Jordan Grafman
- Shirley Ryan Ability Lab, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mark Beeman
- Department of Psychology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
41
|
Morris LS, McCall JG, Charney DS, Murrough JW. The role of the locus coeruleus in the generation of pathological anxiety. Brain Neurosci Adv 2020; 4:2398212820930321. [PMID: 32954002 PMCID: PMC7479871 DOI: 10.1177/2398212820930321] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
This review aims to synthesise a large pre-clinical and clinical
literature related to a hypothesised role of the locus coeruleus
norepinephrine system in responses to acute and chronic threat, as
well as the emergence of pathological anxiety. The locus coeruleus has
widespread norepinephrine projections throughout the central nervous
system, which act to globally modulate arousal states and adaptive
behavior, crucially positioned to play a significant role in
modulating both ascending visceral and descending cortical
neurocognitive information. In response to threat or a stressor, the
locus coeruleus–norepinephrine system globally modulates arousal,
alerting and orienting functions and can have a powerful effect on the
regulation of multiple memory systems. Chronic stress leads to
amplification of locus coeruleus reactivity to subsequent stressors,
which is coupled with the emergence of pathological anxiety-like
behaviors in rodents. While direct in vivo evidence for locus
coeruleus dysfunction in humans with pathological anxiety remains
limited, recent advances in high-resolution 7-T magnetic resonance
imaging and computational modeling approaches are starting to provide
new insights into locus coeruleus characteristics.
Collapse
Affiliation(s)
- Laurel S Morris
- The Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dennis S Charney
- Dean's Office, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- The Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
42
|
Reilly J, Zuckerman B, Kelly A, Flurie M, Rao S. Neuromodulation of cursing in American English: A combined tDCS and pupillometry study. BRAIN AND LANGUAGE 2020; 206:104791. [PMID: 32339951 DOI: 10.1016/j.bandl.2020.104791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Many neurological disorders are associated with excessive and/or uncontrolled cursing. The right prefrontal cortex has long been implicated in a diverse range of cognitive processes that underlie the propensity for cursing, including non-propositional language representation, emotion regulation, theory of mind, and affective arousal. Neurogenic cursing often poses significant negative social consequences, and there is no known behavioral intervention for this communicative disorder. We examined whether right vs. left lateralized prefrontal neurostimultion via tDCS could modulate taboo word production in neurotypical adults. We employed a pre/post design with a bilateral frontal electrode montage. Half the participants received left anodal and right cathodal stimulation; the remainder received the opposite polarity stimulation at the same anatomical loci. We employed physiological (pupillometry) and behavioral (reaction time) dependent measures as participants read aloud taboo and non-taboo words. Pupillary responses demonstrated a crossover reaction, suggestive of modulation of phasic arousal during cursing. Participants in the right anodal condition showed elevated pupil responses for taboo words post stimulation. In contrast, participants in the right cathodal condition showed relative dampening of pupil responses for taboo words post stimulation. We observed no effects of stimulation on response times. We interpret these findings as supporting modulation of right hemisphere affective arousal that disproportionately impacts taboo word processing. We discuss alternate accounts of the data and future applications to neurological disorders.
Collapse
Affiliation(s)
- Jamie Reilly
- Eleanor M. Saffran Center for Cognitive Neuroscience, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA.
| | - Bonnie Zuckerman
- Eleanor M. Saffran Center for Cognitive Neuroscience, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Alexandra Kelly
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - Maurice Flurie
- Eleanor M. Saffran Center for Cognitive Neuroscience, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Sagar Rao
- Swarthmore College, Swarthmore, PA, USA
| |
Collapse
|
43
|
Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge-A New Hypothesis With Potential Implications for Neurodegenerative Diseases. Front Neurol 2020; 11:371. [PMID: 32477246 PMCID: PMC7235306 DOI: 10.3389/fneur.2020.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) is a small brainstem nucleus with widely distributed noradrenergic projections to the whole brain, and loss of LC neurons is a prominent feature of age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). This article discusses the hypothesis that in early stages of neurodegenerative diseases, the discharge mode of LC neurons could be changed to a persistent high tonic discharge, which in turn might impair phasic discharge. Since phasic discharge of LC neurons is required for the release of high amounts of norepinephrine (NE) in the brain to promote anti-inflammatory and neuroprotective effects, persistent high tonic discharge of LC neurons could be a key factor in the progression of neurodegenerative diseases. Transcutaneous vagal stimulation (t-VNS), a non-invasive technique that potentially increases phasic discharge of LC neurons, could therefore provide a non-pharmacological treatment approach in specific disease stages. This article focuses on LC vulnerability in neurodegenerative diseases, discusses the hypothesis that a persistent high tonic discharge of LC neurons might affect neurodegenerative processes, and finally reflects on t-VNS as a potentially useful clinical tool in specific stages of AD and PD.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
44
|
He M, Heindel WC, Nassar MR, Siefert EM, Festa EK. Age-related changes in the functional integrity of the phasic alerting system: a pupillometric investigation. Neurobiol Aging 2020; 91:136-147. [PMID: 32224065 DOI: 10.1016/j.neurobiolaging.2020.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023]
Abstract
Enhanced processing following a warning cue is thought to be mediated by a phasic alerting response involving the locus coeruleus-noradrenergic (LC-NA) system. We examined the effect of aging on phasic alerting using pupil dilation as a marker of LC-NA activity in conjunction with a novel assessment of task-evoked pupil dilation. While both young and older adults displayed behavioral and pupillary alerting effects, reflected in decreased RT and increased pupillary response under high (tone) versus low (no tone) alerting conditions, older adults displayed a weaker pupillary response that benefited more from the alerting tone. The strong association between dilation and speed displayed by older adults in both alerting conditions was reduced in young adults in the high alerting condition, suggesting that in young (but not older) adults the tone conferred relatively little behavioral benefit beyond that provided by the alerting effect elicited by the target. These findings suggest a functioning but deficient LC-NA alerting system in older adults, and help reconcile previous results concerning the effects of aging on phasic alerting.
Collapse
Affiliation(s)
- Mingjian He
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - William C Heindel
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Matthew R Nassar
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Elizabeth M Siefert
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Elena K Festa
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
45
|
Kremen WS, Panizzon MS, Elman JA, Granholm EL, Andreassen OA, Dale AM, Gillespie NA, Gustavson DE, Logue MW, Lyons MJ, Neale MC, Reynolds CA, Whitsel N, Franz CE. Pupillary dilation responses as a midlife indicator of risk for Alzheimer's disease: association with Alzheimer's disease polygenic risk. Neurobiol Aging 2019; 83:114-121. [PMID: 31585363 PMCID: PMC6931134 DOI: 10.1016/j.neurobiolaging.2019.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
Locus coeruleus (LC) tau accumulation begins early. Targeting LC (dys)function might improve early identification for Alzheimer's disease (AD) risk. Pupillary responses during cognitive tasks are driven by the LC and index cognitive effort. Despite equivalent task performance, adults with mild cognitive impairment have greater pupil dilation/effort during digit span than cognitively normal (CN) individuals. We hypothesized that AD polygenic risk scores (AD-PRSs) would be associated with pupillary responses in middle-aged CN adults. Pupillary responses during digit span tasks were heritable (h2 = 0.30-0.36) in 1119 men aged 56-66 years. In a CN subset-all with comparable span capacities (n = 539)-higher AD-PRSs were associated with greater pupil dilation/effort in a high (9-digit) cognitive load condition (Cohen's d = 0.36 for upper vs. lower quartile of AD-PRS distribution). Results held up after controlling for APOE genotype. Results support pupillary response-and by inference, LC dysfunction-as a genetically mediated biomarker of early mild cognitive impairment/AD risk. In combination with other biomarkers, task-evoked pupillary responses may provide additional information for early screening of genetically at-risk individuals even before cognitive declines.
Collapse
Affiliation(s)
- William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA.
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Jeremy A Elman
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Eric L Granholm
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA; Psychology Service, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA; Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel E Gustavson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Mark W Logue
- National Center for PTSD: Behavioral Science Division, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry and Biomedical Genetics Section, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Chandra A Reynolds
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Nathan Whitsel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
DiNuzzo M, Mascali D, Moraschi M, Bussu G, Maugeri L, Mangini F, Fratini M, Giove F. Brain Networks Underlying Eye's Pupil Dynamics. Front Neurosci 2019; 13:965. [PMID: 31619948 PMCID: PMC6759985 DOI: 10.3389/fnins.2019.00965] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 01/07/2023] Open
Abstract
Phasic changes in eye’s pupil diameter have been repeatedly observed during cognitive, emotional and behavioral activity in mammals. Although pupil diameter is known to be associated with noradrenergic firing in the pontine Locus Coeruleus (LC), thus far the causal chain coupling spontaneous pupil dynamics to specific cortical brain networks remains unknown. In the present study, we acquired steady-state blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) data combined with eye-tracking pupillometry from fifteen healthy subjects that were trained to maintain a constant attentional load. Regression analysis revealed widespread visual and sensorimotor BOLD-fMRI deactivations correlated with pupil diameter. Furthermore, we found BOLD-fMRI activations correlated with pupil diameter change rate within a set of brain regions known to be implicated in selective attention, salience, error-detection and decision-making. These regions included LC, thalamus, posterior cingulate cortex (PCC), dorsal anterior cingulate and paracingulate cortex (dACC/PaCC), orbitofrontal cortex (OFC), and right anterior insular cortex (rAIC). Granger-causality analysis performed on these regions yielded a complex pattern of interdependence, wherein LC and pupil dynamics were far apart in the network and separated by several cortical stages. Functional connectivity (FC) analysis revealed the ubiquitous presence of the superior frontal gyrus (SFG) in the networks identified by the brain regions correlated to the pupil diameter change rate. No significant correlations were observed between pupil dynamics, regional activation and behavioral performance. Based on the involved brain regions, we speculate that pupil dynamics reflects brain processing implicated in changes between self- and environment-directed awareness.
Collapse
Affiliation(s)
| | - Daniele Mascali
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Marta Moraschi
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Giorgia Bussu
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | | | | | - Michela Fratini
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,CNR Nanotec, Rome, Italy
| | - Federico Giove
- Fondazione Santa Lucia (IRCCS), Rome, Italy.,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| |
Collapse
|
47
|
Chang YHA, Marshall A, Bahrami N, Mathur K, Javadi SS, Reyes A, Hegde M, Shih JJ, Paul BM, Hagler DJ, McDonald CR. Differential sensitivity of structural, diffusion, and resting-state functional MRI for detecting brain alterations and verbal memory impairment in temporal lobe epilepsy. Epilepsia 2019; 60:935-947. [PMID: 31020649 DOI: 10.1111/epi.14736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Temporal lobe epilepsy (TLE) is known to affect large-scale gray and white matter networks, and these network changes likely contribute to the verbal memory impairments observed in many patients. In this study, we investigate multimodal imaging patterns of brain alterations in TLE and evaluate the sensitivity of different imaging measures to verbal memory impairment. METHODS Diffusion tensor imaging (DTI), volumetric magnetic resonance imaging (vMRI), and resting-state functional MRI (rs-fMRI) were evaluated in 46 patients with TLE and 33 healthy controls to measure patterns of microstructural, structural, and functional alterations, respectively. These measurements were obtained within the white matter directly beneath neocortex (ie, superficial white matter [SWM]) for DTI and across neocortex for vMRI and rs-fMRI. The degree to which imaging alterations within left medial temporal lobe/posterior cingulate (LMT/PC) and left lateral temporal regions were associated with verbal memory performance was evaluated. RESULTS Patients with left TLE and right TLE both demonstrated pronounced microstructural alterations (ie, decreased fractional anisotropy [FA] and increased mean diffusivity [MD]) spanning the entire frontal and temporolimbic SWM, which were highly lateralized to the ipsilateral hemisphere. Conversely, reductions in cortical thickness in vMRI and alterations in the magnitude of the rs-fMRI response were less pronounced and less lateralized than the microstructural changes. Both stepwise regression and mediation analyses further revealed that FA and MD within SWM in LMT/PC regions were the most robust predictors of verbal memory, and that these associations were independent of left hippocampal volume. SIGNIFICANCE These findings suggest that microstructural loss within the SWM is pronounced in patients with TLE, and injury to the SWM within the LMT/PC region plays a critical role in verbal memory impairment.
Collapse
Affiliation(s)
- Yu-Hsuan A Chang
- Department of Psychiatry, University of California, San Diego, California.,Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Anisa Marshall
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Naeim Bahrami
- Department of Psychiatry, University of California, San Diego, California.,Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Kushagra Mathur
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Sogol S Javadi
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California
| | - Anny Reyes
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Manu Hegde
- Department of Neurology, University of California, San Francisco, California.,UCSF Comprehensive Epilepsy Center, San Francisco, California
| | - Jerry J Shih
- Department of Neurosciences, University of California, San Diego, California.,UCSD Comprehensive Epilepsy Center, San Diego, California
| | - Brianna M Paul
- Department of Neurology, University of California, San Francisco, California.,UCSF Comprehensive Epilepsy Center, San Francisco, California
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, California.,Center for Multimodal Imaging and Genetics, University of California, San Diego, California.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California.,UCSD Comprehensive Epilepsy Center, San Diego, California
| |
Collapse
|
48
|
Kahya M, Moon S, Lyons KE, Pahwa R, Akinwuntan AE, Devos H. Pupillary Response to Cognitive Demand in Parkinson's Disease: A Pilot Study. Front Aging Neurosci 2018; 10:90. [PMID: 29692720 PMCID: PMC5902496 DOI: 10.3389/fnagi.2018.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Previous studies have shown that pupillary response, a physiological measure of cognitive workload, reflects cognitive demand in healthy younger and older adults. However, the relationship between cognitive workload and cognitive demand in Parkinson's disease (PD) remains unclear. The aim of this pilot study was to examine the pupillary response to cognitive demand in a letter-number sequencing (LNS) task between 16 non-demented individuals with PD (age, median (Q1-Q3): 68 (62-72); 10 males) and 10 control participants (age: 63 (59-67); 2 males), matched for age, education, and Montreal Cognitive Assessment (MOCA) scores. A mixed model analysis was employed to investigate cognitive workload changes as a result of incremental cognitive demand for both groups. As expected, no differences were found in cognitive scores on the LNS between groups. Cognitive workload, exemplified by greater pupil dilation, increased with incremental cognitive demand in both groups (p = 0.003). No significant between-group (p = 0.23) or interaction effects were found (p = 0.45). In addition, individuals who achieved to complete the task at higher letter-number (LN) load responded differently to increased cognitive demand compared with those who completed at lower LN load (p < 0.001), regardless of disease status. Overall, the findings indicated that pupillary response reflects incremental cognitive demand in non-demented people with PD and healthy controls. Further research is needed to investigate the pupillary response to incremental cognitive demand of PD patients with dementia compared to non-demented PD and healthy controls. Highlights -Pupillary response reflects cognitive demand in both non-demented people with PD and healthy controls-Although not significant due to insufficient power, non-demented individuals with PD had increased cognitive workload compared to the healthy controls throughout the testing-Pupillary response may be a valid measure of cognitive demand in non-demented individuals with PD-In future, pupillary response might be used to detect cognitive impairment in individuals with PD.
Collapse
Affiliation(s)
- Melike Kahya
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sanghee Moon
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kelly E Lyons
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajesh Pahwa
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Abiodun E Akinwuntan
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States.,Office of the Dean, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hannes Devos
- Laboratory for Advanced Rehabilitation Research in Simulation, Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
49
|
Chen J, Liu M, Sun D, Jin Y, Wang T, Ren C. Effectiveness and neural mechanisms of home-based telerehabilitation in patients with stroke based on fMRI and DTI: A study protocol for a randomized controlled trial. Medicine (Baltimore) 2018; 97:e9605. [PMID: 29504985 PMCID: PMC5779754 DOI: 10.1097/md.0000000000009605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Stroke is one of leading diseases causing adult death and disability worldwide. Home-based telerehabilitation has become a novel approach for stroke patients as effective as conventional rehabilitation, and more convenient and economical than conventional rehabilitation. However, there is no study assessing the mechanism of home-based telerehabilitation in promoting motor recovery among stroke patients with hemiplegic. AIMS This study is designed to determine the efficacy and explore the mechanism of motor recovery after home-based telerehabilitation in stroke patients with motor deficits. METHODS/DESIGN In a single-blinded randomized controlled pilot study, patients with acute subcortical stroke (n = 40) are assigned to receive home-based telerehabilitation or conventional rehabilitation. Task-based or resting-state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), and Fugl-Meyer assessment (FMA) score will acquired before and after rehabilitation. Activation volume of bilateral primary motor (M1), supplementary motor area (SMA), premotor cortex (PMC); lateralization index (LI) of interhemispheric M1, SMA, and PMC; functional connectivity of bilateral M1, SMA, PMC; fractional anisotropy (FA) will be measured; correlation analyses will be performed between neuroimaging biomarkers and FMA score pre- and postrehabilitation. DISCUSSION We present a study design and rationale to explore the effectiveness and neural mechanism of home-based rehabilitation for stroke patients with motor deficits. The study limitations related to the small-amount sample. Moreover, home-based rehabilitation may provide an alternative means of recovery for stroke patients. Ultimately, results of this trial will help to understand the neural mechanism of home-based telerehabilitation among stroke patients with hand movement disorder.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District
| | - Mingli Liu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District
| | - Dalong Sun
- Division of Gastroenterology, Department of Internal Medicine, Zhongshan Hospital Affiliated to Fudan University, Xuhui District
| | - Yan Jin
- Department of Rehabilitation
| | - Tianrao Wang
- Department of Radiology, Shanghai Fifth People's Hospital, Fudan University, Minhang District
| | - Chuancheng Ren
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District
- Departments of Neurology, Shanghai East Hospital Affiliated to Tongji University, Pudong New Area, Shanghai, China
| |
Collapse
|