1
|
Xu Z, Wang R, Xu Y, Qiu R, Chen J, Liu L, Qian Q. Comparative analysis and process optimization for manufacturing CAR-T using the PiggyBac system derived from cryopreserved versus fresh PBMCs. Sci Rep 2025; 15:5023. [PMID: 39934258 PMCID: PMC11814250 DOI: 10.1038/s41598-025-89686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Chimeric antigen receptor T (CAR-T) therapy holds promise for cancer treatment but faces challenges with using fresh patient cells, including manufacturing failures and logistical hurdles. Cryopreserved peripheral blood mononuclear cells (PBMCs) offer a potential solution, and while lentiviral processes have been reported for generating CAR-T from these cells, few studies have demonstrated successful PiggyBac electroporation methods. Therefore, the objectives of our study were twofold: Firstly, to conduct a comparative study on cryopreserved PBMCs, fresh PBMCs, and their respective preparations of CAR-T. Secondly, to establish a PiggyBac electroporation CAR-T preparation process using cryopreserved PBMCs through process optimization. The results revealed that long-term frozen PBMCs viability in a relatively stable manner. CAR-T generated from cryopreserved PBMCs exhibited comparable expansion potential, cell phenotype, differentiation profiles, exhaustion markers, and cytotoxicity against human ovarian cancer cell line (SKOV-3) cells to those derived from fresh PBMCs. Moreover, through process optimization, we further enhanced the proliferation and toxicity of CAR-T. This approach has the potential to revolutionize the CAR-T production model by utilizing healthy donor cells instead of patient cells. This shift could mitigate issues affecting treatment efficacy, such as suboptimal cell condition following illness or delays in cell preparation.
Collapse
Affiliation(s)
- Zenghui Xu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai Cell Therapy Research Institute, 1585 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai University Mengchao Cancer Hospital, 118 Qianyang Road, Shanghai, 201805, Shanghai, China.
| | - Ruyue Wang
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Yuanjian Xu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Ruijuan Qiu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Jiangrui Chen
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Linfeng Liu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Qijun Qian
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai Cell Therapy Research Institute, 1585 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai University Mengchao Cancer Hospital, 118 Qianyang Road, Shanghai, 201805, Shanghai, China.
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, Shanghai, China.
| |
Collapse
|
2
|
Valentini CG, Pellegrino C, Teofili L. Pros and Cons of Cryopreserving Allogeneic Stem Cell Products. Cells 2024; 13:552. [PMID: 38534396 PMCID: PMC10968795 DOI: 10.3390/cells13060552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The COVID-19 pandemic has precipitously changed the practice of transplanting fresh allografts. The safety measures adopted during the pandemic prompted the near-universal graft cryopreservation. However, the influence of cryopreserving allogeneic grafts on long-term transplant outcomes has emerged only in the most recent literature. In this review, the basic principles of cell cryopreservation are revised and the effects of cryopreservation on the different graft components are carefully reexamined. Finally, a literature revision on studies comparing transplant outcomes in patients receiving cryopreserved and fresh grafts is illustrated.
Collapse
Affiliation(s)
- Caterina Giovanna Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.G.V.); (C.P.)
| | - Claudio Pellegrino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.G.V.); (C.P.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luciana Teofili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (C.G.V.); (C.P.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
3
|
Worel N, Ljungman P, Verheggen ICM, Hoogenboom JD, Knelange NS, Eikema DJ, Sánchez-Ortega I, Riillo C, Centorrino I, Averbuch D, Chabannon C, de la Camara R, Kuball J, Ruggeri A. Fresh or frozen grafts for allogeneic stem cell transplantation: conceptual considerations and a survey on the practice during the COVID-19 pandemic from the EBMT Infectious Diseases Working Party (IDWP) and Cellular Therapy & Immunobiology Working Party (CTIWP). Bone Marrow Transplant 2023; 58:1348-1356. [PMID: 37673982 DOI: 10.1038/s41409-023-02099-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The COVID-19 pandemic has had a significant impact on medical practices, including the delivery of allogeneic hematopoietic cell transplantation (HCT). In response, transplant centers have made changes to their procedures, including an increased use of cryopreservation for allogeneic haematopoietic progenitor cell (HPC) grafts. The use of cryopreserved grafts for allogeneic HCT has been reviewed and analysed in terms of potential benefits and drawbacks based on existing data on impact on cell subsets, hematological recovery, and clinical outcomes of approximately 2000 patients from different studies. A survey of European Society for Blood and Marrow Transplantation centers was also conducted to assess changes in practice during the pandemic and any unnecessary burdens on HPC donors. Before the pandemic, only 7.4% of transplant centers were routinely cryopreserving HPC products, but this percentage increased to 90% during the pandemic. The results of this review and survey suggest that cryopreservation of HPC grafts is a viable option for allogeneic HCT in certain situations, but further research is needed to determine long-term effects and ethical discussions are required to balance the needs of donors and patients when using frozen allografts.
Collapse
Affiliation(s)
- N Worel
- Medical University Vienna; Department. of Transfusion Medicine and Cell Therapy, Vienna, Austria.
| | - P Ljungman
- Department. of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge and Div. of Hematology, Department. of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - D-J Eikema
- EBMT Statistical Unit, Leiden, Netherlands
| | | | - C Riillo
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - I Centorrino
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - D Averbuch
- Faculty of Medicine, Hebrew University of Jerusalem; Hadassah Medical Center, Jerusalem, Israel
| | - C Chabannon
- Institut Paoli-Calmettes, Centre de Lutte Contre le Cancer; Centre d'Investigations Cliniques en Biothérapie, Université d'Aix-Marseille, Inserm CBT, 1409, Marseille, France
| | | | - J Kuball
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - A Ruggeri
- Ospedale San Raffaele s.r.l., Haematology and BMT, Milan, Italy
| |
Collapse
|
4
|
Amini L, Kaeda J, Fritsche E, Roemhild A, Kaiser D, Reinke P. Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective. Front Cell Dev Biol 2023; 10:1081644. [PMID: 36794233 PMCID: PMC9924129 DOI: 10.3389/fcell.2022.1081644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Rejection of solid organ transplant and graft versus host disease (GvHD) continue to be challenging in post transplantation management. The introduction of calcineurin inhibitors dramatically improved recipients' short-term prognosis. However, long-term clinical outlook remains poor, moreover, the lifelong dependency on these toxic drugs leads to chronic deterioration of graft function, in particular the renal function, infections and de-novo malignancies. These observations led investigators to identify alternative therapeutic options to promote long-term graft survival, which could be used concomitantly, but preferably, replace pharmacologic immunosuppression as standard of care. Adoptive T cell (ATC) therapy has evolved as one of the most promising approaches in regenerative medicine in the recent years. A range of cell types with disparate immunoregulatory and regenerative properties are actively being investigated as potential therapeutic agents for specific transplant rejection, autoimmunity or injury-related indications. A significant body of data from preclinical models pointed to efficacy of cellular therapies. Significantly, early clinical trial observations have confirmed safety and tolerability, and yielded promising data in support of efficacy of the cellular therapeutics. The first class of these therapeutic agents commonly referred to as advanced therapy medicinal products have been approved and are now available for clinical use. Specifically, clinical trials have supported the utility of CD4+CD25+FOXP3+ regulatory T cells (Tregs) to minimize unwanted or overshooting immune responses and reduce the level of pharmacological immunosuppression in transplant recipients. Tregs are recognized as the principal orchestrators of maintaining peripheral tolerance, thereby blocking excessive immune responses and prevent autoimmunity. Here, we summarize rationale for the adoptive Treg therapy, challenges in manufacturing and clinical experiences with this novel living drug and outline future perspectives of its use in transplantation.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Petra Reinke,
| |
Collapse
|
5
|
Haider P, Hoberstorfer T, Salzmann M, Fischer MB, Speidl WS, Wojta J, Hohensinner PJ. Quantitative and Functional Assessment of the Influence of Routinely Used Cryopreservation Media on Mononuclear Leukocytes for Medical Research. Int J Mol Sci 2022; 23:ijms23031881. [PMID: 35163803 PMCID: PMC8837123 DOI: 10.3390/ijms23031881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Quantitative and functional analysis of mononuclear leukocyte populations is an invaluable tool to understand the role of the immune system in the pathogenesis of a disease. Cryopreservation of mononuclear cells (MNCs) is routinely used to guarantee similar experimental conditions. Immune cells react differently to cryopreservation, and populations and functions of immune cells change during the process of freeze–thawing. To allow for a setup that preserves cell number and function optimally, we tested four different cryopreservation media. MNCs from 15 human individuals were analyzed. Before freezing and after thawing, the distribution of leukocytes was quantified by flow cytometry. Cultured cells were stimulated using lipopolysaccharide, and their immune response was quantified by flow cytometry, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). Ultimately, the performance of the cryopreservation media was ranked. Cell recovery and viability were different between the media. Cryopreservation led to changes in the relative number of monocytes, T cells, B cells, and their subsets. The inflammatory response of MNCs was altered by cryopreservation, enhancing the basal production of inflammatory cytokines. Different cryopreservation media induce biases, which needs to be considered when designing a study relying on cryopreservation. Here, we provide an overview of four different cryopreservation media for choosing the optimal medium for a specific task.
Collapse
Affiliation(s)
- Patrick Haider
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Timothy Hoberstorfer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
| | - Manuel Salzmann
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Walter S. Speidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-73500
| | - Philipp J. Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Li YR, Zhou Y, Kim YJ, Zhu Y, Ma F, Yu J, Wang YC, Chen X, Li Z, Zeng S, Wang X, Lee D, Ku J, Tsao T, Hardoy C, Huang J, Cheng D, Montel-Hagen A, Seet CS, Crooks GM, Larson SM, Sasine JP, Wang X, Pellegrini M, Ribas A, Kohn DB, Witte O, Wang P, Yang L. Development of allogeneic HSC-engineered iNKT cells for off-the-shelf cancer immunotherapy. Cell Rep Med 2021; 2:100449. [PMID: 34841295 PMCID: PMC8607011 DOI: 10.1016/j.xcrm.2021.100449] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/12/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023]
Abstract
Cell-based immunotherapy has become the new-generation cancer medicine, and "off-the-shelf" cell products that can be manufactured at large scale and distributed readily to treat patients are necessary. Invariant natural killer T (iNKT) cells are ideal cell carriers for developing allogeneic cell therapy because they are powerful immune cells targeting cancers without graft-versus-host disease (GvHD) risk. However, healthy donor blood contains extremely low numbers of endogenous iNKT cells. Here, by combining hematopoietic stem cell (HSC) gene engineering and in vitro differentiation, we generate human allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells at high yield and purity; these cells closely resemble endogenous iNKT cells, effectively target tumor cells using multiple mechanisms, and exhibit high safety and low immunogenicity. These cells can be further engineered with chimeric antigen receptor (CAR) to enhance tumor targeting or/and gene edited to ablate surface human leukocyte antigen (HLA) molecules and further reduce immunogenicity. Collectively, these preclinical studies demonstrate the feasibility and cancer therapy potential of AlloHSC-iNKT cell products and lay a foundation for their translational and clinical development.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanni Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Chen Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xianhui Chen
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhe Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel Zeng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xi Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Josh Ku
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tasha Tsao
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian Hardoy
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S. Seet
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M. Crooks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah M. Larson
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua P. Sasine
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Owen Witte
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
8
|
Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy. BioDrugs 2021; 35:529-545. [PMID: 34427899 DOI: 10.1007/s40259-021-00494-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Dimethylsufoxide (DMSO) being universally used as a cryoprotectant in clinical adoptive cell-therapy settings to treat hematological malignancies and solid tumors is a growing concern, largely due to its broad toxicities. Its use has been associated with significant clinical side effects-cardiovascular, neurological, gastrointestinal, and allergic-in patients receiving infusions of cell-therapy products. DMSO has also been associated with altered expression of natural killer (NK) and T-cell markers and their in vivo function, not to mention difficulties in scaling up DMSO-based cryoprotectants, which introduce manufacturing challenges for autologous and allogeneic cellular therapies, including chimeric antigen receptor (CAR)-T and CAR-NK cell therapies. Interest in developing alternatives to DMSO has resulted in the evaluation of a variety of sugars, proteins, polymers, amino acids, and other small molecules and osmolytes as well as modalities to efficiently enable cellular uptake of these cryoprotectants. However, the DMSO-free cryopreservation of NK and T cells remains difficult. They represent heterogeneous cell populations that are sensitive to freezing and thawing. As a result, clinical use of cryopreserved cell-therapy products has not moved past the use of DMSO. Here, we present the state of the art in the development and use of cryopreservation options that do not contain DMSO toward clinical solutions to enable the global deployment of safer adoptively transferred cell-based therapies.
Collapse
|
9
|
Su T, Ying Z, Lu XA, He T, Song Y, Wang X, Ping L, Xie Y, Tu M, Liu G, Qi F, Ding Y, Jing H, Zhu J. The clinical outcomes of fresh versus cryopreserved CD19-directed chimeric antigen receptor T cells in non-Hodgkin lymphoma patients. Cryobiology 2020; 96:106-113. [PMID: 32721392 DOI: 10.1016/j.cryobiol.2020.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
CD19-directed chimeric antigen receptor T (CAR-T) cells have been widely reported in the therapy of relapsed/refractory non-Hodgkin lymphoma (NHL). Both cryopreserved and fresh formulations of CAR-T have been used in previous studies. However, quite a few studies investigated the effects of cryopreservation on the clinical outcomes of CAR-T cells. Here we retrospectively analyzed a phase I/II clinical trial of CD19-directed CAR-T cells in NHL patients, and compared the safety and efficacy of cryopreserved and fresh CAR-T products. All CAR-T cells were prepared using the same manufacturing process except the formulation step. Fifteen patients were infused with cryopreserved/thawed CAR-T cells, and 8 patients were treated with fresh CAR-T cells. Comparative overall response rates and in vivo expansion kinetics of CAR-T cells were observed between the cryopreserved cohort and fresh cohort. The occurrence rates of cytokine release syndrome and neurotoxicity were also similar in both groups. Patients in the fresh cohort showed higher incidence of acute hematological toxicity including anemia, hypoleukemia, and thrombocytopenia. This study demonstrated that cryopreservation showed negligible effects on the efficacy of CD19-directed CAR-T cells, but endowed CAR-T cells with higher safety in NHL patients, supporting the application of cryopreserved CAR-T products for NHL therapy.
Collapse
Affiliation(s)
- Tong Su
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Haidian District, Beijing, 100191, China
| | - Zhitao Ying
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Xin-An Lu
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China
| | - Ting He
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China
| | - Yuqin Song
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Xiaopei Wang
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Lingyan Ping
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Yan Xie
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Meifeng Tu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Guanghua Liu
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China
| | - Feifei Qi
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China
| | - Yanping Ding
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China.
| | - Hongmei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Haidian District, Beijing, 100191, China.
| | - Jun Zhu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China.
| |
Collapse
|
10
|
Willbrand BN, Loh S, O'Connell-Rodwell CE, O'Connell D, Ridgley DM. Phoenix: A Portable, Battery-Powered, and Environmentally Controlled Platform for Long-Distance Transportation of Live-Cell Cultures. Front Bioeng Biotechnol 2020; 8:696. [PMID: 32671052 PMCID: PMC7332540 DOI: 10.3389/fbioe.2020.00696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the advent of advanced therapy medicinal products (ATMPs) in regenerative medicine, gene therapy, cell therapies, tissue engineering, and immunotherapy, the availability of treatment is limited to patients close to state-of-the-art facilities. The SCORPIO-V Division of HNu Photonics has developed the Phoenix-Live Cell TransportTM, a battery-operated mobile incubator designed to facilitate long-distance transportation of living cell cultures from GMP facilities to remote areas for increased patient accessibility to ATMPs. This work demonstrates that PhoenixTM (patent pending) is a superior mechanism for transporting living cells compared to the standard method of shipping frozen cells on dry ice (-80°C) or in liquid nitrogen (-150°C), which are destructive to the biology as well as a time consuming process. Thus, Phoenix will address a significant market need within the burgeoning ATMP industry. SH-SY5Y neuroblastoma cells were cultured in a stationary Phoenix for up to 5 days to assess cell viability and proliferation. The results show there is no significant difference in cell proliferation (∼5X growth on day 5) or viability (>90% viability on all days) when cultured in PhoenixTM and compared to a standard 5% CO2 incubator. Similarly, SH-SY5Y cells were evaluated following ground (1-3 days) and air (30 min) shipments to understand the impact of transit vibrations on the cell cultures. The results indicate that there is no significant difference in SH-SY5Y cell proliferation (∼2X growth on day 3) or viability (>90% viability for all samples) when the cells are subjected to the vibrations of ground and air transportation when compared to control samples in a standard, stationary 5% CO2 incubator. Furthermore, the temperature, pressure, humidity, and accelerometer sensors log data during culture shipment to ensure that the sensitive ATMPs are handled with the appropriate care during transportation. The PhoenixTM technology innovation will significantly increase the accessibility, reproducibility, and quality-controlled transport of living ATMPs to benefit the widespread commercialization of ATMPs globally. These results demonstrate that PhoenixTM can transport sensitive cell lines with the same care as traditional culture techniques in a stationary CO2 incubator with higher yield, less time and labor, and greater quality control than frozen samples.
Collapse
Affiliation(s)
| | - Sylvia Loh
- SCORPIO-V Division, HNu Photonics LLC, Kahului, HI, United States
| | | | - Dan O'Connell
- SCORPIO-V Division, HNu Photonics LLC, Kahului, HI, United States
| | - Devin M Ridgley
- SCORPIO-V Division, HNu Photonics LLC, Kahului, HI, United States
| |
Collapse
|
11
|
Understanding the freezing responses of T cells and other subsets of human peripheral blood mononuclear cells using DSMO-free cryoprotectants. Cytotherapy 2020; 22:291-300. [PMID: 32220549 DOI: 10.1016/j.jcyt.2020.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND This study examined the freezing responses of peripheral blood mononuclear cells (PBMCs) and specific white blood cell subsets contained therein when cryopreserved in three combinations of osmolytes composed of sugars, sugar alcohols and amino acids. METHODS A differential evolution algorithm with multiple objectives was used to optimize cryoprotectant composition and thus the post-thaw recoveries for both helper and cytotoxicity T cells simultaneously. RESULTS The screening of various formulations using a differential evolution algorithm showed post-thaw recoveries greater than 80% for the two subsets of T cells. The phenotypes and viabilities of PBMC subsets were characterized using flow cytometry. Significant differences between the post-thaw recovery for helper T cells and cytotoxic T cells were observed. Statistical models were used to analyze the importance of individual osmolytes and interactions between post-thaw recoveries of three subsets of T cell including helper T cells, cytotoxic T cells and natural killer T cells. The statistical model indicated that the preferred concentration levels of osmolytes and interaction modes were distinct between the three subsets studied. PBMCs were cultured for 72 h post-thaw to determine the stability of the cells. Because post-thaw apoptosis is a significant concern for lymphocytes, apoptosis of helper T cell and cytotoxic T cells frozen in a DMSO-free cryoprotectant was analyzed immediately post-thaw and 24 h post-thaw. Both cell types showed a decrease in cell viability 24 h post-thaw compared with immediately post-thaw. Helper T cell viability dropped 17%, and cytotoxic T cells had a 10% drop in viability. Immediately post-thaw, both cell types had >30% of cells in early apoptosis, but after 24 h the number of cells in early apoptosis decreased to below 20%. CONCLUSION This study helped us identify the freezing responses of different human PBMC subsets using combinations of osmolytes.
Collapse
|
12
|
Cryopreservation timing is a critical process parameter in a thymic regulatory T-cell therapy manufacturing protocol. Cytotherapy 2019; 21:1216-1233. [PMID: 31810768 DOI: 10.1016/j.jcyt.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022]
Abstract
Regulatory T cells (Tregs) are a promising therapy for several immune-mediated conditions but manufacturing a homogeneous and consistent product, especially one that includes cryopreservation, has been challenging. Discarded pediatric thymuses are an excellent source of therapeutic Tregs with advantages including cell quantity, homogeneity and stability. Here we report systematic testing of activation reagents, cell culture media, restimulation timing and cryopreservation to develop a Good Manufacturing Practice (GMP)-compatible method to expand and cryopreserve Tregs. By comparing activation reagents, including soluble antibody tetramers, antibody-conjugated beads and artificial antigen-presenting cells (aAPCs) and different media, we found that the combination of Dynabeads Treg Xpander and ImmunoCult-XF medium preserved FOXP3 expression and suppressive function and resulted in expansion that was comparable with a single stimulation with aAPCs. Cryopreservation tests revealed a critical timing effect: only cells cryopreserved 1-3 days, but not >3 days, after restimulation maintained high viability and FOXP3 expression upon thawing. Restimulation timing was a less critical process parameter than the time between restimulation and cryopreservation. This systematic testing of key variables provides increased certainty regarding methods for in vitro expansion and cryopreservation of Tregs. The ability to cryopreserve expanded Tregs will have broad-ranging applications including enabling centralized manufacturing and long-term storage of cell products.
Collapse
|
13
|
Anderson J, Toh ZQ, Reitsma A, Do LAH, Nathanielsz J, Licciardi PV. Effect of peripheral blood mononuclear cell cryopreservation on innate and adaptive immune responses. J Immunol Methods 2018; 465:61-66. [PMID: 30447244 DOI: 10.1016/j.jim.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
Cryopreservation of blood-derived immune cells is commonly used in clinical trials to examine immunological responses. However, studies elucidating the effects of cryopreservation on peripheral blood mononuclear cell (PBMC) responses have shown inconsistent results making it difficult to draw meaningful conclusions. Therefore we sought to address this issue by comparing key innate and adaptive immune parameters between freshly-isolated and cryopreserved PBMCs from healthy adults. We examined the effect of cryopreservation on the expression of key markers on innate and adaptive immune cell populations (i.e. CD4+ and CD8+ [T cells], CD14+ [monocytes], CD19+ [B cells], CD56+ [NK cells] or CD19 + CD27+ [memory B cells]), on cytokine secretion (TNF-α, INF-γ, IL-1β, IL-10, IL-6, MCP-1 and RANTES) in cultured PBMC supernatants following stimulation with a range of Toll-like receptor (TLR) agonists, as well as on antigen-specific memory B cell enumeration by ELISpot. We found that cryopreservation had no effect on the expression of immune markers on innate and adaptive immune cells as well on the number of antigen-specific memory B cells. However, the response to TLR ligands such as FLA-ST, CpG and LPS was variable with increased cytokine production by cryopreserved PBMCs observed compared to freshly-isolated PBMCs. Our results suggest that the effect of cryopreservation on the biological response of immune cell populations needs to be carefully considered, particularly in the context of clinical studies that rely on these immune outcomes.
Collapse
Affiliation(s)
- Jeremy Anderson
- Pneumococcal Research, Murdoch Children's Research Institute, Melbourne, Melbourne, VIC 3052, Australia
| | - Zheng Quan Toh
- Pneumococcal Research, Murdoch Children's Research Institute, Melbourne, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - Andrea Reitsma
- Pneumococcal Research, Murdoch Children's Research Institute, Melbourne, Melbourne, VIC 3052, Australia
| | - Lien Anh Ha Do
- Pneumococcal Research, Murdoch Children's Research Institute, Melbourne, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Australia
| | - Jordan Nathanielsz
- Pneumococcal Research, Murdoch Children's Research Institute, Melbourne, Melbourne, VIC 3052, Australia
| | - Paul V Licciardi
- Pneumococcal Research, Murdoch Children's Research Institute, Melbourne, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Australia.
| |
Collapse
|
14
|
Xu H, Cao W, Huang L, Xiao M, Cao Y, Zhao L, Wang N, Zhou J. Effects of cryopreservation on chimeric antigen receptor T cell functions. Cryobiology 2018; 83:40-47. [PMID: 29908946 DOI: 10.1016/j.cryobiol.2018.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022]
Abstract
Chimeric antigen receptor T (CART) cell therapy has emerged as a potentially curative "drug" for cancer treatment. Cryopreservation of CART cells is necessary for their clinical application. Systematic studies on the effects of cryopreservation on the antitumor function of CART cells are lacking. Therefore, we compared the phenotypes and functions of CART cells that were cryopreserved during ex vivo expansion with those of freshly isolated populations. T cells expressing an anti-B-cell-maturation-antigen (BCMA) chimeric antigen receptor (CAR) were expanded in vitro for 10 days and then cryopreserved. After one month, the cells were resuscitated, and their transduction rates, apoptosis rates and cell subsets were examined via flow cytometry. The results indicated no significant changes in transduction rates or cell subsets, and the survival rate of the resuscitated cells was approximately 90% Furthermore, similar tumoricidal effects and degranulation functions of the resuscitated cells compared with normally cultured cells were verified by calcein release and CD107a assays. A NOD/SCID mouse model was used to estimate the differences in the in vivo antitumor effects of the cryopreserved and normally cultured T cells, but no significant differences were observed. Following co-culture with several target cell types, the cytokines released by the cryopreserved and normally cultured T cells were measured via enzyme-linked immunosorbent assays (ELISAs). The results revealed that the release of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) was significantly decreased. These data demonstrated that with the exception of a decrease in cytokine release, the cryopreserved CART cells retained their antitumor functions.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenyue Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|