1
|
Ashraf MA, Raza MA, Imran A, Amjad MN. Next-generation vaccines for influenza B virus: advancements and challenges. Arch Virol 2025; 170:25. [PMID: 39762648 DOI: 10.1007/s00705-024-06210-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/07/2024] [Indexed: 02/08/2025]
Abstract
To battle seasonal outbreaks of influenza B virus infection, which continue to pose a major threat to world health, new and improved vaccines are urgently needed. In this article, we discuss the current state of next-generation influenza B vaccine development, including both advancements and challenges. This review covers the shortcomings of existing influenza vaccines and stresses the need for more-effective and broadly protective vaccines and more-easily scalable manufacturing processes. New possibilities for vaccine development have emerged due to recent technical developments such as virus-like particle (VLP) platforms, recombinant DNA technologies, and reverse genetics. By using these methods, vaccines can be developed that elicit stronger and longer-lasting immune responses against various strains of influenza B virus. Vaccines may be more effective and immunogenic when adjuvants and new delivery mechanisms are used. Progress has been made in the development of influenza B vaccine mRNA vaccines, nanoparticle-based vaccines, and vector-based vaccines. However, there are still several obstacles to overcome before next-generation influenza B vaccines can be widely used, including the challenge of antigenic drift, the extinction of the B/Yamagata lineage, and difficulties in strain selection. There are also other challenges related to public acceptance, vaccine distribution, manufacturing complexity, and regulations. To overcome these challenges, scientists, politicians, and pharmaceutical firms must work together to expedite the development and licensing of vaccines and the establishment of immunization programs. The need for constant monitoring and quick adaptation of vaccines to match the currently circulating strains is further highlighted by the appearance of novel influenza B virus variants. To be ready for future pandemics and influenza B outbreaks, we need better vaccines and better monitoring systems.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Azka Imran
- University of Veterinary and Animal Sciences UVAS, Lahore, Pakistan
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
3
|
Wang Z, Sun W, Li D, Sun Y, Zhu M, Wang W, Zhang Y, Li E, Yan F, Wang T, Feng N, Yang S, Xia X, Gao Y. A live attenuated influenza B virus vaccine expressing RBD elicits protective immunity against SARS-CoV-2 in mice. Virus Res 2024; 345:199378. [PMID: 38643857 PMCID: PMC11059473 DOI: 10.1016/j.virusres.2024.199378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to human health globally. It is crucial to develop a vaccine to reduce the effect of the virus on public health, economy, and society and regulate the transmission of SARS-CoV-2. Influenza B virus (IBV) can be used as a vector that does not rely on the current circulating influenza A strains. In this study, we constructed an IBV-based vector vaccine by inserting a receptor-binding domain (RBD) into a non-structural protein 1 (NS1)-truncated gene (rIBV-NS110-RBD). Subsequently, we assessed its safety, immunogenicity, and protective efficacy against SARS-CoV-2 in mice, and observed that it was safe in a mouse model. Intranasal administration of a recombinant rIBV-NS110-RBD vaccine induced high levels of SARS-CoV-2-specific IgA and IgG antibodies and T cell-mediated immunity in mice. Administering two doses of the intranasal rIBV-NS110-RBD vaccine significantly reduced the viral load and lung damage in mice. This novel IBV-based vaccine offers a novel approach for controlling the SARS-CoV-2 pandemic.
Collapse
MESH Headings
- Animals
- Mice
- Influenza B virus/immunology
- Influenza B virus/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Mice, Inbred BALB C
- Female
- Administration, Intranasal
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Immunoglobulin A/blood
- Disease Models, Animal
- Immunoglobulin G/blood
- Viral Load
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
Collapse
Affiliation(s)
- Zhenfei Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China; College of Animal Science and Technology, College of Veterinary and Medicine, Jilin Agricultural University, Changchun, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dongxu Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China; College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China; Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, PR China
| | - Menghan Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China; Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, School of Basic Medical Sciences, Kaifeng, China
| | - Wenqi Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China; Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yiming Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China; Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
4
|
Influenza B Virus (IBV) Immune-Mediated Disease in C57BL/6 Mice. Vaccines (Basel) 2022; 10:vaccines10091440. [PMID: 36146518 PMCID: PMC9504307 DOI: 10.3390/vaccines10091440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza B viruses (IBV) primarily infect humans, causing seasonal epidemics. The absence of an animal reservoir limits pandemic concern, but IBV infections may cause severe respiratory disease, predominantly in young children and the elderly. The IBV disease burden is largely controlled by seasonal influenza vaccination; however, immunity due to vaccination is sometimes incomplete, a feature linked to antigenic mismatches. Thus, understanding the features that contribute to disease pathogenesis is important, particularly immune-mediated versus virus-mediated outcomes. Unexpectedly, C57BL/6 (B6) mice intranasally infected with a low multiplicity of infection of B/Florida/04/2006 developed substantial morbidity and mortality. To address the cause, B6 mice were treated daily with dexamethasone to dampen the immune and pro-inflammatory response to IBV infection, allowing the determination of whether the responses were immune- and/or virus-associated. As expected, dexamethasone (DEX)-treated mice had a lower pro-inflammatory response and reduced lung pathology despite the presence of high viral lung titers, but mortality was comparable to PBS-treated mice, indicating that mortality may be linked to lung virus replication. The results showed that the immune response to IBV is the major cause of morbidity, mortality, lung pathology, and viral clearance. Importantly, the results suggest that a robust lung CTL response and associated leukocyte influx contribute to disease.
Collapse
|
5
|
Ma Y, Wang Y, Dong C, Gonzalez GX, Song Y, Zhu W, Kim J, Wei L, Wang BZ. Influenza NP core and HA or M2e shell double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102479. [PMID: 34743020 PMCID: PMC8897236 DOI: 10.1016/j.nano.2021.102479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/23/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Influenza viral infection causes acute upper respiratory diseases in humans, posing severe risks to global public health. However, current vaccines provide limited protection against mismatched circulating influenza A viruses. Here, the immune responses induced in mice by novel double-layered protein nanoparticles were investigated. The nanoparticles were composed of influenza nucleoprotein (NP) cores and hemagglutinin (HA) or matrix 2 protein ectodomain (M2e) shells. Vaccination with the nanoparticles significantly enhanced M2e-specific serum antibody titers and concomitant ADCC responses. Robust NP-specific T cell responses and robust HA neutralization were also detected. Moreover, vaccination with a trivalent nanoparticle combination containing two routinely circulated HA, conserved M2e, and NP reduced lung virus titers, pulmonary pathologies, and weight loss after homologous virus challenge. This combination also improved survival rates against heterologous and heterosubtypic influenza virus challenges. Our results demonstrate that the trivalent combination elicited potent and long-lasting immune responses conferring influenza viral cross-protection.
Collapse
Affiliation(s)
- Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - Gilbert X Gonzalez
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - Yufeng Song
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| |
Collapse
|
6
|
Cardenas-Garcia S, Cáceres CJ, Jain A, Geiger G, Mo JS, Jasinskas A, Nakajima R, Rajao DS, Davies DH, Perez DR. FluB-RAM and FluB-RANS: Genome Rearrangement as Safe and Efficacious Live Attenuated Influenza B Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9080897. [PMID: 34452022 PMCID: PMC8402576 DOI: 10.3390/vaccines9080897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza B virus (IBV) is considered a major respiratory pathogen responsible for seasonal respiratory disease in humans, particularly severe in children and the elderly. Seasonal influenza vaccination is considered the most efficient strategy to prevent and control IBV infections. Live attenuated influenza virus vaccines (LAIVs) are thought to induce both humoral and cellular immune responses by mimicking a natural infection, but their effectiveness has recently come into question. Thus, the opportunity exists to find alternative approaches to improve overall influenza vaccine effectiveness. Two alternative IBV backbones were developed with rearranged genomes, rearranged M (FluB-RAM) and a rearranged NS (FluB-RANS). Both rearranged viruses showed temperature sensitivity in vitro compared with the WT type B/Bris strain, were genetically stable over multiple passages in embryonated chicken eggs and were attenuated in vivo in mice. In a prime-boost regime in naïve mice, both rearranged viruses induced antibodies against HA with hemagglutination inhibition titers considered of protective value. In addition, antibodies against NA and NP were readily detected with potential protective value. Upon lethal IBV challenge, mice previously vaccinated with either FluB-RAM or FluB-RANS were completely protected against clinical disease and mortality. In conclusion, genome re-arrangement renders efficacious LAIV candidates to protect mice against IBV.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - Aarti Jain
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - Jong-Suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - Algimantas Jasinskas
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Rie Nakajima
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - D. Huw Davies
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
- Correspondence: ; Tel.: +1-(706)-542-5506
| |
Collapse
|
7
|
A New Master Donor Virus for the Development of Live-Attenuated Influenza B Virus Vaccines. Viruses 2021; 13:v13071278. [PMID: 34208979 PMCID: PMC8310163 DOI: 10.3390/v13071278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza B viruses (IBV) circulate annually, with young children, the elderly and immunocompromised individuals being at high risk. Yearly vaccinations are recommended to protect against seasonally influenza viruses, including IBV. Live attenuated influenza vaccines (LAIV) provide the unique opportunity for direct exposure to the antigenically variable surface glycoproteins as well as the more conserved internal components. Ideally, LAIV Master Donor Viruses (MDV) should accurately reflect seasonal influenza strains. Unfortunately, the continuous evolution of IBV have led to significant changes in conserved epitopes compared to the IBV MDV based on B/Ann Arbor/1/1966 strain. Here, we propose a recent influenza B/Brisbane/60/2008 as an efficacious MDV alternative, as its internal viral proteins more accurately reflect those of circulating IBV strains. We introduced the mutations responsible for the temperature sensitive (ts), cold adapted (ca) and attenuated (att) phenotype of B/Ann Arbor/1/1966 MDV LAIV into B/Brisbane/60/2008 to generate a new MDV LAIV. In vitro and in vivo analysis demonstrated that the mutations responsible of the ts, ca, and att phenotype of B/Ann Arbor/1/1966 MDV LAIV were able to infer the same phenotype to B/Brisbane/60/2008, demonstrating its potential as a new MDV for the development of LAIV to protect against contemporary IBV strains.
Collapse
|
8
|
Martinez-Sobrido L, Nogales A. Editorial overview: Virus reverse genetics approaches for the development of preventive and therapeutic vaccines. Curr Opin Virol 2020; 44:iii-iv. [PMID: 33349418 DOI: 10.1016/j.coviro.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), 28130 Madrid, Spain
| |
Collapse
|