1
|
Xia B, Li Z, Zhu W, Wu Z, Zhang Y, Zhu Y, Sun H, Niu G. Identification and phylogenetic analysis of Jingmen tick virus in ticks and sheep from Henan Province, China. Virol J 2024; 21:325. [PMID: 39707432 PMCID: PMC11662433 DOI: 10.1186/s12985-024-02587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
Jingmen tick virus (JMTV) is a novel segmented Flavivirus that was first identified from Rhipicephalus microplus in the Jingmen region of Hubei Province, China, in 2010. Subsequently, it was detected in a variety of countries and regions around the world. Meanwhile, JMTV has been proved to be pathogenic to humans and animals and could cause viremia in animals. However, the pathogenic mechanism of JMTV and what role animals play in the viral cycle have not yet been elucidated. In this study, 38 sheep sera were collected from Xinyang region of Henan Province, China and 204 ticks attached to the sheep were collected. The qRT-PCR and nested PCR were used to confirm the presence of JMTV in serum and tick samples. The results showed that the positive rate of JMTV in serum and ticks was 13.16% (5/38) and 7.84% (16/204), respectively. Phylogenetic analysis showed that JMTV sequences in sheep and ticks shared a high degree of identity with each other, and JMTV was relatively conserved in evolution. These results enriched the evidence for the prevalence of JMTV in animals and further deepened our understanding of the mechanisms and routes of JMTV transmission.
Collapse
Affiliation(s)
- Baicheng Xia
- Shandong Second Medical University, Weifang, 261053, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhenhua Li
- Shandong Second Medical University, Weifang, 261053, China
| | - Wenbing Zhu
- Shandong Second Medical University, Weifang, 261053, China
| | - Zhen Wu
- Shandong Second Medical University, Weifang, 261053, China
| | - Yuli Zhang
- Shandong Second Medical University, Weifang, 261053, China
| | - Yujing Zhu
- Suqian First Hospital, Suqian, 223812, China.
| | - Hengyi Sun
- Shandong Second Medical University, Weifang, 261053, China.
| | - Guoyu Niu
- Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
2
|
Godinho L, van Lieshout E, Griffiths S, Kwak ML. Ecology and phenology of the bat tick Argas ( Carios) dewae (Acari: Argasidae). Parasitology 2024; 151:1035-1044. [PMID: 39523640 PMCID: PMC11770525 DOI: 10.1017/s0031182024000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024]
Abstract
Although 12 soft tick species (Argasidae) are native to Australia, the ecology of most is poorly known. Argas dewae parasitizes several insectivorous bat species and has been recorded on humans. Therefore, understanding its ecology is crucial for wildlife health management and public health preparedness. To address this knowledge gap, A. dewae populations were monitored from 2 bat hosts (Chalinolobus gouldii and Austronomus australis) using bat boxes at 3 sites in Victoria, Australia, for 28 months (July 2005–December 2007). A phenological profile undertaken for A. dewae revealed that tick load on bat hosts increased throughout winter and peaked in the first month of spring, before collapsing and remaining low throughout the drier late spring and summer periods. There was also further investigation of the relationship between 2 response variables (tick infestation risk and tick load) and a range of explanatory variables (body condition index, sex, age class, bioseason, site, bat density per nest box). In C. gouldii, site was the only significant predictor of A. dewae infestation risk, while load was correlated with several variables including age class, sex, bioseason, roost density and body condition index. This paper also reports the first records of A. dewae from 6 bat species in 3 bat families (Miniopteridae: Miniopterus australis; Molossidae: A. australis; Vespertilionidae: Chalinolobus morio, Myotis Macropus, Vespadelus darlingtonia, Vespadelus regulus) and a second record of A. dewae from a human. The first distribution records are presented for A. dewae in South Australia, the Australian Capital Territory and Queensland.
Collapse
Affiliation(s)
- Lisa Godinho
- School of Biosciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emile van Lieshout
- School of Biosciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen Griffiths
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Mackenzie L Kwak
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
McMinn RJ, Gallichotte EN, Courtney S, Telford SR, Ebel GD. Strain-Dependent Assessment of Powassan Virus Transmission to Ixodes scapularis Ticks. Viruses 2024; 16:830. [PMID: 38932123 PMCID: PMC11209038 DOI: 10.3390/v16060830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are increasingly being reported. A better understanding of the transmission cycle between POWV and ticks is required in order to better predict and understand their public health burden. Recent phylogeographic analyses of POWV have identified geographical structuring, with well-defined northeastern and midwestern clades of the lineage II subtype. The extent that geographic and genetically defined sublineages differ in their ability to infect and be transmitted by blacklegged ticks is unclear. Accordingly, we determined whether there are strain-dependent differences in the transmission of POWV to ticks at multiple life stages. Five recent, low-passage POWV isolates were used to measure aspects of vector competence, using viremic and artificial infection methods. Infection rates in experimental ticks remained consistent between all five isolates tested, resulting in a 12-20% infection rate and some differences in viral load. We confirm that these differences are likely not due to differences in host viremia. Our results demonstrate that blacklegged ticks are susceptible to, and capable of transmitting, all tested strains and suggest that the tick-virus association is stable across diverse viral genotypes.
Collapse
Affiliation(s)
- Rebekah J. McMinn
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Samantha Courtney
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sam R. Telford
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, MA 01536, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Dupuis AP, Lange RE, Ciota AT. Emerging tickborne viruses vectored by Amblyomma americanum (Ixodida: Ixodidae): Heartland and Bourbon viruses. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1183-1196. [PMID: 37862097 DOI: 10.1093/jme/tjad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 10/21/2023]
Abstract
Heartland (HRTV) and Bourbon (BRBV) viruses are newly identified tick-borne viruses, isolated from serious clinical cases in 2009 and 2014, respectively. Both viruses originated in the lower Midwest United States near the border of Missouri and Kansas, cause similar disease manifestations, and are presumably vectored by the same tick species, Amblyomma americanum Linnaeus (Ixodida: Ixodidae). In this article, we provide a current review of HRTV and BRBV, including the virology, epidemiology, and ecology of the viruses with an emphasis on the tick vector. We touch on current challenges of vector control and surveillance, and we discuss future directions in the study of these emergent pathogens.
Collapse
Affiliation(s)
- Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
| | - Rachel E Lange
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
5
|
Zamiti S, Mhadhbi M, Dhibi M, Darghouth MA, Ben Said M. Development and field evaluation of PCR assays based on minimum length Bm86 cDNA fragments required for Rhipicephalus and Hyalomma tick species delineation. Front Vet Sci 2023; 10:1209210. [PMID: 37456966 PMCID: PMC10340088 DOI: 10.3389/fvets.2023.1209210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Hyalomma and Rhipicephalus ticks are important genera that can transmit diseases to both animals and humans, including Crimean-Congo hemorrhagic fever, tick-borne encephalitis, and several types of spotted fever. The accurate identification of tick species is essential for the effective control and prevention of tick-borne diseases. However, traditional identification methods based on morphology can be challenging and subjective, leading to errors. The development of DNA markers has provided more precise and efficient methods for tick species identification, but the currently available markers have limitations in their discriminatory power and sensitivity. To address this need for more sensitive and specific markers, this study aimed to identify two minimum sequence fragments required for tick Hyalomma and Rhipicephalus species identification using the Bm86 cDNA marker, which has previously been shown to be in perfect agreement with the current taxonomy of hard ticks based on its complete sequence. Methods Based on our in silico determination that a minimum sequence of 398 bp for Rhipicephalus spp. (from 1487 to 1884) and 559 bp for Hyalomma species (from 539 to 1097) was necessary for species delineation, two distinct PCR assays were developed to apply these sequences in practice. Results and discussion Discrimination between species within each genus was achieved through sequence homology and phylogenetic analysis following the sequencing of the two PCR products. Subsequently, their performance was evaluated by testing them on the field-collected ticks of the Hyalomma and Rhipicephalus genera obtained from various host animals in different geographic regions of Tunisia. The use of shorter partial sequences specific to the tick genera Rhipicephalus and Hyalomma, which target the tick's RNA banks, could represent a significant advance in the field of tick species identification, providing a sensitive and discriminatory tool for interspecific and intraspecific diversity analysis.
Collapse
Affiliation(s)
- Sayed Zamiti
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Moez Mhadhbi
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Mokhtar Dhibi
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Mohamed Aziz Darghouth
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Mourad Ben Said
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia
| |
Collapse
|
6
|
Pustijanac E, Buršić M, Talapko J, Škrlec I, Meštrović T, Lišnjić D. Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 2023; 11:1634. [PMID: 37512806 PMCID: PMC10383662 DOI: 10.3390/microorganisms11071634] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, can cause serious infection of the central nervous system in humans, resulting in potential neurological complications and fatal outcomes. TBEV is primarily transmitted to humans through infected tick bites, and the viral agent circulates between ticks and animals, such as deer and small mammals. The occurrence of the infection aligns with the seasonal activity of ticks. As no specific antiviral therapy exists for TBEV infection, treatment approaches primarily focus on symptomatic relief and support. Active immunization is highly effective, especially for individuals in endemic areas. The burden of TBEV infections is increasing, posing a growing health concern. Reported incidence rates rose from 0.4 to 0.9 cases per 100,000 people between 2015 and 2020. The Baltic and Central European countries have the highest incidence, but TBE is endemic across a wide geographic area. Various factors, including social and environmental aspects, improved medical awareness, and advanced diagnostics, have contributed to the observed increase. Diagnosing TBEV infection can be challenging due to the non-specific nature of the initial symptoms and potential co-infections. Accurate diagnosis is crucial for appropriate management, prevention of complications, and effective control measures. In this comprehensive review, we summarize the molecular structure of TBEV, its transmission and circulation in natural environments, the pathogenesis of TBEV infection, the epidemiology and global distribution of the virus, associated risk factors, clinical manifestations, and diagnostic approaches. By improving understanding of these aspects, we aim to enhance knowledge and promote strategies for timely and accurate diagnosis, appropriate management, and the implementation of effective control measures against TBEV infections.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dubravka Lišnjić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
7
|
Wimms C, Aljundi E, Halsey SJ. Regional dynamics of tick vectors of human disease. CURRENT OPINION IN INSECT SCIENCE 2023; 55:101006. [PMID: 36702303 DOI: 10.1016/j.cois.2023.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The expansion of tick-borne diseases challenges ecologists, epidemiologists, and public health professionals to understand the mechanisms underlying its emergence. The vast majority of tick-borne disease research emphasizes Ixodes spp. and Borrelia burgdorferi, with less known about other Ixodidae ticks that serve as vectors for an increasing number of pathogens of public health concern. Here, we review and discuss the current knowledge of tick and tick-borne pathogens in an undersurveilled region of the United States. We discuss how landscape shifts may potentially influence tick vector dynamics and expansion. We also discuss the impact of climate change on the phenology of ticks and subsequent disease transmission. Increased efforts in the Central Plains to conduct basic science will help understand the patterns of tick distribution and pathogen prevalence. It is crucial to develop intensive datasets that may be used to generate models that can aid in developing mitigation strategies.
Collapse
Affiliation(s)
- Chantelle Wimms
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Evan Aljundi
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Samniqueka J Halsey
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Cai X, Cai X, Xu Y, Shao Y, Fu L, Men X, Zhu Y. Virome analysis of ticks and tick-borne viruses in Heilongjiang and Jilin Provinces, China. Virus Res 2023; 323:199006. [PMID: 36414189 PMCID: PMC10194156 DOI: 10.1016/j.virusres.2022.199006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Ticks transmit diverse human and animal pathogens, leading to an increasing number of public health concerns. In the forest area of northeast China, the spread of tick-borne diseases (TBDs) is severe; however, little is known about the tick virome composition and evolution. Herein, we investigate the geographical distribution of tick species and related viruses in Heilongjiang and Jilin Provinces in Northeast China. To reveal the diversity of tick-borne viruses in parts of Heilongjiang and Jilin, ticks were collected at 9 collection points in these provinces in 2018. Morphology and molecular biology were used to identify tick species, and 1411 ticks from nine sampling sites were collected and analysed by next-generation sequencing (NGS). Four Ixodidae were identified, including Ixodes persulcatus, Haemaphysalis japonica, Dermacentor silvarum, and Haemaphysalis concinna. After removal of host genome sequences, 13,003 high-quality NGS reads were obtained and annotated as viruses. Further phylogenetic analysis based on amplicons revealed that these viral sequences belong to Beiji nairovirus, Alongshan virus, bovine parvovirus-2, and tick-associated circovirus; some distinct sequences are closely related to Songling virus, Changping tick virus, Norway luteo-like virus 2, and Norway partiti-like virus 1. In summary, this study describes the prevalence of local ticks and variety of tick-borne viruses in northeastern China, providing a basis for further research on tick-borne viruses in the future.
Collapse
Affiliation(s)
- Xianglong Cai
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150006, China
| | - Xiaojing Cai
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150006, China
| | - Yongkang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150006, China
| | - Yi Shao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150006, China
| | - Lian Fu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150006, China
| | - Xiaoyu Men
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150006, China
| | - Yan Zhu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150006, China.
| |
Collapse
|
9
|
Malonis RJ, Georgiev GI, Haslwanter D, VanBlargan LA, Fallon G, Vergnolle O, Cahill SM, Harris R, Cowburn D, Chandran K, Diamond MS, Lai JR. A Powassan virus domain III nanoparticle immunogen elicits neutralizing and protective antibodies in mice. PLoS Pathog 2022; 18:e1010573. [PMID: 35679349 PMCID: PMC9216602 DOI: 10.1371/journal.ppat.1010573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/22/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Powassan virus (POWV) is an emerging tick borne flavivirus (TBFV) that causes severe neuroinvasive disease. Currently, there are no approved treatments or vaccines to combat POWV infection. Here, we generated and characterized a nanoparticle immunogen displaying domain III (EDIII) of the POWV E glycoprotein. Immunization with POWV EDIII presented on nanoparticles resulted in significantly higher serum neutralizing titers against POWV than immunization with monomeric POWV EDIII. Furthermore, passive transfer of EDIII-reactive sera protected against POWV challenge in vivo. We isolated and characterized a panel of EDIII-specific monoclonal antibodies (mAbs) and identified several that potently inhibit POWV infection and engage distinct epitopes within the lateral ridge and C-C' loop of the EDIII. By creating a subunit-based nanoparticle immunogen with vaccine potential that elicits antibodies with protective activity against POWV infection, our findings enhance our understanding of the molecular determinants of antibody-mediated neutralization of TBFVs.
Collapse
Affiliation(s)
- Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - George I. Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Laura A. VanBlargan
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Georgia Fallon
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sean M. Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Richard Harris
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, United States of America
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
10
|
Cui M, Zhou H, Zhang B, Carr MJ, Guo M, Shi W. Rapid detection of the emerging tick-borne Tamdy virus by TaqMan-based real-time reverse transcription PCR. J Virol Methods 2022; 305:114538. [PMID: 35513136 DOI: 10.1016/j.jviromet.2022.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
Tamdy virus (TAMV) is an emerging zoonotic tick-borne arbovirus in the genus Orthonairovirus. Reports of human infections with TAMV have been increasing and development of a rapid detection assay is thus urgently required. In the present study, singleplex and dual-target real-time reverse transcription PCR (qRT-PCR) assays were established for the detection of TAMV. Sensitivity and specificity were evaluated and demonstrated high sensitivity of both the singleplex and dual-target qRT-PCR assays with no cross-reaction with common bunyaviruses and tick-borne viruses. The TaqMan-based qRT-PCR methodology established in this study can be employed for epidemiological surveillance and pathogenesis studies of TAMV.
Collapse
Affiliation(s)
- Mingxue Cui
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Bin Zhang
- College of Life Sciences & Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, 010022, China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020, Japan
| | - Moujian Guo
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| |
Collapse
|
11
|
Romer Y, Adcock K, Wei Z, Mead DG, Kirstein O, Bellman S, Piantadosi A, Kitron U, Vazquez-Prokopec GM. Isolation of Heartland Virus from Lone Star Ticks, Georgia, USA, 2019. Emerg Infect Dis 2022; 28:786-792. [PMID: 35318917 PMCID: PMC8962890 DOI: 10.3201/eid2804.211540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
12
|
Jia W, Chen S, Chi S, He Y, Ren L, Wang X. Recent Progress on Tick-Borne Animal Diseases of Veterinary and Public Health Significance in China. Viruses 2022; 14:v14020355. [PMID: 35215952 PMCID: PMC8875255 DOI: 10.3390/v14020355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Ticks and tick-borne diseases pose a growing threat to human and animal health, which has brought great losses to livestock production. With the continuous expansion of human activities and the development of natural resources, there are more and more opportunities for humans to contract ticks and tick-borne pathogens. Therefore, research on ticks and tick-borne diseases is of great significance. This paper reviews recent progress on tick-borne bacterial diseases, viral diseases, and parasitic diseases in China, which provides a theoretical foundation for the research of tick-borne diseases.
Collapse
Affiliation(s)
- Weijuan Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
| | - Si Chen
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China;
| | - Shanshan Chi
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
| | - Yunjiang He
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China;
- Correspondence: (L.R.); (X.W.); Tel.: +86-15924529577 (X.W.)
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (W.J.); (S.C.); (Y.H.)
- Correspondence: (L.R.); (X.W.); Tel.: +86-15924529577 (X.W.)
| |
Collapse
|
13
|
Yang X, Gao GF, Liu WJ. Powassan virus: A tick borne flavivirus infecting humans. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
14
|
Lippi CA, Ryan SJ, White AL, Gaff HD, Carlson CJ. Trends and Opportunities in Tick-Borne Disease Geography. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2021-2029. [PMID: 34027972 PMCID: PMC8577696 DOI: 10.1093/jme/tjab086] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 05/15/2023]
Abstract
Tick-borne diseases are a growing problem in many parts of the world, and their surveillance and control touch on challenging issues in medical entomology, agricultural health, veterinary medicine, and biosecurity. Spatial approaches can be used to synthesize the data generated by integrative One Health surveillance systems, and help stakeholders, managers, and medical geographers understand the current and future distribution of risk. Here, we performed a systematic review of over 8,000 studies and identified a total of 303 scientific publications that map tick-borne diseases using data on vectors, pathogens, and hosts (including wildlife, livestock, and human cases). We find that the field is growing rapidly, with the major Ixodes-borne diseases (Lyme disease and tick-borne encephalitis in particular) giving way to monitoring efforts that encompass a broader range of threats. We find a tremendous diversity of methods used to map tick-borne disease, but also find major gaps: data on the enzootic cycle of tick-borne pathogens is severely underutilized, and mapping efforts are mostly limited to Europe and North America. We suggest that future work can readily apply available methods to track the distributions of tick-borne diseases in Africa and Asia, following a One Health approach that combines medical and veterinary surveillance for maximum impact.
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- College of Life Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Alexis L White
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Holly D Gaff
- Department of Biology, Old Dominion University, Norfolk, VA, USA
- School of Mathematics, Statistics and Computer Science, University of Kwa-Zulu Natal, Durban, South Africa
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
15
|
Salata C, Moutailler S, Attoui H, Zweygarth E, Decker L, Bell-Sakyi L. How relevant are in vitro culture models for study of tick-pathogen interactions? Pathog Glob Health 2021; 115:437-455. [PMID: 34190676 PMCID: PMC8635668 DOI: 10.1080/20477724.2021.1944539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although tick-borne infectious diseases threaten human and animal health worldwide, with constantly increasing incidence, little knowledge is available regarding vector-pathogen interactions and pathogen transmission. In vivo laboratory study of these subjects using live, intact ticks is expensive, labor-intensive, and challenging from the points of view of biosafety and ethics. Several in vitro models have been developed, including over 70 continuous cell lines derived from multiple tick species and a variety of tick organ culture systems, facilitating many research activities. However, some limitations have to be considered in the translation of the results from the in vitro environment to the in vivo situation of live, intact ticks, and vertebrate hosts. In this review, we describe the available in vitro models and selected results from their application to the study of tick-borne viruses, bacteria, and protozoa, where possible comparing these results to studies in live, intact ticks. Finally, we highlight the strengths and weaknesses of in vitro tick culture models and their essential role in tick-borne pathogen research.
Collapse
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Sara Moutailler
- Laboratoire De Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Maisons-Alfort, France
| | - Houssam Attoui
- Department of Animal Health, UMR1161 Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Erich Zweygarth
- The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Lygia Decker
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Mechanisms Underlying Host Range Variation in Flavivirus: From Empirical Knowledge to Predictive Models. J Mol Evol 2021; 89:329-340. [PMID: 34059925 DOI: 10.1007/s00239-021-10013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022]
Abstract
Preventing and controlling epidemics caused by vector-borne viruses are particularly challenging due to their diverse pool of hosts and highly adaptive nature. Many vector-borne viruses belong to the Flavivirus genus, whose members vary greatly in host range and specificity. Members of the Flavivirus genus can be categorized to four main groups: insect-specific viruses that are maintained solely in arthropod populations, mosquito-borne viruses and tick-borne viruses that are transmitted to vertebrate hosts by mosquitoes or ticks via blood feeding, and those with no-known vector. The mosquito-borne group encompasses the yellow fever, dengue, and West Nile viruses, all of which are globally spread and cause severe morbidity in humans. The Flavivirus genus is genetically diverse, and its members are subject to different host-specific and vector-specific selective constraints, which do not always align. Thus, understanding the underlying genetic differences that led to the diversity in host range within this genus is an important aspect in deciphering the mechanisms that drive host compatibility and can aid in the constant arms-race against viral threats. Here, we review the phylogenetic relationships between members of the genus, their infection bottlenecks, and phenotypic and genomic differences. We further discuss methods that utilize these differences for prediction of host shifts in flaviviruses and can contribute to viral surveillance efforts.
Collapse
|
17
|
Normandin E, Solomon IH, Zamirpour S, Lemieux J, Freije CA, Mukerji SS, Tomkins-Tinch C, Park D, Sabeti PC, Piantadosi A. Powassan Virus Neuropathology and Genomic Diversity in Patients With Fatal Encephalitis. Open Forum Infect Dis 2020; 7:ofaa392. [PMID: 33094116 PMCID: PMC7566439 DOI: 10.1093/ofid/ofaa392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Background Powassan virus (POWV) is an emerging cause of severe encephalitis; very little is known about human pathogenicity due to challenges in diagnosis and viral RNA recovery. We present 3 patients with fatal encephalitis due to POWV lineage II (deer tick virus). Methods We obtained 27 unique samples, including from brain biopsy and autopsy, and used metagenomic sequencing, quantitative reverse transcriptase polymerase chain reaction, and a newly developed CRISPR-based diagnostic assay to perform the first detailed characterization of POWV compartmentalization and genomics between and within human subjects. Results In all 3 patients, imaging and histopathology findings were notable for profound cerebellar involvement. All patients were initially diagnosed with POWV by metagenomic sequencing, and 2 of the 3 had negative clinical testing by serology. We detected POWV RNA in 13 clinical samples; levels were highest in the cerebellum, and there was very little involvement of peripheral tissue. We assembled complete POWV genomes from 8 samples, providing unique information about the strains of POWV lineage II (deer tick virus) that infect humans. Conclusions We demonstrate the utility of molecular assays for detecting POWV infection, including in seronegative patients, and nominate viral genomic features that may relate to human infection and neuropathogenicity. The cerebellum was identified as a key target POWV in fatal infection, by radiological and histopathological findings as well as molecular testing.
Collapse
Affiliation(s)
- Erica Normandin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Siavash Zamirpour
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard College, Cambridge, Massachusetts, USA
| | - Jacob Lemieux
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine A Freije
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Shibani S Mukerji
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christopher Tomkins-Tinch
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Daniel Park
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Anne Piantadosi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA.,Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
18
|
The Seroprevalence of Tick-Borne Encephalitis in Rural Population of Mazandaran Province, Northern Iran (2018 - 2019). ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020. [DOI: 10.5812/archcid.98867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Masoud HMM, Helmy MS, Darwish DA, Abdel-Monsef MM, Ibrahim MA. Apyrase with anti-platelet aggregation activity from the nymph of the camel tick Hyalomma dromedarii. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:349-361. [PMID: 31927645 DOI: 10.1007/s10493-020-00471-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Apyrase is one of the essential platelet aggregation inhibitors in hematophagous arthropods due to its ability to hydrolyze ATP and ADP molecules. Here, an apyrase (TNapyrase) with antiplatelet aggregation activity was purified and characterized from the nymphs of the camel tick Hyalomma dromedarii through anion exchange and gel filtration columns. The homogeneity of TNapyrase was confirmed by native-PAGE, SDS-PAGE as well as with isoelectric focusing. Purified TNapyrase had a molecular mass of 25 kDa and a monomer structure. TNapyrase hydrolyzed various nucleotides in the order of ATP > PPi > ADP > UDP > 6GP. The Km value was 1.25 mM ATP and its optimum activity reached at pH 8.4. The influence of various ions on TNapyrase activity showed that FeCl2, FeCl3 and ZnCl2 are activators of TNapyrase. EDTA inhibited TNapyrase activity competitively with a single binding site on the molecule and Ki value of 2 mM. Finally, TNapyrase caused 70% inhibition of ADP-stimulated platelets aggregation and is a possible target for antibodies in future tick vaccine studies.
Collapse
Affiliation(s)
- Hassan M M Masoud
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Mohamed S Helmy
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Doaa A Darwish
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mohamed M Abdel-Monsef
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mahmoud A Ibrahim
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
20
|
Nasirian H. New aspects about Crimean-Congo hemorrhagic fever (CCHF) cases and associated fatality trends: A global systematic review and meta-analysis. Comp Immunol Microbiol Infect Dis 2020; 69:101429. [PMID: 32062190 DOI: 10.1016/j.cimid.2020.101429] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 02/05/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is the most popular tick-borne disease causing by Crimean-Congo hemorrhagic fever virus (CCHFV). There are several valuable reviews considering some fields of the CCHF aspects. While there is no a systematic review about means and trends of CCHF cases and fatality rate, means and trends of CCHF cases and fatality rates of human occupations involved in CCHF. Therefore, this meta-analysis review performed to highlight and provide a global detailed of the above CCHF aspects. Among 398 collected papers, 173 papers were become this meta-analysis review. The study results confirm that an apparent increasing CCHF cases occurred through the past decades. The trends of annually and periodically CCHF cases and fatality rates were also increased. The means of annually and periodically CCHF cases and fatality rates were 57 and 432 cases, and 10 cases and 32.2 % and 49 cases and 28.8 %, respectively. The means of annually and periodically CCHF fatality rates are about one-tenth of CCHF human cases. The mean of CCHF fatality rates in Africa (22.0 %) is lower than Asia (33.5 %) and Europe (33.8 %). Among occupations involved in CCHF, agricultural (28.9 %), health-care (19.2 %) and slaughterhouse (16.7 %) workers, and farmers (13.9 %) had the maximum CCHF fatality rates in order. Based on literature review of CCHFV S-segment aspects, several clades and genotypes are reported to distribute in Africa, Asia and Europe regions. There are very wide fields to investigate the epidemiology characteristics of CCHFV clades, genotypes and their distribution in the future.
Collapse
Affiliation(s)
- Hassan Nasirian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Temmam S, Chrétien D, Bigot T, Dufour E, Petres S, Desquesnes M, Devillers E, Dumarest M, Yousfi L, Jittapalapong S, Karnchanabanthoeng A, Chaisiri K, Gagnieur L, Cosson JF, Vayssier-Taussat M, Morand S, Moutailler S, Eloit M. Monitoring Silent Spillovers Before Emergence: A Pilot Study at the Tick/Human Interface in Thailand. Front Microbiol 2019; 10:2315. [PMID: 31681195 PMCID: PMC6812269 DOI: 10.3389/fmicb.2019.02315] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023] Open
Abstract
Emerging zoonoses caused by previously unknown agents are one of the most important challenges for human health because of their inherent inability to be predictable, conversely to emergences caused by previously known agents that could be targeted by routine surveillance programs. Emerging zoonotic infections either originate from increasing contacts between wildlife and human populations, or from the geographical expansion of hematophagous arthropods that act as vectors, this latter being more capable to impact large-scale human populations. While characterizing the viral communities from candidate vectors in high-risk geographical areas is a necessary initial step, the need to identify which viruses are able to spill over and those restricted to their hosts has recently emerged. We hypothesized that currently unknown tick-borne arboviruses could silently circulate in specific biotopes where mammals are highly exposed to tick bites, and implemented a strategy that combined high-throughput sequencing with broad-range serological techniques to both identify novel arboviruses and tick-specific viruses in a ticks/mammals interface in Thailand. The virome of Thai ticks belonging to the Rhipicephalus, Amblyomma, Dermacentor, Hyalomma, and Haemaphysalis genera identified numerous viruses, among which several viruses could be candidates for future emergence as regards to their phylogenetic relatedness with known tick-borne arboviruses. Luciferase immunoprecipitation system targeting external viral proteins of viruses identified among the Orthomyxoviridae, Phenuiviridae, Flaviviridae, Rhabdoviridae, and Chuviridae families was used to screen human and cattle Thai populations highly exposed to tick bites. Although no positive serum was detected for any of the six viruses selected, suggesting that these viruses are not infecting these vertebrates, or at very low prevalence (upper estimate 0.017% and 0.047% in humans and cattle, respectively), the virome of Thai ticks presents an extremely rich viral diversity, among which novel tick-borne arboviruses are probably hidden and could pose a public health concern if they emerge. The strategy developed in this pilot study, starting from the inventory of viral communities of hematophagous arthropods to end by the identification of viruses able (or likely unable) to infect vertebrates, is the first step in the prediction of putative new emergences and could easily be transposed to other reservoirs/vectors/susceptible hosts interfaces.
Collapse
Affiliation(s)
- Sarah Temmam
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Delphine Chrétien
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Thomas Bigot
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
- Institut Pasteur – Bioinformatics and Biostatistics Hub – Computational Biology Department, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Evelyne Dufour
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform – C2RT, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform – C2RT, Paris, France
| | - Marc Desquesnes
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR InterTryp, Bangkok, Thailand
- InterTryp, Institut de Recherche pour le Développement (IRD), CIRAD, University of Montpellier, Montpellier, France
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Marine Dumarest
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Léna Yousfi
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | | | | | - Léa Gagnieur
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Jean-François Cosson
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Serge Morand
- Institut des Sciences de l'Evolution, CNRS, CC065, Université Montpellier, Montpellier, France
- CIRAD ASTRE, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Marc Eloit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
- National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, France
| |
Collapse
|
22
|
Nasirian H. Crimean-Congo hemorrhagic fever (CCHF) seroprevalence: A systematic review and meta-analysis. Acta Trop 2019; 196:102-120. [PMID: 31108083 DOI: 10.1016/j.actatropica.2019.05.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/07/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is the most widespread, tick-borne viral disease affecting humans and therefore this paper performed a meta-analysis to highlight seroprevalence features of CCHF in a global context. After a preliminary review of the 396 papers representing areas throughout the world, 206 were selected for detailed meta-analysis. In general the total means of CCHF seroprevalence were, respectively 4.7 and 24.6% for humans and animals; and 17.1, 18.9, 24.3, 29.3 and 27.1% for camels, cattle, goats, sheep and livestock. Statistical analysis revealed a significant difference in seroprevalence between humans and camels (P = 0.043), cattle (P = 0.010), goats (P = 0.015), sheep (P = 0.005) and livestock (P = 0.017). Regionally, there also was a difference between humans, and goats (P = 0.0001), sheep (P = 0.007) and livestock (P = 0.002). Globally, CCHF seroprevalence in at-risk professionals was 7.5 fold greater than in normal humans, while CCHF seroprevalence was 5 fold greater in animals, camels, cattle, goats, sheep and livestock than normal humans. Animal contact, animal husbandry, farming, tick bite history and secretion exposure were the most frequently reported CCHF seropositivity risk factors. This study serves as an important resource for epidemiological discussions related to CCHF and CCHF seroprevalence features, providing specific information in understanding human and animal mean and trend CCHF seroprevalence for different regions of the world and on an aggregate global scale; seroprevalence in at-risk professionals; and total mean and trend CCHF seropositivity involving risk factors.
Collapse
Affiliation(s)
- Hassan Nasirian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, Zip code 1346689151, Tehran, Iran.
| |
Collapse
|
23
|
Russo AG, Kelly AG, Enosi Tuipulotu D, Tanaka MM, White PA. Novel insights into endogenous RNA viral elements in Ixodes scapularis and other arbovirus vector genomes. Virus Evol 2019; 5:vez010. [PMID: 31249694 PMCID: PMC6580184 DOI: 10.1093/ve/vez010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many emerging arboviruses are not transmitted by traditional mosquito vectors, but by lesser-studied arthropods such as ticks, midges, and sand flies. Small RNA (sRNA) silencing pathways are the main antiviral defence mechanism for arthropods, which lack adaptive immunity. Non-retroviral integrated RNA virus sequences (NIRVS) are one potential source of sRNAs which comprise these pathways. NIRVS are remnants of past germline RNA viral infections, where viral cDNA integrates into the host genome and is vertically transmitted. In Aedes mosquitoes, NIRVS are widespread and produce PIWI-interacting RNAs (piRNAs). These are hypothesised to target incoming viral transcripts to modulate viral titre, perhaps rendering the organism a more efficient arbovirus vector. To explore the NIRVS landscape in alternative arbovirus vectors, we validated the NIRVS landscape in Aedes spp. and then identified novel NIRVS in six medically relevant arthropods and also in Drosophila melanogaster. We identified novel NIRVS in Phlebotomus papatasi, Culicoides sonorensis, Rhipicephalus microplus, Anopheles gambiae, Culex quinquefasciatus, and Ixodes scapularis. Due to their unexpected abundance, we further characterised NIRVS in the blacklegged tick I. scapularis (n = 143). Interestingly, NIRVS are not enriched in R. microplus, another hard tick, suggesting this is an Ixodes-specific adaptation. I. scapularis NIRVS are enriched in bunya- and orthomyxo-like sequences, reflecting that ticks are a dominant host for these virus groups. Unlike in mosquitoes, I. scapularis NIRVS are more commonly derived from the non-structural region (replicase) of negative-sense viruses, as opposed to structural regions (e.g. glycoprotein). Like other arthropods, I. scapularis NIRVS preferentially integrate into genomic piRNA clusters, and serve as a template for primary piRNA production in the commonly used embryonic I. scapularis ISE6 cell line. Interestingly, we identified a two-fold enrichment of non-long terminal repeat (non-LTR) retrotransposons, in genomic proximity to NIRVS, contrasting with studeis in Ae. aegypti, where LTR retrotransposons are instead associated with NIRVS formation. We characterised NIRVS phylogeny and integration patterns in the important vector, I. scapularis, revealing they are distinct from those in Aedes spp. Future studies will explore the possible antiviral mechanism conferred by NIRVS to I. scapularis,which may help the transmission of pathogenic arboviruses. Finally, this study explored NIRVS as an untapped wealth of viral diversity in arthropods.
Collapse
Affiliation(s)
- Alice G Russo
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew G Kelly
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Molecular Basis of a Protective/Neutralizing Monoclonal Antibody Targeting Envelope Proteins of both Tick-Borne Encephalitis Virus and Louping Ill Virus. J Virol 2019; 93:JVI.02132-18. [PMID: 30760569 DOI: 10.1128/jvi.02132-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are members of the tick-borne flaviviruses (TBFVs) in the family Flaviviridae which cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines against TBEV and LIV are available, infection rates are rising due to the low vaccination coverage. To date, no specific therapeutics have been licensed. Several neutralizing monoclonal antibodies (MAbs) show promising effectiveness in the control of TBFVs, but the underlying molecular mechanisms are yet to be characterized. Here, we determined the crystal structures of the LIV envelope (E) protein and report the comparative structural analysis of a TBFV broadly neutralizing murine MAb (MAb 4.2) in complex with either the LIV or TBEV E protein. The structures reveal that MAb 4.2 binds to the lateral ridge of domain III of the E protein (EDIII) of LIV or TBEV, an epitope also reported for other potently neutralizing MAbs against mosquito-borne flaviviruses (MBFVs), but adopts a unique binding orientation. Further structural analysis suggested that MAb 4.2 may neutralize flavivirus infection by preventing the structural rearrangement required for membrane fusion during virus entry. These findings extend our understanding of the vulnerability of TBFVs and other flaviviruses (including MBFVs) and provide an avenue for antibody-based TBFV antiviral development.IMPORTANCE Understanding the mechanism of antibody neutralization/protection against a virus is crucial for antiviral countermeasure development. Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are tick-borne flaviviruses (TBFVs) in the family Flaviviridae They cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines for both viruses are available, infection rates are rising due to low vaccination coverage. In this study, we solved the crystal structures of the LIV envelope protein (E) and a broadly neutralizing/protective TBFV MAb, MAb 4.2, in complex with E from either TBEV or LIV. Key structural features shared by TBFV E proteins were analyzed. The structures of E-antibody complexes showed that MAb 4.2 targets the lateral ridge of both the TBEV and LIV E proteins, a vulnerable site in flaviviruses for other potent neutralizing MAbs. Thus, this site represents a promising target for TBFV antiviral development. Further, these structures provide important information for understanding TBFV antigenicity.
Collapse
|
25
|
Mazzola LT, Kelly-Cirino C. Diagnostic tests for Crimean-Congo haemorrhagic fever: a widespread tickborne disease. BMJ Glob Health 2019; 4:e001114. [PMID: 30899574 PMCID: PMC6407549 DOI: 10.1136/bmjgh-2018-001114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a widespread tickborne disease that circulates in wild and domestic animal hosts, and causes severe and often fatal haemorrhagic fever in infected humans. Due to the lack of treatment options or vaccines, and a high fatality rate, CCHF virus (CCHFV) is considered a high-priority pathogen according to the WHO R&D Blueprint. Several commercial reverse transcriptase PCR (RT-PCR) and serological diagnostic assays for CCHFV are already available, including febrile agent panels to distinguish CCHFV from other viral haemorrhagic fever agents; however, the majority of international laboratories use inhouse assays. As CCHFV has numerous amplifying animal hosts, a cross-sectoral 'One Health' approach to outbreak prevention is recommended to enhance notifications and enable early warning for genetic and epidemiological shifts in the human, animal and tick populations. However, a lack of guidance for surveillance in animals, harmonisation of case identification and validated serodiagnostic kits for animal testing hinders efforts to strengthen surveillance systems. Additionally, as RT-PCR tests tend to be lineage-specific for regional circulating strains, there is a need for pan-lineage sensitive diagnostics. Adaptation of existing tests to point-of-care molecular diagnostic platforms that can be implemented in clinic or field-based settings would be of value given the potential for CCHFV outbreaks in remote or low-resource areas. Finally, improved access to clinical specimens for validation of diagnostics would help to accelerate development of new tests. These gaps should be addressed by updated target product profiles for CCHFV diagnostics.
Collapse
Affiliation(s)
- Laura T Mazzola
- Emerging Threats Programme, Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Cassandra Kelly-Cirino
- Emerging Threats Programme, Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| |
Collapse
|
26
|
Ruiling Z, Zhendong H, Guangfu Y, Zhong Z. Characterization of the bacterial community in Haemaphysalis longicornis (Acari: Ixodidae) throughout developmental stages. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:173-186. [PMID: 30756199 DOI: 10.1007/s10493-019-00339-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
As one of the most important vectors, Haemaphysalis longicornis can transmit a variety of pathogens and is widely distributed in China. It has been reported that the bacterial community in ticks can impact tick fitness, development, and reproduction and even the transmission of tick-borne pathogens. In this study, bacterial diversity across all developmental stages (eggs, larvae, nymphs and adults) of H. longicornis was investigated using high-throughput sequencing technology. The results demonstrated that Proteobacteria was the dominant phylum and that Coxiella was the most abundant bacterial genus across all the samples. Alpha diversity analysis demonstrated that the eggs had the highest bacterial richness and diversity, and the bacterial community of the larvae was found to be similar to that of the eggs. However, there was a rapid increase in the relative abundance of Coxiella upon development of larvae to nymphs. Females exhibited the lowest bacterial diversity, and the proportion of Coxiella decreased from 85% in females to 45% in males. Our results suggest that H. longicornis lost most of the bacteria present in the early developmental stages and re-established the bacterial community after bloodmeals and molting.
Collapse
Affiliation(s)
- Zhang Ruiling
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, 271016, Shandong, China.
- School of Basic Medical Science, Taishan Medical University, Taian, 271016, Shandong, China.
| | - Huang Zhendong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, 271016, Shandong, China
- School of Basic Medical Science, Taishan Medical University, Taian, 271016, Shandong, China
| | - Yu Guangfu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, 271016, Shandong, China
- School of Basic Medical Science, Taishan Medical University, Taian, 271016, Shandong, China
| | - Zhang Zhong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, 271016, Shandong, China.
- School of Basic Medical Science, Taishan Medical University, Taian, 271016, Shandong, China.
| |
Collapse
|
27
|
Zhendong H, Guangfu Y, Zhong Z, Ruiling Z. Phylogenetic relationships and effectiveness of four Beauveria bassiana sensu lato strains for control of Haemaphysalis longicornis (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:83-92. [PMID: 30488158 DOI: 10.1007/s10493-018-0329-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Haemaphysalis longicornis (Acari: Ixodidae) is an important vector tick that is widely distributed around the world. In many regions, this tick acts as vector of a wide range of pathogens to humans and animals, and its control is mainly based on the use of chemical pesticides. However, the occurrence of some adverse effects, such as tick resistance to pesticides and food and environmental contamination, are driving the need to develop more effective and environmentally sound approaches to control and prevent ticks. As an alternative control strategy, entomopathogenic fungi have been extensively used for the control of pests and cause high mortality in various ticks. In this study, we identified four isolates of Beauveria bassiana sensu lato from insects and investigated their pathogenicity against different developmental stages of H. longicornis (eggs, unfed larvae, unfed nymphs and engorged females). Phylogenetic analysis demonstrated that the four isolates of B. bassiana clustered into two clades. Four isolates showed different acaricidal qualities: the isolate from Cerambycidae (EF3) exhibited the highest pathogenicity to all developmental tick stages tested. High doses (1 × 107 conidia/ml) of the clade I fungi collected from Cryptotympana atrata fabricus (Cicadidae) (EF1), Cimicidae (EF2), and Boettcherisca peregrine (Sarcophagidae) (EF4) also showed virulence against H. longicornis, with high doses of the fungi application causing higher mortality than control group. Altogether, this study demonstrated that all four isolates of B. bassiana showed high virulence toward different developmental stages of H. longicornis, and therefore, they can be of potential use as biological control agents of ticks.
Collapse
Affiliation(s)
- Huang Zhendong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, 271016, Shandong, China
- School of Basic Medical Science, Taishan Medical University, Taian, 271016, Shandong, China
| | - Yu Guangfu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, 271016, Shandong, China
- School of Basic Medical Science, Taishan Medical University, Taian, 271016, Shandong, China
| | - Zhang Zhong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, 271016, Shandong, China.
- School of Basic Medical Science, Taishan Medical University, Taian, 271016, Shandong, China.
| | - Zhang Ruiling
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, 271016, Shandong, China.
- School of Basic Medical Science, Taishan Medical University, Taian, 271016, Shandong, China.
| |
Collapse
|
28
|
Rodriguez-Morales AJ, Bonilla-Aldana DK, Idarraga-Bedoya SE, Garcia-Bustos JJ, Cardona-Ospina JA, Faccini-Martínez ÁA. Epidemiology of zoonotic tick-borne diseases in Latin America: Are we just seeing the tip of the iceberg? F1000Res 2018; 7:1988. [PMID: 31489178 PMCID: PMC6707394 DOI: 10.12688/f1000research.17649.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Ticks are responsible for transmission of multiple bacterial, parasitic and viral diseases. Tick-borne diseases (TBDs) occur particularly in tropical and also subtropical areas. The frequency of these TBDs has been increasing and extending to new territories in a significant way, partly since ticks' populations are highly favored by prevailing factors such as change in land use patterns, and climate change. Therefore, in order to obtain accurate estimates of mortality, premature mortality, and disability associated about TBDs, more molecular and epidemiological studies in different regions of the world, including Latin America, are required. In the case of this region, there is still a limited number of published studies. In addition, there is recently the emergence and discovering of pathogens not reported previously in this region but present in other areas of the world. In this article we discuss some studies and implications about TBDs in Latin America, most of them, zoonotic and with evolving taxonomical issues.
Collapse
Affiliation(s)
- Alfonso J. Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- School of Medicine, Universidad Franz Tamayo/UNIFRANZ, Cochabamba, Cochabamba, 4780, Bolivia
| | - D. Katterine Bonilla-Aldana
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Grupo de Investigación Sanidad Animal, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
| | - Samuel E. Idarraga-Bedoya
- Grupo de Investigación Sanidad Animal, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
| | - Juan J. Garcia-Bustos
- Grupo de Investigación en Patología e Inmunología – Doctorado en Medicina Tropical, Universidad del Magdalena, Santa Marta, Magdalena, 470004, Colombia
- Grupo de Investigación en Ciencias Animales Macagual, Universidad de La Amazonia, Florencia, Caquetá, 180002, Colombia
| | - Jaime A. Cardona-Ospina
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Infection and Immunity Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Grupo de Investigación Biomedicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas – Sci-Help, Pereira, Risaralda, 660003, Colombia
| | - Álvaro A. Faccini-Martínez
- Postgraduate Program in Infectious Diseases, Health Science Center, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
29
|
Rodriguez-Morales AJ, Bonilla-Aldana DK, Idarraga-Bedoya SE, Garcia-Bustos JJ, Cardona-Ospina JA, Faccini-Martínez ÁA. Epidemiology of zoonotic tick-borne diseases in Latin America: Are we just seeing the tip of the iceberg? F1000Res 2018; 7:1988. [PMID: 31489178 PMCID: PMC6707394 DOI: 10.12688/f1000research.17649.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2018] [Indexed: 12/11/2022] Open
Abstract
Ticks are responsible for transmission of multiple bacterial, parasitic and viral diseases. Tick-borne diseases (TBDs) occur particularly in tropical and also subtropical areas. The frequency of these TBDs has been increasing and extending to new territories in a significant way, partly since ticks' populations are highly favored by prevailing factors such as change in land use patterns, and climate change. Therefore, in order to obtain accurate estimates of mortality, premature mortality, and disability associated about TBDs, more molecular and epidemiological studies in different regions of the world, including Latin America, are required. In the case of this region, there is still a limited number of published studies. In addition, there is recently the emergence and discovering of pathogens not reported previously in this region but present in other areas of the world. In this article we discuss some studies and implications about TBDs in Latin America, most of them, zoonotic and with evolving taxonomical issues.
Collapse
Affiliation(s)
- Alfonso J. Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- School of Medicine, Universidad Franz Tamayo/UNIFRANZ, Cochabamba, Cochabamba, 4780, Bolivia
| | - D. Katterine Bonilla-Aldana
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Grupo de Investigación Sanidad Animal, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
| | - Samuel E. Idarraga-Bedoya
- Grupo de Investigación Sanidad Animal, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
| | - Juan J. Garcia-Bustos
- Grupo de Investigación en Patología e Inmunología – Doctorado en Medicina Tropical, Universidad del Magdalena, Santa Marta, Magdalena, 470004, Colombia
- Grupo de Investigación en Ciencias Animales Macagual, Universidad de La Amazonia, Florencia, Caquetá, 180002, Colombia
| | - Jaime A. Cardona-Ospina
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Infection and Immunity Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
- Grupo de Investigación Biomedicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, 660004, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas – Sci-Help, Pereira, Risaralda, 660003, Colombia
| | - Álvaro A. Faccini-Martínez
- Postgraduate Program in Infectious Diseases, Health Science Center, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
30
|
Talactac MR, Hernandez EP, Fujisaki K, Tanaka T. A Continuing Exploration of Tick-Virus Interactions Using Various Experimental Viral Infections of Hard Ticks. Front Physiol 2018; 9:1728. [PMID: 30564140 PMCID: PMC6288443 DOI: 10.3389/fphys.2018.01728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/16/2018] [Indexed: 01/07/2023] Open
Abstract
To fully unravel the ixodid ticks’ role as vectors of viral pathogens, their susceptibility to new control measures, and their ability to develop acaricide resistance, acclimatization of ticks under laboratory conditions is greatly needed. However, the unique and complicated feeding behavior of these ticks compared to that of other hematophagous arthropods requires efficient and effective techniques to infect them with tick-borne viruses (TBVs). In addition, relatively expensive maintenance of animals for blood feeding and associated concerns about animal welfare critically limit our understanding of TBVs. This mini review aims to summarize the current knowledge about the artificial infection of hard ticks with viral pathogens, which is currently used to elucidate virus transmission and vector competence and to discover immune modulators related to tick–virus interactions. This review will also present the advantages and limitations of the current techniques for tick infection. Fortunately, new artificial techniques arise, and the limitations of current protocols are greatly reduced as researchers continuously improve, streamline, and standardize the laboratory procedures to lower cost and produce better adoptability. In summary, convenient and low-cost techniques to study the interactions between ticks and TBVs provide a great opportunity to identify new targets for the future control of TBVs.
Collapse
Affiliation(s)
- Melbourne Rio Talactac
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, Philippines.,Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Emmanuel P Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kozo Fujisaki
- National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
31
|
Souza WMD, Fumagalli MJ, Torres Carrasco ADO, Romeiro MF, Modha S, Seki MC, Gheller JM, Daffre S, Nunes MRT, Murcia PR, Acrani GO, Figueiredo LTM. Viral diversity of Rhipicephalus microplus parasitizing cattle in southern Brazil. Sci Rep 2018; 8:16315. [PMID: 30397237 PMCID: PMC6218518 DOI: 10.1038/s41598-018-34630-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Ticks are ectoparasites spread worldwide and are well known as vectors of many viruses of great importance to human and animal health. However, the viral diversity in ticks is still poorly understood, particularly in South America. Here we characterized the viral diversity present in Rhipicephalus microplus parasitizing cattle in the southern region of Brazil using metagenomics. Our study revealed the presence of viruses that had not been previously described in the region, including lihan tick virus (Phenuiviridae family) and wuhan tick virus 2 (Chuviridae family), as well as expands the biogeography of jingmen tick virus (Flaviviridae family) in Brazil. Also, we described three novel tymoviruses (Tymovirales order), named guarapuava tymovirus-like 1 to 3. We described the genomic and phylogenetic characterization of these viruses. Our study sheds light on the viral diversity of Rhipicephalus microplus in South America, and also expands the biogeography of tick viruses that were previously described only in Asia.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil. .,MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom.
| | - Marcílio Jorge Fumagalli
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | | | - Marilia Farignoli Romeiro
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom
| | | | | | - Sirlei Daffre
- Laboratório de Bioquímica e Imunologia de Artrópode, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | | | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom
| | | | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
32
|
Sajid M, Kausar A, Iqbal A, Abbas H, Iqbal Z, Jones M. An insight into the ecobiology, vector significance and control of Hyalomma ticks (Acari: Ixodidae): A review. Acta Trop 2018; 187:229-239. [PMID: 30118698 DOI: 10.1016/j.actatropica.2018.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 12/28/2022]
Abstract
Ticks (Acari:Ixodoidea) are important ectoparasites infesting livestock and human populations around the globe. Ticks can cause damage directly by affecting the site of infestation, or indirectly as vectors of a wide range of protozoa, bacteria and viruses which ultimately lead to lowered productivity of livestock populations. Hyalomma is a genus of hard ticks, having more than 30 species well-adapted to hot, humid and cold climates. Habitat diversity, vector ability, and emerging problem of acaricidal resistance in enzootic regions typify this genus in various countries around the world. This paper reviews the epidemiology, associated risk factors (temperature, climate, age, sex, breed etc.), vector role, vector-pathogen association, and reported control strategies of genus Hyalomma. The various proteins in saliva of Hyalomma secreted into the blood stream of host and the prolonged attachment are responsible for the successful engorgement of female ticks in spite of host immune defense system. The various immunological approaches that have been tried by researchers in order to cause tick rejection are also discussed. In addition, the novel biological control approaches involving the use of entomo-pathogenic nematodes and Bacillus thuringiensis (B. thuringiensis) serovar thuringiensis H14; an endotoxin, for their acaricidal effect on different species and life cycle stages of Hyalomma are also presented.
Collapse
|
33
|
de la Calle-Prieto F, Martín-Quirós A, Trigo E, Mora-Rillo M, Arsuaga M, Díaz-Menéndez M, Arribas JR. Therapeutic management of Crimean-Congo haemorrhagic fever. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2018. [PMCID: PMC7270944 DOI: 10.1016/j.eimce.2017.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crimean-Congo haemorrhagic fever has been reported in more than 30 countries in Africa, Asia, the Middle East and Eastern Europe, with an increasing incidence in recent years, especially in Europe. Because no specific treatments have demonstrated efficacy, supportive treatment is essential, as well as the provision of a centre with the appropriate means to guarantee the safety of its healthcare professionals. Laboratory monitoring of thrombocytopenia, severe coagulopathy or liver failure is of critical importance. Patients with Crimean-Congo haemorrhagic fever should be admitted to High Level Isolation Units where appropriate biocontainment procedures can prevent nosocomial transmission through infected fluids or accidents with contaminated material. In case of high-risk exposures, early administration of ribavirin should be considered.
Collapse
|
34
|
de la Calle-Prieto F, Martín-Quirós A, Trigo E, Mora-Rillo M, Arsuaga M, Díaz-Menéndez M, Arribas JR. Therapeutic management of Crimean-Congo haemorrhagic fever. Enferm Infecc Microbiol Clin 2018; 36:517-522. [PMID: 28669587 PMCID: PMC7103311 DOI: 10.1016/j.eimc.2017.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/03/2023]
Abstract
Crimean-Congo haemorrhagic fever has been reported in more than 30 countries in Africa, Asia, the Middle East and Eastern Europe, with an increasing incidence in recent years, especially in Europe. Because no specific treatments have demonstrated efficacy, supportive treatment is essential, as well as the provision of a centre with the appropriate means to guarantee the safety of its healthcare professionals. Laboratory monitoring of thrombocytopenia, severe coagulopathy or liver failure is of critical importance. Patients with Crimean-Congo haemorrhagic fever should be admitted to High Level Isolation Units where appropriate biocontainment procedures can prevent nosocomial transmission through infected fluids or accidents with contaminated material. In case of high-risk exposures, early administration of ribavirin should be considered.
Collapse
Affiliation(s)
| | | | - Elena Trigo
- Unidad de Aislamiento de Alto Nivel, Hospital La Paz-Carlos III, Idipaz, Madrid, España
| | - Marta Mora-Rillo
- Unidad de Aislamiento de Alto Nivel, Hospital La Paz-Carlos III, Idipaz, Madrid, España
| | - Marta Arsuaga
- Unidad de Aislamiento de Alto Nivel, Hospital La Paz-Carlos III, Idipaz, Madrid, España
| | - Marta Díaz-Menéndez
- Unidad de Aislamiento de Alto Nivel, Hospital La Paz-Carlos III, Idipaz, Madrid, España
| | - José Ramón Arribas
- Unidad de Aislamiento de Alto Nivel, Hospital La Paz-Carlos III, Idipaz, Madrid, España
| |
Collapse
|
35
|
Vector competence of Haemaphysalis longicornis ticks for a Japanese isolate of the Thogoto virus. Sci Rep 2018; 8:9300. [PMID: 29915199 PMCID: PMC6006283 DOI: 10.1038/s41598-018-27483-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023] Open
Abstract
Thogoto virus (THOV), a tick-borne arbovirus not previously reported in East Asia, was recently isolated from Haemaphysalis longicornis in Kyoto, Japan. In this study, we investigated the vector competence of H. longicornis ticks for a Japanese isolate of the Thogoto virus using anal pore microinjection and experimental virus acquisition. Our results showed that anal pore microinjection can readily infect adult ticks, and THOV-infected ticks can successfully transmit the virus to mice. Blood feeding was also critical in the distribution of the virus in tick organs, most especially in the salivary glands. Furthermore, co-feeding between an infected adult and naïve nymphs can also produce infected molted adults that can horizontally transmit THOV to mice. Altogether, our results suggest that H. longicornis is a competent vector for the Japanese THOV isolate and could be the primary tick vector of the virus in Japan.
Collapse
|
36
|
Bensaoud C, Nishiyama MY, Ben Hamda C, Lichtenstein F, Castro de Oliveira U, Faria F, Loiola Meirelles Junqueira-de-Azevedo I, Ghedira K, Bouattour A, M'Ghirbi Y, Chudzinski-Tavassi AM. De novo assembly and annotation of Hyalomma dromedarii tick (Acari: Ixodidae) sialotranscriptome with regard to gender differences in gene expression. Parasit Vectors 2018; 11:314. [PMID: 29793520 PMCID: PMC5968504 DOI: 10.1186/s13071-018-2874-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hard ticks are hematophagous ectoparasites characterized by their long-term feeding. The saliva that they secrete during their blood meal is their crucial weapon against host-defense systems including hemostasis, inflammation and immunity. The anti-hemostatic, anti-inflammatory and immune-modulatory activities carried out by tick saliva molecules warrant their pharmacological investigation. The Hyalomma dromedarii Koch, 1844 tick is a common parasite of camels and probably the best adapted to deserts of all hard ticks. Like other hard ticks, the salivary glands of this tick may provide a rich source of many compounds whose biological activities interact directly with host system pathways. Female H. dromedarii ticks feed longer than males, thereby taking in more blood. To investigate the differences in feeding behavior as reflected in salivary compounds, we performed de novo assembly and annotation of H. dromedarii sialotranscriptome paying particular attention to variations in gender gene expression. RESULTS The quality-filtered Illumina sequencing reads deriving from a cDNA library of salivary glands led to the assembly of 15,342 transcripts. We deduced that the secreted proteins included: metalloproteases, glycine-rich proteins, mucins, anticoagulants of the mandanin family and lipocalins, among others. Expression analysis revealed differences in the expression of transcripts between male and female H. dromedarii that might explain the blood-feeding strategies employed by both genders. CONCLUSIONS The annotated sialome of H. dromedarii helps understand the interaction of tick-host molecules during blood-feeding and can lead to the discovery of new pharmacologically active proteins of ticks of the genus Hyalomma.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | - Cherif Ben Hamda
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT09, Laboratoire de Bioinformatique, Biomathematique et biostatiqtiques, 1002, Tunis, Tunisie
| | - Flavio Lichtenstein
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | - Ursula Castro de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | - Fernanda Faria
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brazil, 1500, CEP, São Paulo, 05503-900, Brazil
| | | | - Kais Ghedira
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT09, Laboratoire de Bioinformatique, Biomathematique et biostatiqtiques, 1002, Tunis, Tunisie
| | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie.
| | - Youmna M'Ghirbi
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03, Service d'entomologie médicale, 1002, Tunis, Tunisie
| | | |
Collapse
|
37
|
Nebbak A, El Hamzaoui B, Berenger JM, Bitam I, Raoult D, Almeras L, Parola P. Comparative analysis of storage conditions and homogenization methods for tick and flea species for identification by MALDI-TOF MS. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:438-448. [PMID: 28722283 DOI: 10.1111/mve.12250] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Ticks and fleas are vectors for numerous human and animal pathogens. Controlling them, which is important in combating such diseases, requires accurate identification, to distinguish between vector and non-vector species. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was applied to the rapid identification of arthropods. The growth of this promising tool, however, requires guidelines to be established. To this end, standardization protocols were applied to species of Rhipicephalus sanguineus (Ixodida: Ixodidae) Latreille and Ctenocephalides felis felis (Siphonaptera: Pulicidae) Bouché, including the automation of sample homogenization using two homogenizer devices, and varied sample preservation modes for a period of 1-6 months. The MS spectra were then compared with those obtained from manual pestle grinding, the standard homogenization method. Both automated methods generated intense, reproducible MS spectra from fresh specimens. Frozen storage methods appeared to represent the best preservation mode, for up to 6 months, while storage in ethanol is also possible, with some caveats for tick specimens. Carnoy's buffer, however, was shown to be less compatible with MS analysis for the purpose of identifying ticks or fleas. These standard protocols for MALDI-TOF MS arthropod identification should be complemented by additional MS spectrum quality controls, to generalize their use in monitoring arthropods of medical interest.
Collapse
Affiliation(s)
- A Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algeria
| | - B El Hamzaoui
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - J-M Berenger
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - I Bitam
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algeria
| | - D Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - L Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - P Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
38
|
Molecular Detection and Serological Evidence of Tick-Borne Encephalitis Virus in Serbia. Vector Borne Zoonotic Dis 2017; 17:813-820. [DOI: 10.1089/vbz.2017.2167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
39
|
Identification of an anellovirus and genomoviruses in ixodid ticks. Virus Genes 2017; 54:155-159. [DOI: 10.1007/s11262-017-1520-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022]
|
40
|
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol 2017; 7:339. [PMID: 28798904 PMCID: PMC5526847 DOI: 10.3389/fcimb.2017.00339] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.
Collapse
Affiliation(s)
- Mária Kazimírová
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Meghan Hermance
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Patricia A. Nuttall
- Department of Zoology, University of OxfordOxford, United Kingdom
- Centre for Ecology and HydrologyWallingford, United Kingdom
| |
Collapse
|
41
|
The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res 2017; 144:93-119. [PMID: 28579441 DOI: 10.1016/j.antiviral.2017.05.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
This manuscript is part of a series of reviews that aim to cover published research on Crimean-Congo hemorrhagic fever (CCHF) and its etiological agent, CCHF virus (CCHFV). The virus is maintained and transmitted in a vertical and horizontal transmission cycle involving a variety of wild and domestic vertebrate species that act as amplification hosts, without showing signs of illness. These vertebrates have traditionally been considered reservoirs of CCHFV, but in fact they develop only a transient viremia, while the virus can persist in ticks for their entire lifespan, and can also be transmitted vertically to the next generation. As a result, ticks are now considered to be both the vector and the reservoir for the virus. CCHFV has been detected in a wide range of tick species, but only a few have been proven to be vectors and reservoirs, mainly because most published studies have been performed under a broad variety of conditions, precluding definitive characterization. This article reviews the published literature, summarizes current knowledge of the role of ticks in CCHFV maintenance and transmission and provides guidance for how to fill the knowledge gaps. Special focus is given to existing data on tick species in which vertical passage has been demonstrated under natural or experimental conditions. At the same time, we identify earlier reports that used unreliable methods and perceptions to ascribe a vector role to some species of ticks, and have contributed to confusion regarding viral transmission. We also examine epidemiological pathways of CCHFV circulation and discuss priority areas for future research.
Collapse
|
42
|
Hermance ME, Thangamani S. Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America. Vector Borne Zoonotic Dis 2017; 17:453-462. [PMID: 28498740 PMCID: PMC5512300 DOI: 10.1089/vbz.2017.2110] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV, Flaviviridae) is the only North American member of the tick-borne encephalitis serogroup of flaviviruses. It is transmitted to small- and medium-sized mammals by Ixodes scapularis, Ixodes cookei, and several other Ixodes tick species. Humans become infected with POWV during spillover transmission from the natural transmission cycles. In humans, POWV is the causative agent of a severe neuroinvasive illness with 50% of survivors displaying long-term neurological sequelae. POWV was recognized as a human pathogen in 1958 when a young boy died of severe encephalitis in Powassan, Ontario, and POWV was isolated from the brain autopsy of this case. Two distinct genetic lineages of POWV are now recognized: POWV (lineage I) and deer tick virus (lineage II). Since the index case in 1958, over 100 human cases of POWV have been reported, with an apparent rise in disease incidence in the past 16 years. This recent increase in cases may represent a true emergence of POWV in regions where the tick vector species are prevalent, or it could represent an increase in POWV surveillance and diagnosis. In the past 5 years, both basic and applied research for POWV disease has intensified, including phylogenetic studies, field surveillance, case studies, and animal model development. This review provides an overview of POWV, including the epidemiology, transmission, clinical disease, and diagnosis of POWV infection. Recent research developments and future priorities with regard to the disease are emphasized.
Collapse
Affiliation(s)
- Meghan E Hermance
- 1 Department of Pathology, University of Texas Medical Branch , Galveston, Texas
| | - Saravanan Thangamani
- 1 Department of Pathology, University of Texas Medical Branch , Galveston, Texas.,2 Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston, Texas.,3 Center for Tropical Diseases, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
43
|
Failloux AB, Bouattour A, Faraj C, Gunay F, Haddad N, Harrat Z, Jancheska E, Kanani K, Kenawy MA, Kota M, Pajovic I, Paronyan L, Petric D, Sarih M, Sawalha S, Shaibi T, Sherifi K, Sulesco T, Velo E, Gaayeb L, Victoir K, Robert V. Surveillance of Arthropod-Borne Viruses and Their Vectors in the Mediterranean and Black Sea Regions Within the MediLabSecure Network. CURRENT TROPICAL MEDICINE REPORTS 2017; 4:27-39. [PMID: 28386524 PMCID: PMC5362652 DOI: 10.1007/s40475-017-0101-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW Arboviruses, viruses transmitted by arthropods such as mosquitoes, ticks, sandflies, and fleas are a significant threat to public health because of their epidemic and zoonotic potential. The geographical distribution of mosquito-borne diseases such as West Nile (WN), Rift Valley fever (RVF), Dengue, Chikungunya, and Zika has expanded over the last decades. Countries of the Mediterranean and Black Sea regions are not spared. Outbreaks of WN are repeatedly reported in the Mediterranean basin. Human cases of RVF were reported at the southern borders of the Maghreb region. For this reason, establishing the basis for the research to understand the potential for the future emergence of these and other arboviruses and their expansion into new geographic areas became a public health priority. In this context, the European network "MediLabSecure" gathering laboratories in 19 non-EU countries from the Mediterranean and Black Sea regions seeks to improve the surveillance (of animals, humans, and vectors) by reinforcing capacity building and harmonizing national surveillance systems to address this important human and veterinary health issue. The aim of this review is to give an exhaustive overview of arboviruses and their vectors in the region. RECENT FINDINGS The data presented underline the importance of surveillance in the implementation of more adapted control strategies to combat vector-borne diseases. Partner laboratories within the MediLabSecure network present a wide range of infrastructures and have benefited from different training programs. SUMMARY Although reporting of arboviral presence is not carried out in a systematic manner, the expansion of the area where arboviruses are present cannot be disputed. This reinforces the need for increasing surveillance capacity building in this region to prevent future emergences.
Collapse
Affiliation(s)
- Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Ali Bouattour
- Laboratory of Medical Entomology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Chafika Faraj
- Laboratory of Medical Entomology, Institut National d’Hygiène, Rabat, Morocco
| | - Filiz Gunay
- Hacettepe University, HU-ESRL-VERG, Ankara, Turkey
| | - Nabil Haddad
- Faculty of Public Health, Laboratory of Immunology, Lebanese University, Beirut, Lebanon
| | - Zoubir Harrat
- Eco-Epidemiologie Parasitaire et Génétique des Populations, Institut Pasteur of Algeria, Alger, Algeria
| | - Elizabeta Jancheska
- Laboratory for Virology and Molecular Diagnostics, Institute of Public Health, Skopje, Macedonia
| | - Khalil Kanani
- Parasitic and Zoonotic Diseases Department, Ministry of Health, Amman, Jordan
| | - Mohamed Amin Kenawy
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Majlinda Kota
- Department of Control of Infectious Diseases, Laboratory of Virology, Institute of Public Health, Tirana, Albania
| | - Igor Pajovic
- Biotechnical Faculty, Laboratory for Applied Zoology, University of Montenegro, Podgorica, Montenegro
| | - Lusine Paronyan
- Vector Borne and Parasitic Diseases Epidemiology Department, National Center for Diseases Control and Prevention, Yerevan, Armenia
| | - Dusan Petric
- Faculty of Agriculture, Laboratory of Medical and Veterinary Entomology, University of Novi Sad, Novi Sad, Serbia
| | - Mhammed Sarih
- Laboratory of Vectorial Diseases, Institut Pasteur of Morocco, Casablanca, Morocco
| | - Samir Sawalha
- Laboratory of Public Health, Ministry of Health, Ramallah, Palestine
| | - Taher Shaibi
- Laboratory of Parasitology and Vector-Borne Diseases, National Center for Disease Control, Tripoli, Libya
| | - Kurtesh Sherifi
- Faculty of Agriculture and Veterinary Science, Institute of Veterinary Medicine, University of Prishtina, Prishtina, Kosovo
| | - Tatiana Sulesco
- Laboratory of Systematics and Molecular Phylogeny, Institute of zoology, Chisinau, Republic of Moldova
| | - Enkelejda Velo
- Department of Control of Infectious Diseases, Vector Control Unit, Laboratory of Medical Entomology, Institute of Public Health, Tirana, Albania
| | - Lobna Gaayeb
- Department of International Affairs, Institut Pasteur, Paris, France
| | - Kathleen Victoir
- Department of International Affairs, Institut Pasteur, Paris, France
| | - Vincent Robert
- French National Research Institute for Sustainable Development, MIVEGEC Unit, IRD224-CNRS 5290-Montpellier University, Montpellier, France
| |
Collapse
|
44
|
Sweileh WM. Global research trends of World Health Organization's top eight emerging pathogens. Global Health 2017; 13:9. [PMID: 28179007 PMCID: PMC5299748 DOI: 10.1186/s12992-017-0233-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/03/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND On December 8th, 2015, World Health Organization published a priority list of eight pathogens expected to cause severe outbreaks in the near future. To better understand global research trends and characteristics of publications on these emerging pathogens, we carried out this bibliometric study hoping to contribute to global awareness and preparedness toward this topic. METHOD Scopus database was searched for the following pathogens/infectious diseases: Ebola, Marburg, Lassa, Rift valley, Crimean-Congo, Nipah, Middle Eastern Respiratory Syndrome (MERS), and Severe Respiratory Acute Syndrome (SARS). Retrieved articles were analyzed to obtain standard bibliometric indicators. RESULTS A total of 8619 journal articles were retrieved. Authors from 154 different countries contributed to publishing these articles. Two peaks of publications, an early one for SARS and a late one for Ebola, were observed. Retrieved articles received a total of 221,606 citations with a mean ± standard deviation of 25.7 ± 65.4 citations per article and an h-index of 173. International collaboration was as high as 86.9%. The Centers for Disease Control and Prevention had the highest share (344; 5.0%) followed by the University of Hong Kong with 305 (4.5%). The top leading journal was Journal of Virology with 572 (6.6%) articles while Feldmann, Heinz R. was the most productive researcher with 197 (2.3%) articles. China ranked first on SARS, Turkey ranked first on Crimean-Congo fever, while the United States of America ranked first on the remaining six diseases. Of retrieved articles, 472 (5.5%) were on vaccine - related research with Ebola vaccine being most studied. CONCLUSION Number of publications on studied pathogens showed sudden dramatic rise in the past two decades representing severe global outbreaks. Contribution of a large number of different countries and the relatively high h-index are indicative of how international collaboration can create common health agenda among distant different countries.
Collapse
MESH Headings
- Animals
- Bibliometrics/history
- Communicable Diseases/epidemiology
- Communicable Diseases, Emerging/epidemiology
- Communicable Diseases, Emerging/prevention & control
- Coronavirus Infections/complications
- Coronavirus Infections/epidemiology
- Coronavirus Infections/prevention & control
- Disease Outbreaks/prevention & control
- Hemorrhagic Fever, Crimean/complications
- Hemorrhagic Fever, Crimean/epidemiology
- Hemorrhagic Fever, Crimean/prevention & control
- Hemorrhagic Fever, Ebola/complications
- Hemorrhagic Fever, Ebola/epidemiology
- Hemorrhagic Fever, Ebola/prevention & control
- History, 20th Century
- History, 21st Century
- Humans
- Lassa Fever/complications
- Lassa Fever/epidemiology
- Lassa Fever/prevention & control
- Marburg Virus Disease/complications
- Marburg Virus Disease/epidemiology
- Marburg Virus Disease/prevention & control
- Nipah Virus/pathogenicity
- Research/statistics & numerical data
- Research/trends
- Rift Valley Fever/complications
- Rift Valley Fever/epidemiology
- Rift Valley Fever/prevention & control
- Severe Acute Respiratory Syndrome/complications
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/prevention & control
- World Health Organization/organization & administration
Collapse
Affiliation(s)
- Waleed M Sweileh
- Department of Physiology and Pharmacology/Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| |
Collapse
|
45
|
Viral Infections. ATLAS OF INFECTIOUS DISEASE PATHOLOGY 2017. [PMCID: PMC7122910 DOI: 10.1007/978-3-319-54702-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite major advances in basic and applied research and the availability of several vaccines, viral diseases still account for a large proportion of the human infectious disease burden. Many viruses cause self-limiting and relatively mild infections, but several, including human immunodeficiency virus and influenza virus, are responsible for millions of deaths every year throughout the world. Several factors contribute to the enormous impact that viruses have on human health. For example, there are very few therapeutic options available for the treatment of viral infections, and many of those that are available possess a limited spectrum of activity or are designed for the treatment of diseases caused by specific viruses (e.g., oseltamivir is intended for the treatment of influenza only). In addition, the rapid evolution of viruses has led to the emergence of drug-resistant strains against which no currently available therapeutics are effective. Coupled with these and other issues are the appearance of never before seen viruses and the emergence of known but previously underappreciated viruses. Since the beginning of the twenty-first century, numerous “new” viruses, including the coronaviruses responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), the 2009 pandemic influenza A virus, and Lujo hemorrhagic fever virus, have made their debut and have proved to be formidable threats to human health. Recently, the appearance of Ebola virus (Zaire ebolavirus) in West Africa, a region that has not previously seen an outbreak of this virus, was marked by an epidemic that afflicted nearly 30,000 individuals and killed more than 11,000 of those who were infected. Most recently, the far-reaching and rapid spread of Zika virus, a mosquito-borne virus that was discovered in the 1940s in Uganda, in the Western Hemisphere has invoked considerable public and scientific attention and has given rise to perhaps the largest concerted effort by scientists to rapidly develop a vaccine to halt the transmission of a virus. Each of these points underscores the importance of further research into improved surveillance, diagnosis, treatment, and prevention of viral diseases.
Collapse
|