1
|
Liang P, Zeng Y, Ning J, Wu X, Wang W, Ren J, Wu Q, Yang X, Wang S, Guo Z, Su Q, Zhou X, Turlings TCJ, Xie W, Zhang Y. A plant virus manipulates both its host plant and the insect that facilitates its transmission. SCIENCE ADVANCES 2025; 11:eadr4563. [PMID: 40020061 PMCID: PMC11870061 DOI: 10.1126/sciadv.adr4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV), a devastating pathogen of tomato crops, is vectored by the whitefly Bemisia tabaci, yet the mechanisms underlying TYLVC epidemics are poorly understood. We found that TYLCV triggers the up-regulation of two β-myrcene biosynthesis genes in tomato, leading to the attraction of nonviruliferous B. tabaci. We also identified BtMEDOR6 as a key whitefly olfactory receptor of β-myrcene involved in the distinct preference of B. tabaci MED for TYLCV-infected plants. TYLCV inhibits the expression of BtMEDOR6, canceling this preference and thereby facilitating TYLCV transmission to uninfected plants. Greenhouse experiments corroborated the role of β-myrcene in whitefly attraction. These findings reveal a sophisticated viral strategy whereby TYLCV modulates both host plant attractiveness and vector olfactory perception to enhance its spread.
Collapse
Affiliation(s)
- Peng Liang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yang Zeng
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Jie Ning
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojie Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenlu Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Ren
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801-3795, USA
| | - Ted C. J. Turlings
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Zhengzhou 475004, China
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Zhang L, Chen C, Li Y, Suo C, Zhou W, Liu X, Deng Y, Sohail H, Li Z, Liu F, Chen X, Yang X. Enhancing aphid resistance in horticultural crops: a breeding prospective. HORTICULTURE RESEARCH 2024; 11:uhae275. [PMID: 39712868 PMCID: PMC11659385 DOI: 10.1093/hr/uhae275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 12/24/2024]
Abstract
Increasing agricultural losses caused by insect infestations are a significant problem, so it is important to generate pest-resistant crop varieties to address this issue. Several reviews have examined aphid-plant interactions from an entomological perspective. However, few have specifically focused on plant resistance mechanisms to aphids and their applications in breeding for aphid resistance. In this review, we first outline the types of resistance to aphids in plants, namely antixenosis, tolerance (cell wall lignification, resistance proteins), and antibiosis, and we discuss strategies based on each of these resistance mechanisms to generate plant varieties with improved resistance. We then outline research on the complex interactions amongst plants, viruses, and aphids, and discuss how aspects of these interactions can be exploited to improve aphid resistance. A deeper understanding of the epigenetic mechanisms related to induced resistance, i.e. the phenomenon where plants become more resistant to a stress they have encountered previously, may allow for its exploitation in breeding for aphid resistance. Wild relatives of crop plants serve as important sources of resistance traits. Genes related to these traits can be introduced into cultivated crop varieties by breeding or genetic modification, and de novo domestication of wild varieties can be used to exploit multiple excellent characteristics, including aphid resistance. Finally, we discuss the use of molecular design breeding, genomic data, and gene editing to generate new aphid-resistant, high-quality crop varieties.
Collapse
Affiliation(s)
- Lili Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chaoyan Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chunyu Suo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaowei Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yizhuo Deng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyi Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaodong Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
3
|
Falla EK, Cunniffe NJ. Why aphid virus retention needs more attention: Modelling aphid behaviour and virus manipulation in non-persistent plant virus transmission. PLoS Comput Biol 2024; 20:e1012479. [PMID: 39352908 PMCID: PMC11469505 DOI: 10.1371/journal.pcbi.1012479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Plant viruses threaten food security and are often transmitted by insect vectors. Non-persistently transmitted (NPT) plant viruses are transmitted almost exclusively by aphids. Because virions attach to the aphid's stylet (mouthparts) and are acquired and inoculated via brief epidermal probes, the aphid-virus interaction is highly transient, with a very short aphid virus retention time. Many NPT viruses manipulate their host plant's phenotype to change aphid behaviour to optimise virus transmission. Epidemiological models of this have overlooked a key feature of aphid NPT virus retention: probing or feeding on a plant causes aphids to lose the virus. Furthermore, experimental studies suggest aphids could possibly inoculate multiple healthy plants within one infective period if they do not feed. Consequences of this for virus manipulation of host plant phenotype have not been explored. Our new compartmental epidemiological model includes both behaviour-based aphid dispersal and infectivity loss rates, and the ability of infective aphids to probe multiple plants before virus loss. We use our model to explore how NPT virus-induced host phenotypes affect epidemic outcomes, comparing these results to representative previous models. We find that previous models behave fundamentally differently and underestimate the benefit of an 'attract-and-deter' phenotype, where the virus induces increased aphid attraction to infected plants but deters them from prolonged feeding. Our results also highlight the importance of characterising NPT virus retention upon the aphid during probing. Allowing for multiple infective probes increases disease incidence and the effectiveness of virus manipulation, with implications for epidemic prediction and control.
Collapse
Affiliation(s)
- Elin K. Falla
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Huang W, Wei S, Zhou T, Fan Z, Cao L, Li Z, Guo S. MCMV-infected maize attracts its insect vector Frankliniella occidentalis by inducing β-myrcene. FRONTIERS IN PLANT SCIENCE 2024; 15:1404271. [PMID: 39233912 PMCID: PMC11371577 DOI: 10.3389/fpls.2024.1404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024]
Abstract
Maize lethal necrosis is attributed to the accumulation of maize chlorotic mottle virus (MCMV), an invasive virus transmitted by insect vectors. The western flower thrips (WFT) can shift host to maize, thus promoting the spread of MCMV. However, our understanding of the characteristics and interactions involved in the transmission of MCMV is still limited. This study finds that non-viruliferous WFTs showed a 57.56% higher preference for MCMV-infected maize plants compared to healthy maize plants, while viruliferous WFTs showed a 53.70% higher preference for healthy maize plants compared to MCMV-infected maize plants. We also show for the first time that both adults and larvae of WFT could successfully acquire MCMV after 1 min of acquisition access period (AAP), and after 48 h of AAP, WFT could transmit MCMV in an inoculation access period of 1 h without a latent period. Both adults and larvae of WFT can transmit MCMV for up to 2 days. Furthermore, the decreasing number of viruliferous WFTs and transmission rates as time progressed, together with the transcriptomic evidence, collectively suggest that WFTs transmit MCMV in a semi-persistent method, a mode of transmission requiring minutes to several hours for acquisition access and having a retention time of several hours to a few days. Additionally, β-myrcene can attract WFTs significantly and is detected in Nicotiana benthamiana plants transiently expressing MCMV CP (coat protein), which is consistent with results in MCMV-infected maize plants through the metabolomic profiling and the preference analyses of WFT. Therefore, this study demonstrates the indirect interaction between MCMV and WFT by inducing maize to synthesize β-myrcene to attract insect vectors. The exploration of specific interactions between MCMV and WFT could help to expand the mechanism studies of virus-vector-host plant interaction and put forward a new insight for the combined control of MCMV and WFT through the manipulation of plant volatiles and key insect genes.
Collapse
Affiliation(s)
- Weiling Huang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tao Zhou
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zaifeng Fan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lijun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shaokun Guo
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
5
|
Liu H, Deng B, Chen FH, Suo JQ, Ouyang GC, Lu HL, Chen DS, Meng X. Effector enrichment by Candidatus Liberibacter promotes Diaphorina citri feeding via Jasmonic acid pathway suppression. PEST MANAGEMENT SCIENCE 2024; 80:4013-4023. [PMID: 38554028 DOI: 10.1002/ps.8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Citrus huanglongbing (HLB) is a devastating disease caused by Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry. In nature, CLas relies primarily on Diaphorina citri Kuwayama as its vector for dissemination. After D. citri ingests CLas-infected citrus, the pathogen infiltrates the insect's body, where it thrives, reproduces, and exerts regulatory control over the growth and metabolism of D. citri. Previous studies have shown that CLas alters the composition of proteins in the saliva of D. citri, but the functions of these proteins remain largely unknown. RESULTS In this study, we detected two proteins (DcitSGP1 and DcitSGP3) with high expression levels in CLas-infected D. citri. Quantitative PCR and Western blotting analysis showed that the two proteins were highly expressed in the salivary glands and delivered into the host plant during feeding. Silencing the two genes significantly decreased the survival rate for D. citri, reduced phloem nutrition sucking and promoted jasmonic acid (JA) defenses in citrus. By contrast, after overexpressing the two genes in citrus, the expression levels of JA pathway-associated genes decreased. CONCLUSION Our results suggest that CLas can indirectly suppress the defenses of citrus and support feeding by D. citri via increasing the levels of effectors in the insect's saliva. This discovery facilitates further research into the interaction between insect vectors and pathogens. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Bin Deng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Feng-Hao Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Jia-Qi Suo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Ge-Cheng Ouyang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Hui-Lin Lu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Da-Song Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Xiang Meng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| |
Collapse
|
6
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
7
|
Tennant P, Rampersad S, Alleyne A, Johnson L, Tai D, Amarakoon I, Roye M, Pitter P, Chang PG, Myers Morgan L. Viral Threats to Fruit and Vegetable Crops in the Caribbean. Viruses 2024; 16:603. [PMID: 38675944 PMCID: PMC11053604 DOI: 10.3390/v16040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Viruses pose major global challenges to crop production as infections reduce the yield and quality of harvested products, hinder germplasm exchange, increase financial inputs, and threaten food security. Small island or archipelago habitat conditions such as those in the Caribbean are particularly susceptible as the region is characterized by high rainfall and uniform, warm temperatures throughout the year. Moreover, Caribbean islands are continuously exposed to disease risks because of their location at the intersection of transcontinental trade between North and South America and their role as central hubs for regional and global agricultural commodity trade. This review provides a summary of virus disease epidemics that originated in the Caribbean and those that were introduced and spread throughout the islands. Epidemic-associated factors that impact disease development are also discussed. Understanding virus disease epidemiology, adoption of new diagnostic technologies, implementation of biosafety protocols, and widespread acceptance of biotechnology solutions to counter the effects of cultivar susceptibility remain important challenges to the region. Effective integrated disease management requires a comprehensive approach that should include upgraded phytosanitary measures and continuous surveillance with rapid and appropriate responses.
Collapse
Affiliation(s)
- Paula Tennant
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Sephra Rampersad
- Department of Life Sciences, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| | - Angela Alleyne
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados;
| | - Lloyd Johnson
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Deiondra Tai
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Icolyn Amarakoon
- Department of Basic Medical Sciences, Biochemistry Section, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Marcia Roye
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Patrice Pitter
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Peta-Gaye Chang
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Lisa Myers Morgan
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| |
Collapse
|
8
|
Tian S, Song Q, Zhou W, Wang J, Wang Y, An W, Wu Y, Zhao L. A viral movement protein targets host catalases for 26S proteasome-mediated degradation to facilitate viral infection and aphid transmission in wheat. MOLECULAR PLANT 2024; 17:614-630. [PMID: 38454602 DOI: 10.1016/j.molp.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
The infection of host plants by many different viruses causes reactive oxygen species (ROS) accumulation and yellowing symptoms, but the mechanisms through which plant viruses counteract ROS-mediated immunity to facilitate infection and symptom development have not been fully elucidated. Most plant viruses are transmitted by insect vectors in the field, but the molecular mechanisms underlying virus‒host-insect interactions are unclear. In this study, we investigated the interactions among wheat, barley yellow dwarf virus (BYDV), and its aphid vector and found that the BYDV movement protein (MP) interacts with both wheat catalases (CATs) and the 26S proteasome ubiquitin receptor non-ATPase regulatory subunit 2 homolog (PSMD2) to facilitate the 26S proteasome-mediated degradation of CATs, promoting viral infection, disease symptom development, and aphid transmission. Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs, which leading to increased accumulation of ROS and thereby enhanced viral infection. Interestingly, transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids. Consistent with this observation, silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids. In contrast, transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV. Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner. Collectively, our study reveals a molecular mechanism by which a plant virus manipulates the ROS production system of host plants to facilitate viral infection and transmission, shedding new light on the sophisticated interactions among viruses, host plants, and insect vectors.
Collapse
Affiliation(s)
- Shuyuan Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingting Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenmei Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingke Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Pandey S, Catto M, Roberts P, Bag S, Jacobson AL, Srinivasan R. Aphid gene expression following polerovirus acquisition is host species dependent. FRONTIERS IN PLANT SCIENCE 2024; 15:1341781. [PMID: 38525153 PMCID: PMC10957536 DOI: 10.3389/fpls.2024.1341781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Upon acquisition of persistent circulative viruses such as poleroviruses, the virus particles transcytose through membrane barriers of aphids at the midgut and salivary glands via hemolymph. Such intricate interactions can influence aphid behavior and fitness and induce associated gene expression in viruliferous aphids. Differential gene expression can be evaluated by omics approaches such as transcriptomics. Previously conducted aphid transcriptome studies used only one host species as the source of virus inoculum. Viruses typically have alternate hosts. Hence, it is not clear how alternate hosts infected with the same virus isolate alter gene expression in viruliferous vectors. To address the question, this study conducted a transcriptome analysis of viruliferous aphids that acquired the virus from different host species. A polerovirus, cotton leafroll dwarf virus (CLRDV), which induced gene expression in the cotton aphid, Aphis gossypii Glover, was assessed using four alternate hosts, viz., cotton, hibiscus, okra, and prickly sida. Among a total of 2,942 differentially expressed genes (DEGs), 750, 310, 1,193, and 689 genes were identified in A. gossypii that acquired CLRDV from infected cotton, hibiscus, okra, and prickly sida, respectively, compared with non-viruliferous aphids that developed on non-infected hosts. A higher proportion of aphid genes were overexpressed than underexpressed following CLRDV acquisition from cotton, hibiscus, and prickly sida. In contrast, more aphid genes were underexpressed than overexpressed following CLRDV acquisition from okra plants. Only four common DEGs (heat shock protein, juvenile hormone acid O-methyltransferase, and two unannotated genes) were identified among viruliferous aphids from four alternate hosts. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that the acquisition of CLRDV induced DEGs in aphids associated with virus infection, signal transduction, immune systems, and fitness. However, these induced changes were not consistent across four alternate hosts. These data indicate that alternate hosts could differentially influence gene expression in aphids and presumably aphid behavior and fitness despite being infected with the same virus isolate.
Collapse
Affiliation(s)
- Sudeep Pandey
- Department of Entomology, University of Georgia, Griffin, GA, United States
| | - Michael Catto
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Phillip Roberts
- Department of Entomology, University of Georgia, Tifton, GA, United States
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alana L. Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
10
|
Chang X, Guo Y, Xie Y, Ren Y, Bi Y, Wang F, Fang Q, Ye G. Rice volatile compound (E)-β-caryophyllene induced by rice dwarf virus (RDV) attracts the natural enemy Cyrtorhinus lividipennis to prey on RDV insect vectors. PEST MANAGEMENT SCIENCE 2024; 80:874-884. [PMID: 37814777 DOI: 10.1002/ps.7822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Rice dwarf virus (RDV)-induced rice plant volatiles (E)-β-caryophyllene and 2-heptanol modulate the olfactory behavior of RDV insect vectors that promote viral acquisition and transmission. However, it remains elusive whether these two volatiles could influence the behaviors of the natural enemies of RDV insect vectors. Herein, we determined the effects of these two volatiles on the olfactory and predatory behaviors of Cyrtorhinus lividipennis (Hemiptera: Miridae), an important predator of RDV insect vectors in rice paddies. RESULTS The results showed that C. lividipennis preferred RDV-infected rice plant odors over RDV-free rice plant odors. C. lividipennis was attracted by (E)-β-caryophyllene, but showed no behavioral responses to 2-heptanol. The attraction of (E)-β-caryophyllene towards C. lividipennis was further confirmed using oscas1 rice plants, which do not release (E)-β-caryophyllene in response to RDV infection, through a series of complementary assays. The oviposition preference of the RDV vector insect Nephotettix cincticeps (Hemiptera: Cicadellidae) showed no significant difference between RDV-infected and RDV-free wild-type plants, nor between oscas1-RDV and oscas1 plants. However, the predation rate of C. lividipennis for N. cincticeps eggs on RDV-infected plants was higher than that on RDV-free plants, whereas there was no significant difference between oscas1-RDV and oscas1 plants. CONCLUSION (E)-β-caryophyllene induced by RDV attracted more C. lividipennis to prey on N. cincticeps eggs and played a crucial role in plant-virus-vector-enemy interactions. These novel findings will promote the design of new strategies for disease control by controlling the populations of insect vectors, for example recruiting more natural enemies by virus-induced plant volatiles. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuefei Chang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yating Guo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yujia Xie
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yijia Ren
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yaluan Bi
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Wu Q, Kinoti WM, Habili N, Tyerman SD, Rinaldo A, Constable FE. Genetic Diversity of Grapevine Virus A in Three Australian Vineyards Using Amplicon High Throughput Sequencing (Amplicon-HTS). Viruses 2023; 16:42. [PMID: 38257742 PMCID: PMC10819895 DOI: 10.3390/v16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Shiraz disease (SD) is one of the most destructive viral diseases of grapevines in Australia and is known to cause significant economic loss to local growers. Grapevine virus A (GVA) was reported to be the key pathogen associated with this disease. This study aimed to better understand the diversity of GVA variants both within and between individual SD and grapevine leafroll disease (LRD) affected grapevines located at vineyards in South Australia. Amplicon high throughput sequencing (Amplicon-HTS) combined with median-joining networks (MJNs) was used to analyze the variability in specific gene regions of GVA variants. Several GVAII variant groups contain samples from both vineyards studied, suggesting that these GVAII variants were from a common origin. Variant groups analyzed by MJNs using the overall data set denote that there may be a possible relationship between variant groups of GVA and the geographical location of the grapevines.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Nuredin Habili
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
| | - Amy Rinaldo
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Fiona E. Constable
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
12
|
Rozo-Lopez P, Parker BJ. Why do viruses make aphids winged? INSECT MOLECULAR BIOLOGY 2023; 32:575-582. [PMID: 37243432 DOI: 10.1111/imb.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Aphids are hosts to diverse viruses and are important vectors of plant pathogens. The spread of viruses is heavily influenced by aphid movement and behaviour. Consequently, wing plasticity (where individuals can be winged or wingless depending on environmental conditions) is an important factor in the spread of aphid-associated viruses. We review several fascinating systems where aphid-vectored plant viruses interact with aphid wing plasticity, both indirectly by manipulating plant physiology and directly through molecular interactions with plasticity pathways. We also cover recent examples where aphid-specific viruses and endogenous viral elements within aphid genomes influence wing formation. We discuss why unrelated viruses with different transmission modes have convergently evolved to manipulate wing formation in aphids and whether this is advantageous for both host and virus. We argue that interactions with viruses are likely shaping the evolution of wing plasticity within and across aphid species, and we discuss the potential importance of these findings for aphid biocontrol.
Collapse
Affiliation(s)
- Paula Rozo-Lopez
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Benjamin J Parker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
13
|
Rozo-Lopez P, Brewer W, Käfer S, Martin MM, Parker BJ. Untangling an insect's virome from its endogenous viral elements. BMC Genomics 2023; 24:636. [PMID: 37875824 PMCID: PMC10594914 DOI: 10.1186/s12864-023-09737-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Insects are an important reservoir of viral biodiversity, but the vast majority of viruses associated with insects have not been discovered. Recent studies have employed high-throughput RNA sequencing, which has led to rapid advances in our understanding of insect viral diversity. However, insect genomes frequently contain transcribed endogenous viral elements (EVEs) with significant homology to exogenous viruses, complicating the use of RNAseq for viral discovery. METHODS In this study, we used a multi-pronged sequencing approach to study the virome of an important agricultural pest and prolific vector of plant pathogens, the potato aphid Macrosiphum euphorbiae. We first used rRNA-depleted RNAseq to characterize the microbes found in individual insects. We then used PCR screening to measure the frequency of two heritable viruses in a local aphid population. Lastly, we generated a quality draft genome assembly for M. euphorbiae using Illumina-corrected Nanopore sequencing to identify transcriptionally active EVEs in the host genome. RESULTS We found reads from two insect-specific viruses (a Flavivirus and an Ambidensovirus) in our RNAseq data, as well as a parasitoid virus (Bracovirus), a plant pathogenic virus (Tombusvirus), and two phages (Acinetobacter and APSE). However, our genome assembly showed that part of the 'virome' of this insect can be attributed to EVEs in the host genome. CONCLUSION Our work shows that EVEs have led to the misidentification of aphid viruses from RNAseq data, and we argue that this is a widespread challenge for the study of viral diversity in insects.
Collapse
Affiliation(s)
- Paula Rozo-Lopez
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37916, USA.
| | - William Brewer
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37916, USA
| | - Simon Käfer
- Institut Für Biologie Und Umweltwissenschaften, Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| | - McKayla M Martin
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37916, USA
| | - Benjamin J Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37916, USA.
| |
Collapse
|
14
|
Krieger C, Halter D, Baltenweck R, Cognat V, Boissinot S, Maia-Grondard A, Erdinger M, Bogaert F, Pichon E, Hugueney P, Brault V, Ziegler-Graff V. An Aphid-Transmitted Virus Reduces the Host Plant Response to Its Vector to Promote Its Transmission. PHYTOPATHOLOGY 2023; 113:1745-1760. [PMID: 37885045 DOI: 10.1094/phyto-12-22-0454-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The success of virus transmission by vectors relies on intricate trophic interactions between three partners, the host plant, the virus, and the vector. Despite numerous studies that showed the capacity of plant viruses to manipulate their host plant to their benefit, and potentially of their transmission, the molecular mechanisms sustaining this phenomenon has not yet been extensively analyzed at the molecular level. In this study, we focused on the deregulations induced in Arabidopsis thaliana by an aphid vector that were alleviated when the plants were infected with turnip yellows virus (TuYV), a polerovirus strictly transmitted by aphids in a circulative and nonpropagative mode. By setting up an experimental design mimicking the natural conditions of virus transmission, we analyzed the deregulations in plants infected with TuYV and infested with aphids by a dual transcriptomic and metabolomic approach. We observed that the virus infection alleviated most of the gene deregulations induced by the aphids in a noninfected plant at both time points analyzed (6 and 72 h) with a more pronounced effect at the later time point of infestation. The metabolic composition of the infected and infested plants was altered in a way that could be beneficial for the vector and the virus transmission. Importantly, these substantial modifications observed in infected and infested plants correlated with a higher TuYV transmission efficiency. This study revealed the capacity of TuYV to alter the plant nutritive content and the defense reaction against the aphid vector to promote the viral transmission.
Collapse
Affiliation(s)
- Célia Krieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - David Halter
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Valérie Cognat
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | | | | | - Monique Erdinger
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Florent Bogaert
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Elodie Pichon
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Véronique Brault
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
15
|
Congdon BS, Baulch JR, Filardo FF, Nancarrow N. Turnip yellows virus variants differ in host range, transmissibility, and virulence. Arch Virol 2023; 168:225. [PMID: 37561217 DOI: 10.1007/s00705-023-05851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
Turnip yellows virus (TuYV; family Solemoviridae, genus Polerovirus, species Turnip yellows virus) is a genetically diverse virus that infects a broad range of plant species across the world. Due to its global economic significance, most attention has been given to the impact of TuYV on canola (syn. oilseed rape; Brassica napus). In Australia, a major canola-exporting country, TuYV isolates are highly diverse, with the most variation concentrated in open reading frame 5 (ORF 5), which encodes the readthrough domain (P5) component of the readthrough protein (P3P5), which plays an important role in host adaptation and aphid transmission. When analysing ORF 5, Australian TuYV isolates form three phylogenetic groups with just 45 to 49% amino acid sequence identity: variants P5-I, P5-II, and P5-III. Despite the possible implications for TuYV epidemiology and management, research examining phenotypic differences between TuYV variants is scarce. This study was designed to test the hypothesis that three TuYV isolates, representing each of the Australian P5 variants, differ phenotypically. In particular, the host range, vector species, transmissibility, and virulence of isolates 5414 (P5-I5414), 5509 (P5-II5509), and 5594 (P5-III5594) were examined in a series of glasshouse experiments. Only P5-I5414 readily infected faba bean (Vicia faba), only P5-II5509 infected chickpea (Cicer arietinum), and only P5-I5414 and P5-III5594 infected lettuce (Lactuca sativa). Myzus persicae transmitted each isolate, but Brevicoryne brassicae and Lipaphis pseudobrassicae did not. When using individual M. persicae to inoculate canola seedlings, P5-I5414 had significantly higher transmission rates (82%) than P5-II5509 (62%) and P5-III5594 (59%). As indicated by enzyme-linked immunosorbent assay absorbance values, P5-I5414 reached higher virus titers in canola than P5-II5509, which, in turn, reached higher titers than P5-III5594. P5-I5414 was also more virulent in canola than P5-II5509 and P5-III5594, inducing more severe foliar symptoms, stunting, and, in one of two experiments, seed yield loss. Results from this study compared to those of previous studies suggest that analysis of ORF 5 alone is insufficient to assign isolates to coherent strain categories, and further sequencing and phenotyping of field isolates is required.
Collapse
Affiliation(s)
- B S Congdon
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, Kensington, Western Australia, 6151, Australia.
| | - J R Baulch
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, Kensington, Western Australia, 6151, Australia
| | - F F Filardo
- Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane, Queensland, 4001, Australia
| | - N Nancarrow
- Department of Energy, Environment and Climate Action, Agriculture Victoria, Grains Innovation Park, Horsham, Victoria, 3400, Australia
| |
Collapse
|
16
|
Hao ZP, Feng ZB, Sheng L, Fei WX, Hou SM. Aphids on Aphid-Susceptible Cultivars Have Easy Access to Turnip Mosaic Virus, and Effective Inoculation on Aphid-Resistant Cultivars of Oilseed Rape ( Brassica napus). PLANTS (BASEL, SWITZERLAND) 2023; 12:1972. [PMID: 37653889 PMCID: PMC10221937 DOI: 10.3390/plants12101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
Plant viruses improve transmission efficiency by directly and indirectly influencing vector behavior, but the impact of plant cultivars on these modifications is rarely studied. Using electropenetrography (EPG) technology, a comparative study of the effects of turnip mosaic virus (TuMV) infection on quantitative probing behaviors of the cabbage aphid (Brevicoryne brassicae) was conducted on two oilseed rape cultivars ('Deleyou6' and 'Zhongshuang11'). Compared to mock-inoculated plants, cabbage aphids on infected plants increased the frequency of brief probing, cell penetration, and salivation. Additionally, aphids on infected 'Deleyou6' prolonged cell penetration time and decreased ingestion, but not on infected 'Zhongshuang11', suggesting that aphids were more likely to acquire and vector TuMV on the aphid-susceptible cultivar 'Deleyou6' than on resistant cultivars. TuMV also affected aphid probing behavior directly. Viruliferous aphids reduced the pathway duration, secreted more saliva, and ingested less sap than non-viruliferous aphids. In comparison with non-viruliferous aphids, viruliferous aphids started the first probe earlier and increased brief probing and cell penetration frequencies on the aphid-resistant cultivar 'Zhongshuang11'. Based on these observations, viruliferous aphids can be inoculated with TuMV more efficiently on 'Zhongshuang11' than on 'Deleyou6'. Although aphid resistance and TuMV infection may influence aphid probing behavior, oilseed rape resistance to aphids does not impede TuMV transmission effectively.
Collapse
Affiliation(s)
| | | | | | | | - Shu-Min Hou
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (Z.-P.H.); (Z.-B.F.); (L.S.); (W.-X.F.)
| |
Collapse
|
17
|
H. El-Sappah A, Qi S, A. Soaud S, Huang Q, M. Saleh A, A. S. Abourehab M, Wan L, Cheng GT, Liu J, Ihtisham M, Noor Z, Rouf Mir R, Zhao X, Yan K, Abbas M, Li J. Natural resistance of tomato plants to Tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2022; 13:1081549. [PMID: 36600922 PMCID: PMC9807178 DOI: 10.3389/fpls.2022.1081549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most harmful afflictions in the world that affects tomato growth and production. Six regular antagonistic genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) have been transferred from wild germplasms to commercial cultivars as TYLCV protections. With Ty-1 serving as an appropriate source of TYLCV resistance, only Ty-1, Ty-2, and Ty-3 displayed substantial levels of opposition in a few strains. It has been possible to clone three TYLCV opposition genes (Ty-1/Ty-3, Ty-2, and ty-5) that target three antiviral safety mechanisms. However, it significantly impacts obtaining permanent resistance to TYLCV, trying to maintain opposition whenever possible, and spreading opposition globally. Utilizing novel methods, such as using resistance genes and identifying new resistance resources, protects against TYLCV in tomato production. To facilitate the breeders make an informed decision and testing methods for TYLCV blockage, this study highlights the portrayal of typical obstruction genes, common opposition sources, and subatomic indicators. The main goal is to provide a fictitious starting point for the identification and application of resistance genes as well as the maturation of tomato varieties that are TYLCV-resistant.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shiming Qi
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Alaa M. Saleh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lingyun Wan
- Key Laboratory of Guangxi for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guo-ting Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Jingyi Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Zarqa Noor
- School of Chemical Engineering Beijing Institute of Technology, Beijing, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
18
|
Gallan DZ, Penteriche AB, Henrique MO, Silva-Filho MC. Sugarcane multitrophic interactions: Integrating belowground and aboveground organisms. Genet Mol Biol 2022; 46:e20220163. [PMID: 36512714 DOI: 10.1590/1678-4685-gmb-2022-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
Sugarcane is a crop of major importance used mainly for sugar and biofuel production, and many additional applications of its byproducts are being developed. Sugarcane cultivation is plagued by many insect pests and pathogens that reduce sugarcane yields overall. Recently emerging studies have shown complex multitrophic interactions in cultivated areas, such as the induction of sugarcane defense-related proteins by insect herbivory that function against fungal pathogens that commonly appear after mechanical damage. Fungi and viruses infecting sugarcane also modulate insect behavior, for example, by causing changes in volatile compounds responsible for insect attraction or repelling natural vector enemies via a mechanism that increases pathogen dissemination from infected plants to healthy ones. Interestingly, the fungus Fusarium verticillioides is capable of being vertically transmitted to insect offspring, ensuring its persistence in the field. Understanding multitrophic complexes is important to develop better strategies for controlling pathosystems affecting sugarcane and other important crops and highlights the importance of not only studying binary interactions but also adding as many variables as possible to effectively translate laboratory research to real-life conditions.
Collapse
Affiliation(s)
- Diego Z Gallan
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Augusto B Penteriche
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Maressa O Henrique
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| |
Collapse
|
19
|
Manipulation of Insect Vectors’ Host Selection Behavior by Barley Yellow Dwarf Virus Is Dependent on the Host Plant Species and Viral Co-Infection. Life (Basel) 2022; 12:life12050644. [PMID: 35629312 PMCID: PMC9142937 DOI: 10.3390/life12050644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that vector-borne viruses can manipulate the host selection behavior of insect vectors, yet the tripartite interactions of pathogens, host plants and insect vectors have been documented only in a limited number of pathosystems. Here, we report that the host selection behavior of the insect vector of barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPS (CYDV-RPS) is dependent on the host plant species and viral co-infection. This study shows that a model cereal plant, Brachypodium distachyon, is a suitable host plant for examining tripartite interactions with BYDV-PAV and CYDV-RPS. We reveal that BYDV-PAV has a different effect on the host selection behavior of its insect vector depending on the host plant species. Viruliferous aphids significantly prefer non-infected plants to virus-infected wheat plants, whereas viral infection on a novel host plant, B. distachyon, is not implicated in the attraction of either viruliferous or nonviruliferous aphids. Furthermore, our findings show that multiple virus infections of wheat with BYDV-PAV and CYDV-RPS alter the preference of their vector aphid. This result indicates that BYDV-PAV acquisition alters the insect vector’s host selection, thereby varying the spread of multiple viruses.
Collapse
|
20
|
Yadav RK, Kambham MR, Parepally SK, Vyas M, Manem KR, Kamala Jayanthi PD. Encounter With a Selfish Virus Sabotages Its Vector to Orient Toward Requisite Host Plant: A Case Study With Chili Leaf Curl Virus-Whitefly. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.819023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interactions of a virus with its vector and host plant have challenged entomologists, pathologists and biologists alike. Phytophagous insects depend on specific host volatile cues to locate suitable host plants for feeding and oviposition. Several studies have revealed that plant viruses modify their insect vector’s orientation toward specific host plants to facilitate their spread and survival. The ecological and molecular basis of this vector behavior modification remains largely unknown and was therefore explored in this study. Interestingly, host volatile preference for non-viruliferous female whiteflies [Bemisia tabaci (Genn.)] was found to be preferentially oriented toward infected chili plant [with chili leaf curl (ChLCV)] volatiles, while viruliferous whiteflies preferred healthy chili plant (Capsicum annum L.) volatiles in olfactometer. The electrophysiological studies involving electroantennogram (EAG) assays exhibited similar trend in EAG response amplitudes. Gas Chromatography linked electroantennodetection (GC EAD) revealed specific plant volatile cues responsible for altered host orientation behavior of the vector. Transcriptome profiling of the viruliferous and non-viruliferous whiteflies and Realtime qPCR validation showed differential expression of certain odorant binding proteins (OBPs) in viruliferous whiteflies. Our results suggest that there is a plant virus mediated altered chemoecological behavior in the vector with respect to orientation toward its host plant. Based on the findings we speculate that the virus mediates such change in the vector for a continued transmission success to the host.
Collapse
|
21
|
Resistance Management through Brassica Crop–TuMV–Aphid Interactions: Retrospect and Prospects. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Turnip mosaic virus (TuMV) is an important threat to the yield and quality of brassica crops in China, and has brought serious losses to brassica crops in the Far East, including China and the north. Aphids (Hemiptera, Aphidoidea) are the main mediators of TuMV transmission in field production, and not only have strong virus transmission ability (small individuals, strong concealment, and strong fecundity), but are also influenced by the environment, making them difficult to control. Till now, there have been few studies on the resistance to aphids in brassica crops, which depended mainly on pesticide control in agriculture production. However, the control effect was temporarily effective, which also brought environmental pollution, pesticide residues in food products, and destroyed the ecological balance. This study reviews the relationship among brassica crop–TuMV, TuMV–aphid, and brassica crop–aphid interactions, and reveals the influence factors (light, temperature, and CO2 concentration) on brassica crop–TuMV–aphid interactions, summarizing the current research status and main scientific problems about brassica crop–TuMV–aphid interactions. It may provide theoretical guidance for opening up new ways of aphid and TuMV management in brassica crops.
Collapse
|
22
|
Integrated Volatile Metabolomics and Transcriptomics Analyses Reveal the Influence of Infection TuMV to Volatile Organic Compounds in Brassica rapa. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Turnip mosaic virus (TuMV), which is distributed almost all over the world and has a wide range of hosts, mainly brassica crops, was first described in Brassica rapa in the USA. Plant volatile compounds play an important role in the host searching behavior of natural enemies of herbivorous insects. In this study, TuMV-inoculated resistant and susceptible B. rapa lines were tested using volatile metabolome and transcriptome analyses. In volatile metabolome analysis, the volatile organic compounds (VOCs) were different after inoculation with TuMV in resistant B80124 and susceptible B80461, and the degree of downregulation of differentially expressed metabolites was more obvious than the degree of upregulation. Through transcriptome analysis, 70% of differentially expressed genes were in biological process, especially focusing on defense response, flavonoid biosynthetic process, and toxin metabolic process, which indicates that TuMV stress maybe accelerate the increase of VOCs. Integrating the metabolome and transcriptome analyses, after inoculating with TuMV, auxin regulation was upregulated, and ARF, IAA and GH3 were also upregulated, which accelerated cell enlargement and plant growth in tryptophan metabolism. The different genes in zeatin biosynthesis pathways were downregulated, which reduced cell division and shoot initiation. However, the metabolite pathways showed upregulation in brassinosteroid biosynthesis and α-linolenic acid metabolism, which could cause cell enlargement and a stress response. This study determined the difference in volatiles between normal plants and infected plants and may lay a foundation for anti-TuMV research in B. rapa.
Collapse
|
23
|
A Simple Method for the Acquisition and Transmission of Brassica Yellows Virus from Transgenic Plants and Frozen Infected Leaves by Aphids. PLANTS 2021; 10:plants10091944. [PMID: 34579476 PMCID: PMC8471377 DOI: 10.3390/plants10091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Brassica yellows virus (BrYV) is a tentative species of the genus Polerovirus, which occurs widely, and mostly damages Brassicaceae plants in East Asia. Because BrYV cannot be transmitted mechanically, an insect-based transmission method is required for further virus research. Here, a reliable and unrestricted method is described, in which non-viruliferous aphids (Myzus persicae) acquired BrYV from transgenic Arabidopsis thaliana, harboring the full-length viral genome germinated from seeds and its frozen leaves. The aphids then transmitted the virus to healthy plants. There was no significant difference in acquisition rates between fresh and frozen infected leaves, although the transmission rate from frozen infected leaves was lower compared to fresh infected leaves. This simple novel method may be used to preserve viral inocula, evaluate host varietal resistance to BrYV, and investigate interactions among BrYV, aphids, and hosts.
Collapse
|
24
|
He H, Li J, Zhang Z, Tang X, Song D, Yan F. Impacts of Cucurbit Chlorotic Yellows Virus (CCYV) on Biological Characteristics of Its Vector Bemisia tabaci (Hemiptera: Aleyrodidae) MED Species. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:18. [PMID: 34718644 PMCID: PMC8557850 DOI: 10.1093/jisesa/ieab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Plant viruses can change the phenotypes and defense pathways of the host plants and the performance of their vectors to facilitate their transmission. Cucurbit chlorotic yellows virus (CCYV) (Crinivirus), a newly reported virus occurring on cucurbit plants and many other plant species, is transmitted specifically by Bemisia tabaci MEAM1 (B biotype) and MED (Q biotype) cryptic species in a semipersistent manner. This study evaluated the impacts of CCYV on B. tabaci to better understand the plant-virus-vector interactions. By using CCYV-B. tabaci MED-cucumber as the model, we investigated whether or how a semipersistent plant virus impacts the biology of its whitefly vector. CCYV mRNAs were detectable in nymphs from first to fourth instars and adults of B. tabaci with different titers. Nymph instar durations and adult longevity of female whiteflies greatly extended on CCYV-infected plants, but nymph instar durations and adult longevity of male whiteflies were not significantly influenced. In addition, the body length and oviposition increased in adults feeding on CCYV-infected plants, but the hatching rates of eggs and survival rates of different stages were not affected. Most interestingly, the sex ratio (male:female) significantly reduced to 0.5:1 in whitefly populations on CCYV-infected plants, while the ratio remained about 1:1 on healthy plants. These results indicated that CCYV can significantly impact the biological characteristics of its vector B. tabaci. It is speculated that CCYV and B. tabaci have established a typical mutualist relationship mediated by host plants.
Collapse
Affiliation(s)
- Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xuefei Tang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Danyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| |
Collapse
|
25
|
Tungadi T, Watt LG, Groen SC, Murphy AM, Du Z, Pate AE, Westwood JH, Fennell TG, Powell G, Carr JP. Infection of Arabidopsis by cucumber mosaic virus triggers jasmonate-dependent resistance to aphids that relies partly on the pattern-triggered immunity factor BAK1. MOLECULAR PLANT PATHOLOGY 2021; 22:1082-1091. [PMID: 34156752 PMCID: PMC8358999 DOI: 10.1111/mpp.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of M. persicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of M. persicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of M. persicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, B. brassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.
Collapse
Affiliation(s)
- Trisna Tungadi
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- NIAB EMREast MallingUK
| | - Lewis G. Watt
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Simon C. Groen
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Department of BiologyNew York UniversityNew YorkNew YorkUSA
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Zhiyou Du
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Institute of BioengineeringZhejiang Sci‐Tech UniversityHangzhouChina
| | | | - Jack H. Westwood
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Walder FoundationSkokieIllinoisUSA
| | - Thea G. Fennell
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
26
|
Zanardo LG, Trindade TA, Mar TB, Barbosa TMC, Milanesi DF, Alves MS, Lima RRPN, Zerbini FM, Janssen A, Mizubuti ESG, Elliot SL, Carvalho CM. Experimental evolution of cowpea mild mottle virus reveals recombination-driven reduction in virulence accompanied by increases in diversity and viral fitness. Virus Res 2021; 303:198389. [PMID: 33716182 DOI: 10.1016/j.virusres.2021.198389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Major themes in pathogen evolution are emergence, evolution of virulence, host adaptation and the processes that underlie them. RNA viruses are of particular interest due to their rapid evolution. The in vivo molecular evolution of an RNA plant virus was demonstrated here using a necrotic isolate of cowpea mild mottle virus (CPMMV) and a susceptible soybean genotype submitted to serial inoculations. We show that the virus lost the capacity to cause necrosis after six passages through the host plant. When a severe bottleneck was imposed, virulence reduction occurred in the second passage. The change to milder symptoms had fitness benefits for the virus (higher RNA accumulation) and for its vector, the whitefly Bemisia tabaci. Genetic polymorphisms were highest in ORF1 (viral replicase) and were independent of the symptom pattern. Recombination was a major contributor to this diversity - even with the strong genetic bottleneck, recombination events and hot spots were detected within ORF1. Virulence reduction was associated with different sites in ORF1 associated to recombination events in both experiments. Overall, the results demonstrate that the reduction in virulence was a consequence of the emergence of new variants, driven by recombination. Besides providing details of the evolutionary mechanisms behind a reduction in virulence and its effect under viral and vector fitness, we propose that this recombination-driven switch in virulence allows the pathogen to rapidly adapt to a new host and, potentially, switch back.
Collapse
Affiliation(s)
- Larissa G Zanardo
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tiago A Trindade
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Talita B Mar
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tarsiane M C Barbosa
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Diogo F Milanesi
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Murilo S Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Roberta R P N Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Arne Janssen
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil; IBED, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Simon L Elliot
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Claudine M Carvalho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
27
|
Maclot F, Candresse T, Filloux D, Malmstrom CM, Roumagnac P, van der Vlugt R, Massart S. Illuminating an Ecological Blackbox: Using High Throughput Sequencing to Characterize the Plant Virome Across Scales. Front Microbiol 2020; 11:578064. [PMID: 33178159 PMCID: PMC7596190 DOI: 10.3389/fmicb.2020.578064] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
The ecology of plant viruses began to be explored at the end of the 19th century. Since then, major advances have revealed mechanisms of virus-host-vector interactions in various environments. These advances have been accelerated by new technlogies for virus detection and characterization, most recently including high throughput sequencing (HTS). HTS allows investigators, for the first time, to characterize all or nearly all viruses in a sample without a priori information about which viruses might be present. This powerful approach has spurred new investigation of the viral metagenome (virome). The rich virome datasets accumulated illuminate important ecological phenomena such as virus spread among host reservoirs (wild and domestic), effects of ecosystem simplification caused by human activities (and agriculture) on the biodiversity and the emergence of new viruses in crops. To be effective, however, HTS-based virome studies must successfully navigate challenges and pitfalls at each procedural step, from plant sampling to library preparation and bioinformatic analyses. This review summarizes major advances in plant virus ecology associated with technological developments, and then presents important considerations and best practices for HTS use in virome studies.
Collapse
Affiliation(s)
- François Maclot
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | | | - Denis Filloux
- CIRAD, BGPI, Montpellier, France
- BGPI, INRAE, CIRAD, Institut Agro, Montpellier University, Montpellier, France
| | - Carolyn M. Malmstrom
- Department of Plant Biology and Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI, United States
| | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France
- BGPI, INRAE, CIRAD, Institut Agro, Montpellier University, Montpellier, France
| | - René van der Vlugt
- Laboratory of Virology, Wageningen University and Research Centre (WUR-PRI), Wageningen, Netherlands
| | - Sébastien Massart
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| |
Collapse
|
28
|
Wang S, Guo H, Ge F, Sun Y. Apoptotic neurodegeneration in whitefly promotes the spread of TYLCV. eLife 2020; 9:56168. [PMID: 32729829 PMCID: PMC7392610 DOI: 10.7554/elife.56168] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/12/2020] [Indexed: 01/04/2023] Open
Abstract
The mechanism by which plant viruses manipulate the behavior of insect vectors has largely been described as indirect manipulation through modifications of the host plant. However, little is known about the direct interaction of the plant virus on the nervous system of its insect vector, and the substantial behavioral effect on virus transmission. Using a system consisting of a Tomato yellow leaf curl virus (TYLCV) and its insect vector whitefly, we found that TYLCV caused caspase-dependent apoptotic neurodegeneration with severe vacuolar neuropathological lesions in the brain of viruliferous whitefly by inducing a putative inflammatory signaling cascade of innate immunity. The sensory defects caused by neurodegeneration removed the steady preference of whitefly for virus-infected plants, thereby enhancing the probability of the virus to enter uninfected hosts, and eventually benefit TYLCV spread among the plant community. These findings provide a neuromechanism for virus transmission to modify its associated insect vector behavior. When a plant becomes infected by a virus, its defenses get weakened, which attracts insects that are looking for an easy meal. Insects detect which plants are infected based on the color of the sickened plant and the smell of chemicals it releases. Once an insect leaves the infected plant, it may carry the virus to new plants, allowing the virus to spread. Insects, however, prefer the easy pickings of plants that are already infected, making them less likely to spread the virus. Plant viruses have found ways to overcome this preference, but how they do this was not fully understood. Learning more about how plant viruses manipulate insects into helping them spread could allow scientists to develop new ways of protecting food crops from viral diseases. Viruses that infect insects can trigger excessive immune system responses that damage insects’ nerves and cause them to behave differently. For example, their senses may become impaired, they may move less, or be less able to remember things. This has led scientists to wonder whether plant viruses that use insects to spread might manipulate the insects’ behaviors using a similar mechanism. Now, Wang et al. have investigated whether the tomato yellow leaf curl virus –TYLCV for short – changes the behavior of whiteflies, which are known to spread the virus. The experiments showed that whiteflies typically prefer tomato plants infected with the virus, but after carrying TYLCV, they displayed equal preference for both infected and uninfected plants. Analyzing which genes were active in the whiteflies revealed that TYLCV triggers a harmful immune response which turns on genes that cause cells in the brain to die. This impairs the whiteflies' sight and sense of smell, making it harder for them to distinguish between infected and uninfected plants. These findings suggest that the immune response triggered by the virus may be essential for the spread of TYLCV. It also identified a protein that causes the death of brain cells, leading to behavioral changes in the whiteflies. This suggests that targeting this protein, or other steps in this process, could help stop the spread of TYLCV in tomato plants.
Collapse
Affiliation(s)
- Shifan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,Maoming Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Maoming, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Gautam S, Gadhave KR, Buck JW, Dutta B, Coolong T, Adkins S, Srinivasan R. Virus-virus interactions in a plant host and in a hemipteran vector: Implications for vector fitness and virus epidemics. Virus Res 2020; 286:198069. [PMID: 32574679 DOI: 10.1016/j.virusres.2020.198069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Mixed virus infection in host plants can differentially alter the plant phenotype, influence vector fitness, and affect virus acquisition and inoculation by vectors than single-virus infection. Vector acquisition of multiple viruses from multiple host plants could also differentially affect vector fitness and virus inoculation than acquisition of one virus. Whitefly-virus pathosystems in the southern United States include both the above-stated facets. For the first facet, this study examined the effects of single and mixed infection of cucurbit leaf crumple virus (CuLCrV, a begomovirus) and cucurbit yellow stunting disorder virus (CYSDV, a crinivirus) infecting squash on whitefly (Bemisia tabaci Gennadius MEAM1) host preference and fitness. Mixed infection of CuLCrV and CYSDV in squash plants severely altered their phenotype than single infection. The CYSDV load was reduced in mixed-infected squash plants than in singly-infected plants. Consequently, whiteflies acquired reduced amounts of CYSDV from mixed-infected plants than singly-infected plants. No differences in CuLCrV load were found between singly- and mixed-infected squash plants, and acquisition of CuLCrV by whiteflies did not vary between singly- and mixed-infected squash plants. Both singly- and mixed-infected plants similarly affected whitefly preference, wherein non-viruliferous and viruliferous (CuLCrV and/or CYSDV) whiteflies preferred non-infected plants over infected plants. The fitness study involving viruliferous and non-viruliferous whiteflies revealed no differences in developmental time and fecundity. For the second facet, this study evaluated the effects of individual or combined acquisition of tomato-infecting tomato yellow leaf curl virus (TYLCV, a begomovirus) and squash-infecting CuLCrV on whitefly host preference and fitness. Whiteflies that acquired both CuLCrV and TYLCV had significantly lower CuLCrV load than whiteflies that acquired CuLCrV alone, whereas TYLCV load remained unaltered when acquired individually or in conjunction with CuLCrV. Whitefly preference was not affected following individual or combined virus acquisition. Viruliferous (CuLCrV and/or TYLCV) whiteflies preferred to settle on non-infected tomato and squash plants. The mere presence of CuLCrV and/or TYLCV in whiteflies did not affect their fitness. Taken together, these results indicate that mixed infection of viruses in host plants and acquisition of multiple viruses by the vector could have implications for virus accumulation, virus acquisition, vector preference, and epidemics that sometimes are different from single-virus infection or acquisition.
Collapse
Affiliation(s)
- Saurabh Gautam
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Kiran R Gadhave
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - James W Buck
- Department of Plant Pathology, University of Georgia, 1109 Experiment St., Griffin, GA, 30223, USA
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA, 31793, USA
| | - Tim Coolong
- Department of Horticulture, University of Georgia, 3250 Rainwater Road, Tifton, GA, 31793, USA
| | - Scott Adkins
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL, 34945, USA
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
| |
Collapse
|
30
|
Alcaide C, Rabadán MP, Moreno-Pérez MG, Gómez P. Implications of mixed viral infections on plant disease ecology and evolution. Adv Virus Res 2020; 106:145-169. [PMID: 32327147 DOI: 10.1016/bs.aivir.2020.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mixed viral infections occur more commonly than would be expected by chance in nature. Virus-virus interactions may affect viral traits and leave a genetic signature in the population, and thus influence the prevalence and emergence of viral diseases. Understanding about how the interactions between viruses within a host shape the evolutionary dynamics of the viral populations is needed for viral disease prevention and management. Here, we first synthesize concepts implied in the occurrence of virus-virus interactions. Second, we consider the role of the within-host interactions of virus-virus and virus-other pathogenic microbes, on the composition and structure of viral populations. Third, we contemplate whether mixed viral infections can create opportunities for the generation and maintenance of viral genetic diversity. Fourth, we attempt to summarize the evolutionary response of viral populations to mixed infections to understand how they shape the spatio-temporal dynamics of viral populations at the individual plant and field scales. Finally, we anticipate the future research under the reconciliation of molecular epidemiology and evolutionary ecology, drawing attention to the need of adding more complexity to future research in order to gain a better understanding about the mechanisms operating in nature.
Collapse
Affiliation(s)
- Cristina Alcaide
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M Pilar Rabadán
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Manuel G Moreno-Pérez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de investigaciones Científicas (CEBAS-CSIC), Dpto Biología del Estrés y Patología Vegetal, Murcia, Spain.
| |
Collapse
|
31
|
Ziegler-Graff V. Molecular Insights into Host and Vector Manipulation by Plant Viruses. Viruses 2020; 12:v12030263. [PMID: 32121032 PMCID: PMC7150927 DOI: 10.3390/v12030263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Plant viruses rely on both host plant and vectors for a successful infection. Essentially to simplify studies, transmission has been considered for decades as an interaction between two partners, virus and vector. This interaction has gained a third partner, the host plant, to establish a tripartite pathosystem in which the players can react with each other directly or indirectly through changes induced in/by the third partner. For instance, viruses can alter the plant metabolism or plant immune defence pathways to modify vector’s attraction, settling or feeding, in a way that can be conducive for virus propagation. Such changes in the plant physiology can also become favourable to the vector, establishing a mutualistic relationship. This review focuses on the recent molecular data on the interplay between viral and plant factors that provide some important clues to understand how viruses manipulate both the host plants and vectors in order to improve transmission conditions and thus ensuring their survival.
Collapse
Affiliation(s)
- Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
32
|
van Munster M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020; 12:E216. [PMID: 32075208 PMCID: PMC7077179 DOI: 10.3390/v12020216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/05/2023] Open
Abstract
Plants regularly encounter abiotic constraints, and plant response to stress has been a focus of research for decades. Given increasing global temperatures and elevated atmospheric CO2 levels and the occurrence of water stress episodes driven by climate change, plant biochemistry, in particular, plant defence responses, may be altered significantly. Environmental factors also have a wider impact, shaping viral transmission processes that rely on a complex set of interactions between, at least, the pathogen, the vector, and the host plant. This review considers how abiotic stresses influence the transmission and spread of plant viruses by aphid vectors, mainly through changes in host physiology status, and summarizes the latest findings in this research field. The direct effects of climate change and severe weather events that impact the feeding behaviour of insect vectors as well as the major traits (e.g., within-host accumulation, disease severity and transmission) of viral plant pathogens are discussed. Finally, the intrinsic capacity of viruses to react to environmental cues in planta and how this may influence viral transmission efficiency is summarized. The clear interaction between biotic (virus) and abiotic stresses is a risk that must be accounted for when modelling virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Manuella van Munster
- INRA, UMR385, CIRAD TA-A54K, Campus International de Baillarguet, CEDEX 05, 34398 Montpellier, France
| |
Collapse
|
33
|
Tungadi T, Donnelly R, Qing L, Iqbal J, Murphy AM, Pate AE, Cunniffe NJ, Carr JP. Cucumber mosaic virus 2b proteins inhibit virus-induced aphid resistance in tobacco. MOLECULAR PLANT PATHOLOGY 2020; 21:250-257. [PMID: 31777194 PMCID: PMC6988427 DOI: 10.1111/mpp.12892] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cucumber mosaic virus (CMV), which is vectored by aphids, has a tripartite RNA genome encoding five proteins. In tobacco (Nicotiana tabacum), a subgroup IA CMV strain, Fny-CMV, increases plant susceptibility to aphid infestation but a viral mutant unable to express the 2b protein (Fny-CMV∆2b) induces aphid resistance. We hypothesized that in tobacco, one or more of the four other Fny-CMV gene products (the 1a or 2a replication proteins, the movement protein, or the coat protein) are potential aphid resistance elicitors, whilst the 2b protein counteracts induction of aphid resistance. Mutation of the Fny-CMV 2b protein indicated that inhibition of virus-induced resistance to aphids (Myzus persicae) depends on amino acid sequences known to control nucleus-to-cytoplasm shuttling. LS-CMV (subgroup II) also increased susceptibility to aphid infestation but the LS-CMV∆2b mutant did not induce aphid resistance. Using reassortant viruses comprising different combinations of LS and Fny genomic RNAs, we showed that Fny-CMV RNA 1 but not LS-CMV RNA 1 conditions aphid resistance in tobacco, suggesting that the Fny-CMV 1a protein triggers resistance. However, the 2b proteins of both strains suppress aphid resistance, suggesting that the ability of 2b proteins to inhibit aphid resistance is conserved among divergent CMV strains.
Collapse
Affiliation(s)
- Trisna Tungadi
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Ruairí Donnelly
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Ling Qing
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- College of Plant ProtectionSouthwest UniversityNo. 2, Tiansheng RoadChongqingChina
| | - Javaid Iqbal
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Adrienne E. Pate
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Nik J. Cunniffe
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
34
|
Islam W, Noman A, Naveed H, Alamri SA, Hashem M, Huang Z, Chen HYH. Plant-insect vector-virus interactions under environmental change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:135044. [PMID: 31726403 DOI: 10.1016/j.scitotenv.2019.135044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Insects play an important role in the spread of viruses from infected plants to healthy hosts through a variety of transmission strategies. Environmental factors continuously influence virus transmission and result in the establishment of infection or disease. Plant virus diseases become epidemic when viruses successfully dominate the surrounding ecosystem. Plant-insect vector-virus interactions influence each other; pushing each other for their benefit and survival. These interactions are modulated through environmental factors, though environmental influences are not readily predictable. This review focuses on exploiting the diverse relationships, embedded in the plant-insect vector-virus triangle by highlighting recent research findings. We examined the interactions between viruses, insect vectors, and host plants, and explored how these interactions affect their behavior.
Collapse
Affiliation(s)
- Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Hassan Naveed
- College of Life Science, Leshan Normal University, Leshan, Sichuan 614004, China
| | - Saad A Alamri
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Prince Sultan Ben Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, Faculty of Science, Biological Science Department, P.O. Box 10255, Abha 61321, Saudi Arabia; Assiut University, Faculty of Science, Botany Department, Assiut 71516, Egypt
| | - Zhiqun Huang
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
35
|
Domingo-Calap ML, Moreno AB, Díaz Pendón JA, Moreno A, Fereres A, López-Moya JJ. Assessing the Impact on Virus Transmission and Insect Vector Behavior of a Viral Mixed Infection in Melon. PHYTOPATHOLOGY 2020; 110:174-186. [PMID: 31502517 DOI: 10.1094/phyto-04-19-0126-fi] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed viral infections in plants are common, and can result in synergistic or antagonistic interactions. Except in complex diseases with severe symptoms, mixed infections frequently remain unnoticed, and their impact on insect vector transmission is largely unknown. In this study, we considered mixed infections of two unrelated viruses commonly found in melon plants, the crinivirus cucurbit yellow stunting disorder virus (CYSDV) and the potyvirus watermelon mosaic virus (WMV), and evaluated their vector transmission by whiteflies and aphids, respectively. Their dynamics of accumulation was analyzed until 60 days postinoculation (dpi) in mixed-infected plants, documenting reduced titers of WMV and much higher titers of CYSDV compared with single infections. At 24 dpi, corresponding to the peak of CYSDV accumulation, similar whitefly transmission rates were obtained when comparing either individual or mixed-infected plants as CYSDV sources, although its secondary dissemination was slightly biased toward plants previously infected with WMV, regardless of the source plant. However, at later time points, mixed-infected plants partially recovered from the initially severe symptoms, and CYSDV transmission became significantly higher. Interestingly, aphid transmission rates both at early and late time points were unaltered when WMV was acquired from mixed-infected plants despite its reduced accumulation. This lack of correlation between WMV accumulation and transmission could result from compensatory effects observed in the analysis of the aphid feeding behavior by electrical penetration graphs. Thus, our results showed that mixed-infected plants could provide advantages for both viruses, directly favoring CYSDV dissemination while maintaining WMV transmission.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Antonio Díaz Pendón
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Aranzazu Moreno
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Barcelona, Spain
| |
Collapse
|
36
|
Grunseich JM, Thompson MN, Aguirre NM, Helms AM. The Role of Plant-Associated Microbes in Mediating Host-Plant Selection by Insect Herbivores. PLANTS (BASEL, SWITZERLAND) 2019; 9:E6. [PMID: 31861487 PMCID: PMC7020435 DOI: 10.3390/plants9010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023]
Abstract
There is increasing evidence that plant-associated microorganisms play important roles in shaping interactions between plants and insect herbivores. Studies of both pathogenic and beneficial plant microbes have documented wide-ranging effects on herbivore behavior and performance. Some studies, for example, have reported enhanced insect-repellent traits or reduced performance of herbivores on microbe-associated plants, while others have documented increased herbivore attraction or performance. Insect herbivores frequently rely on plant cues during foraging and oviposition, suggesting that plant-associated microbes affecting these cues can indirectly influence herbivore preference. We review and synthesize recent literature to provide new insights into the ways pathogenic and beneficial plant-associated microbes alter visual, olfactory, and gustatory cues of plants that affect host-plant selection by insect herbivores. We discuss the underlying mechanisms, ecological implications, and future directions for studies of plant-microbial symbionts that indirectly influence herbivore behavior by altering plant traits.
Collapse
Affiliation(s)
- John M. Grunseich
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA; (J.M.G.); (M.N.T.)
| | - Morgan N. Thompson
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA; (J.M.G.); (M.N.T.)
| | - Natalie M. Aguirre
- Ecology and Evolutionary Biology Program, Texas A&M University; College Station, TX 77840, USA;
| | - Anjel M. Helms
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA; (J.M.G.); (M.N.T.)
- Ecology and Evolutionary Biology Program, Texas A&M University; College Station, TX 77840, USA;
| |
Collapse
|
37
|
Shi X, Preisser EL, Liu B, Pan H, Xiang M, Xie W, Wang S, Wu Q, Li C, Liu Y, Zhou X, Zhang Y. Variation in both host defense and prior herbivory can alter plant-vector-virus interactions. BMC PLANT BIOLOGY 2019; 19:556. [PMID: 31842757 PMCID: PMC6916021 DOI: 10.1186/s12870-019-2178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/29/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND While virus-vector-host interactions have been a major focus of both basic and applied ecological research, little is known about how different levels of plant defense interact with prior herbivory to affect these relationships. We used genetically-modified strains of tomato (Solanum lycopersicum) varying in the jasmonic acid (JA) plant defense pathways to explore how plant defense and prior herbivory affects a plant virus (tomato yellow leaf curl virus, 'TYLCV'), its vector (the whitefly Bemisia tabaci MED), and the host. RESULTS Virus-free MED preferred low-JA over high-JA plants and had lower fitness on high-JA plants. Viruliferous MED preferred low-JA plants but their survival was unaffected by JA levels. While virus-free MED did not lower plant JA levels, viruliferous MED decreased both JA levels and the expression of JA-related genes. Infestation by viruliferous MED reduced plant JA levels. In preference tests, neither virus-free nor viruliferous MED discriminated among JA-varying plants previously exposed to virus-free MED. However, both virus-free and viruliferous MED preferred low-JA plant genotypes when choosing between plants that had both been previously exposed to viruliferous MED. The enhanced preference for low-JA genotypes appears linked to the volatile compound neophytadiene, which was found only in whitefly-infested plants and at concentrations inversely related to plant JA levels. CONCLUSIONS Our findings illustrate how plant defense can interact with prior herbivory to affect both a plant virus and its whitefly vector, and confirm the induction of neophytadiene by MED. The apparent attraction of MED to neophytadiene may prove useful in pest detection and management.
Collapse
Affiliation(s)
- Xiaobin Shi
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410000, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Baiming Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huipeng Pan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Xiang
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanyou Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410000, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
Pereira LS, Lourenção AL, Salas FJS, Bento JMS, Rezende JAM, Peñaflor MFGV. Infection by the semi-persistently transmitted Tomato chlorosis virus alters the biology and behaviour of Bemisia tabaci on two potato clones. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:604-611. [PMID: 30616696 DOI: 10.1017/s0007485318000974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insect-borne plant viruses usually alter the interactions between host plant and insect vector in ways conducive to their transmission ('host manipulation hypothesis'). Most studies have tested this hypothesis with persistently and non-persistently transmitted viruses, while few have examined semi-persistently transmitted viruses. The crinivirus Tomato chlorosis virus (ToCV) is semi-persistently transmitted virus by whiteflies, and has been recently reported infecting potato plants in Brazil, where Bemisia tabaci Middle East Asia Minor 1 (MEAM1) is a competent vector. We investigated how ToCV infection modifies the interaction between potato plants and B. tabaci in ways that increase the likelihood of ToCV transmission, in two clones, one susceptible ('Agata') and the other moderately resistant (Bach-4) to B. tabaci. Whiteflies alighted and laid more eggs on ToCV-infected plants than mock-inoculated plants of Bach-4. When non-viruliferous whiteflies were released on ToCV-infected plants near mock-inoculated plants, adults moved more intensely towards non-infected plants than in the reverse condition for both clones. Feeding on ToCV-infected plants reduced egg-incubation period in both clones, but the egg-adult cycle was similar for whiteflies fed on ToCV-infected and mock-inoculated plants. Our results demonstrated that ToCV infection in potato plants alters B. tabaci behaviour and development in distinct ways depending on the host clone, with potential implications for ToCV spread.
Collapse
Affiliation(s)
- L S Pereira
- Instituto Agronômico (IAC), Centro de Fitossanidade, Av. Barão de Itapura, 1481, 13020-902 Campinas, SP, Brazil
| | - A L Lourenção
- Instituto Agronômico (IAC), Centro de Fitossanidade, Av. Barão de Itapura, 1481, 13020-902 Campinas, SP, Brazil
| | - F J S Salas
- Instituto Biológico (IB), Laboratório de Estudo Vetores, Av. Conselheiro Rodrigues Alves, 1.252, 04014-900 São Paulo, SP, Brazil
| | - J M S Bento
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura 'Luiz de Queiroz' Universidade de São Paulo (ESALQ-USP), Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - J A M Rezende
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura 'Luiz de Queiroz' Universidade de São Paulo (ESALQ-USP), Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - M F G V Peñaflor
- Departamento de Entomologia, Universidade Federal de Lavras (UFLA), Campus Universitário, 37200-00 Lavras, MG, Brazil
| |
Collapse
|
39
|
Mauck KE, Kenney J, Chesnais Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. CURRENT OPINION IN INSECT SCIENCE 2019; 33:7-18. [PMID: 31358199 DOI: 10.1016/j.cois.2019.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 06/10/2023]
Abstract
Plant virus infection fundamentally alters chemical and behavioral phenotypes of hosts and vectors. These alterations often enhance virus transmission, leading researchers to surmise that such effects are manipulations caused by virus adaptations and not just by-products of pathology. But identification of the virus components behind manipulation is missing from most studies performed to date. Here, we evaluate causative empirical evidence that virus components are the drivers of manipulated host and vector phenotypes. To do so, we link findings and methodologies on virus pathology with observational and functional genomics studies on virus manipulation. Our synthesis provides an overview of progress, areas of synergy, and new approaches that will lead to an improved mechanistic understanding of host and vector manipulation by plant viruses.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Jaimie Kenney
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
40
|
Liu J, Liu Y, Donkersley P, Dong Y, Chen X, Zang Y, Xu P, Ren G. Preference of the aphid Myzus persicae (Hemiptera: Aphididae) for tobacco plants at specific stages of potato virus Y infection. Arch Virol 2019; 164:1567-1573. [PMID: 30944997 DOI: 10.1007/s00705-019-04231-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/07/2019] [Indexed: 12/25/2022]
Abstract
Potato virus Y (PVY) is a common pathogen affecting agricultural production worldwide and is mainly transmitted by Myzus persicae in a non-persistent manner. Insect-borne plant viruses can modify the abundance, performance, and behavior of their vectors by altering host plant features; however, most studies have overlooked the fact that the dynamic progression of virus infection in plants can have variable effects on their vectors. We addressed this point in the present study by dividing the PVY infection process in tobacco into three stages (early state, steady state and late state); delineated by viral copy number. We then compared the differential effects of PVY-infected tobacco (Nicotiana tabacum) plants on the host selection and feeding behavior of M. persicae. We used Y-shaped olfactory apparatus and electrical penetration graph (EPG) methods to evaluate host selection and feeding behavior, respectively. Interestingly, we found that PVY-infected plants at the steady state attracted more aphids than healthy plants, whereas no differences were observed for those at the early and late states. In terms of feeding behavior, intracellular punctures (closely related to PVY acquisition and transmission) were more abundant on PVY-infected tobacco plants at the early and steady states of infection than in uninfected plants. These results indicate that PVY-infected host plants can alter the host selection and feeding behavior of aphids in a stage-dependent manner, which is an important consideration when studying the interactions among host plants, viruses, and insect vectors.
Collapse
Affiliation(s)
- Jinyan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Yingjie Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Philip Donkersley
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Yonghao Dong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Xi Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Yun Zang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Guangwei Ren
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
41
|
Pulido H, Mauck KE, De Moraes CM, Mescher MC. Combined effects of mutualistic rhizobacteria counteract virus-induced suppression of indirect plant defences in soya bean. Proc Biol Sci 2019; 286:20190211. [PMID: 31113327 PMCID: PMC6545077 DOI: 10.1098/rspb.2019.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/02/2019] [Indexed: 11/12/2022] Open
Abstract
It is increasingly clear that microbial plant symbionts can influence interactions between their plant hosts and other organisms. However, such effects remain poorly understood, particularly under ecologically realistic conditions where plants simultaneously interact with diverse mutualists and antagonists. Here, we examine how the effects of a plant virus on indirect plant defences against its insect vector are influenced by co-occurrence of other microbial plant symbionts. Using a multi-factorial design, we manipulated colonization of soya bean using three different microbes: a pathogenic plant virus (bean pod mottle virus (BPMV)), a nodule-forming beneficial rhizobacterium ( Bradyrhizobium japonicum) and a plant growth-promoting rhizobacterium ( Delftia acidovorans). We then assessed recruitment of parasitoids ( Pediobious foveolatus (Eulophidae)) and parasitism rates following feeding by the BPMV vector Epilachna varivestis (Coccinellidae). BPMV infection suppressed parasitoid recruitment, prolonged parasitoid foraging time and reduced parasitism rates in semi-natural foraging assays. However, simultaneous colonization of BPMV-infected hosts by both rhizobacteria restored parasitoid recruitment and rates of parasitism to levels similar to uninfected controls. Co-colonization by the two rhizobacteria also enhanced parasitoid recruitment in the absence of BPMV infection. These results illustrate the potential of plant-associated microbes to influence indirect plant defences, with implications for disease transmission and herbivory, but also highlight the potential complexity of such interactions.
Collapse
Affiliation(s)
- Hannier Pulido
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zürich, Switzerland
| | - Kerry E. Mauck
- Department of Entomology, University of California, Riverside, CA, USA
| | - Consuelo M. De Moraes
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zürich, Switzerland
| | - Mark C. Mescher
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zürich, Switzerland
| |
Collapse
|
42
|
Pradit N, Mescher MC, Wang Y, Vorsa N, Rodriguez-Saona C. Phytoplasma Infection of Cranberries Benefits Non-vector Phytophagous Insects. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
43
|
Donnelly R, Cunniffe NJ, Carr JP, Gilligan CA. Pathogenic modification of plants enhances long-distance dispersal of nonpersistently transmitted viruses to new hosts. Ecology 2019; 100:e02725. [PMID: 30980528 PMCID: PMC6619343 DOI: 10.1002/ecy.2725] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/02/2019] [Accepted: 02/25/2019] [Indexed: 11/24/2022]
Abstract
Aphids spread the majority of plant viruses through nonpersistent transmission (NPT), whereby virus particles attach transiently to these insects’ probing mouthparts. Virus acquisition from infected plants and inoculation to healthy host plants is favored when aphids briefly probe plant epidermal cells. It is well established that NPT virus infection can alter plant–vector interactions, and, moreover, such pathogen modifications are found in a range of plant and animal systems. In particular, viruses can make plants more attractive to aphids but inhibit aphid settling on infected plants. It is hypothesized that this viral “reprogramming” of plants promotes virus acquisition and encourages dispersal of virus‐bearing aphids to fresh hosts. In contrast, it is hypothesized that virus‐induced biochemical changes encouraging prolonged feeding on infected hosts inhibit NPT. To understand how these virus‐induced modifications affect epidemics, we developed a modeling framework accounting for important but often neglected factors, including feeding behaviors (probing or prolonged feeding) and distinct spatial scales of transmission (as conditioned by wingless or winged aphids). Analysis of our models confirmed that when viruses inhibit aphid settling on infected plants this initially promotes virus transmission. However, initially enhanced transmission is self‐limiting because it decreases vector density. Another important finding is that virus‐induced changes encouraging settling will stimulate birth of winged aphids, which promotes epidemics of NPT viruses over greater distances. Thus our results illustrate how plant virus modifications influence epidemics by altering vector distribution, density, and even vector form. Our insights are important for understanding how pathogens in general propagate through natural plant communities and crops.
Collapse
Affiliation(s)
- Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, CB2 3EA, Cambridge, UK
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, CB2 3EA, Cambridge, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, CB2 3EA, Cambridge, UK
| | | |
Collapse
|
44
|
Guo L, Su Q, Yin J, Yang Z, Xie W, Wang S, Wu Q, Cui H, Zhang Y. Amino Acid Utilization May Explain Why Bemisia tabaci Q and B Differ in Their Performance on Plants Infected by the Tomato yellow leaf curl virus. Front Physiol 2019; 10:489. [PMID: 31118898 PMCID: PMC6504830 DOI: 10.3389/fphys.2019.00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
To make plants more attractive to vectors of viruses, plant-infecting viruses can alter host plant physiology. The recent outbreaks of Tomato yellow leaf curl virus (TYLCV) relate to the spread of its primary vector, the whitefly Bemisia tabaci. Here, we investigated the question of whether the better performance of B. tabaci Q, relative to that of the B biotype, on TYLCV-infected tomato plants could be explained by differences in the ability of the B. tabaci Q and B to obtain free amino acids from the virus-infected plants. We found that the TYLCV infection of tomato plants significantly affected the mole percentage (mol%) of free amino acids in the phloem sap of the tomato plants and the mol% of free amino acids in B. tabaci adults and B. tabaci honeydew. The TYLCV infection caused the mol% of a larger number of free amino acids to rise in B. tabaci Q than in B, and the analysis of honeydew indicated that, when feeding on TYLCV-infected plants, B. tabaci Q was better able to use the free amino acids than B. tabaci B. The results suggest that B. tabaci Q is better adapted than B to feed on TYLCV-infected plants, and that TYLCV alters the B. tabaci B-Q competitive interaction in favor of Q.
Collapse
Affiliation(s)
- Litao Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jin Yin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
45
|
Carr JP, Murphy AM, Tungadi T, Yoon JY. Plant defense signals: Players and pawns in plant-virus-vector interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:87-95. [PMID: 30709497 DOI: 10.1016/j.plantsci.2018.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 06/09/2023]
Abstract
Plant viruses face an array of host defenses. Well-studied responses that protect against viruses include effector-triggered immunity, induced resistance (such as systemic acquired resistance mediated by salicylic acid), and RNA silencing. Recent work shows that viruses are also affected by non-host resistance mechanisms; previously thought to affect only bacteria, oomycetes and fungi. However, an enduring puzzle is how viruses are inhibited by several inducible host resistance mechanisms. Many viruses have been shown to encode factors that inhibit antiviral silencing. A number of these, including the cucumoviral 2b protein, the poytviral P1/HC-Pro and, respectively, geminivirus or satellite DNA-encoded proteins such as the C2 or βC1, also inhibit defensive signaling mediated by salicylic acid and jasmonic acid. This helps to explain how viruses can, in some cases, overcome host resistance. Additionally, interference with defensive signaling provides a means for viruses to manipulate plant-insect interactions. This is important because insects, particularly aphids and whiteflies, transmit many viruses. Indeed, there is now substantial evidence that viruses can enhance their own transmission through their effects on hosts. Even more surprisingly, it appears that viruses may be able to manipulate plant interactions with beneficial insects by, for example, 'paying back' their hosts by attracting pollinators.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom.
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, 55365, Republic of Korea
| |
Collapse
|
46
|
Chesnais Q, Couty A, Uzest M, Brault V, Ameline A. Plant infection by two different viruses induce contrasting changes of vectors fitness and behavior. INSECT SCIENCE 2019; 26:86-96. [PMID: 28731285 DOI: 10.1111/1744-7917.12508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Insect-vectored plant viruses can induce changes in plant phenotypes, thus influencing plant-vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e., circulative vs. noncirculative). This indirect vector manipulation requires host-virus-vector coevolution and would thus be effective solely in very specific plant-virus-vector species associations. Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency. In anintegrative study, we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV) or the circulative Turnip yellows virus (TuYV) on the host-plant colonization of two aphid species differing in their virus transmission efficiency: the polyphagous Myzus persicae, efficient vector of both viruses, and the Brassicaceae specialist Brevicoryne brassicae, poor vector of TuYV and efficient vector of CaMV. Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e., decreased phloem sap ingestion) and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition. In addition, virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV, that is, enhanced feeding behavior and performances, were favorable to their acquisition and further dispersal. Altogether, this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses. Our results also reinforce the idea that vector manipulation requires coevolution between plant, virus and vector.
Collapse
Affiliation(s)
- Quentin Chesnais
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
| | - Aude Couty
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
| | - Maryline Uzest
- INRA, UMR 0385 BGPI, CIRAD-INRA-Montpellier SupAgro, TA A54/KCampus International de Baillarguet, 34394, Montpellier Cedex 5, France
| | - Véronique Brault
- UMR 1131 SVQV, INRA-UDS, 28, rue de Herrlisheim, 68021, Colmar Cedex, France
| | - Arnaud Ameline
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
| |
Collapse
|
47
|
Jacobson AL, Duffy S, Sseruwagi P. Whitefly-transmitted viruses threatening cassava production in Africa. Curr Opin Virol 2018; 33:167-176. [PMID: 30243102 DOI: 10.1016/j.coviro.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Emerging plant viruses are one of the greatest problems facing crop production worldwide, and have severe consequences in the developing world where subsistence farming is a major source of food production, and knowledge and resources for management are limited. In Africa, evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) (Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in severe pandemics that continue to spread and threaten cassava production. Identification of genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont profiles that influence vector phenotypes suggest that complex local and regional vector-virus-plant-environment interactions may be driving the evolution and epidemiology of these viruses.
Collapse
Affiliation(s)
- Alana Lynn Jacobson
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| |
Collapse
|
48
|
Zhou JS, Drucker M, Ng JC. Direct and indirect influences of virus-insect vector-plant interactions on non-circulative, semi-persistent virus transmission. Curr Opin Virol 2018; 33:129-136. [PMID: 30212752 DOI: 10.1016/j.coviro.2018.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/28/2023]
Abstract
Plant viruses that are transmitted in a non-circulative, semi-persistent (NCSP) manner have determinants on, and/or accessories to, their capsids that facilitate virion binding to specific retention sites in their insect vectors. Bilateral interactions and interactions occurring at the nexus of all three partners (virus, vector and plant) also contribute to transmission by influencing virus acquisition and inoculation. Vector feeding behavior lies at the core of this trio of virus transmission processes (retention-acquisition-inoculation), but transmission may also be mediated by virus infection-triggered and/or vector feeding-triggered plant cues that influence behavioral responses such as vector attraction, deterrence and dispersal. Insights into the multiphasic interactions and coordinated processes will lead to a better understanding of the mechanisms of NCSP transmission.
Collapse
Affiliation(s)
- Jaclyn S Zhou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; Center for Infectious Diseases and Vector Research, University of California, Riverside, CA 92521, USA
| | - Martin Drucker
- Virus Vector Interactions, SVQV, INRA, Université de Strasbourg, Colmar, France
| | - James Ck Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; Center for Infectious Diseases and Vector Research, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
49
|
Claudel P, Chesnais Q, Fouché Q, Krieger C, Halter D, Bogaert F, Meyer S, Boissinot S, Hugueney P, Ziegler-Graff V, Ameline A, Brault V. The Aphid-Transmitted Turnip yellows virus Differentially Affects Volatiles Emission and Subsequent Vector Behavior in Two Brassicaceae Plants. Int J Mol Sci 2018; 19:E2316. [PMID: 30087282 PMCID: PMC6121887 DOI: 10.3390/ijms19082316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 12/04/2022] Open
Abstract
Aphids are important pests which cause direct damage by feeding or indirect prejudice by transmitting plant viruses. Viruses are known to induce modifications of plant cues in ways that can alter vector behavior and virus transmission. In this work, we addressed whether the modifications induced by the aphid-transmitted Turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana also apply to the cultivated plant Camelina sativa, both belonging to the Brassicaceae family. In most experiments, we observed a significant increase in the relative emission of volatiles from TuYV-infected plants. Moreover, due to plant size, the global amounts of volatiles emitted by C. sativa were higher than those released by A. thaliana. In addition, the volatiles released by TuYV-infected C. sativa attracted the TuYV vector Myzus persicae more efficiently than those emitted by non-infected plants. In contrast, no such preference was observed for A. thaliana. We propose that high amounts of volatiles rather than specific metabolites are responsible for aphid attraction to infected C. sativa. This study points out that the data obtained from the model pathosystem A. thaliana/TuYV cannot be straightforwardly extrapolated to a related plant species infected with the same virus.
Collapse
Affiliation(s)
- Patricia Claudel
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Quentin Chesnais
- UMR CNRS 7058 EDYSAN, Université de Picardie Jules Verne, 80039 Amiens, France.
- Department of Entomology, University of California, Entomology Building, 900 University Ave., Riverside, CA 92521, USA.
| | - Quentin Fouché
- UMR CNRS 7058 EDYSAN, Université de Picardie Jules Verne, 80039 Amiens, France.
- CHU Lille, EA 7367-UTML-Unité de Taphonomie Médico-Légale, Université de Lille, 59000 Lille, France.
| | - Célia Krieger
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
| | - David Halter
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Florent Bogaert
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Sophie Meyer
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Sylvaine Boissinot
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Philippe Hugueney
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
| | - Arnaud Ameline
- UMR CNRS 7058 EDYSAN, Université de Picardie Jules Verne, 80039 Amiens, France.
| | - Véronique Brault
- SVQV, Université de Strasbourg, INRA, 28 rue de Herrlisheim, 68000 Colmar, France.
| |
Collapse
|
50
|
Carr JP, Donnelly R, Tungadi T, Murphy AM, Jiang S, Bravo-Cazar A, Yoon JY, Cunniffe NJ, Glover BJ, Gilligan CA. Viral Manipulation of Plant Stress Responses and Host Interactions With Insects. Adv Virus Res 2018; 102:177-197. [PMID: 30266173 DOI: 10.1016/bs.aivir.2018.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Do the alterations in plant defensive signaling and metabolism that occur in susceptible hosts following virus infection serve any purpose beyond directly aiding viruses to replicate and spread? Or indeed, are these modifications to host phenotype purely incidental consequences of virus infection? A growing body of data, in particular from studies of viruses vectored by whiteflies and aphids, indicates that viruses influence the efficiency of their own transmission by insect vectors and facilitate mutualistic relationships between viruses and their insect vectors. Furthermore, it appears that viruses may be able to increase the opportunity for transmission in the long term by providing reward to the host plants that they infect. This may be conditional, for example, by aiding host survival under conditions of drought or cold or, more surprisingly, by helping plants attract beneficial insects such as pollinators. In this chapter, we cover three main areas. First, we describe the molecular-level interactions governing viral manipulation of host plant biology. Second, we review evidence that virus-induced changes in plant phenotype enhance virus transmission. Finally, we discuss how direct and indirect manipulation of insects and plants might impact on the evolution of viruses and their hosts.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sanjie Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ana Bravo-Cazar
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, Republic of Korea
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|