1
|
Aoki Y, Kubota Y, Masaki N, Tome Y, Bouvet M, Nishida K, Hoffman RM. Targeting Methionine Addiction of Osteosarcoma with Methionine Restriction to Overcome Drug Resistance: A New Paradigm for a Recalcitrant Disease. Cancers (Basel) 2025; 17:506. [PMID: 39941872 PMCID: PMC11817422 DOI: 10.3390/cancers17030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Chemotherapy resistance in osteosarcoma results in a very poor patient prognosis, with the 5-year survival rate of approximately 20%, which not improved for over three decades; thus, the development of novel therapeutic strategies is required. Methionine addiction is a fundamental and general hallmark of cancer, termed the Hoffman effect. Cancer cells need larger amounts of exogenous methionine in order to grow compared to normal cells, despite their ability to synthesize normal or greater amounts of methionine from homocysteine, due to increased transmethylation reactions in cancer cells. Methionine restriction therapy, including recombinant methioninase (rMETase), arrests cancer cells in the late-S/G2 phase of the cell cycle by targeting methionine addiction. First-line chemotherapy for osteosarcoma, including methotrexate (MTX), doxorubicin (DOX), and cisplatinum (CDDP), targets cells in the S/G2-phase, where cancer cells are also inhibited by methionine restriction, resulting in the synergy of methionine restriction to overcome drug resistance. In the present review, we describe the synergistic efficacy of conventional chemotherapy and methionine restriction therapy, including rMETase, in overcoming the drug resistance of osteosarcoma. The clinical potential of this new paradigm to overcome the drug resistance of osteosarcoma is discussed.
Collapse
Affiliation(s)
- Yusuke Aoki
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Yutaro Kubota
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Noriyuki Masaki
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Robert M. Hoffman
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| |
Collapse
|
2
|
Monterrubio-Ledezma F, Salcido-Gómez A, Zavaleta-Vásquez T, Navarro-García F, Cisneros B, Massieu L. The anti-senescence effect of D-β-hydroxybutyrate in Hutchinson-Gilford progeria syndrome involves progerin clearance by the activation of the AMPK-mTOR-autophagy pathway. GeroScience 2025:10.1007/s11357-024-01501-9. [PMID: 39821043 DOI: 10.1007/s11357-024-01501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
D-β-hydroxybutyrate, BHB, has been previously proposed as an anti-senescent agent in vitro and in vivo in several tissues including vascular smooth muscle. Moreover, BHB derivatives as ketone esters alleviate heart failure. Here, we provide evidence of the potential therapeutic effect of BHB on Hutchinson-Gilford progeria syndrome (HGPS), a rare condition characterized by premature aging and heart failure, caused by the presence of progerin, the aberrant protein derived from LMNA/C gene c.1824C > T mutation. We have assessed several hallmarks of HGPS-senescent phenotype in vitro, such as progerin levels, nuclear morphometric aberrations, nucleolar expansion, cellular senescent morphology, SA-βGal-positive cells, H3K9me3 heterochromatin, γH2AX foci, Lamin B1, p21Waf1/Cip1 and p16CDKN2A abundance, and autophagy. Strikingly, BHB improved nuclear and nucleolar morphometrics, diminished the senescence-phenotype, and unstuck autophagy in HGPS as observed by an enhanced degradation of the cargo protein receptor SQSTM1/p62, suggesting the stimulation of the autophagic flux. Additionally, we observed a decrease in progerin abundance, the cause of senescence in HGPS. Furthermore, compound C, an inhibitor of AMPK, and SBI-0206965, an inhibitor of ULK1/2 and AMPK, which prevent autophagy activation, reversed BHB-induced progerin decline as well as its anti-senescent effect in an AMPK-mTORC1 dependent manner. Altogether, these results suggest that the anti-senescence effect of BHB involves progerin clearance by autophagy activation supporting the potential of BHB for HGPS therapeutics and further preclinical trials.
Collapse
Affiliation(s)
- Feliciano Monterrubio-Ledezma
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Ashley Salcido-Gómez
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Tania Zavaleta-Vásquez
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Fernando Navarro-García
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Lourdes Massieu
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Chaudhari PS, Ermolaeva MA. Too old for healthy aging? Exploring age limits of longevity treatments. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:37. [PMID: 39678297 PMCID: PMC11638076 DOI: 10.1038/s44324-024-00040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
It is well documented that aging elicits metabolic failures, while poor metabolism contributes to accelerated aging. Metabolism in general, and energy metabolism in particular are also effective entry points for interventions that extend lifespan and improve organ function during aging. In this review, we discuss common metabolic remedies for healthy aging from the angle of their potential age-specificity. We demonstrate that some well-known metabolic treatments are mostly effective in young and middle-aged organisms, while others maintain high efficacy independently of age. The mechanistic basis of presence or lack of the age limitations is laid out and discussed.
Collapse
Affiliation(s)
| | - Maria A. Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
4
|
Pérez-Moreno AM, Aranda CJ, Torres MJ, Mayorga C, Paris JL. Immunomodulatory potential of rapamycin-loaded mesoporous silica nanoparticles: pore size-dependent drug loading, release, and in vitro cellular responses. Drug Deliv Transl Res 2024; 14:3467-3476. [PMID: 38561566 PMCID: PMC11499431 DOI: 10.1007/s13346-024-01575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Rapamycin is a potent immunosuppressive drug that has been recently proposed for a wide range of applications beyond its current clinical use. For some of these proposed applications, encapsulation in nanoparticles is key to ensure therapeutic efficacy and safety. In this work, we evaluate the effect of pore size on mesoporous silica nanoparticles (MSN) as rapamycin nanocarriers. The successful preparation of MSN with 4 different pore sizes was confirmed by dynamic light scattering, zeta potential, transmission electron microscopy and N2 adsorption. In these materials, rapamycin loading was pore size-dependent, with smaller pore MSN exhibiting greater loading capacity. Release studies showed sustained drug release from all MSN types, with larger pore MSN presenting faster release kinetics. In vitro experiments using the murine dendritic cell (DC) line model DC2.4 showed that pore size influenced the biological performance of MSN. MSN with smaller pore sizes presented larger nanoparticle uptake by DC2.4 cells, but were also associated with slightly larger cytotoxicity. Further evaluation of DC2.4 cells incubated with rapamycin-loaded MSN also demonstrated a significant effect of MSN pore size on their immunological response. Notably, the combination of rapamycin-loaded MSN with an inflammatory stimulus (lipopolysaccharide, LPS) led to changes in the expression of DC activation markers (CD40 and CD83) and in the production of the proinflammatory cytokine TNF-α compared to LPS-treated DC without nanoparticles. Smaller-pored MSN induced more substantial reductions in CD40 expression while eliciting increased CD83 expression, indicating potential immunomodulatory effects. These findings highlight the critical role of MSN pore size in modulating rapamycin loading, release kinetics, cellular uptake, and subsequent immunomodulatory responses.
Collapse
Affiliation(s)
- Ana M Pérez-Moreno
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Carlos J Aranda
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - María José Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, España
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain.
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain.
| | - Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain.
| |
Collapse
|
5
|
Ryu M, Oh S, Jeong KB, Hwang S, Kim JS, Chung M, Chi SW. Single-Molecule-Based, Label-Free Monitoring of Molecular Glue Efficacies for Promoting Protein-Protein Interactions Using YaxAB Nanopores. ACS NANO 2024; 18:31451-31465. [PMID: 39482865 PMCID: PMC11562796 DOI: 10.1021/acsnano.4c11436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Modulating protein-protein interactions (PPIs) is an attractive strategy in drug discovery. Molecular glues, bifunctional small-molecule drugs that promote PPIs, offer an approach to targeting traditionally undruggable targets. However, the efficient discovery of molecular glues has been hampered by the current limitations of conventional ensemble-averaging-based methods. In this study, we present a YaxAB nanopore for probing the efficacy of molecular glues in inducing PPIs. Using YaxAB nanopores, we demonstrate single-molecule-based, label-free monitoring of protein complex formation between mammalian target of rapamycin (mTOR) and FK506-binding proteins (FKBPs) triggered by the molecular glue, rapamycin. Owing to its wide entrance and adjustable pore size, in combination with potent electro-osmotic flow (EOF), a single funnel-shaped YaxAB nanopore enables the simultaneous detection and single-molecule-level quantification of multiprotein states, including single proteins, binary complexes, and ternary complexes induced by rapamycin. Notably, YaxAB nanopores could sensitively discriminate between the binary complexes or ternary complexes induced by rapamycin and its analogues, despite the subtle size differences of ∼122 or ∼116 Da, respectively. Taken together, our results provide proof-of-concept for single-molecule-based, label-free, and ultrasensitive screening and structure-activity relationship (SAR) analysis of molecular glues, which will contribute to low-cost, highly efficient discovery, and rational design of bifunctional modality of drugs, such as molecular glues.
Collapse
Affiliation(s)
- Minju Ryu
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Department
of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sohee Oh
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
| | - Ki-Baek Jeong
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Critical
Diseases Diagnostics Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sungbo Hwang
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
| | - Jin-Sik Kim
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Critical
Diseases Diagnostics Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Minji Chung
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Department
of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seung-Wook Chi
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Department
of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic
of Korea
| |
Collapse
|
6
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
7
|
Freisem D, Rodriguez-Alfonso AA, Lawrenz J, Zhou Z, Monecke T, Preising N, Endres S, Wiese S, Ständker L, Kuan SL, Thal DR, Weil T, Niessing D, Barth H, Kirchhoff F, Harms M, Münch J, Sparrer KMJ. A naturally occurring 22-amino acid fragment of human hemoglobin A inhibits autophagy and HIV-1. Cell Mol Life Sci 2024; 81:409. [PMID: 39289189 PMCID: PMC11408460 DOI: 10.1007/s00018-024-05447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Autophagy is an evolutionarily ancient catabolic pathway and has recently emerged as an integral part of the innate immune system. While the core machinery of autophagy is well defined, the physiological regulation of autophagy is less understood. Here, we identify a C-terminal fragment of human hemoglobin A (HBA1, amino acids 111-132) in human bone marrow as a fast-acting non-inflammatory inhibitor of autophagy initiation. It is proteolytically released from full-length HBA1 by cathepsin E, trypsin or pepsin. Biochemical characterization revealed that HBA1(111-132) has an in vitro stability of 52 min in human plasma and adopts a flexible monomeric conformation in solution. Structure-activity relationship studies revealed that the C-terminal 13 amino acids of HBA1(120-132) are sufficient to inhibit autophagy, two charged amino acids (D127, K128) mediate solubility, and two serines (S125, S132) are required for function. Successful viruses like human immunodeficiency virus 1 (HIV-1) evolved strategies to subvert autophagy for virion production. Our results show that HBA1(120-132) reduced virus yields of lab-adapted and primary HIV-1. Summarizing, our data identifies naturally occurring HBA1(111-132) as a physiological, non-inflammatory antagonist of autophagy. Optimized derivatives of HBA1(111-132) may offer perspectives to restrict autophagy-dependent viruses.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Armando A Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Zhixuan Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
| | - Sascha Endres
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University, Meyerhofstraße 4, 89081, Ulm, Germany
| | - Seah-Ling Kuan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dietmar R Thal
- Laboratory of Neuropathology, Institute of Pathology, Center for Clinical Research at the University of Ulm, 89081, Ulm, Germany
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany.
| |
Collapse
|
8
|
Deans-Fielder K, Wu T, Nguyen T, To S, Huang YZ, Bark SJ, Mills JC, Shroyer NF. Mechanisms driving fasting-induced protection from genotoxic injury in the small intestine. Am J Physiol Gastrointest Liver Physiol 2024; 326:G504-G524. [PMID: 38349111 PMCID: PMC11376978 DOI: 10.1152/ajpgi.00126.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Genotoxic agents such as doxorubicin (DXR) can cause damage to the intestines that can be ameliorated by fasting. How fasting is protective and the optimal timing of fasting and refeeding remain unclear. Here, our analysis of fasting/refeeding-induced global intestinal transcriptional changes revealed metabolic shifts and implicated the cellular energetic hub mechanistic target of rapamycin complex 1 (mTORC1) in protecting from DXR-induced DNA damage. Our analysis of specific transcripts and proteins in intestinal tissue and tissue extracts showed that fasting followed by refeeding at the time of DXR administration reduced damage and caused a spike in mTORC1 activity. However, continued fasting after DXR prevented the mTORC1 spike and damage reduction. Surprisingly, the mTORC1 inhibitor, rapamycin, did not block fasting/refeeding-induced reduction in DNA damage, suggesting that increased mTORC1 is dispensable for protection against the initial DNA damage response. In Ddit4-/- mice [DDIT4 (DNA-damage-inducible transcript 4) functions to regulate mTORC1 activity], fasting reduced DNA damage and increased intestinal crypt viability vs. ad libitum-fed Ddit4-/- mice. Fasted/refed Ddit4-/- mice maintained body weight, with increased crypt proliferation by 5 days post-DXR, whereas ad libitum-fed Ddit4-/- mice continued to lose weight and displayed limited crypt proliferation. Genes encoding epithelial stem cell and DNA repair proteins were elevated in DXR-injured, fasted vs. ad libitum Ddit4-/- intestines. Thus, fasting strongly reduced intestinal damage when normal dynamic regulation of mTORC1 was lost. Overall, the results confirm that fasting protects the intestines against DXR and suggests that fasting works by pleiotropic - including both mTORC1-dependent and independent - mechanisms across the temporally dynamic injury response.NEW & NOTEWORTHY New findings are 1) DNA damage reduction following a 24-h fast depends on the timing of postfast refeeding in relation to chemotherapy initiation; 2) fasting/refeeding-induced upregulation of mTORC1 activity is not required for early (6 h) protection against DXR-induced DNA damage; and 3) fasting increases expression of intestinal stem cell and DNA damage repair genes, even when mTORC1 is dysregulated, highlighting fasting's crucial role in regulating mTORC1-dependent and independent mechanisms in the dynamic recovery process.
Collapse
Affiliation(s)
- Kali Deans-Fielder
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Translational Biology and Molecular Medicine Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States
| | - Timothy Wu
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Thanh Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Cancer and Cell Biology Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah To
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Yang-Zhe Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Cancer and Cell Biology Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
| | - Steven J Bark
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Jason C Mills
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Noah F Shroyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Translational Biology and Molecular Medicine Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
9
|
Joo V, Abdelhamid K, Noto A, Latifyan S, Martina F, Daoudlarian D, De Micheli R, Pruijm M, Peters S, Hullin R, Gaide O, Pantaleo G, Obeid M. Primary prophylaxis with mTOR inhibitor enhances T cell effector function and prevents heart transplant rejection during talimogene laherparepvec therapy of squamous cell carcinoma. Nat Commun 2024; 15:3664. [PMID: 38693123 PMCID: PMC11063183 DOI: 10.1038/s41467-024-47965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The application of mammalian target of rapamycin inhibition (mTORi) as primary prophylactic therapy to optimize T cell effector function while preserving allograft tolerance remains challenging. Here, we present a comprehensive two-step therapeutic approach in a male patient with metastatic cutaneous squamous cell carcinoma and heart transplantation followed with concomitant longitudinal analysis of systemic immunologic changes. In the first step, calcineurin inhibitor/ mycophenolic acid is replaced by the mTORi everolimus to achieve an improved effector T cell status with increased cytotoxic activity (perforin, granzyme), enhanced proliferation (Ki67) and upregulated activation markers (CD38, CD69). In the second step, talimogene laherparepvec (T-VEC) injection further enhances effector function by switching CD4 and CD8 cells from central memory to effector memory profiles, enhancing Th1 responses, and boosting cytotoxic and proliferative activities. In addition, cytokine release (IL-6, IL-18, sCD25, CCL-2, CCL-4) is enhanced and the frequency of circulating regulatory T cells is increased. Notably, no histologic signs of allograft rejection are observed in consecutive end-myocardial biopsies. These findings provide valuable insights into the dynamics of T cell activation and differentiation and suggest that timely initiation of mTORi-based primary prophylaxis may provide a dual benefit of revitalizing T cell function while maintaining allograft tolerance.
Collapse
Affiliation(s)
- Victor Joo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Karim Abdelhamid
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Alessandra Noto
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Sofiya Latifyan
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Federica Martina
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Douglas Daoudlarian
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Rita De Micheli
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Menno Pruijm
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Nephrology Division, Rue du Bugnon 17, CH-1011, Lausanne, Switzerland
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Roger Hullin
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Cardiology, Cardiovascular Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Olivier Gaide
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Dermatology Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
10
|
Rauf A, Joshi PB, Olatunde A, Hafeez N, Ahmad Z, Hemeg HA, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M, Viswanathan D, Rajakumar G, Thiruvengadam R. Comprehensive review of the repositioning of non-oncologic drugs for cancer immunotherapy. Med Oncol 2024; 41:122. [PMID: 38652344 DOI: 10.1007/s12032-024-02368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Drug repositioning or repurposing has gained worldwide attention as a plausible way to search for novel molecules for the treatment of particular diseases or disorders. Drug repurposing essentially refers to uncovering approved or failed compounds for use in various diseases. Cancer is a deadly disease and leading cause of mortality. The search for approved non-oncologic drugs for cancer treatment involved in silico modeling, databases, and literature searches. In this review, we provide a concise account of the existing non-oncologic drug molecules and their therapeutic potential in chemotherapy. The mechanisms and modes of action of the repurposed drugs using computational techniques are also highlighted. Furthermore, we discuss potential targets, critical pathways, and highlight in detail the different challenges pertaining to drug repositioning for cancer immunotherapy.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Payal B Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, Maharashtra, 421501, India
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hassan A Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Medinah, Al-Monawara, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dhivya Viswanathan
- Center for NanoBioscience, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Govindasamy Rajakumar
- Center for NanoBioscience, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
11
|
Klute S, Sparrer KMJ. Friends and Foes: The Ambivalent Role of Autophagy in HIV-1 Infection. Viruses 2024; 16:500. [PMID: 38675843 PMCID: PMC11054699 DOI: 10.3390/v16040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Autophagy has emerged as an integral part of the antiviral innate immune defenses, targeting viruses or their components for lysosomal degradation. Thus, successful viruses, like pandemic human immunodeficiency virus 1 (HIV-1), evolved strategies to counteract or even exploit autophagy for efficient replication. Here, we provide an overview of the intricate interplay between autophagy and HIV-1. We discuss the impact of autophagy on HIV-1 replication and report in detail how HIV-1 manipulates autophagy in infected cells and beyond. We also highlight tissue and cell-type specifics in the interplay between autophagy and HIV-1. In addition, we weigh exogenous modulation of autophagy as a putative double-edged sword against HIV-1 and discuss potential implications for future antiretroviral therapy and curative approaches. Taken together, we consider both antiviral and proviral roles of autophagy to illustrate the ambivalent role of autophagy in HIV-1 pathogenesis and therapy.
Collapse
|
12
|
Lu L, Xie M, Yang B, Zhao WB, Cao J. Enhancing the safety of CAR-T cell therapy: Synthetic genetic switch for spatiotemporal control. SCIENCE ADVANCES 2024; 10:eadj6251. [PMID: 38394207 PMCID: PMC10889354 DOI: 10.1126/sciadv.adj6251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is a promising and precise targeted therapy for cancer that has demonstrated notable potential in clinical applications. However, severe adverse effects limit the clinical application of this therapy and are mainly caused by uncontrollable activation of CAR-T cells, including excessive immune response activation due to unregulated CAR-T cell action time, as well as toxicity resulting from improper spatial localization. Therefore, to enhance controllability and safety, a control module for CAR-T cells is proposed. Synthetic biology based on genetic engineering techniques is being used to construct artificial cells or organisms for specific purposes. This approach has been explored in recent years as a means of achieving controllability in CAR-T cell therapy. In this review, we summarize the recent advances in synthetic biology methods used to address the major adverse effects of CAR-T cell therapy in both the temporal and spatial dimensions.
Collapse
Affiliation(s)
- Li Lu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Mingqi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310024, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China
| | - Wen-bin Zhao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Wu W, Liu R, Guo J, Hu Z, An C, Zhang Y, Liu T, Cen L, Pan Y. Modulation of immunosuppressive effect of rapamycin via microfluidic encapsulation within PEG-PLGA nanoparticles. J Biomater Appl 2024; 38:821-833. [PMID: 38145897 DOI: 10.1177/08853282231223808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The high hydrophobicity and low oral availability of immunosuppressive drug, rapamycin, seriously limit its application. It was thus aimed to develop a PEG-PLGA based nano-loading system for rapamycin delivery to achieve improved bioavailability with sustained effects via a novel microfluidic chip and manipulation of the hydrophobic PLGA chain length. PDMS based microfluidic chip with Y shape was designed and PEG-PLGA polymers with different PLGA chain length were used to prepare rapamycin nano-delivery systems. Dendritic cells were selected to evaluate the immunosuppressive effect of the nanoparticles including cytotoxicity assay, dendritic cell activation, and cytokine levels. The effects of different PEG-PLGA nanoparticles on the immunomodulatory properties were finally compared. It was shown that PEG-PLGA could be successfully used for rapamycin encapsulation via microfluidics to obtain nano-delivery systems (Rapa&P-20 k, Rapa&P-50 k and Rapa&P-95 k) ranging from 100 nm to 116 nm. The encapsulation efficiency was ranged from 69.70% to 84.55% and drug loading from 10.45% to 12.68%. The Rapa&P-50 k (PLGA chain length: 50 k) could achieve the highest drug loading (DL) and encapsulation efficiency (EE) as 12.68% and 84.55%. The encapsulated rapamycin could be gradually released from three nanoparticles for more than 1 month without any noticeable burst release. The Rapa & P nanoparticles exhibited enhanced immunosuppressive effects over those of free rapamycin as shown by the expression of CD40 and CD80, and the secretion of IL-1β, IL-12 and TGF-β1. Rapa&P-50 k nanoparticles could be the optimal choice for rapamycin delivery as it also achieved the most effective immunosuppressive property. Hence, this study could provide an efficient technology with superior manipulation to offer a solution for rapamycin delivery and clinical application.
Collapse
Affiliation(s)
- Weiqian Wu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruilai Liu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiahao Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhihuan Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Chenjing An
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhang
- Barbell Therapeutics Co. Ltd, Shanghai, China
| | | | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yukun Pan
- Barbell Therapeutics Co. Ltd, Shanghai, China
| |
Collapse
|
15
|
He Y, Tang R, Yu H, Mu H, Jin H, Dong J, Wang W, Wang L, Chen S, Wang X. Comparative effectiveness and safety of 36 therapies or interventions for pregnancy outcomes with recurrent implantation failure: a systematic review and network meta-analysis. J Assist Reprod Genet 2023; 40:2343-2356. [PMID: 37661207 PMCID: PMC10504168 DOI: 10.1007/s10815-023-02923-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
PURPOSE To investigate the effectiveness and safety of 36 different therapies for recurrent implantation failure (RIF) patients. METHODS We searched PubMed, Embase, the Cochrane Library (CENTRAL), Web of Science, and China National Knowledge Internet (CNKI) from inception to August 24, 2022, with language in both English and Chinese. Randomized controlled trials (RCTs) and observational studies that provided data with one of pregnancy outcomes on RIF patients were included in the network meta-analysis (NMA). The odds ratios (OR) and 95% credible interval (CrI) on pregnancy outcomes were summarized by NMA with a random-effects model. We also analyzed data from only RCTs and compared whether the optimal treatment is the same for different failed embryo transfer attempts. RESULTS The total of 29,906 RIF patients from 154 clinical studies (74 RCTs and 80 non-RCTs) were included in the NMA. In terms of implantation rate (IR), growth hormone (GH) (OR: 3.32, 95% CrI: 1.95-5.67) is the best treatment in all included studies; IVIG+PBMC (5.84, 2.44-14.1) is the best for clinical pregnancy rate (CPR); hyaluronic acid (HA) (12.9, 2.37-112.0) for live birth rate (LBR); and aspirin combined with glucocorticoids (0.208, 0.0494-0.777) for miscarriage rate (MR). The two-dimensional graphs showed that GH could maximize IR and CPR simultaneously; HA and GH could simultaneously increase IR and LBR to a large extent; HA could maximize IR and minimize MR. CONCLUSION IVIG+PBMC, GH, and embryo medium enriched with HA could significantly improve pregnancy outcomes in patients with RIF. It appears that combination therapy is a potential administration strategy. TRIAL REGISTRATION This study has been registered on PROSPERO (CRD42022353423).
Collapse
Affiliation(s)
- Yunan He
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, No.1 Xinsi Road, Baqiao District, Xi'an City, 710038, Shaanxi Province, China
| | - Ruonan Tang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, No.1 Xinsi Road, Baqiao District, Xi'an City, 710038, Shaanxi Province, China
- Xi'an Medical University, Xi'an, Shaanxi, China
| | - Haikun Yu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, No.1 Xinsi Road, Baqiao District, Xi'an City, 710038, Shaanxi Province, China
| | - Hui Mu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, No.1 Xinsi Road, Baqiao District, Xi'an City, 710038, Shaanxi Province, China
| | - Hongbin Jin
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jie Dong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, No.1 Xinsi Road, Baqiao District, Xi'an City, 710038, Shaanxi Province, China
| | - Wenwen Wang
- Department of Statistics, Military Prevention Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lu Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, No.1 Xinsi Road, Baqiao District, Xi'an City, 710038, Shaanxi Province, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, No.1 Xinsi Road, Baqiao District, Xi'an City, 710038, Shaanxi Province, China
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, No.1 Xinsi Road, Baqiao District, Xi'an City, 710038, Shaanxi Province, China.
| |
Collapse
|
16
|
Furusawa S, Ikeda M, Ide T, Kanamura T, Miyamoto HD, Abe K, Ishimaru K, Watanabe M, Tsutsui Y, Miyake R, Fujita S, Tohyama T, Matsushima S, Baba Y, Tsutsui H. Cardiac Autoantibodies Against Cardiac Troponin I in Post-Myocardial Infarction Heart Failure: Evaluation in a Novel Murine Model and Applications in Therapeutics. Circ Heart Fail 2023; 16:e010347. [PMID: 37522180 DOI: 10.1161/circheartfailure.122.010347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/05/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Cardiac autoantibodies (cAAbs) are involved in the progression of adverse cardiac remodeling in heart failure (HF). However, our understanding of cAAbs in HF is limited owing to the absence of relevant animal models. Herein, we aimed to establish and characterize a murine model of cAAb-positive HF after myocardial infarction (MI), thereby facilitating the development of therapeutics targeting cAAbs in post-MI HF. METHODS MI was induced in BALB/c mice. Plasma cAAbs were evaluated using modified Western blot-based methods. Prognosis, cardiac function, inflammation, and fibrosis were compared between cAAb-positive and cAAb-negative MI mice. Rapamycin was used to inhibit cAAb production. RESULTS Common cAAbs in BALB/c MI mice targeted cTnI (cardiac troponin I). Herein, 71% (24/34) and 44% (12/27) of the male and female MI mice, respectively, were positive for cAAbs against cTnI (cTnIAAb). Germinal centers were formed in the spleens and mediastinal lymph nodes of cTnIAAb-positive MI mice. cTnIAAb-positive MI mice showed progressive cardiac remodeling with a worse prognosis (P=0.014, by log-rank test), which was accompanied by cardiac inflammation, compared with that in cTnIAAb-negative MI mice. Rapamycin treatment during the first 7 days after MI suppressed cTnIAAb production (cTnIAAb positivity, 59% [29/49] and 7% [2/28] in MI mice treated with vehicle and rapamycin, respectively; P<0.001, by Pearson χ2 test), consequently improving the survival and ameliorating cardiac inflammation, cardiac remodeling, and HF in MI mice. CONCLUSIONS The present post-MI HF model may accelerate our understanding of cTnIAAb and support the development of therapeutics against cTnIAAbs in post-MI HF.
Collapse
Affiliation(s)
- Shun Furusawa
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Kanamura
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ko Abe
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosei Ishimaru
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatsugu Watanabe
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (M.W.)
| | - Yoshitomo Tsutsui
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Miyake
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Fujita
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Clinical and Translational Research of Kyushu University Hospital, Fukuoka, Japan (T.T.)
| | - Shouji Matsushima
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Baba
- Department of Molecular Genetics, Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan (Y.B.)
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, T.T., S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (S. Furusawa, M.I., T.I., T.K., H.D.M., K.A., K.I., M.W., Y.T., R.M., S. Fujita, S.M., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- School of Medicine and Graduate School, International University of Health and Welfare, Fukuoka, Japan (H.T.)
| |
Collapse
|
17
|
Zhou Z, Zhang Y, Xia S, Chen X. Red-Light-Activatable AND-Gated Antitumor Immunosuppressant. Cells 2023; 12:2351. [PMID: 37830565 PMCID: PMC10571834 DOI: 10.3390/cells12192351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Immunosuppressants are emerging as promising candidates for cancer therapy with lower cytotoxicity compared to traditional chemotherapy drugs; yet, the intrinsic side effects such as immunosuppression remain a critical concern. Herein, we introduce a photoactivatable antitumor immunosuppressant called dmBODIPY-FTY720 (BF) that shows no cytotoxicity but can be temporally and locally activated by deep-red light illumination to induce tumor cell apoptosis. To further reduce potential side effects, we integrate BF with another classic photosensitizer called methylene blue (MB) that is activated under the same wavelength of deep-red light (>650 nm) and successfully establish a red-light-activatable AND Boolean logic gate through a mechanism that we found to be synergetic apoptotic induction. At further decreased dosages, deep-red light illumination does not induce cell death in the presence of either BF or MB, but significant cancer cell death is triggered in the presence of both drugs. Therefore, the dosage of BF is further reduced, which will be highly beneficial to minimize any potential side effects of BF. This AND-gated strategy has been successfully applied in vivo for effective suppression of hepatocarcinoma tumors in living mice.
Collapse
Affiliation(s)
- Ziqi Zhou
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences (HCLS), Harbin Institute of Technology (HIT), Harbin 150001, China; (Z.Z.); (Y.Z.)
- School of Life Science and Technology, Harbin Institute of Technology (HIT), Harbin 150001, China
| | - Yan Zhang
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences (HCLS), Harbin Institute of Technology (HIT), Harbin 150001, China; (Z.Z.); (Y.Z.)
- School of Life Science and Technology, Harbin Institute of Technology (HIT), Harbin 150001, China
| | - Simin Xia
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences (HCLS), Harbin Institute of Technology (HIT), Harbin 150001, China; (Z.Z.); (Y.Z.)
| | - Xi Chen
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences (HCLS), Harbin Institute of Technology (HIT), Harbin 150001, China; (Z.Z.); (Y.Z.)
- School of Life Science and Technology, Harbin Institute of Technology (HIT), Harbin 150001, China
| |
Collapse
|
18
|
Yadav S, Shah D, Dalai P, Agrawal-Rajput R. The tale of antibiotics beyond antimicrobials: Expanding horizons. Cytokine 2023; 169:156285. [PMID: 37393846 DOI: 10.1016/j.cyto.2023.156285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Antibiotics had proved to be a godsend for mankind since their discovery. They were once the magical solution to the vexing problem of infection-related deaths. German scientist Paul Ehrlich had termed salvarsan as the silver bullet to treatsyphilis.As time passed, the magic of newly discovered silver bullets got tarnished with raging antibiotic resistance among bacteria and associated side-effects. Still, antibiotics remain the primary line of treatment for bacterial infections. Our understanding of their chemical and biological activities has increased immensely with advancement in the research field. Non-antibacterial effects of antibiotics are studied extensively to optimise their safer, broad-range use. These non-antibacterial effects could be both useful and harmful to us. Various researchers across the globe including our lab are studying the direct/indirect effects and molecular mechanisms behind these non-antibacterial effects of antibiotics. So, it is interesting for us to sum up the available literature. In this review, we have briefed the possible reason behind the non-antibacterial effects of antibiotics, owing to the endosymbiotic origin of host mitochondria. We further discuss the physiological and immunomodulatory effects of antibiotics. We then extend the review to discuss molecular mechanisms behind the plausible use of antibiotics as anticancer agents.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Dhruvi Shah
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
19
|
Chatanaka MK, Sohaei D, Diamandis EP, Prassas I. Beyond the amyloid hypothesis: how current research implicates autoimmunity in Alzheimer's disease pathogenesis. Crit Rev Clin Lab Sci 2023; 60:398-426. [PMID: 36941789 DOI: 10.1080/10408363.2023.2187342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
The amyloid hypothesis has so far been at the forefront of explaining the pathogenesis of Alzheimer's Disease (AD), a progressive neurodegenerative disorder that leads to cognitive decline and eventual death. Recent evidence, however, points to additional factors that contribute to the pathogenesis of this disease. These include the neurovascular hypothesis, the mitochondrial cascade hypothesis, the inflammatory hypothesis, the prion hypothesis, the mutational accumulation hypothesis, and the autoimmunity hypothesis. The purpose of this review was to briefly discuss the factors that are associated with autoimmunity in humans, including sex, the gut and lung microbiomes, age, genetics, and environmental factors. Subsequently, it was to examine the rise of autoimmune phenomena in AD, which can be instigated by a blood-brain barrier breakdown, pathogen infections, and dysfunction of the glymphatic system. Lastly, it was to discuss the various ways by which immune system dysregulation leads to AD, immunomodulating therapies, and future directions in the field of autoimmunity and neurodegeneration. A comprehensive account of the recent research done in the field was extracted from PubMed on 31 January 2022, with the keywords "Alzheimer's disease" and "autoantibodies" for the first search input, and "Alzheimer's disease" with "IgG" for the second. From the first search, 19 papers were selected, because they contained recent research on the autoantibodies found in the biofluids of patients with AD. From the second search, four papers were selected. The analysis of the literature has led to support the autoimmune hypothesis in AD. Autoantibodies were found in biofluids (serum/plasma, cerebrospinal fluid) of patients with AD with multiple methods, including ELISA, Mass Spectrometry, and microarray analysis. Through continuous research, the understanding of the synergistic effects of the various components that lead to AD will pave the way for better therapeutic methods and a deeper understanding of the disease.
Collapse
Affiliation(s)
- Miyo K Chatanaka
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Dorsa Sohaei
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| |
Collapse
|
20
|
Andreescu M. The impact of the use of immunosuppressive treatment after an embryo transfer in increasing the rate of live birth. Front Med (Lausanne) 2023; 10:1167876. [PMID: 37441690 PMCID: PMC10333755 DOI: 10.3389/fmed.2023.1167876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
The tolerance of the immune system for the semi-allogeneic embryo is promoted by several factors and the cells involved in the immune system and factors in the mother during pregnancy. The dysregulation of the immune responses between the mother and fetus is a risk factor that raises the likelihood of rejection of the embryo and reproductive failure. To safeguard embryos and prevent immunological attacks, it is critical to suppress immunological rejection and encourage immunological tolerance. Based on current medical literature, it seems that immune cell management through immunosuppressive therapies can address reproductive failures. Immunosuppressive treatment has demonstrated encouraging results in terms of enhancing outcomes related to pregnancy and rates of live birth by regulating the immune responses of mothers and positively impacting the reproductive processes of humans. Currently, there is scarcity of high-quality data regarding the safety and efficacy of immunosuppressive therapies for children and mothers. Therefore, it is important to exercise caution while selecting use of any immunosuppressive therapy in pregnancy. This mini review provides a comprehensive overview of the existing literature regarding the impact of Calcineurin Inhibitors and anti-TNF treatment on improving the live birth rate following embryo transfer.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
- Titu Maiorescu University, Bucharest, Romania
| |
Collapse
|
21
|
Bovari-Biri J, Abdelwahab EMM, Garai K, Pongracz JE. Prdx5 in the Regulation of Tuberous Sclerosis Complex Mutation-Induced Signaling Mechanisms. Cells 2023; 12:1713. [PMID: 37443747 PMCID: PMC10340296 DOI: 10.3390/cells12131713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: Tuberous sclerosis complex (TSC) mutations directly affect mTORC activity and, as a result, protein synthesis. In several cancer types, TSC mutation is part of the driver mutation panel. TSC mutations have been associated with mitochondrial dysfunction, tolerance to reactive oxygen species due to increased thioredoxin reductase (TrxR) enzyme activity, tolerance to endoplasmic reticulum (ER) stress, and apoptosis. The FDA-approved drug rapamycin is frequently used in clinical applications to inhibit protein synthesis in cancers. Recently, TrxR inhibitor auranofin has also been involved in clinical trials to investigate the anticancer efficacy of the combination treatment with rapamycin. We aimed to investigate the molecular background of the efficacy of such drug combinations in treating neoplasia modulated by TSC mutations. (2) Methods: TSC2 mutant and TSC2 wild-type (WT) cell lines were exposed to rapamycin and auranofin in either mono- or combination treatment. Mitochondrial membrane potential, TrxR enzyme activity, stress protein array, mRNA and protein levels were investigated via cell proliferation assay, electron microscopy, etc. (3) Results: Auranofin and rapamycin normalized mitochondrial membrane potential and reduced proliferation capacity of TSC2 mutant cells. Database analysis identified peroxiredoxin 5 (Prdx5) as the joint target of auranofin and rapamycin. The auranofin and the combination of the two drugs reduced Prdx5 levels. The combination treatment increased the expression of heat shock protein 70, a cellular ER stress marker. (4) Conclusions: After extensive analyses, Prdx5 was identified as a shared target of the two drugs. The decreased Prdx5 protein level and the inhibition of both TrxR and mTOR by rapamycin and auranofin in the combination treatment made ER stress-induced cell death possible in TSC2 mutant cells.
Collapse
Affiliation(s)
| | | | | | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2. Rokus Str, H-7624 Pecs, Hungary
| |
Collapse
|
22
|
El-Tanani M, Nsairat H, Aljabali AA, Serrano-Aroca Á, Mishra V, Mishra Y, Naikoo GA, Alshaer W, Tambuwala MM. Role of mammalian target of rapamycin (mTOR) signalling in oncogenesis. Life Sci 2023; 323:121662. [PMID: 37028545 DOI: 10.1016/j.lfs.2023.121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
The signalling system known as mammalian target of rapamycin (mTOR) is believed to be required for several biological activities involving cell proliferation. The serine-threonine kinase identified as mTOR recognises PI3K-AKT stress signals. It is well established in the scientific literature that the deregulation of the mTOR pathway plays a crucial role in cancer growth and advancement. This review focuses on the normal functions of mTOR as well as its abnormal roles in cancer development.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, United Kingdom.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman 11942, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom.
| |
Collapse
|
23
|
Kashif M, Kumar B, Bharati AP, Altayeb H, Asalam M, Akhtar MS, Khan MI, Ahmad A, Chaudhary H, Hosawi SB, Zamzami MA, Baothman OA. Association of peptidyl prolyl cis/trans isomerase Rrd1 with C terminal domain of RNA polymerase II. Int J Biol Macromol 2023; 242:124653. [PMID: 37141964 DOI: 10.1016/j.ijbiomac.2023.124653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
The largest subunit of RNAPII extends as the conserved unstructured heptapeptide consensus repeats Y1S2P3T4S5P6S7 and their posttranslational modification, especially the phosphorylation state at Ser2, Ser5 and Ser7 of CTD recruits different transcription factors involved in transcription. In the current study, fluorescence anisotropy, pull down assay and molecular dynamics simulation studies employed to conclude that peptidyl-prolyl cis/trans-isomerase Rrd1 has strong affinity for unphosphorylated CTD rather than phosphorylated CTD for mRNA transcription. Rrd1 preferentially interacts with unphosphorylated GST-CTD in comparison to hyperphosphorylated GST-CTD in vitro. Fluorescence anisotropy revealed that recombinant Rrd1 prefers to bind unphosphorylated CTD peptide in comparison to phosphorylated CTD peptide. In computational studies, the RMSD of Rrd1-unphosphorylated CTD complex was greater than the RMSD of Rrd1-pCTD complex. During 50 ns MD simulation run Rrd1-pCTD complex get dissociated twice viz. 20 ns to 30 ns and 40 ns to 50 ns, while Rrd1-unpCTD complex remain stable throughout the process. Additionally, the Rrd1-unphosphorylated CTD complexes acquire comparatively higher number of H-bonds, water bridges and hydrophobic interactions occupancy than Rrd1-pCTD complex, concludes that the Rrd1 interacts more strongly with the unphosphorylated CTD than the pCTD.
Collapse
Affiliation(s)
- Mohd Kashif
- Department of Biotech, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| | - Bhupendra Kumar
- Center for Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, U.P., India
| | - Akhilendra Pratap Bharati
- Department Of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India.
| | - Hisham Altayeb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohd Asalam
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Mohd Sohail Akhtar
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hani Chaudhary
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Salman Bakr Hosawi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Othman A Baothman
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
24
|
Tian J, Wang J, Xu H, Zou B, Chen W, Liu Y, Chen J, Zhang R. Nanoscale metal-organic framework delivers rapamycin to induce tissue immunogenic cell death and potentiates cancer immunotherapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102678. [PMID: 37044194 DOI: 10.1016/j.nano.2023.102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
Rapamycin has great potential in the antitumor application, but its therapeutic effect is seriously affected by poor water solubility, targeting ability, and low bioavailability. Here, we constructed a novel composite nanomaterial with PCN-224 as a drug carrier and loaded rapamycin, named R@BP@HA. The nanoplate not only improves targeting, but also synergizes rapamycin with PCN-224 to effectively promote tumor cell apoptosis, which subsequently causes immunogenic cell death (ICD), and shows strong therapeutic effect in 4T1 breast cancer model. The treatment effect depends on three main points:(i)Proapoptotic effect of rapamycin on tumor cells;(ii)ROS production by PCN-224-mediated photodynamic therapy;(iii)ICD induced DC maturation, increased immune response and promoted T cell proliferation and differentiation. This nanoplate offers potential antitumor efficacy in combination with chemotherapy, photodynamic therapy, and immunotherapy.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China.
| | - Jing Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Huanyu Xu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Bocheng Zou
- Department of The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Weihao Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Yulong Liu
- Department of The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingshu Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- Department of The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
25
|
Mohanty A, Alhaj Sulaiman A, Moovarkumudalvan B, Ali R, Aouida M, Ramotar D. The Yeast Permease Agp2 Senses Cycloheximide and Undergoes Degradation That Requires the Small Protein Brp1-Cellular Fate of Agp2 in Response to Cycloheximide. Int J Mol Sci 2023; 24:ijms24086975. [PMID: 37108141 PMCID: PMC10138708 DOI: 10.3390/ijms24086975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
The Saccharomyces cerevisiae Agp2 is a plasma membrane protein initially reported to be an uptake transporter for L-carnitine. Agp2 was later rediscovered, together with three additional proteins, Sky1, Ptk2, and Brp1, to be involved in the uptake of the polyamine analogue bleomycin-A5, an anticancer drug. Mutants lacking either Agp2, Sky1, Ptk2, or Brp1 are extremely resistant to polyamines and bleomycin-A5, suggesting that these four proteins act in the same transport pathway. We previously demonstrated that pretreating cells with the protein synthesis inhibitor cycloheximide (CHX) blocked the uptake of fluorescently labelled bleomycin (F-BLM), raising the possibility that CHX could either compete for F-BLM uptake or alter the transport function of Agp2. Herein, we showed that the agp2Δ mutant displayed striking resistance to CHX as compared to the parent, suggesting that Agp2 is required to mediate the physiological effect of CHX. We examined the fate of Agp2 as a GFP tag protein in response to CHX and observed that the drug triggered the disappearance of Agp2 in a concentration- and time-dependent manner. Immunoprecipitation analysis revealed that Agp2-GFP exists in higher molecular weight forms that were ubiquitinylated, which rapidly disappeared within 10 min of treatment with CHX. CHX did not trigger any significant loss of Agp2-GFP in the absence of the Brp1 protein; however, the role of Brp1 in this process remains elusive. We propose that Agp2 is degraded upon sensing CHX to downregulate further uptake of the drug and discuss the potential function of Brp1 in the degradation process.
Collapse
Affiliation(s)
- Ashima Mohanty
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Balasubramanian Moovarkumudalvan
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Reem Ali
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
26
|
Molecular and therapeutic insights of rapamycin: a multi-faceted drug from Streptomyces hygroscopicus. Mol Biol Rep 2023; 50:3815-3833. [PMID: 36696023 PMCID: PMC9875782 DOI: 10.1007/s11033-023-08283-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The advancement in pharmaceutical research has led to the discovery and development of new combinatorial life-saving drugs. Rapamycin is a macrolide compound produced from Streptomyces hygroscopicus. Rapamycin and its derivatives are one of the promising sources of drug with broad spectrum applications in the medical field. In recent times, rapamycin has gained significant attention as of its activity against cytokine storm in COVID-19 patients. Rapamycin and its derivatives have more potency when compared to other prevailing drugs. Initially, it has been used exclusively as an anti-fungal drug. Currently rapamycin has been widely used as an immunosuppressant. Rapamycin is a multifaceted drug; it has anti-cancer, anti-viral and anti-aging potentials. Rapamycin has its specific action on mTOR signaling pathway. mTOR has been identified as a key regulator of different pathways. There will be an increased demand for rapamycin, because it has lesser adverse effects when compared to steroids. Currently researchers are focused on the production of effective rapamycin derivatives to combat the growing demand of this wonder drug. The main focus of the current review is to explore the origin, development, molecular mechanistic action, and the current therapeutic aspects of rapamycin. Also, this review article revealed the potential of rapamycin and the progress of rapamycin research. This helps in understanding the exact potency of the drug and could facilitate further studies that could fill in the existing knowledge gaps. The study also gathers significant data pertaining to the gene clusters and biosynthetic pathways involved in the synthesis and production of this multi-faceted drug. In addition, an insight into the mechanism of action of the drug and important derivatives of rapamycin has been expounded. The fillings of the current review, aids in understanding the underlying molecular mechanism, strain improvement, optimization and production of rapamycin derivatives.
Collapse
|
27
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
28
|
Talimi R, Shahsavari Z, Dadashzadeh S, Ten Hagen TLM, Haeri A. Sirolimus-exuding core-shell nanofibers as an implantable carrier for breast cancer therapy: preparation, characterization, in vitro cell studies, and in vivo anti-tumor activity. Drug Dev Ind Pharm 2022; 48:694-707. [PMID: 36594256 DOI: 10.1080/03639045.2022.2161559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Breast cancer accounts for significant mortality worldwide. Here, we develop a localized, sustained-release delivery system for breast cancer therapy. METHODS Sirolimus (SIR) core-shell nanofibers (NFs) are fabricated by coaxial electrospinning with poly(ε-caprolactone) (PCL) for the core and chitosan and PCL for the shell. The NFs were characterized by SEM, AFM, TEM, XRD, FTIR, water uptake, water contact angle, mechanical properties, drug content, and in vitro release. In vitro and in vivo anticancer effects were investigated. RESULTS A sustained release behavior is observed during 480 h that is more extended compared to monoaxial NFs. In vitro cytotoxicity and Annexin V/propidium iodide assays indicate that SIR-loaded coaxial NFs are effective in inhibiting proliferation of 4T1 and MCF-7 cells. Implantation of SIR NFs in 4T1 breast tumor-bearing mice inhibits tumor growth significantly compared to free drug. Histopathological examination shows that suppression of tumor growth by SIR NFs is associated with apoptotic cell death. Furthermore, anti-cancer effects are also confirmed by decreased expression levels of Ki-67, MMP-2, and MMP-9. Histological observation of organs, serological analyses, and the lack of body weight changes indicate in vivo safety of SIR NFs. CONCLUSIONS Altogether, we show here that incorporation of SIR into core-shell NFs could act as an effective drug release depot and induce a sustained antitumor response.
Collapse
Affiliation(s)
- Rozhin Talimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Semlali A, Papadakos S, Contant C, Zouaoui I, Rouabhia M. Rapamycin inhibits oral cancer cell growth by promoting oxidative stress and suppressing ERK1/2, NF-κB and beta-catenin pathways. Front Oncol 2022; 12:873447. [PMID: 36185289 PMCID: PMC9520465 DOI: 10.3389/fonc.2022.873447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment of oral cancer is based exclusively on surgery combined with or without chemotherapy. However, it has several side effects. Targeting a new, more effective therapy has become an urgent matter. The purpose of this study was to evaluate the anti-tumor activity of rapamycin in oral cancer and its mechanism of action. Human gingival carcinoma cells were stimulated with different concentrations of rapamycin to assess proliferation, colony formation, cell migration, as well as apoptosis, and autophagy. The expression of proteins involved in the cell cycle (cyclin D1, p15, p21, p27) and autophagy, as well as that of oncogenes and tumor suppressor genes, were determined by quantitative PCR. The signaling pathways were evaluated by Western blotting. Our results show that rapamycin has a selective effect at a low dose on cancer cell growth/survival. This was confirmed by low colony formation and the inhibition of cell migration, while increasing cell apoptosis by activating caspase-9 and -3. Rapamycin promoted cell autophagy and increased mitochondrial oxidative stress by being involved in DNA damage in the exposed cells. Finally, rapamycin exhibits potent anti-oral cancer properties through inhibition of several cancer-promoting pathways (MAPK, NF-κB, and Wnt/beta-catenin). These results indicate that rapamycin could be a potential agent for the treatment of oral cancer and for a prevention strategy.
Collapse
|
30
|
Fazil WFWM, Amanah A, Abduraman MA, Sulaiman SF, Wahab HA, Tan ML. The Effects of Deoxyelephantopin on the Akt/mTOR/P70S6K Signaling Pathway in MCF-7 Breast Carcinoma Cells In Vitro. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To determine the effects of deoxyelephantopin on mTOR and its related target molecules (Akt/mTOR/P70S6K) in the ER-positive breast cancer cell line. Materials and Methods Primary in silico simulations were determined, and the effects of deoxyelephantopin on the phosphorylation of the Akt/mTOR/P70S6K molecules were evaluated using AlphaScreen-based assays and western blot analysis, respectively. Results Based on the estimated FEB and K i values, deoxyelephantopin appeared to have a stronger affinity toward P70S6K as compared with Akt and mTOR. Both deoxyelephantopin and control inhibitors were observed to form hydrogen bonds with the same key residue, Leu175 of the P70S6K molecule. Deoxyelephantopin downregulated the p-P70S6K protein expression significantly from 18 µM ( P < .05) and onward. Based on the AlphaScreen assay, deoxyelephantopin produced a concentration-dependent inhibition on the phosphorylation of P70S6K with an IC50 value of 7.13 µM. Conclusion Deoxyelephantopin induced cell death in MCF-7 cells, possibly via DNA fragmentation, inhibition of the phosphorylation of P70SK6, and downregulation of the relative p-p70S6K protein expression levels.
Collapse
Affiliation(s)
- Wan Failiza Wan Mohamad Fazil
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Institutes of Biotechnology Malaysia (NIBM), Pulau Pinang, Malaysia
| | - Azimah Amanah
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Institutes of Biotechnology Malaysia (NIBM), Pulau Pinang, Malaysia
| | - Muhammad Asyraf Abduraman
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, SAINS@BERTAM, Kepala Batas, Pulau Pinang, Malaysia
| | - Shaida Fariza Sulaiman
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Habibah Abdul Wahab
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Mei Lan Tan
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Institutes of Biotechnology Malaysia (NIBM), Pulau Pinang, Malaysia
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, SAINS@BERTAM, Kepala Batas, Pulau Pinang, Malaysia
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
31
|
Wang J, Cui B, Chen Z, Ding X. The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Front Cell Dev Biol 2022; 10:950973. [PMID: 35938153 PMCID: PMC9355246 DOI: 10.3389/fcell.2022.950973] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermis, the outmost layer of the skin, is a stratified squamous epithelium that protects the body from the external world. The epidermis and its appendages need constantly renew themselves and replace the damaged tissues caused by environmental assaults. The mechanistic target of rapamycin (mTOR) signaling is a central controller of cell growth and metabolism that plays a critical role in development, homeostasis and diseases. Recent findings suggest that mTOR signaling is activated in a spatiotemporal and context-dependent manner in the epidermis, coordinating diverse skin homeostatic processes. Dysregulation of mTOR signaling underlies the pathogenesis of skin diseases, including psoriasis and skin cancer. In this review, we discuss the role of epidermal mTOR signaling activity and function in skin, with a focus on skin barrier formation, hair regeneration, wound repair, as well as skin pathological disorders. We propose that fine-tuned control of mTOR signaling is essential for epidermal structural and functional integrity.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiaolei Ding,
| |
Collapse
|
32
|
Targeted Co-Delivery of Gefitinib and Rapamycin by Aptamer-Modified Nanoparticles Overcomes EGFR-TKI Resistance in NSCLC via Promoting Autophagy. Int J Mol Sci 2022; 23:ijms23148025. [PMID: 35887373 PMCID: PMC9316473 DOI: 10.3390/ijms23148025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Acquired drug resistance decreases the efficacy of gefitinib after approximately 1 year of treatment in non-small-cell lung cancer (NSCLC). Autophagy is a process that could lead to cell death when it is prolonged. Thus, we investigated a drug combination therapy of gefitinib with rapamycin—a cell autophagy activator—in gefitinib-resistant NSCLC cell line H1975 to improve the therapeutic efficacy of gefitinib in advanced NSCLC cells through acute cell autophagy induction. Cell viability and tumor formation assays indicated that rapamycin is strongly synergistic with gefitinib inhibition, both in vitro and in vivo. Mechanistic studies demonstrated that EGFR expression and cell autophagy decreased under gefitinib treatment and were restored after the drug combination therapy, indicating a potential cell autophagy–EGFR positive feedback regulation. To further optimize the delivery efficiency of the combinational agents, we constructed an anti-EGFR aptamer-functionalized nanoparticle (NP-Apt) carrier system. The microscopic observation and cell proliferation assays suggested that NP-Apt achieved remarkably targeted delivery and cytotoxicity in the cancer cells. Taken together, our results suggest that combining rapamycin and gefitinib can be an efficacious therapy to overcome gefitinib resistance in NSCLC, and targeted delivery of the drugs using the aptamer-nanoparticle carrier system further enhances the therapeutic efficacy of gefitinib.
Collapse
|
33
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|
34
|
Gluck M, Hodak E, Davidovici B. Mammalian Target of Rapamycin Inhibitors for prolonged secondary prevention of non-melanoma skin cancer in solid organ transplant recipients. Dermatol Ther 2022; 35:e15649. [PMID: 35716099 DOI: 10.1111/dth.15649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Immunosuppressive agents are essential for graft survival in solid-organ transplant recipients (SOTRs), but they have substantial durable side effects, including a higher incidence of aggressive non-melanoma skin cancers (NMSCs). Hitherto, only one class of immunosuppressants, mammalian target of rapamycin inhibitors (mTORi), may inhibit skin tumor formation, however their durable effectiveness is controversial. OBJECTIVE To evaluate the sustained effectiveness of mTORi in reducing NMSCs' incidence in SOTRs. METHODS A retrospective study was conducted in a specialized dermatology clinic for SOTRs of a tertiary university-affiliated medical center. SOTRs with a history of at least one histologically proven NMSC, were followed for 6 years: 3 years after transplantation, before initiation of mTORi, and 3 years under mTORi treatment. RESULTS The cohort consisted of 44 SOTRs. Treatment with mTORi was initiated on average 6.27 (3.34-6.34) years following transplantation. In the 3 years before mTORi treatment initiation, the mean number of new NMSCs per patient was 2.11 (1-14). This value decreased to 1.2 (0-19) in the 3 years under mTORi treatment (P=0.0007). Analysis by NMSC type yielded a significant decrease in both SCCs and BCCs. CONCLUSION This study found that mTORi are effective for prolonged secondary prevention of NMSCs in SOTRs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mirit Gluck
- Devision of Dermatology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Emmillia Hodak
- Devision of Dermatology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Batya Davidovici
- Devision of Dermatology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| |
Collapse
|
35
|
Karatas M, Okut G, Simsek C, Dogan SM, Zengel B, Taslı Alkan F, Tatar E. Genitourinary Cancers Following Kidney Transplant: Our 20 Years of Experience With Mechanistic Target of Rapamycin Inhibitors. EXP CLIN TRANSPLANT 2022; 20:145-148. [PMID: 35384826 DOI: 10.6002/ect.mesot2021.p72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES We investigated patients with genitourinary cancer after kidney transplant and the effects of immunosuppression reduction and switching to mechanistic target of rapamycin inhibitors. MATERIALS AND METHODS We retrospectively evaluated kidney transplant recipients seen at our center between January 2000 and January 2020. Patients with <1 year of follow-up were excluded. RESULTS Of 827 patients, genitourinary cancer was detected in 11 (1.3%): prostate cancer in 5 patients (45%), renal cell carcinoma in native kidney in 3 (27%), renal cell carcinoma in allograft kidney in 2 (18%), and transitional cell carcinoma of the bladder in 1 (9%). All patients had surgery. Two patients had bone metastasis due to prostate cancer at diagnosis. Two patients had allograft nephrectomy due to de novo renal cell carcinoma. Mean follow-up and age were 97 ± 45 months (range, 26-189) and 50 ± 10.2 years (19% female). After cancer diagnosis, excluding the 2 patients with allograft nephrectomy, immunosuppression was changed in 8 patients (88.8%) (1 patient received the same treatment before and after cancer diagnosis). Six patients received double-drug and 3 received triple-drug protocols. Of 9 patients, 2 were already using mechanistic target of rapamycin inhibitors before cancer diagnosis and 7 were switched: 4 to double-based and 3 to triple-based regimens. Six were switched from tacrolimus. With new treatments, patients showed no progressive kidney failure or rejection (38 ± 40 mo average follow-up). At last follow-up, mean glomerular filtration rate was 62.8 ± 34 mL/min/1.72 m2, which was similar to rate at cancer diagnosis (58.9 ± 24 mL/ min/1.72 m2; P = .78). During follow-up, no patients developed local recurrence of primary tumor or new metastasis, and none showed adverse effects after switch to mechanistic target of rapamycin inhibitors. Three patients died of malignancy-unrelated reasons (ileus, urinary sepsis, heart failure). CONCLUSIONS Mechanistic target of rapamycin inhibitor-based drugs can be an important maintenance immunosuppressive treatment option for kidney transplant recipients with genitourinary cancers.
Collapse
Affiliation(s)
- Murat Karatas
- From the Department of General Surgery and Transplantation, University of Health Sciences, Izmir Faculty of Medicine, Bozyaka Education and Research Hospital, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
36
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
37
|
Hormetic effect of low doses of rapamycin triggers anti-aging cascades in WRL-68 cells by modulating an mTOR-mitochondria cross-talk. Mol Biol Rep 2021; 49:463-476. [PMID: 34739690 DOI: 10.1007/s11033-021-06898-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/29/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Rapamycin is hormetic in nature-it demonstrates contrasting effects at high and low doses. It is toxic at moderate/high doses, while it can restrain aging and extend lifespan at low doses. However, it is not fully understood how rapamycin governs cellular aging. On the other hand, aging is putatively correlated to mitochondrial dysregulation. Although previous studies have suggested that hormetic (low) doses of rapamycin can cause partial/incomplete inhibition of mTOR, the actual modus operandi of how such partial mTOR inhibition might modulate the mTOR-mitochondria cross-talk remained to be deciphered in the context of cellular aging. The present study was designed to understand the hormetic effects of rapamycin on cellular factors that govern aging-associated changes in mitochondrial facets, such as functional and metabolic homeostases, sustenance of membrane potential, biogenesis, mitophagy, and oxidative injury to mitochondrial macromolecules. METHODS AND RESULTS WRL-68 cells treated (24 h) with variable doses of rapamycin were studied for estimating their viability, apoptosis, senescence, mitochondrial density and Δψm. Expression levels of key functional proteins were estimated by immunofluorescence/immunoblots. Oxidative damage to mtDNA/mtRNA/proteins was measured in mitochondrial lysates. We demonstrated that hormetic doses (0.1 and 1 nM) of rapamycin can alleviate aging-associated mitochondrial dyshomeostasis in WRL-68 cells, such as oxidative injury to mitochondrial nucleic acids and proteins, as well as disequilibrium of mitochondrial density, membrane potential, biogenesis, mitophagy and overall metabolism. CONCLUSIONS We established that low doses of rapamycin can hormetically amend the mTOR-mitochondria cross-talk, and can consequently promote anti-aging outcome in cells.
Collapse
|
38
|
Alam MM, Marin Fermin J, Spiller PT, Burnett C, Rong X, Moore-Medlin T, Maxwell CO, Khandelwal AR, Nathan CAO. Rapalogs induce non-apoptotic, autophagy-dependent cell death in HPV-negative TP53 mutant head and neck squamous cell carcinoma. Mol Carcinog 2021; 61:33-44. [PMID: 34598317 DOI: 10.1002/mc.23357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/21/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
TP53 is the most frequently mutated gene in head and neck squamous cell carcinoma (HNSCC). Patients with HPV-negative TP53 mutant HNSCC have the worst prognosis, necessitating additional agents for treatment. Since mutant p53 causes sustained activation of the PI3K/AKT/mTOR signaling pathway, we investigated the effect of rapalogs RAD001 and CCI-779 on HPV-negative mutTP53 HNSCC cell lines and xenografts. Rapalogs significantly reduced cell viability and colony formation. Interestingly, rapalogs-induced autophagy with no effect on apoptosis. Pretreatment with autophagy inhibitors, 3-methyladenine (3-MA) and ULK-101 rescued the cell viability by inhibiting rapalog-induced autophagy, suggesting that both RAD001 and CCI-779 induce non-apoptotic autophagy-dependent cell death (ADCD). Moreover, rapalogs upregulated the levels of ULK1 and pULK1 S555 with concomitant downregulation of the mTORC1 pathway. However, pretreatment of cells with rapalogs prevented the ULK-101-mediated inhibition of ULK1 to sustained autophagy, suggesting that rapalogs induce ADCD through the activation of ULK1. To further translate our in vitro studies, we investigated the effect of RAD001 in HPV-negative mutTP53 (HN31 and FaDu) tumor cell xenograft model in nude mice. Mice treated with RAD001 exhibited a significant tumor volume reduction without induction of apoptosis, and with a concomitant increase in autophagy. Further, treatment with RAD001 was associated with a considerable increase in pULK1 S555 and ULK1 levels through the inhibition of mTORC1. 3-MA reversed the effect of RAD001 on FaDu tumor growth suggesting that RAD001 promotes ACDC in HPV-negative mutTP53 xenograft. This is the first report demonstrating that rapalogs promote non-apoptotic ADCD in HPV-negative mutTP53 HNSCC via the ULK1 pathway. Further studies are required to establish the promising role of rapalogs in preventing the regrowth of HPV-negative mutTP53 HNSCC.
Collapse
Affiliation(s)
- Md Maksudul Alam
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Sciences Center, Shreveport, Louisiana, USA
| | - Janmaris Marin Fermin
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Sciences Center, Shreveport, Louisiana, USA
| | - Patrick T Spiller
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Sciences Center, Shreveport, Louisiana, USA
| | - Chaning Burnett
- School of Medicine, LSU-Health Science Center, Shreveport, Louisiana, USA
| | - Xiaohua Rong
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Sciences Center, Shreveport, Louisiana, USA
| | - Tara Moore-Medlin
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Sciences Center, Shreveport, Louisiana, USA
| | - Caden O Maxwell
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Sciences Center, Shreveport, Louisiana, USA
| | - Alok R Khandelwal
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Sciences Center, Shreveport, Louisiana, USA.,Department of Otolaryngology-Head and Neck Surgery, Feist-Weiller Cancer Center, LSU-Health Sciences Center, Shreveport, Louisiana, USA
| | - Cherie-Ann O Nathan
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Sciences Center, Shreveport, Louisiana, USA.,Department of Otolaryngology-Head and Neck Surgery, Feist-Weiller Cancer Center, LSU-Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
39
|
Arrabi L, Jan A, Hosing C, Milton DR, Yeh J. Transitioning tacrolimus to sirolimus in allogeneic hematopoietic cell transplantation. Eur J Haematol 2021; 107:634-641. [PMID: 34431142 DOI: 10.1111/ejh.13701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Calcineurin inhibitor (CNI) use for acute graft-versus-host disease (aGVHD) prophylaxis in allogeneic hematopoietic cell transplantation (allo-HCT) recipients has been associated with toxicities. Toxicities may be managed by converting CNI to sirolimus as often done in solid organ transplantation. This study aimed to characterize allo-HCT patients who completely transitioned from tacrolimus to sirolimus and evaluate the incidence of aGVHD within 100 days post-transition, overall survival (OS), and incidence of relapse. METHODS Safety and efficacy data were collected at baseline and at day 30 and 90 post-transition from tacrolimus to sirolimus and at one-year post-HCT. RESULTS Most patients who transitioned had acute leukemia, received a matched unrelated donor allo-HCT, and transitioned due to nephrotoxicity or neurotoxicity. The resolution rate was 83% and 48% in the nephrotoxicity group, 78% and 61% in the neurotoxicity group, 33% and 33% in the group that developed both nephrotoxicity and transplant-associated thrombotic microangiopathy at 30 and 90 days of assessments, respectively. Patients who transitioned before day 55 post-allo-HCT were more likely to develop new or worsening aGVHD. The one-year OS and relapse rates were 37% and 20%, respectively. CONCLUSIONS The conversion from tacrolimus to sirolimus demonstrates promising resolution of acute toxicities; however, overall mortality remains high.
Collapse
Affiliation(s)
- Linda Arrabi
- Department of Pharmacy, Henry Ford Health System, Detroit, MI, USA
| | - Anna Jan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chitra Hosing
- Division of Cancer Medicine, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Yeh
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Luo EWC, Liao ML, Chien CL. Neural differentiation of glioblastoma cell lines via a herpes simplex virus thymidine kinase/ganciclovir system driven by a glial fibrillary acidic protein promoter. PLoS One 2021; 16:e0253008. [PMID: 34370752 PMCID: PMC8351974 DOI: 10.1371/journal.pone.0253008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is a malignant brain tumor with poor prognosis that rapidly acquires resistance to available clinical treatments. The herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) system produces the selective elimination of HSVtk-positive cells and is a candidate for preclinical testing against glioblastoma via its ability to regulate proliferation and differentiation. Therefore, in this study, we aimed to establish a plasmid encoding the HSVtk/GCV system driven by a glial fibrillary acidic protein (GFAP) promoter and verify its possibility of neural differentiation of glioblastoma cell line under the GCV challenge. Four stable clones-N2A-pCMV-HSVtk, N2A-pGFAP-HSVtk, U251-pCMV-HSVtk, and U251-pGFAP-HSVtk-were established from neuronal N2A and glioblastoma U251 cell lines. In vitro GCV sensitivity was assessed by MTT assay for monitoring time- and dosage-dependent cytotoxicity. The capability for neural differentiation in stable glioblastoma clones during GCV treatment was assessed by performing immunocytochemistry for nestin, GFAP, and βIII-tubulin. Under GFAP promoter control, the U251 stable clone exhibited GCV sensitivity, while the neuronal N2A clones were nonreactive. During GCV treatment, cells underwent apoptosis on day 3 and dying cells were identified after day 5. Nestin was increasingly expressed in surviving cells, indicating that the population of neural stem-like cells was enriched. Lower levels of GFAP expression were detected in surviving cells. Furthermore, βIII-tubulin-positive neuron-like cells were identified after GCV treatment. This study established pGFAP-HSVtk-P2A-EGFP plasmids that successfully ablated GFAP-positive glioblastoma cells, but left neuronal N2A cells intact. These data suggest that the neural differentiation of glioblastoma cells can be promoted by treatment with the HSVtk/GCV system.
Collapse
Affiliation(s)
- Elizabeth Wei-Chia Luo
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Meng-Lin Liao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Medicine, College of Medicine, I‐Shou University, Kaohsiung, Taiwan
- * E-mail: (CLC); (MLL)
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (CLC); (MLL)
| |
Collapse
|
41
|
Parhizkar F, Motavalli-Khiavi R, Aghebati-Maleki L, Parhizkar Z, Pourakbari R, Kafil HS, Danaii S, Yousefi M. The Impact of New Immunological Therapeutic Strategies on Recurrent Miscarriage and Recurrent Implantation Failure. Immunol Lett 2021; 236:20-30. [PMID: 34090942 DOI: 10.1016/j.imlet.2021.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Maternal-fetal immune dysregulation is one of the risk factors that increases the probability of embryo rejection and reproductive failure. The stimulation of immunological tolerance and suppression of immunological rejection are prerequisites for protecting embryos and preventing immunological attacks. Hence, it appears that immunomodulatory and immunosuppressive therapies can manage reproductive failures by controlling immune cells. The current medical literature has shown that immunotherapy approaches and cell therapy have promising results in improving pregnancy outcomes and live birth rates. These outcomes are obtained by regulating maternal immune responses, and exerting positive effects on human reproductive processes.
Collapse
Affiliation(s)
- Forough Parhizkar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli-Khiavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Parhizkar
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ramin Pourakbari
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Potential of Anti-Cancer Activity of Secondary Metabolic Products from Marine Fungi. J Fungi (Basel) 2021; 7:jof7060436. [PMID: 34070936 PMCID: PMC8229146 DOI: 10.3390/jof7060436] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/15/2023] Open
Abstract
The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillus niger, A. fumigatus A. oryzae, A. flavus, A. versicolor, A. terreus, Penicillium citrinum, P. chrysogenum, and P. polonicum and have been used for investigating the anticancer activity against the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.
Collapse
|
43
|
Mahmoud MM, Abdel-Razek AS, Hamed A, Soliman HSM, Ponomareva LV, Thorson JS, Shaaban KA, Shaaban M. RF-3192C and other polyketides from the marine endophytic Aspergillus niger ASSB4: structure assignment and bioactivity investigation. Med Chem Res 2021; 30:647-654. [PMID: 38576441 PMCID: PMC10993419 DOI: 10.1007/s00044-020-02658-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/27/2020] [Indexed: 01/14/2023]
Abstract
Chemical investigation of the methanolic extract of endophytic Aspergillus niger SB4, isolated from the marine alga Laurencia obtuse, afforded the pentacyclic polyketide, RF-3192C (1), the dimeric coumarin orlandin (2), fonsecin B (3), TMC-256A1 (4), cyclo-(Leu-Ala) (5), and cerebroside A (6).The chemical structure of RF-3192C (1) is assigned herein for the first time using 1D/2D NMR and HRESI-MS. Additionally, the revision of the NMR assignments of orlandin (2) was reported herein as well. Investigation of the antimicrobial activities of isolated compounds revealed the high activity of RF-3192C (1) against Pseudomonas aeruginosa and Bacillus subtilis, and moderate activity against yeast. Moreover, an in vitro cytotoxic activity against liver (HEPG2), cervical (HELA), lung (A549), prostate (PC3), and breast (MCF7) cancer cell lines of the isolated compounds was evaluated. The isolation and taxonomical characterization of the producing fungus was reported as well.
Collapse
Affiliation(s)
- Manar M Mahmoud
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | - Ahmed S Abdel-Razek
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, El-Buhouth St. 33, Dokki-Giza 12622, Egypt
| | - Abdelaaty Hamed
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
| | - Hesham S M Soliman
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Khaled A Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Mohamed Shaaban
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
- Chemistry of Natural Compounds Department, Division of Pharmaceutical Industries, National Research Centre, El-Buhouth St. 33, Dokki-Giza 12622, Egypt
| |
Collapse
|
44
|
Munafò A, Burgaletto C, Di Benedetto G, Di Mauro M, Di Mauro R, Bernardini R, Cantarella G. Repositioning of Immunomodulators: A Ray of Hope for Alzheimer's Disease? Front Neurosci 2020; 14:614643. [PMID: 33343293 PMCID: PMC7746859 DOI: 10.3389/fnins.2020.614643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder characterized by cognitive decline and by the presence of amyloid β plaques and neurofibrillary tangles in the brain. Despite recent advances in understanding its pathophysiological mechanisms, to date, there are no disease-modifying therapeutic options, to slow or halt the evolution of neurodegenerative processes in AD. Current pharmacological treatments only transiently mitigate the severity of symptoms, with modest or null overall improvement. Emerging evidence supports the concept that AD is affected by the impaired ability of the immune system to restrain the brain's pathology. Deep understanding of the relationship between the nervous and the immune system may provide a novel arena to develop effective and safe drugs for AD treatment. Considering the crucial role of inflammatory/immune pathways in AD, here we discuss the current status of the immuno-oncological, immunomodulatory and anti-TNF-α drugs which are being used in preclinical studies or in ongoing clinical trials by means of the drug-repositioning approach.
Collapse
Affiliation(s)
- Antonio Munafò
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Marco Di Mauro
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.,Unit of Clinical Toxicology, University Hospital, University of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
45
|
Chan TG, O'Neill E, Habjan C, Cornelissen B. Combination Strategies to Improve Targeted Radionuclide Therapy. J Nucl Med 2020; 61:1544-1552. [PMID: 33037092 PMCID: PMC8679619 DOI: 10.2967/jnumed.120.248062] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/09/2020] [Indexed: 01/20/2023] Open
Abstract
In recent years, targeted radionuclide therapy (TRT) has emerged as a promising strategy for cancer treatment. In contrast to conventional radiotherapy, TRT delivers ionizing radiation to tumors in a targeted manner, reducing the dose that healthy tissues are exposed to. Existing TRT strategies include the use of 177Lu-DOTATATE, 131I-metaiodobenzylguanidine, Bexxar, and Zevalin, clinically approved agents for the treatment of neuroendocrine tumors, neuroblastoma, and non-Hodgkin lymphoma, respectively. Although promising results have been obtained with these agents, clinical evidence acquired to date suggests that only a small percentage of patients achieves complete response. Consequently, there have been attempts to improve TRT outcomes through combinations with other therapeutic agents; such strategies include administering concurrent TRT and chemotherapy, and the use of TRT with known or putative radiosensitizers such as poly(adenosine diphosphate ribose) polymerase and mammalian-target-of-rapamycin inhibitors. In addition to potentially achieving greater therapeutic effects than the respective monotherapies, these strategies may lead to lower dosages or numbers of cycles required and, in turn, reduce unwanted toxicities. As of now, several clinical trials have been conducted to assess the benefits of TRT-based combination therapies, sometimes despite limited preclinical evidence being available in the public domain to support their use. Although some clinical trials have yielded promising results, others have shown no clear survival benefit from particular combination treatments. Here, we present a comprehensive review of combination strategies with TRT reported in the literature to date and evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Tiffany G Chan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Edward O'Neill
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Christine Habjan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Zhang P, Zhang L, Yue XJ, Tang YJ, Wu C, Li YZ. Effects of glycosylation on the bioactivity of rapamycin. Appl Microbiol Biotechnol 2020; 104:9125-9134. [PMID: 32940736 DOI: 10.1007/s00253-020-10895-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 12/01/2022]
Abstract
The macrolactone rapamycin (RAP) presents a broad range of bioactivities, but its clinical applications are compromised due to the poor water solubility and low bioavailability, which could probably be overcome by glycosylation. In this study, we tested a set of promiscuous glycosyltransferases (GTs) to modify rapamycin with four different sugar donors. BsGT-1 displayed the best glycosylation activity with a preference for UDP-glucose, and the glycosylation happened at C-28 or C-40 of rapamycin, producing rapamycin-40-O-β-D-glucoside (RG1), and two new compounds rapamycin-28-O-β-D-glucoside (RG2) and rapamycin-28,40-O-β-D-diglucoside (RG3). The glycosylation remarkably improved water solubility and almost completely abolished cytotoxicity but simultaneously attenuated the antifungal, antitumor, and immunosuppression bioactivities of rapamycin. We found the glycosylation at C-40 had less effect on the bioactivities than that at C-28. The molecular docking analysis revealed that the glycosylation, especially the glycosylation at C-28, weakened the hydrophobic and hydrogen bonding contacts between the rapamycin glucosides and the binding proteins: the FK506-binding protein (FKBP12) and the FKBP12-rapamycin binding (FRB) domain. This study highlights a succinct approach to expand the chemical diversity of the therapeutically important molecule rapamycin by using promiscuous glycosyltransferases. Moreover, the fact that glycosyl moieties at different positions of rapamycin affect bioactivity to different extents inspires further glycosylation engineering to improve properties of rapamycin. KEY POINTS: • Rapamycin was glycosylated efficiently by some promiscuous GTs. • Glycosylation improved water solubility, attenuated cytotoxicity, and bioactivities. • Glycosylation affected the interactions between ligand and binding proteins.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lijuan Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
47
|
Bjedov I, Rallis C. The Target of Rapamycin Signalling Pathway in Ageing and Lifespan Regulation. Genes (Basel) 2020; 11:E1043. [PMID: 32899412 PMCID: PMC7565554 DOI: 10.3390/genes11091043] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ageing is a complex trait controlled by genes and the environment. The highly conserved mechanistic target of rapamycin signalling pathway (mTOR) is a major regulator of lifespan in all eukaryotes and is thought to be mediating some of the effects of dietary restriction. mTOR is a rheostat of energy sensing diverse inputs such as amino acids, oxygen, hormones, and stress and regulates lifespan by tuning cellular functions such as gene expression, ribosome biogenesis, proteostasis, and mitochondrial metabolism. Deregulation of the mTOR signalling pathway is implicated in multiple age-related diseases such as cancer, neurodegeneration, and auto-immunity. In this review, we briefly summarise some of the workings of mTOR in lifespan and ageing through the processes of transcription, translation, autophagy, and metabolism. A good understanding of the pathway's outputs and connectivity is paramount towards our ability for genetic and pharmacological interventions for healthy ageing and amelioration of age-related disease.
Collapse
Affiliation(s)
- Ivana Bjedov
- UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
48
|
Moreira SM, de Oliveira Mendes TA, Santanta MF, Huws SA, Creevey CJ, Mantovani HC. Genomic and gene expression evidence of nonribosomal peptide and polyketide production among ruminal bacteria: a potential role in niche colonization? FEMS Microbiol Ecol 2020; 96:5673486. [PMID: 31825517 DOI: 10.1093/femsec/fiz198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023] Open
Abstract
Genomic and transcriptomic analyses were performed to investigate nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) in 310 genomes of ruminal/fecal microorganisms. A total of 119 biosynthetic genes potentially encoding distinct nonribosomal peptides (NRPs) and polyketides (PKs) were predicted in the ruminal microbial genomes and functional annotation separated these genes into 19 functional categories. The phylogenetic reconstruction of the 16S rRNA sequences coupled to the distribution of the three 'backbone' genes involved in NRPS and PKS biosyntheses suggested that these genes were not acquired through horizontal gene transfer. Metatranscriptomic analyses revealed that the predominant genes involved in the synthesis of NRPs and PKs were more abundant in sheep rumen datasets. Reads mapping to the NRPS and PKS biosynthetic genes were represented in the active ruminal microbial community, with transcripts being highly expressed in the bacterial community attached to perennial ryegrass, and following the main changes occurring between primary and secondary colonization of the forage incubated with ruminal fluid. This study is the first comprehensive characterization demonstrating the rich genetic capacity for NRPS and PKS biosyntheses within rumen bacterial genomes, which highlights the potential functional roles of secondary metabolites in the rumen ecosystem.
Collapse
Affiliation(s)
- Sofia Magalhães Moreira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa-MG, 36570-900, Brazil
| | | | - Mateus Ferreira Santanta
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa-MG, 36570-900, Brazil
| | - Sharon A Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast,University Rd, Belfast, BT7 1NN, UK
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast,University Rd, Belfast, BT7 1NN, UK
| | - Hilário C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa-MG, 36570-900, Brazil
| |
Collapse
|
49
|
Echavarria-Consuegra L, Smit JM, Reggiori F. Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biol 2020; 9:190009. [PMID: 30862253 PMCID: PMC6451359 DOI: 10.1098/rsob.190009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arboviruses that are transmitted to humans by mosquitoes represent one of the most important causes of febrile illness worldwide. In recent decades, we have witnessed a dramatic re-emergence of several mosquito-borne arboviruses, including dengue virus (DENV), West Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV). DENV is currently the most common mosquito-borne arbovirus, with an estimated 390 million infections worldwide annually. Despite a global effort, no specific therapeutic strategies are available to combat the diseases caused by these viruses. Multiple cellular pathways modulate the outcome of infection by either promoting or hampering viral replication and/or pathogenesis, and autophagy appears to be one of them. Autophagy is a degradative pathway generally induced to counteract viral infection. Viruses, however, have evolved strategies to subvert this pathway and to hijack autophagy components for their own benefit. In this review, we will focus on the role of autophagy in mosquito-borne arboviruses with emphasis on DENV, CHIKV, WNV and ZIKV, due to their epidemiological importance and high disease burden.
Collapse
Affiliation(s)
- Liliana Echavarria-Consuegra
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Jolanda M Smit
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Fulvio Reggiori
- 2 Department of Cell Biology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
50
|
Haanen J, Ernstoff MS, Wang Y, Menzies AM, Puzanov I, Grivas P, Larkin J, Peters S, Thompson JA, Obeid M. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of the literature and personalized risk-based prevention strategy. Ann Oncol 2020; 31:724-744. [PMID: 32194150 DOI: 10.1016/j.annonc.2020.03.285] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023] Open
Abstract
Patients with cancer and with preexisting active autoimmune diseases (ADs) have been excluded from immunotherapy clinical trials because of concerns for high susceptibility to the development of severe adverse events resulting from exacerbation of their preexisting ADs. However, a growing body of evidence indicates that immune-checkpoint inhibitors (ICIs) may be safe and effective in this patient population. However, baseline corticosteroids and other nonselective immunosuppressants appear to negatively impact drug efficacy, whereas retrospective and case report data suggest that use of specific immunosuppressants may not have the same consequences. Therefore, we propose here a two-step strategy. First, to lower the risk of compromising ICI efficacy before their initiation, nonselective immunosuppressants could be replaced by specific selective immunosuppressant drugs following a short rotation phase. Subsequently, combining ICI with the selective immunosuppressant could prevent exacerbation of the AD. For the most common active ADs encountered in the context of cancer, we propose specific algorithms to optimize ICI therapy. These preventive strategies go beyond current practices and recommendations, and should be practiced in ICI-specialized clinics, as these require multidisciplinary teams with extensive knowledge in the field of clinical immunology and oncology. In addition, we challenge the exclusion from ICI therapy for patients with cancer and active ADs and propose the implementation of an international registry to study such novel strategies in a prospective fashion.
Collapse
Affiliation(s)
- J Haanen
- Netherlands Cancer Institute, Division of Medical Oncology, Amsterdam, The Netherlands
| | - M S Ernstoff
- Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Y Wang
- Department of Gastroenterology, Hepatology & Nutrition, University of Texas MD Anderson Cancer Center, Houston, USA
| | - A M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia
| | - I Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - P Grivas
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - J Larkin
- Royal Marsden NHS Foundation Trust, London, UK
| | - S Peters
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and Lausanne University, Lausanne, Switzerland
| | - J A Thompson
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, USA; National Cancer Institute/NIH, Bethesda, USA
| | - M Obeid
- Department of Medicine, Service of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Vaccine and Immunotherapy Center, Centre Hospitalier Universitaire Vaudois (CHUV), Centre d'Immunothérapie et de Vaccinologie, Lausanne, Switzerland.
| |
Collapse
|