1
|
Block M, Grube A, Göpferich A, Saal C, Ilochonwu BC, Cárcamo-Martínez Á, Giorgio G, Bakker RA, Deanne R, Schäfer J, Walder BJ, Simon R. Surface-coated silica microparticles: In vitro and ex vivo evaluation of a preclinical extended release platform conceived for intravitreal injection. J Control Release 2025; 381:113602. [PMID: 40054630 DOI: 10.1016/j.jconrel.2025.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Current standard pharmacological treatment of retinal vascular diseases requires frequent intravitreal injection every 4-12 weeks. Active pharmaceutical ingredients (APIs) with better pharmacokinetics (PK), allowing less frequent administrations, remain to be discovered and developed. In preclinical stage mostly small molecule New Chemical Entities (NCEs) and peptides represent promising candidates. However, they typically suffer from fast clearance from the eye upon intravitreal injection, which confines support of animal models as sufficient exposure over 1-4 weeks in the eye is not reached. Addressing this need of extended-release (XR) formulations to enable such animal models, we hereby present chitosan embedded silica particles in suspension (CHESS). We identified non-mesoporous silica matrix particles as suitable biodegradable XR formulation and established a preparation method to control their degree of condensation, erosion rate and finally the release rate. Applicability for different API candidates was demonstrated by successful embedding of two model small molecules and one model peptide at high drug loads of >20 %, respectively. The ability to control release rate was demonstrated in vitro. High intravitreal mobility, which is a disadvantage of uncoated silica microparticles and other intravitreally applied XR microparticle formulations, was reduced by surface-coating with a polycationic chitosan-derivative. This leads to formation of stable depots in the vitreous after injection, which can be easily separated from the retina, facilitating PK analysis and pharmacodynamic (PD) readouts. Furthermore, we showed good tolerability and low toxicity on ARPE-19 cells.
Collapse
Affiliation(s)
- Marco Block
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Achim Grube
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Achim Göpferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany
| | - Christoph Saal
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Blessing C Ilochonwu
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Álvaro Cárcamo-Martínez
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Grazia Giorgio
- Department of Cardio-Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Remko A Bakker
- Department of Cardio-Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Richard Deanne
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, United States
| | - Joachim Schäfer
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, United States
| | - Brennan J Walder
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, United States
| | - Roman Simon
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany.
| |
Collapse
|
2
|
Kim HJ, Kwak JH, Choi JS, Kim J, Moon SY, Lee SHS, Lee H, Park K, Lee JY, Won SY. Subretinal delivery of AAV5-mediated human Pde6b gene ameliorates the disease phenotype in a rat model of retinitis pigmentosa. Mol Vis 2025; 31:127-141. [PMID: 40384764 PMCID: PMC12085214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/27/2025] [Indexed: 05/20/2025] Open
Abstract
Purpose A genetic disorder that affects the beta subunit of cyclic guanosine monophosphate-phosphodiesterase type 6 (PDE6B) in humans leads to autosomal recessive retinitis pigmentosa (RP). This condition causes severe vision loss in early life due to fast deterioration of photoreceptors. This study evaluated the therapeutic potential of subretinal delivery of the adeno-associated virus (AAV)5-mediated human Pde6b gene in an RP rat model caused by Pde6b gene knockout (KO). Methods We compared the transduction efficiency and tropism of different AAV serotypes (2, 5 and 8) in Pde6b KO rats and found that AAV5 had the highest and most specific expression in photoreceptors. We injected AAV5-Pde6b into the subretinal space of Pde6b KO rats on postnatal day 21. We assessed the protective effects six weeks postinjection by measuring PDE6B protein expression, photoreceptor structure, retinal morphology and thickness, retinal pigment epithelium integrity and visual function. Results AAV5-Pde6b treatment ameliorated the disease phenotype in Pde6b KO rats by restoring PDE6B protein expression, preserving photoreceptor structure, improving retinal morphology and thickness, and maintaining retinal pigment epithelium integrity. Functional analysis of vision by scotopic electroretinogram (ERG) and optokinetic nystagmus revealed that AAV5-Pde6b treatment significantly improved the visual function of Pde6b gene KO rats compared with AAV5-GFP-injected Pde6b KO rats. Conclusions Our results demonstrate that AAV5-Pde6b may be a potential therapeutic gene candidate for RP caused by Pde6b mutations.
Collapse
Affiliation(s)
- Hee Jong Kim
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Ji Hoon Kwak
- Department of Ophthalmology, Asan Medical Center, University of Ulsan, College of Medicine, Republic of Korea
- Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Republic of Korea
| | - Jun Sub Choi
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Jin Kim
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Seo Yun Moon
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Steven Hyun Seung Lee
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Heuiran Lee
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Keerang Park
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan, College of Medicine, Republic of Korea
- Bio-Medical Institute of Technology, University of Ulsan, College of Medicine, Republic of Korea
| | - So-Yoon Won
- Institute of New Drug Development Research, CdmoGen Co., Ltd., Seoul, Republic of Korea
- CdmoGen Co., Ltd., Cheongju, Republic of Korea
| |
Collapse
|
3
|
Lin F, Lin ST, Wang J, Sellers JT, Chrenek MA, Nickerson JM, Boatright JH, Geisert EE. An improved method of transducing retinal ganglion cells using AAV via transpupillary injection in adult mouse eyes. Mol Vis 2025; 31:1-9. [PMID: 40084287 PMCID: PMC11901424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/10/2025] [Indexed: 03/16/2025] Open
Abstract
Purpose Intravitreal injection of adeno-associated virus (AAV) vectors is a good approach for transducing retinal ganglion cells (RGCs) in mice. It allows for high transduction efficiency and is relatively specific to RGCs. To deliver vectors, most studies use a transscleral approach that can have potentially negative effects, causing damage to the lens or retina. We optimized the intravitreal injection method using a transpupillary approach to minimize ocular damage and efficiently transfect RGCs. Methods C57BL/6J mice were anesthetized, and their irises were dilated. The eyeball was held with forceps while a small, full-thickness incision was made halfway between the center and periphery of the cornea. Using a bent 35-gauge blunt needle, the tip was navigated through the incision across the anterior chamber to reach the distal aspect of the pupil. The needle was inserted through the pupil, swept around the lens, and entered the vitreous, delivering expression vectors containing cytomegalovirus (CMV) promoter-driving green fluorescent protein (AAV-CMV-GFP) into the vitreous chamber. Fourteen days after injection, live fluorescent fundus images were taken, followed by immunostaining for GFP. Results With the improved injection technique, the lens remained clear and undamaged. Fundus imaging and GFP staining showed that over 90% of the mouse retinas sustained no visible damage. Retinas injected via the transpupillary approach also exhibited GFP transduction throughout the ganglion cell layer. Conclusions Transpupillary intravitreal injection reduces the potential risk compared to the transscleral approach, offering a promising and efficient method for delivering reporter genes to RGCs and ensuring high levels of gene expression without damage to the lens or retina.
Collapse
Affiliation(s)
- Fangyu Lin
- Department of Ophthalmology, Emory University, Atlanta, GA
| | - Su-Ting Lin
- Department of Ophthalmology, Emory University, Atlanta, GA
| | - Jiaxing Wang
- Department of Ophthalmology, Emory University, Atlanta, GA
| | | | | | | | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, GA
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, GA
| | | |
Collapse
|
4
|
Li X, Sedlacek M, Nath A, Szatko KP, Grimes WN, Diamond JS. A metabotropic glutamate receptor agonist enhances visual signal fidelity in a mouse model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591881. [PMID: 38746092 PMCID: PMC11092665 DOI: 10.1101/2024.04.30.591881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Many inherited retinal diseases target photoreceptors, which transduce light into a neural signal that is processed by the downstream visual system. As photoreceptors degenerate, physiological and morphological changes to retinal synapses and circuitry reduce sensitivity and increase noise, degrading visual signal fidelity. Here, we pharmacologically targeted the first synapse in the retina in an effort to reduce circuit noise without sacrificing visual sensitivity. We tested a strategy to partially replace the neurotransmitter lost when photoreceptors die with an agonist of receptors that ON bipolars cells use to detect glutamate released from photoreceptors. In rd10 mice, which express a photoreceptor mutation that causes retinitis pigmentosa (RP), we found that a low dose of the mGluR6 agonist l-2-amino-4-phosphonobutyric acid (L-AP4) reduced pathological noise induced by photoreceptor degeneration. After making in vivo electroretinogram recordings in rd10 mice to characterize the developmental time course of visual signal degeneration, we examined effects of L-AP4 on sensitivity and circuit noise by recording in vitro light-evoked responses from individual retinal ganglion cells (RGCs). L-AP4 decreased circuit noise evident in RGC recordings without significantly reducing response amplitudes, an effect that persisted over the entire time course of rod photoreceptor degeneration. Subsequent in vitro recordings from rod bipolar cells (RBCs) showed that RBCs are more depolarized in rd10 retinas, likely contributing to downstream circuit noise and reduced synaptic gain, both of which appear to be ameliorated by hyperpolarizing RBCs with L-AP4. These beneficial effects may reduce pathological circuit remodeling and preserve the efficacy of therapies designed to restore vision.
Collapse
Affiliation(s)
- Xiaoyi Li
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA 21218
| | - Miloslav Sedlacek
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Amurta Nath
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Klaudia P. Szatko
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - William N. Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
5
|
Zhang X, Jeong H, Niu J, Holland SM, Rotanz BN, Gordon J, Einarson MB, Childers WE, Thomas GM. Novel inhibitors of acute, axonal DLK palmitoylation are neuroprotective and avoid the deleterious side effects of cell-wide DLK inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590310. [PMID: 38712276 PMCID: PMC11071345 DOI: 10.1101/2024.04.19.590310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dual leucine-zipper kinase (DLK) drives acute and chronic forms of neurodegeneration, suggesting that inhibiting DLK signaling could ameliorate diverse neuropathological conditions. However, direct inhibition of DLK's kinase domain in human patients and conditional knockout of DLK in mice both cause unintended side effects, including elevated plasma neurofilament levels, indicative of neuronal cytoskeletal disruption. Indeed, we found that a DLK kinase domain inhibitor acutely disrupted the axonal cytoskeleton and caused vesicle aggregation in cultured dorsal root ganglion (DRG) neurons, further cautioning against this therapeutic strategy. In seeking a more precise intervention, we found that retrograde (axon-to-soma) pro-degenerative signaling requires acute, axonal palmitoylation of DLK and hypothesized that modulating this post-translational modification might be more specifically neuroprotective than cell-wide DLK inhibition. To address this possibility, we screened >28,000 compounds using a high-content imaging assay that quantitatively evaluates DLK's palmitoylation-dependent subcellular localization. Of the 33 hits that significantly altered DLK localization in non-neuronal cells, several reduced DLK retrograde signaling and protected cultured DRG neurons from DLK-dependent neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent stimulus-dependent palmitoylation of axonal pools of DLK, a process crucial for DLK's recruitment to axonal vesicles. In contrast, these compounds minimally impact DLK localization and signaling in healthy neurons and avoid the cytoskeletal disruption associated with direct DLK inhibition. Importantly, our hit compounds also reduce pro-degenerative retrograde signaling in vivo, suggesting that modulating DLK's palmitoylation-dependent localization could be a novel neuroprotective strategy.
Collapse
|
6
|
Shimizu S, Honjo M, Liu M, Aihara M. An Autotaxin-Induced Ocular Hypertension Mouse Model Reflecting Physiological Aqueous Biomarker. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 38386333 PMCID: PMC10896239 DOI: 10.1167/iovs.65.2.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Purpose Animal models of ocular hypertension (OH) have been developed to understand the pathogenesis of glaucoma and facilitate drug discovery. However, many of these models are fraught with issues, including severe intraocular inflammation and technical challenges. Lysophosphatidic acid (LPA) is implicated in trabecular meshwork fibrosis and increased resistance of aqueous outflow, factors that contribute to high intraocular pressure (IOP) in human open-angle glaucoma. We aimed to elevate IOP by increasing expression of the LPA-producing enzyme autotaxin (ATX) in mouse eyes. Methods Tamoxifen-inducible ATX transgenic mice were developed. Tamoxifen was administered to six- to eight-week-old mice via eye drops to achieve ATX overexpression in the eye. IOP and retinal thickness were measured over time, and retinal flat-mount were evaluated to count retinal ganglion cells (RGCs) loss after three months. Results Persistent elevation of ATX expression in mouse eyes was confirmed through immunohistochemistry and LysoPLD activity measurement. ATX Tg mice exhibited significantly increased IOP for nearly two months following tamoxifen treatment, with no anterior segment changes or inflammation. Immunohistochemical analysis revealed enhanced expression of extracellular matrix near the angle after two weeks and three months of ATX induction. This correlated with reduced outflow facility, indicating that sustained ATX overexpression induces angle fibrosis, elevating IOP. Although inner retinal layer thickness remained stable, peripheral retina showed a notable reduction in RGC cell count. Conclusions These findings confirm the successful creation of an open-angle OH mouse model, in which ATX expression in the eye prompts fibrosis near the angle and maintains elevated IOP over extended periods.
Collapse
Affiliation(s)
- Shota Shimizu
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Senju Laboratory of Ocular Science, Senju Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Mengxuan Liu
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|
8
|
Duvnjak M, Villois A, Ramazani F. Biodegradable Long-Acting Injectables: Platform Technology and Industrial Challenges. Handb Exp Pharmacol 2024; 284:133-150. [PMID: 37059910 DOI: 10.1007/164_2023_651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Long-acting injectables have been used to benefit patients with chronic diseases. So far, several biodegradable long-acting platform technologies including drug-loaded polymeric microparticles, implants (preformed and in situ forming), oil-based solutions, and aqueous suspension have been established. In this chapter, we summarize all the marketed technology platforms and discuss their challenges regarding development including but not limited to controlling drug release, particle size, stability, sterilization, scale-up manufacturing, etc. Finally, we discuss important criteria to consider for the successful development of long-acting injectables.
Collapse
Affiliation(s)
- Marieta Duvnjak
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Alessia Villois
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
9
|
Nguyen VP, Hu J, Zhe J, Chen EY, Yang D, Paulus YM. Multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging of USH2A knockout rabbits. Sci Rep 2023; 13:22071. [PMID: 38086867 PMCID: PMC10716268 DOI: 10.1038/s41598-023-48872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Usher syndrome type 2A (USH2A) is a genetic disorder characterized by retinal degeneration and hearing loss. To better understand the pathogenesis and progression of this syndrome, animal models such as USH2A knockout (USH2AKO) rabbits have been developed. In this study, we employed multimodal imaging techniques, including photoacoustic microscopy (PAM), optical coherence tomography (OCT), fundus autofluorescence (FAF), fluorescein angiography (FA), and indocyanine green angiography (ICGA) imaging to evaluate the retinal changes in the USH2AKO rabbit model. Twelve New Zealand White rabbits including USH2AKO and wild type (WT) were used for the experiments. Multimodal imaging was implemented at different time points over a period of 12 months to visualize the progression of retinal changes in USH2AKO rabbits. The results demonstrate that ellipsoid zone (EZ) disruption and degeneration, key features of Usher syndrome, began at the age of 4 months old and persisted up to 12 months. The EZ degeneration areas were clearly observed on the FAF and OCT images. The FAF images revealed retinal pigment epithelium (RPE) degeneration, confirming the presence of the disease phenotype in the USH2AKO rabbits. In addition, PAM images provided high-resolution and high image contrast of the optic nerve and the retinal microvasculature, including retinal vessels, choroidal vessels, and capillaries in three-dimensions. The quantification of EZ fluorescent intensity using FAF and EZ thickness using OCT provided comprehensive quantitative data on the progression of degenerative changes over time. This multimodal imaging approach allowed for a comprehensive and non-invasive assessment of retinal structure, microvasculature, and degenerative changes in the USH2AKO rabbit model. The combination of PAM, OCT, and fluorescent imaging facilitated longitudinal monitoring of disease progression and provided valuable insights into the pathophysiology of USH2A syndrome. These findings contribute to the understanding of USH2A syndrome and may have implications for the development of diagnostic and therapeutic strategies for affected individuals. The multimodal imaging techniques employed in this study offer a promising platform for preclinical evaluation of potential treatments and may pave the way for future clinical applications in patients with Usher syndrome.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Eugene Y Chen
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, 2800 Plymouth Rd NCRC B26-355S, Ann Arbor, MI, 48109-2800, USA
| | - Dongshan Yang
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, 2800 Plymouth Rd NCRC B26-355S, Ann Arbor, MI, 48109-2800, USA.
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
10
|
Hu J, Gong X, Fan Y, Aguilar S, Rigo F, Prakash TP, Corey DR, Mootha VV. Modulation of Gene Expression in the Eye with Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:339-347. [PMID: 37917066 PMCID: PMC10698777 DOI: 10.1089/nat.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/16/2023] [Indexed: 11/03/2023] Open
Abstract
One advantage of antisense oligonucleotides (ASOs) for drug development is their long-lasting gene knockdown after administration in vivo. In this study, we examine the effect on gene expression after intraocular injection in target tissues in the eye. We examined expression levels of the Malat1 gene after intracameral or intravitreal (IV) injection of an anti-Malat1 ASO in corneal epithelium/stroma, corneal endothelium, lens capsule epithelium, neurosensory retina, and retinal pigment epithelium/choroid of the mouse eye. We assessed potency of the compound at 7 days as well as duration of the gene knockdown at 14, 28, 60, 90, and 120 days. The ASO was more potent when delivered by IV injection relative to intracameral injection, regardless of whether the tissues analyzed were at the front or back of the eye. For corneal endothelium, inhibition was >50% after 120 days for ASO at 50 μg. At IV dosages of 6 μg, we observed >75% inhibition of gene expression in the retina and lens epithelium for up to 120 days. ASOs have potential as long-lasting gene knockdown agents in the mouse eye, but efficacy varies depending on the specific ocular target tissue and injection protocol.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Pharmacology and Biochemistry, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Gong
- Department of Ophthalmology, and University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Yan Fan
- Department of Ophthalmology, and University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Selina Aguilar
- Department of Pharmacology and Biochemistry, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
- Department of Ophthalmology, and University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | - David R. Corey
- Department of Pharmacology and Biochemistry, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - V. Vinod Mootha
- Department of Ophthalmology, and University of Texas, Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Asteriti S, Marino V, Avesani A, Biasi A, Dal Cortivo G, Cangiano L, Dell'Orco D. Recombinant protein delivery enables modulation of the phototransduction cascade in mouse retina. Cell Mol Life Sci 2023; 80:371. [PMID: 38001384 PMCID: PMC10673981 DOI: 10.1007/s00018-023-05022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy.
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
12
|
Moon CH, Lee AJ, Jeon HY, Kim EB, Ha KS. Therapeutic effect of ultra-long-lasting human C-peptide delivery against hyperglycemia-induced neovascularization in diabetic retinopathy. Theranostics 2023; 13:2424-2438. [PMID: 37215567 PMCID: PMC10196831 DOI: 10.7150/thno.81714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Neovascularization is a hallmark of the late stages of diabetic retinopathy (DR) leading to blindness. The current anti-DR drugs have clinical disadvantages including short circulation half-lives and the need for frequent intraocular administration. New therapies with long-lasting drug release and minimal side effects are therefore needed. We explored a novel function and mechanism of a proinsulin C-peptide molecule with ultra-long-lasting delivery characteristics for the prevention of retinal neovascularization in proliferative diabetic retinopathy (PDR). Methods: We developed a strategy for ultra-long intraocular delivery of human C-peptide using an intravitreal depot of K9-C-peptide, a human C-peptide conjugated to a thermosensitive biopolymer, and investigated its inhibitory effect on hyperglycemia-induced retinal neovascularization using human retinal endothelial cells (HRECs) and PDR mice. Results: In HRECs, high glucose conditions induced oxidative stress and microvascular permeability, and K9-C-peptide suppressed those effects similarly to unconjugated human C-peptide. A single intravitreal injection of K9-C-peptide in mice resulted in the slow release of human C-peptide that maintained physiological levels of C-peptide in the intraocular space for at least 56 days without inducing retinal cytotoxicity. In PDR mice, intraocular K9-C-peptide attenuated diabetic retinal neovascularization by normalizing hyperglycemia-induced oxidative stress, vascular leakage, and inflammation and restoring blood-retinal barrier function and the balance between pro- and anti-angiogenic factors. Conclusions: K9-C-peptide provides ultra-long-lasting intraocular delivery of human C-peptide as an anti-angiogenic agent to attenuate retinal neovascularization in PDR.
Collapse
Affiliation(s)
| | | | | | | | - Kwon-Soo Ha
- ✉ Corresponding author: Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do 24341, Korea. Tel: +82-33-250-8833, E-mail address:
| |
Collapse
|
13
|
Nhàn NTT, Maidana DE, Yamada KH. Ocular Delivery of Therapeutic Agents by Cell-Penetrating Peptides. Cells 2023; 12:1071. [PMID: 37048144 PMCID: PMC10093283 DOI: 10.3390/cells12071071] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides with the ability to translocate through the cell membrane to facilitate their cellular uptake. CPPs can be used as drug-delivery systems for molecules that are difficult to uptake. Ocular drug delivery is challenging due to the structural and physiological complexity of the eye. CPPs may be tailored to overcome this challenge, facilitating cellular uptake and delivery to the targeted area. Retinal diseases occur at the posterior pole of the eye; thus, intravitreal injections are needed to deliver drugs at an effective concentration in situ. However, frequent injections have risks of causing vision-threatening complications. Recent investigations have focused on developing long-acting drugs and drug delivery systems to reduce the frequency of injections. In fact, conjugation with CPP could deliver FDA-approved drugs to the back of the eye, as seen by topical application in animal models. This review summarizes recent advances in CPPs, protein/peptide-based drugs for eye diseases, and the use of CPPs for drug delivery based on systematic searches in PubMed and clinical trials. We highlight targeted therapies and explore the potential of CPPs and peptide-based drugs for eye diseases.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Daniel E. Maidana
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kaori H. Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
14
|
Ahmadi-Noorbakhsh S, Farajli Abbasi M, Ghasemi M, Bayat G, Davoodian N, Sharif-Paghaleh E, Poormoosavi SM, Rafizadeh M, Maleki M, Shirzad-Aski H, Kargar Jahromi H, Dadkhah M, Khalvati B, Safari T, Behmanesh MA, Khoshnam SE, Houshmand G, Talaei SA. Anesthesia and analgesia for common research models of adult mice. Lab Anim Res 2022; 38:40. [PMID: 36514128 PMCID: PMC9746144 DOI: 10.1186/s42826-022-00150-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Anesthesia and analgesia are major components of many interventional studies on laboratory animals. However, various studies have shown improper reporting or use of anesthetics/analgesics in research proposals and published articles. In many cases, it seems "anesthesia" and "analgesia" are used interchangeably, while they are referring to two different concepts. Not only this is an unethical practice, but also it may be one of the reasons for the proven suboptimal quality of many animal researches. This is a widespread problem among investigations on various species of animals. However, it could be imagined that it may be more prevalent for the most common species of laboratory animals, such as the laboratory mice. In this review, proper anesthetic/analgesic methods for routine procedures on laboratory mice are discussed. We considered the available literature and critically reviewed their anesthetic/analgesic methods. Detailed dosing and pharmacological information for the relevant drugs are provided and some of the drugs' side effects are discussed. This paper provides the necessary data for an informed choice of anesthetic/analgesic methods in some routine procedures on laboratory mice.
Collapse
Affiliation(s)
- Siavash Ahmadi-Noorbakhsh
- Preclinical Core Facility (TPCF), Tehran University of Medical Sciences, Tehran, Iran.
- The National Ethics Committee for Biomedical Research, Floor 13th, Complex A, Ministry of Health and Medical Education, Eyvanak Blvd., Shahrake Gharb, Tehran, Iran.
| | - Mohammad Farajli Abbasi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ehsan Sharif-Paghaleh
- Preclinical Core Facility (TPCF), Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, England
| | - Seyedeh Mahsa Poormoosavi
- Department of Histology, School of Medicine, Research and Clinical Center for Infertility, Dezful University of Medical Sciences, Dezful, Iran
| | - Melika Rafizadeh
- Department of Pharmacology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Maleki
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Hossein Kargar Jahromi
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Bahman Khalvati
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Tahereh Safari
- School of Medicine, Department of Physiology, PhD, Zahedan University of Medical Sciences, Zahedan, Iran
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Seyed Esmaeil Khoshnam
- Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Houshmand
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Lin CH, Sun YJ, Lee SH, Mujica EM, Kunchur CR, Wu MR, Yang J, Jung YS, Chiang B, Wang S, Mahajan VB. A protocol to inject ocular drug implants into mouse eyes. STAR Protoc 2022; 3:101143. [PMID: 35141566 PMCID: PMC8810562 DOI: 10.1016/j.xpro.2022.101143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ocular drug implants (ODIs) are beneficial for treating ocular diseases. However, the lack of a robust injection approach for small-eyed model organisms has been a major technical limitation in developing ODIs. Here, we present a cost-effective, minimally invasive protocol to deliver ODIs into the mouse vitreous called Mouse Implant Intravitreal Injection (MI3). MI3 provides two alternative surgical approaches (air-pressure or plunger) to deliver micro-scaled ODIs into milli-scaled eyes, and expands the preclinical platforms to determine ODIs' efficacy, toxicity, and pharmacokinetics. For complete details on the use and execution of this protocol, please refer to Sun et al. (2021).
Collapse
Affiliation(s)
- Cheng-Hui Lin
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Young Joo Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Elena M. Mujica
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Caitlin R. Kunchur
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Man-Ru Wu
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Jing Yang
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Youn Soo Jung
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Bryce Chiang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Sui Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
16
|
Akhter MH, Ahmad I, Alshahrani MY, Al-Harbi AI, Khalilullah H, Afzal O, Altamimi ASA, Najib Ullah SNM, Ojha A, Karim S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022; 8:82. [PMID: 35200463 PMCID: PMC8871777 DOI: 10.3390/gels8020082] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood-retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood-retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46477, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | | | - Abhijeet Ojha
- Six Sigma Institute of Technology and Science, College of Pharmacy, Rudrapur 263153, India;
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|