1
|
Seplovich G, Bouchi Y, de Rivero Vaccari JP, Pareja JCM, Reisner A, Blackwell L, Mechref Y, Wang KK, Tyndall JA, Tharakan B, Kobeissy F. Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Neural Regen Res 2025; 20:1644-1664. [PMID: 39104096 PMCID: PMC11688549 DOI: 10.4103/nrr.nrr-d-24-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease are three distinct neurological disorders that share common pathophysiological mechanisms involving neuroinflammation. One sequela of neuroinflammation includes the pathologic hyperphosphorylation of tau protein, an endogenous microtubule-associated protein that protects the integrity of neuronal cytoskeletons. Tau hyperphosphorylation results in protein misfolding and subsequent accumulation of tau tangles forming neurotoxic aggregates. These misfolded proteins are characteristic of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease and can lead to downstream neuroinflammatory processes, including assembly and activation of the inflammasome complex. Inflammasomes refer to a family of multimeric protein units that, upon activation, release a cascade of signaling molecules resulting in caspase-induced cell death and inflammation mediated by the release of interleukin-1β cytokine. One specific inflammasome, the NOD-like receptor protein 3, has been proposed to be a key regulator of tau phosphorylation where it has been shown that prolonged NOD-like receptor protein 3 activation acts as a causal factor in pathological tau accumulation and spreading. This review begins by describing the epidemiology and pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease. Next, we highlight neuroinflammation as an overriding theme and discuss the role of the NOD-like receptor protein 3 inflammasome in the formation of tau deposits and how such tauopathic entities spread throughout the brain. We then propose a novel framework linking traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease as inflammasome-dependent pathologies that exist along a temporal continuum. Finally, we discuss potential therapeutic targets that may intercept this pathway and ultimately minimize long-term neurological decline.
Collapse
Affiliation(s)
| | - Yazan Bouchi
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer C. Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Reisner
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Laura Blackwell
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K. Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Tanabe H, Maeda S, Sano E, Sakai N, Endoh-Yamagami S, Okano H. Tau aggregation induces cell death in iPSC-derived neurons. AGING BRAIN 2025; 7:100136. [PMID: 40276591 PMCID: PMC12018045 DOI: 10.1016/j.nbas.2025.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Abnormal accumulation of tau proteins in the brain is a hallmark of neurodegenerative diseases such as Alzheimer's disease and is closely linked with neuronal cell death. Tau accumulation is a prominent therapeutic target for Alzheimer's disease, since tau accumulation correlates well with the disease progression, and tau-targeting drugs hold potentials to halt the disease progression. Given the differential response of human and mouse neuronal cells, there is a critical need for a human cellular platform to quickly screen for tau-related neurodegenerative disease therapeutics. However, inducing rapid, tau-dependent neuronal cell death in human models remains challenging. In this study, we established a human cellular model capable of inducing tau aggregation-dependent neuronal cell death within two weeks via tau overexpression. Additionally, we demonstrated the neuroprotective efficacy of known tau-targeting compounds within this system. These findings suggest that our cellular model recapitulates the molecular pathogenesis of tau-induced neurodegeneration and could serve as a valuable platform for drug screening in tauopathies.
Collapse
Affiliation(s)
- Hirokazu Tanabe
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, Kanagawa, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Etsuko Sano
- Keio University Regenerative Medicine Research Center, Kanagawa, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences Hiroshima University, Hiroshima, Japan
| | | | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, Japan
| |
Collapse
|
3
|
Moore JA, Kang C, Vigneshwaran V, Stanley EAM, Memon A, Wilms M, Forkert ND. Towards realistic simulation of disease progression in the visual cortex with CNNs. Sci Rep 2025; 15:6099. [PMID: 39972104 PMCID: PMC11839997 DOI: 10.1038/s41598-025-89738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Convolutional neural networks (CNNs) and mammalian visual systems share architectural and information processing similarities. We leverage these parallels to develop an in-silico CNN model simulating diseases affecting the visual system. This model aims to replicate neural complexities in an experimentally controlled environment. Therefore, we examine object recognition and internal representations of a CNN under neurodegeneration and neuroplasticity conditions simulated through synaptic weight decay and retraining. This approach can model neurodegeneration from events like tau accumulation, reflecting cognitive decline in diseases such as posterior cortical atrophy, a condition that can accompany Alzheimer's disease and primarily affects the visual system. After each degeneration iteration, we retrain unaffected synapses to simulate ongoing neuroplasticity. Our results show that with significant synaptic decay and limited retraining, the model's representational similarity decreases compared to a healthy model. Early CNN layers retain high similarity to the healthy model, while later layers are more prone to degradation. The results of this study reveal a progressive decline in object recognition proficiency, mirroring posterior cortical atrophy progression. In-silico modeling of neurodegenerative diseases can enhance our understanding of disease progression and aid in developing targeted rehabilitation and treatments.
Collapse
Affiliation(s)
- Jasmine A Moore
- Department of Radiology, University of Calgary, Calgary, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada.
| | - Chris Kang
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Vibujithan Vigneshwaran
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Emma A M Stanley
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada
| | - Ashar Memon
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Calgary, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Manna PR, Yang S, Manna C, Waters H, Islam MA, Reddy AP, Rawat P, Reddy PH. Steroidogenic acute regulatory protein mediated variations of gender-specific sex neurosteroids in Alzheimer's disease: Relevance to hormonal and neuronal imbalance. Neurosci Biobehav Rev 2025; 169:105969. [PMID: 39631487 DOI: 10.1016/j.neubiorev.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The steroidogenic acute regulatory (StAR) protein mediates the rate-liming step in neuro/steroid biosynthesis. Multifaceted and delicate changes during aging, disrupting hormonal and neuronal homeostasis, constitute human senescence, an inevitable phenomenon that attributes to increased morbidity and mortality. Aging, along with progressive decreases in bioactive neurosteroids, is the primary risk factor for Alzheimer's disease (AD), which preferentially impacts two-thirds of women and one-third of men. AD is neuropathologically characterized by the accumulation of extracellular amyloid-β and intracellular phosphorylated Tau containing neurofibrillary tangles, resulting in dementia. Postmortem brains pertaining to gender-specific AD patients exhibit varied suppression of StAR and sex neurosteroid levels compared with age-matched cognitively healthy subjects, in which the attenuation of StAR is inversely correlated with the AD pathological markers. Interestingly, retinoid signaling upregulates StAR-motivated neurosteroid biosynthesis and reinstates various neurodegenerative vulnerabilities that promote AD pathogenesis. This review summarizes current understanding of StAR-driven alterations of sex neurosteroids in gender-specific AD risks and provides biochemical and molecular insights into therapeutic interventions for preventing and/or alleviating dementia for healthy aging.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Chayan Manna
- Baylor College of Medicine, Ben Taub Research Center, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Hope Waters
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
5
|
Park HH, Kim BH, Leem SH, Park YH, Chung H, Yoo DH, Park I, Nam Y, Kim S, Shin SJ, Moon M. Therapeutic Potential of Traditional Oriental Medicines in Targeting Tau Pathology: Insights from Cell-free and Cell-based Screening. Curr Med Chem 2025; 32:1830-1845. [PMID: 38486385 DOI: 10.2174/0109298673295901240311072440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 05/13/2025]
Abstract
BACKGROUND Traditional Oriental Medicines (TOMs) formulated using a variety of medicinal plants have a low risk of side effects. In previous studies, five TOMs, namely Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, Palmijihwanghwan, and Jowiseungchungtang have been commonly used to treat patients with Alzheimer's disease (AD). However, only a few studies have investigated the effects of these five TOMs on tau pathology. OBJECTIVE This study aimed to examine the effect of five TOMs on various tau pathologies, including post-translational modifications, aggregation and deposition, tau-induced neurotoxicity, and tau-induced neuroinflammation. METHODS Immunocytochemistry was used to investigate the hyperphosphorylation of tau induced by okadaic acid. In addition, the thioflavin T assay was used to assess the effects of the TOMs on the inhibition of tau K18 aggregation and the dissociation of tau K18 aggregates. Moreover, a water-soluble tetrazolium-1 assay and a quantitative reverse transcription polymerase chain reaction were used to evaluate the effects of the TOMs on tau-induced neurotoxicity and inflammatory cytokines in HT22 and BV2 cells, respectively. RESULTS The five TOMs investigated in this study significantly reduced okadaic acid-induced tau hyperphosphorylation. Hwanglyeonhaedoktang inhibited the aggregation of tau and promoted the dissociation of tau aggregates. Dangguijakyaksan and Hwanglyeonhaedoktang attenuated tau-induced neurotoxicity in HT22 cells. In addition, Dangguijakyaksan, Hwanglyeonhaedoktang, Ukgansan, and Palmijihwanghwan reduced tauinduced pro-inflammatory cytokine levels in BV2 cells. CONCLUSION Our results suggest that five TOMs are potential therapeutic candidates for tau pathology. In particular, Hwanglyeonhaedoktang showed the greatest efficacy among the five TOMs in cell-free and cell-based screening approaches. These findings suggest that Hwanglyeonhaedoktang is suitable for treating AD patients with tau pathology.
Collapse
Grants
- NRF-2018R1D1A3B07041059, RS-2023-00240010, NRF-2022R1A6A3A13053190, RS-2023-00212388, RS-2023-00273557, NRF-2022R1I1A3052949 Basic Science Research Program of the National Research Foundation of Korea (NRF), by the Ministry of Science, ICT & Future Planning
- HF21C0021, HI23C1263 Korea Health Technology R&D Project through, Korea Health Industry Development Institute (KHIDI), by the Ministry of Health & Welfare, Republic of Korea
Collapse
Affiliation(s)
- Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital Gangdong, Seoul, 05278, Republic of Korea
| | - Doo-Han Yoo
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro Seo-gu, Daejeon, 35365, Republic of Korea
- Department of Occupational Therapy, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, 158, Gwanjeodong- ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro Seo-gu, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro Seo-gu, Daejeon, 35365, Republic of Korea
| |
Collapse
|
6
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
7
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
8
|
Sharma M, Pal P, Gupta SK. Advances in Alzheimer's disease: A multifaceted review of potential therapies and diagnostic techniques for early detection. Neurochem Int 2024; 177:105761. [PMID: 38723902 DOI: 10.1016/j.neuint.2024.105761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) remains one of the most formidable neurological disorders, affecting millions globally. This review provides a holistic overview of the therapeutic strategies, both conventional and novel, aimed at mitigating the impact of AD. Initially, we delve into the conventional approach, emphasizing the role of Acetylcholinesterase (AChE) inhibition, which has been a cornerstone in AD management. As our understanding of AD evolves, several novel potential approaches emerge. We discuss the promising roles of Butyrylcholinesterase (BChE) inhibition, Tau Protein inhibitors, COX-2 inhibition, PPAR-γ agonism, and FAHH inhibition, among others. The potential of the endocannabinoids (eCB) system, cholesterol-lowering drugs, metal chelators, and MMPs inhibitors are also explored, culminating in the exploration of the pivotal role of microRNA in AD progression. Parallel to these therapeutic insights, we shed light on the novel tools and methodologies revolutionizing AD research. From the quantitative analysis of gene expression by qRTPCR to the evaluation of mitochondrial function using induced pluripotent stem cells (iPSCs), the advances in diagnostic and research tools offer renewed hope. Moreover, we explore the current landscape of clinical trials, highlighting the leading drug interventions and their respective stages of development. This comprehensive review concludes with a look into the future perspectives, capturing the potential breakthroughs and innovations on the horizon. Through a synthesis of current knowledge and emerging research, this article aims to provide a consolidated resource for clinicians, researchers, and academicians in the realm of Alzheimer's disease.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
9
|
Segura L, Santos N, Flores R, Sikazwe D, McGibbon M, Blay V, Cheng KH. Exploring Tau Fibril-Disaggregating and Antioxidating Molecules Binding to Membrane-Bound Amyloid Oligomers Using Machine Learning-Enhanced Docking and Molecular Dynamics. Molecules 2024; 29:2818. [PMID: 38930883 PMCID: PMC11206291 DOI: 10.3390/molecules29122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Intracellular tau fibrils are sources of neurotoxicity and oxidative stress in Alzheimer's. Current drug discovery efforts have focused on molecules with tau fibril disaggregation and antioxidation functions. However, recent studies suggest that membrane-bound tau-containing oligomers (mTCOs), smaller and less ordered than tau fibrils, are neurotoxic in the early stage of Alzheimer's. Whether tau fibril-targeting molecules are effective against mTCOs is unknown. The binding of epigallocatechin-3-gallate (EGCG), CNS-11, and BHT-CNS-11 to in silico mTCOs and experimental tau fibrils was investigated using machine learning-enhanced docking and molecular dynamics simulations. EGCG and CNS-11 have tau fibril disaggregation functions, while the proposed BHT-CNS-11 has potential tau fibril disaggregation and antioxidation functions like EGCG. Our results suggest that the three molecules studied may also bind to mTCOs. The predicted binding probability of EGCG to mTCOs increases with the protein aggregate size. In contrast, the predicted probability of CNS-11 and BHT-CNS-11 binding to the dimeric mTCOs is higher than binding to the tetrameric mTCOs for the homo tau but not for the hetero tau-amylin oligomers. Our results also support the idea that anionic lipids may promote the binding of molecules to mTCOs. We conclude that tau fibril-disaggregating and antioxidating molecules may bind to mTCOs, and that mTCOs may also be useful targets for Alzheimer's drug design.
Collapse
Affiliation(s)
- Luthary Segura
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA;
| | - Natalia Santos
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| | - Rafael Flores
- Pharmaceutical Sciences Department, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78209, USA; (R.F.); (D.S.)
| | - Donald Sikazwe
- Pharmaceutical Sciences Department, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78209, USA; (R.F.); (D.S.)
| | - Miles McGibbon
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK;
| | - Vincent Blay
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Kwan H. Cheng
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA;
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| |
Collapse
|
10
|
Paul S, Biswas P. Molecular Dynamics Simulation Study of the Self-Assembly of Tau-Derived PHF6 and Its Inhibition by Oleuropein Aglycone from Extra Virgin Olive Oil. J Phys Chem B 2024; 128:5630-5641. [PMID: 38814052 DOI: 10.1021/acs.jpcb.4c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Alzheimer's disease (AD) and other taupathies are neurodegenerative disorders associated with the amyloid deposition of the Tau protein in the brain. This amyloid formation may be inhibited by small molecules, which is recognized as one of the best therapeutic strategies to stop the progression of the disease. This work focuses on the small nucleating segment, hexapeptide-paired helical filament 6 (PHF6), responsible for Tau aggregation. Using computational modeling and classical molecular dynamics simulations, we show that PHF6 monomers collapse in water to form β-sheet rich structures, and the main olive oil polyphenol oleuropein aglycone (OleA) prevents peptide aggregation significantly. We gradually increase the ratio of the PHF6-OleA from 1:1 to 1:3 and find that for the 1:1 ratio, the peptide monomers are prone to form aggregated structures, while for the 1:2 ratio, the formation of the extended β-sheet structure is significantly less. For a 1:3 ratio of protein/OleA, the peptide residues are sufficiently crowded by OleA molecules through hydrogen bonding, hydrophobic interactions, and π-π stacking; hence, the peptide chains prefer to exist in a monomeric random coil conformation.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
11
|
Kim S, Shin SJ, Nam Y, Park YH, Kim BH, Park HH, Kumar V, Yoo DH, Lee YY, Hoe HS, Moon M. Korean red ginseng polysaccharide as a potential therapeutic agent targeting tau pathology in Alzheimer's disease. Int J Biol Macromol 2024; 263:130516. [PMID: 38423419 DOI: 10.1016/j.ijbiomac.2024.130516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Tau is a microtubule-associated protein that plays a critical role in the stabilization and modulation of neuronal axons. Tau pathology is stronger associated with cognitive decline in patients with Alzheimer's disease (AD) than amyloid beta (Aβ) pathology. Hence, tau targeting is a promising approach for the treatment of AD. Previous studies have demonstrated that the non-saponin fraction with rich polysaccharide (NFP) from Korean red ginseng (KRG) can modulate tau aggregation and exert a therapeutic effect on AD. Therefore, we investigated the efficacy of NFP isolated from KRG on tau pathology in experimental models of AD. Our results showed that NFP from KRG ameliorated deposition and hyperphosphorylation of tau in the brain of 3xTg mice. Moreover, NFP from KRG modulated the aggregation and dissociation of tau K18 in vitro. We demonstrated the alleviatory effects of NFP from KRG on hyperphosphorylated tau and tau kinase in okadaic acid-treated HT22 cells. Furthermore, NFP from KRG mitigated Aβ deposition, neurodegeneration, and neuroinflammation in 3xTg mice. We revealed the neuroprotective effects of NFP from KRG on tau-induced neuronal loss in HT22 cells. Our results indicate that NFP extracted from KRG is a novel therapeutic agent for the treatment of AD associated with tau pathology.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Doo-Han Yoo
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Department of Occupational Therapy, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu 41068, Republic of Korea; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
12
|
Medina-Vera D, López-Gambero AJ, Navarro JA, Sanjuan C, Baixeras E, Decara J, de Fonseca FR. Novel insights into D-Pinitol based therapies: a link between tau hyperphosphorylation and insulin resistance. Neural Regen Res 2024; 19:289-295. [PMID: 37488880 PMCID: PMC10503604 DOI: 10.4103/1673-5374.379015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer's disease. The pathogenesis of Alzheimer's disease is mainly mediated by the phosphorylation and aggregation of tau protein. Among the multiple causes of tau hyperphosphorylation, brain insulin resistance has generated much attention, and inositols as insulin sensitizers, are currently considered candidates for drug development. The present narrative review revises the interactions between these three elements: Alzheimer's disease-tau-inositols, which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | | | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| |
Collapse
|
13
|
Hu J, Sha W, Yuan S, Wu J, Huang Y. Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension. Int J Mol Sci 2023; 24:15023. [PMID: 37834471 PMCID: PMC10573976 DOI: 10.3390/ijms241915023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Collapse
Affiliation(s)
- Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Wenchi Sha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Shuangshuang Yuan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
14
|
Ahn S, Suh JS, Jang YK, Kim H, Han K, Lee Y, Choi G, Kim TJ. TAUCON and TAUCOM: A novel biosensor based on fluorescence resonance energy transfer for detecting tau hyperphosphorylation-associated cellular pathologies. Biosens Bioelectron 2023; 237:115533. [PMID: 37517333 DOI: 10.1016/j.bios.2023.115533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Tauopathies are neurodegenerative diseases characterized by abnormal conformational changes in tau protein. Early hyperphosphorylation-induced conformational changes are considered a hallmark of tauopathy, but real-time tracking methods are lacking. Here, we present two novel fluorescence resonance energy transfer (FRET)-based tau biosensors that detect such changes with high spatiotemporal resolution at the single-cell level. The TAUCON biosensor measures instantaneous conformational changes in hyperphosphorylated tau within 20 min, while the TAUCOM biosensor detects changes in the paper-clip structure of microtubule-associated tau. Our biosensors provide faster and more precise detection than conventional methods and can serve as valuable tools for investigating the initial causes, mechanisms, progression, and treatment of tauopathies.
Collapse
Affiliation(s)
- Sanghyun Ahn
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yoon-Kwan Jang
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Heonsu Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Kiseok Han
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yerim Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea; Department of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea; Institute of System Biology, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
15
|
Pinzi L, Bisi N, Sorbi C, Franchini S, Tonali N, Rastelli G. Insights into the Structural Conformations of the Tau Protein in Different Aggregation Status. Molecules 2023; 28:4544. [PMID: 37299020 PMCID: PMC10254443 DOI: 10.3390/molecules28114544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Tau is a protein characterized by large structural portions displaying extended conformational changes. Unfortunately, the accumulation of this protein into toxic aggregates in neuronal cells leads to a number of severe pathologies, collectively named tauopathies. In the last decade, significant research advancements were achieved, including a better understanding of Tau structures and their implication in different tauopathies. Interestingly, Tau is characterized by a high structural variability depending on the type of disease, the crystallization conditions, and the formation of pathologic aggregates obtained from in vitro versus ex vivo samples. In this review, we reported an up-to-date and comprehensive overview of Tau structures reported in the Protein Data Bank, with a special focus on discussing the connections between structural features, different tauopathies, different crystallization conditions, and the use of in vitro or ex vivo samples. The information reported in this article highlights very interesting links between all these aspects, which we believe may be of particular relevance for a more informed structure-based design of compounds able to modulate Tau aggregation.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| | - Nicolò Bisi
- Centre National de la Recherche Scientifique (CNRS), Université de Paris-Saclay, BioCIS, Bat. Henri Moissan, 17 Av. des Sciences, 91400 Orsay, France; (N.B.); (N.T.)
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| | - Nicolò Tonali
- Centre National de la Recherche Scientifique (CNRS), Université de Paris-Saclay, BioCIS, Bat. Henri Moissan, 17 Av. des Sciences, 91400 Orsay, France; (N.B.); (N.T.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| |
Collapse
|
16
|
Hernandez CM, Barkey RE, Craven KM, Pedemonte KA, Alisantosa B, Sanchez JO, Flinn JM. Transfusion with Blood Plasma from Young Mice Affects rTg4510 Transgenic Tau Mice Modeling of Alzheimer's Disease. Brain Sci 2023; 13:841. [PMID: 37371321 DOI: 10.3390/brainsci13060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the buildup of plaques and tangles in the brain. Tangles are formed when the stabilizing protein, tau, becomes hyperphosphorylated and clumps together. There are limited treatments for AD; therefore, the exploration of new treatments is warranted. Previous research showed that plasma transfusion from young donor mice improved spatial memory and increased synaptic proteins in old transgenic APP/PS1 mice, suggesting a remediation of memory and synaptic function. In the current study, plasma was transfused from 2-3-month-old young wildtype mice (WT) to 8-month-old rTg4510 mice expressing human tau (Tau). One week after the transfusions, behavior and tau pathology were examined. We found that Tau mice injected with plasma had lower expression of phosphorylated tau (ptau) in the brain, accompanied by fewer tau tangles in the cortex and CA1 region of the hippocampus and smaller tau tangles in the cortex, when compared to Tau mice injected with saline. Despite no improvement in behavior, the decreased level of ptau and tangles open the door to future studies involving plasma transfusions.
Collapse
Affiliation(s)
- Carlos M Hernandez
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Rachel E Barkey
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Kristen M Craven
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Karin A Pedemonte
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Bernadette Alisantosa
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Jonathan O Sanchez
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Jane M Flinn
- Department of Cognitive and Behavioral Neuroscience, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
17
|
Moore KBE, Hung TJ, Fortin JS. Hyperphosphorylated tau (p-tau) and drug discovery in the context of Alzheimer's disease and related tauopathies. Drug Discov Today 2023; 28:103487. [PMID: 36634842 PMCID: PMC9975055 DOI: 10.1016/j.drudis.2023.103487] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by intracellular neurofibrillary tangles (NFTs) and extracellular β-amyloid (βA) plaques. No disease-modifying therapy is currently available to prevent the progression of, or cure, the disease. Misfolded hyperphosphorylated tau (p-tau) is considered a pivotal point in the pathogenesis of AD and other tauopathies. Compelling evidence suggests that it is a key driver of the accumulation of NFTs and can be directly correlated with the extent of dementia in patients with AD. Therefore, inhibiting tau hyperphosphorylation-induced aggregation could be a viable strategy to discover and develop therapeutics for patients with AD.
Collapse
Affiliation(s)
- Kendall B E Moore
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, USA
| | - Ta-Jung Hung
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, USA
| | - Jessica S Fortin
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, USA.
| |
Collapse
|
18
|
Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Mol Neurobiol 2023; 60:1690-1720. [PMID: 36562884 DOI: 10.1007/s12035-022-03164-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A few protein kinases and phosphatases regulate tau protein phosphorylation and an imbalance in their enzyme activity results in tau hyper-phosphorylation. Aberrant tau phosphorylation causes tau to dissociate from the microtubules and clump together in the cytosol to form neurofibrillary tangles (NFTs), which lead to the progression of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Hence, targeting hyperphosphorylated tau protein is a restorative approach for treating neurodegenerative tauopathies. The cyclin-dependent kinase (Cdk5) and the glycogen synthase kinase (GSK3β) have both been implicated in aberrant tau hyperphosphorylation. The limited transport of drugs through the blood-brain barrier (BBB) for reaching the central nervous system (CNS) thus represents a significant problem in the development of drugs. Drug delivery systems based on nanocarriers help solve this problem. In this review, we discuss the tau protein, regulation of tau phosphorylation and abnormal hyperphosphorylation, drugs in use or under clinical trials, and treatment strategies for tauopathies based on the critical role of tau hyperphosphorylation in the pathogenesis of the disease. Pathology of neurodegenerative disease due to hyperphosphorylation and various therapeutic approaches including nanotechnology for its treatment.
Collapse
|
19
|
Mohammadi Z, Alizadeh H, Marton J, Cumming P. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET. Biomolecules 2023; 13:290. [PMID: 36830659 PMCID: PMC9953528 DOI: 10.3390/biom13020290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperphosphorylated tau aggregates, also known as neurofibrillary tangles, are a hallmark neuropathological feature of Alzheimer's disease (AD). Molecular imaging of tau by positron emission tomography (PET) began with the development of [18F]FDDNP, an amyloid β tracer with off-target binding to tau, which obtained regional specificity through the differing distributions of amyloid β and tau in AD brains. A concerted search for more selective and affine tau PET tracers yielded compounds belonging to at least eight structural categories; 18F-flortaucipir, known variously as [18F]-T807, AV-1451, and Tauvid®, emerged as the first tau tracer approved by the American Food and Drug Administration. The various tau tracers differ concerning their selectivity over amyloid β, off-target binding at sites such as monoamine oxidase and neuromelanin, and degree of uptake in white matter. While there have been many reviews of molecular imaging of tau in AD and other conditions, there has been no systematic comparison of the fitness of the various tracers for discriminating between AD patient and healthy control (HC) groups. In this narrative review, we endeavored to compare the binding properties of the various tau tracers in vitro and the effect size (Cohen's d) for the contrast by PET between AD patients and age-matched HC groups. The available tracers all gave good discrimination, with Cohen's d generally in the range of two-three in culprit brain regions. Overall, Cohen's d was higher for AD patient groups with more severe illness. Second-generation tracers, while superior concerning off-target binding, do not have conspicuously higher sensitivity for the discrimination of AD and HC groups. We suppose that available pharmacophores may have converged on a maximal affinity for tau fibrils, which may limit the specific signal imparted in PET studies.
Collapse
Affiliation(s)
- Zohreh Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hadi Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Straße 10-14, D-01454 Radeberg, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
20
|
Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2022; 23:12841. [PMID: 36361631 PMCID: PMC9654278 DOI: 10.3390/ijms232112841] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly people. Amyloid beta (Aβ) deposits and neurofibrillary tangles are the major pathological features in an Alzheimer's brain. These proteins are highly expressed in nerve cells and found in most tissues. Tau primarily provides stabilization to microtubules in the part of axons and dendrites. However, tau in a pathological state becomes hyperphosphorylated, causing tau dysfunction and leading to synaptic impairment and degeneration of neurons. This article presents a summary of the role of tau, phosphorylated tau (p-tau) in AD, and other tauopathies. Tauopathies, including Pick's disease, frontotemporal dementia, corticobasal degeneration, Alzheimer's disease, argyrophilic grain disease, progressive supranuclear palsy, and Huntington's disease, are the result of misprocessing and accumulation of tau within the neuronal and glial cells. This article also focuses on current research on the post-translational modifications and genetics of tau, tau pathology, the role of tau in tauopathies and the development of new drugs targeting p-tau, and the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasbir Bisht
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John Culberson
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
21
|
Lee B, Wang T. A Modular Scaffold for Controlling Transcriptional Activation via Homomeric Protein-Protein Interactions. ACS Synth Biol 2022; 11:3198-3206. [PMID: 36215660 DOI: 10.1021/acssynbio.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein-protein interactions (PPIs) have been extensively utilized in synthetic biology to construct artificial gene networks. However, synthetic regulation of gene expression by PPIs in E. coli has largely relied upon repressors, and existing PPI-controlled transcriptional activators have generally been employed with heterodimeric interactions. Here we report a highly modular, PPI-dependent transcriptional activator, cCadC, that was designed to be compatible with homomeric interactions. We describe the process of engineering cCadC from a transmembrane protein into a soluble cytosolic regulator. We then show that gene transcription by cCadC can be controlled by homomeric PPIs and furthermore discriminates between dimeric and higher-order interactions. Finally, we demonstrate that cCadC activity can be placed under small molecule regulation using chemically induced dimerization or ligand dependent stabilization. This work should greatly expand the scope of PPIs that can be employed in artificial gene circuits in E. coli and complements the existing repertoire of tools for transcriptional regulation in synthetic biology.
Collapse
Affiliation(s)
- ByungUk Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tina Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Trumbore CN, Raghunandan A. An Alzheimer's Disease Mechanism Based on Early Pathology, Anatomy, Vascular-Induced Flow, and Migration of Maximum Flow Stress Energy Location with Increasing Vascular Disease. J Alzheimers Dis 2022; 90:33-59. [PMID: 36155517 DOI: 10.3233/jad-220622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper suggests a chemical mechanism for the earliest stages of Alzheimer's disease (AD). Cerebrospinal fluid (CSF) flow stresses provide the energy needed to induce molecular conformation changes leading to AD by initiating amyloid-β (Aβ) and tau aggregation. Shear and extensional flow stresses initiate aggregation in the laboratory and in natural biophysical processes. Energy-rich CSF flow regions are mainly found in lower brain regions. MRI studies reveal flow stress "hot spots" in basal cisterns and brain ventricles that have chaotic flow properties that can distort molecules such as Aβ and tau trapped in these regions into unusual conformations. Such fluid disturbance is surrounded by tissue deformation. There is strong mapping overlap between the locations of these hot spots and of early-stage AD pathology. Our mechanism creates pure and mixed protein dimers, followed by tissue surface adsorption, and long-term tissue agitation ultimately inducing chemical reactions forming more stable, toxic oligomer seeds that initiate AD. It is proposed that different flow stress energies and flow types in different basal brain regions produce different neurotoxic aggregates. Proliferating artery hardening is responsible for enhanced heart systolic pulses that drive energetic CSF pulses, whose critical maximum systolic pulse energy location migrates further from the heart with increasing vascular disease. Two glymphatic systems, carotid and basilar, are suggested to contain the earliest Aβ and tau AD disease pathologies. A key to the proposed AD mechanism is a comparison of early chronic traumatic encephalopathy and AD pathologies. Experiments that test the proposed mechanism are needed.
Collapse
Affiliation(s)
- Conrad N Trumbore
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Aditya Raghunandan
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
23
|
Zuo Z, Li L, Yan X, Zhang L. Glucose Starvation Causes ptau S409 Increase in N2a Cells Through ATF3/PKAcα Signaling Pathway. Neurochem Res 2022; 47:3298-3308. [PMID: 35857208 DOI: 10.1007/s11064-022-03686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
In this work, we report that glucose starvation (GS) causes ptauS409 increase, which may participate in GS-induced neurites retraction in neuro-2a (N2a) cells. Upon GS treatment, PKAcα was stimulated at mRNA and protein levels. Luciferase reporter gene assays indicated that GS regulated PKAcα expression through a core promoter (-345 to -95 bp upstream the transcription starting site) consisting of a cis-acting element of Activating Transcription Factor 3 (ATF3). Knockdown and over-expression experiments demonstrate that ATF3 transcriptionally regulated PKAcα expression. Moreover, GS stimulated ATF3 expression in a time-dependent manner. These findings reveal that glucose starvation induces ptauS409 increase in N2a cells through an ATF3- PKAcα axis, which shed some light on the relationship between brain glucose metabolism and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zifan Zuo
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Ling Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Xuli Yan
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Lianwen Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China. .,Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
Huynh MB, Rebergue N, Merrick H, Gomez-Henao W, Jospin E, Biard DSF, Papy-Garcia D. HS3ST2 expression induces the cell autonomous aggregation of tau. Sci Rep 2022; 12:10850. [PMID: 35760982 PMCID: PMC9237029 DOI: 10.1038/s41598-022-13486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Heparan sulfates have long been known to intracellularly accumulate in Alzheimer's disease neurons, where they colocalize with neurofibrillary tangles made of abnormally phosphorylated and aggregated tau protein. However, the reasons and consequences of the heparan sulfates accumulation in the Alzheimer's cells are not yet well understood. Previously, we showed that the neural heparan sulfate 3-O-sulfotransferase HS3ST2 is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tauopathy. Using cell models of tauopathy we showed that intracellular 3-O-sulfatated heparan sulfates interact with tau inducing its abnormal phosphorylation. However, it is unknown whether HS3ST2 expression induces the intracellular aggregation of tau in cells. Here, by using replicative pEBV plasmids, we engineered HEK293 cells to stably express HS3ST2 together with human tau carrying or not the P301S mutation. We show that HS3ST2 gain of function induces the cell autonomous aggregation of tau not only in cells expressing tauP301S, but also in cells expressing the wild type tau. Our engineered cells mimicked both the HS intracellular accumulation observed in neurons of Alzheimer's disease and the tau aggregation characteristic of tauopathy development and evolution. These results give evidence that the neural HS3ST2 plays a critical role in the cell autonomous self-aggregation of tau.
Collapse
Affiliation(s)
- M B Huynh
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - N Rebergue
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - H Merrick
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - W Gomez-Henao
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
- Departamento de Bioquímica, Laboratorio Internacional Gly-CRRET-UNAM, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Jospin
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - D S F Biard
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
- CEA, Institut de Biologie François Jacob (IBFJ), SEPIA, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - D Papy-Garcia
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France.
| |
Collapse
|
25
|
Meng JX, Zhang Y, Saman D, Haider AM, De S, Sang JC, Brown K, Jiang K, Humphrey J, Julian L, Hidari E, Lee SF, Balmus G, Floto RA, Bryant CE, Benesch JLP, Ye Y, Klenerman D. Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses. Nat Commun 2022; 13:2692. [PMID: 35577786 PMCID: PMC9110413 DOI: 10.1038/s41467-022-30461-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/28/2022] [Indexed: 01/19/2023] Open
Abstract
Soluble aggregates of the microtubule-associated protein tau have been challenging to assemble and characterize, despite their important role in the development of tauopathies. We found that sequential hyperphosphorylation by protein kinase A in conjugation with either glycogen synthase kinase 3β or stress activated protein kinase 4 enabled recombinant wild-type tau of isoform 0N4R to spontaneously polymerize into small amorphous aggregates in vitro. We employed tandem mass spectrometry to determine the phosphorylation sites, high-resolution native mass spectrometry to measure the degree of phosphorylation, and super-resolution microscopy and electron microscopy to characterize the morphology of aggregates formed. Functionally, compared with the unmodified aggregates, which require heparin induction to assemble, these self-assembled hyperphosphorylated tau aggregates more efficiently disrupt membrane bilayers and induce Toll-like receptor 4-dependent responses in human macrophages. Together, our results demonstrate that hyperphosphorylated tau aggregates are potentially damaging to cells, suggesting a mechanism for how hyperphosphorylation could drive neuroinflammation in tauopathies.
Collapse
Affiliation(s)
- Jonathan X Meng
- Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at Cambridge, Cambridge, UK
| | - Yu Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Dominik Saman
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Arshad M Haider
- UK Dementia Research Institute at Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Neuroscience Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Jason C Sang
- Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at Cambridge, Cambridge, UK
| | - Karen Brown
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Kun Jiang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jane Humphrey
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Linda Julian
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric Hidari
- UK Dementia Research Institute at Cambridge, Cambridge, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Gabriel Balmus
- UK Dementia Research Institute at Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Clare E Bryant
- Medicine and Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Yu Ye
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Samluk L, Ostapczuk P, Dziembowska M. Long-term mitochondrial stress induces early steps of Tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis. Mol Biol Cell 2022; 33:ar67. [PMID: 35446108 PMCID: PMC9635289 DOI: 10.1091/mbc.e21-11-0553] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence indicates that mitochondrial dysfunction is involved in the pathogenesis of neurodegenerative diseases. Both of these conditions are often associated with an increase in protein aggregation. However, still unknown are the specific defects of mitochondrial biology that play a critical role in the development of Alzheimer’s disease, in which Tau protein aggregates are observed in the brains of some patients. Here, we report that long-term mitochondrial stress triggered Tau dimerization, which is the first step of protein aggregation. Mitochondrial dysfunction was induced in HEK293T cells that received prolonged treatment with rotenone and in HEK293T cells with the knockout of NDUFA11 protein. To monitor changes in Tau protein aggregation, we took advantage of the bimolecular fluorescence complementation assay using HEK293T cells that were transfected with plasmids that encoded Tau. Inhibition of the ISR with ISRIB induced Tau dimerization, whereas ISR activation with salubrinal, guanabenz, and sephin1 partially reversed this process. Cells that were treated with ROS scavengers, N-acetyl-l-cysteine or MitoQ, significantly reduced the amount of ROS and Tau dimerization, indicating the involvement of oxidative stress in Tau aggregation. Our results indicate that long-term mitochondrial stress may induce early steps of Tau protein aggregation by affecting oxidative balance and cellular proteostasis.
Collapse
Affiliation(s)
- Lukasz Samluk
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Piotr Ostapczuk
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Magdalena Dziembowska
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
27
|
Song L, Oseid DE, Wells EA, Coaston T, Robinson AS. Heparan Sulfate Proteoglycans (HSPGs) Serve as the Mediator Between Monomeric Tau and Its Subsequent Intracellular ERK1/2 Pathway Activation. J Mol Neurosci 2022; 72:772-791. [PMID: 35040015 PMCID: PMC8763444 DOI: 10.1007/s12031-021-01943-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
The conversion of soluble tau protein to insoluble, hyperphosphorylated neurofibrillary tangles (NFTs) is a major hallmark leading to neuronal death observed in neurodegenerative tauopathies. Unlike NFTs, the involvement of monomeric tau in the progression of tau pathology has been less investigated. Using live-cell confocal microscopy and flow cytometry, we demonstrate that soluble 0N4R monomers were rapidly endocytosed by SH-SY5Y and C6 glioma cells via actin-dependent macropinocytosis. Further, cellular endocytosis of monomeric tau has been demonstrated to be HSPG-dependent, as shown in C6 glial cells with genetic knockouts of xylosyltransferase-1-a key enzyme in HSPG synthesis-with a reduced level of tau uptake. Tau internalization subsequently triggers ERK1/2 activation and therefore, the upregulation of IL-6 and IL-1β. The role of ERK1/2 in regulating the levels of pro-inflammatory gene transcripts was confirmed by inhibiting the MEK-ERK1/2 signaling pathway, which led to the attenuated IL-6 and IL-1β expressions but not that of TNF-α. Moreover, as a key regulator of tau internalization, LRP1 (low-density lipoprotein receptor-related protein 1) levels were downregulated in response to monomeric tau added to C6 cells, while it was upregulated in HSPG-deficient cells, suggesting that the involvement of LRP1 in tau uptake depends on the presence of HSPGs on the cell surface. The subsequent LRP1 knockdown experiment we performed shows that LRP1 deficiency leads to an attenuated propensity for tau uptake and further elevated IL-6 gene expression. Collectively, our data suggest that tau has multiple extracellular binding partners that mediate its internalization through distinct mechanisms. Additionally, this study demonstrates the important role of both HSPGs and LRP1 in regulating cellular immune responses to tau protein monomers, providing a novel target for alleviating the neuroinflammatory environment before the formation of neurofibrillary tangles.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Daniel E Oseid
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Evan A Wells
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Troy Coaston
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
28
|
Manos JD, Preiss CN, Venkat N, Tamm J, Reinhardt P, Kwon T, Wu J, Winter AD, Jahn TR, Yanamandra K, Titterton K, Karran E, Langlois X. Uncovering specificity of endogenous TAU aggregation in a human iPSC-neuron TAU seeding model. iScience 2022; 25:103658. [PMID: 35072001 PMCID: PMC8761709 DOI: 10.1016/j.isci.2021.103658] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/27/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Tau pathobiology has emerged as a key component underlying Alzheimer's disease (AD) progression; however, human neuronal in vitro models have struggled to recapitulate tau phenomena observed in vivo. Here, we aimed to define the minimal requirements to achieve endogenous tau aggregation in functional neurons utilizing human induced pluripotent stem cell (hiPSC) technology. Optimized hiPSC-derived cortical neurons seeded with AD brain-derived competent tau species or recombinant tau fibrils displayed increases in insoluble, endogenous tau aggregates. Importantly, MAPT-wild type and MAPT-mutant hiPSC-neurons exhibited unique propensities for aggregation dependent on the seed strain rather than the repeat domain identity, suggesting that successful templating of the recipient tau may be driven by the unique conformation of the seed. The in vitro model presented here represents the first successful demonstration of combining human neurons, endogenous tau expression, and AD brain-derived competent tau species, offering a more physiologically relevant platform to study tau pathobiology.
Collapse
Affiliation(s)
- Justine D. Manos
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Christina N. Preiss
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Nandini Venkat
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Joseph Tamm
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Peter Reinhardt
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Taekyung Kwon
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Jessica Wu
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Allison D. Winter
- Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Thomas R. Jahn
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Kiran Yanamandra
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Katherine Titterton
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Eric Karran
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Xavier Langlois
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Yu H, Shi J, Lin Y, Zhang Y, Luo Q, Huang S, Wang S, Wei J, Huang J, Li C, Ji L. Icariin Ameliorates Alzheimer's Disease Pathology by Alleviating Myelin Injury in 3 × Tg-AD Mice. Neurochem Res 2022; 47:1049-1059. [PMID: 35037164 DOI: 10.1007/s11064-021-03507-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by excessive deposition of β amyloid (Aβ), hyperphosphorylation of tau protein, and neuronal cell death. Recent studies have shown that myelin cell damage, which leads to cognitive dysfunction, occurs before AD-related pathological changes. Here, we examine the effect of icariin (ICA), a prenylated flavonol glycoside, in improving cognitive function in AD model mice. ICA has been reported to exhibit cardiovascular protective functions and antiaging effects. In this study, we used 3 × Tg-AD mice as an AD model. The Morris water maze and Y maze tests were performed to assess the learning and memory of the mice. Immunofluorescence analysis of Aβ1-42 deposition and myelin basic protein (MBP) expression in the mouse hippocampus was performed. Tau protein phosphorylation and MBP protein expression in the hippocampus were further analyzed by Western blotting. Myelin damage in the mouse optic nerve was evaluated by electron microscopy, and LFB staining was performed to assess myelin morphology in the mouse corpus callosum. MBP, Mpp5, and Egr2 transcript levels were quantified by qPCR. We observed that ICA treatment improved the learning and memory of 3 × Tg-AD mice and reduced Aβ deposition and tau protein phosphorylation in the hippocampus. Moreover, this treatment protocol increased myelin-related gene expression and reduced myelin damage.
Collapse
Affiliation(s)
- Hongxia Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianhong Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yiyou Lin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yehui Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qihang Luo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Suo Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sichen Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiale Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junhao Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liting Ji
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
30
|
Lo CH. Recent advances in cellular biosensor technology to investigate tau oligomerization. Bioeng Transl Med 2021; 6:e10231. [PMID: 34589603 PMCID: PMC8459642 DOI: 10.1002/btm2.10231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule binding protein which plays an important role in physiological functions but it is also involved in the pathogenesis of Alzheimer's disease and related tauopathies. While insoluble and β-sheet containing tau neurofibrillary tangles have been the histopathological hallmark of these diseases, recent studies suggest that soluble tau oligomers, which are formed prior to fibrils, are the primary toxic species. Substantial efforts have been made to generate tau oligomers using purified recombinant protein strategies to study oligomer conformations as well as their toxicity. However, no specific toxic tau species has been identified to date, potentially due to the lack of cellular environment. Hence, there is a need for cell-based models for direct monitoring of tau oligomerization and aggregation. This review will summarize the recent advances in the cellular biosensor technology, with a focus on fluorescence resonance energy transfer, bimolecular fluorescence complementation, and split luciferase complementation approaches, to monitor formation of tau oligomers and aggregates in living cells. We will discuss the applications of the cellular biosensors in examining the heterogeneous tau conformational ensembles and factors affecting tau self-assembly, as well as detecting cell-to-cell propagation of tau pathology. We will also compare the advantages and limitations of each type of tau biosensors, and highlight their translational applications in biomarker development and therapeutic discovery.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Neurology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
31
|
Akber U, Jo H, Jeon S, Yang SJ, Bong S, Lim S, Kim YK, Park ZY, Park CS. Cereblon Regulates the Proteotoxicity of Tau by Tuning the Chaperone Activity of DNAJA1. J Neurosci 2021; 41:5138-5156. [PMID: 33972400 PMCID: PMC8211538 DOI: 10.1523/jneurosci.2494-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
Protein aggregation can induce explicit neurotoxic events that trigger a number of presently untreatable neurodegenerative disorders. Chaperones, on the other hand, play a neuroprotective role because of their ability to unfold and refold abnormal proteins. The progressive nature of neurotoxic events makes it important to discover endogenous factors that affect pathologic and molecular phenotypes of neurodegeneration in animal models. Here, we identified microtubule-associated protein tau, and chaperones Hsp70 (heat shock protein 70) and DNAJA1 (DJ2) as endogenous substrates of cereblon (CRBN), a substrate-recruiting subunit of cullin4-RING-E3-ligase. This recruitment results in ubiquitin-mediated degradation of tau, Hsp70, and DJ2. Knocking out CRBN enhances the chaperone activity of DJ2, resulting in decreased phosphorylation and aggregation of tau, improved association of tau with microtubules, and reduced accumulation of pathologic tau across brain. Functionally abundant DJ2 could prevent tau aggregation induced by various factors like okadaic acid and heparin. Depletion of CRBN also decreases the activity of tau-kinases including GSK3α/β, ERK, and p38. Intriguingly, we found a high expression of CRBN and low levels of DJ2 in neuronal tissues of 5XFAD and APP knock-in male mouse models of Alzheimer's disease. This implies that CRBN-mediated DJ2/Hsp70 pathway may be compromised in neurodegeneration. Being one of the primary pathogenic events, elevated CRBN can be a contributing factor for tauopathies. Our data provide a functional link between CRBN and DJ2/Hsp70 chaperone machinery in abolishing the cytotoxicity of aggregation-prone tau and suggest that Crbn-/- mice serve as an animal model of resistance against tauopathies for further exploration of the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Heeji Jo
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seungje Jeon
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seung-Joo Yang
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sunhwa Bong
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sungsu Lim
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Yun Kyung Kim
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Zee-Yong Park
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
32
|
Haditsch U, Roth T, Rodriguez L, Hancock S, Cecere T, Nguyen M, Arastu-Kapur S, Broce S, Raha D, Lynch CC, Holsinger LJ, Dominy SS, Ermini F. Alzheimer's Disease-Like Neurodegeneration in Porphyromonas gingivalis Infected Neurons with Persistent Expression of Active Gingipains. J Alzheimers Dis 2021; 75:1361-1376. [PMID: 32390638 PMCID: PMC7369049 DOI: 10.3233/jad-200393] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis) and its gingipain virulence factors have been identified as pathogenic effectors in Alzheimer's disease (AD). In a recent study we demonstrated the presence of gingipains in over 90% of postmortem AD brains, with gingipains localizing to the cytoplasm of neurons. However, infection of neurons by P. gingivalis has not been previously reported. OBJECTIVE To demonstrate intraneuronal P. gingivalis and gingipain expression in vitro after infecting neurons derived from human inducible pluripotent stem cells (iPSC) with P. gingivalis for 24, 48, and 72 h. METHODS Infection was characterized by transmission electron microscopy, confocal microscopy, and bacterial colony forming unit assays. Gingipain expression was monitored by immunofluorescence and RT-qPCR, and protease activity monitored with activity-based probes. Neurodegenerative endpoints were assessed by immunofluorescence, western blot, and ELISA. RESULTS Neurons survived the initial infection and showed time dependent, infection induced cell death. P. gingivalis was found free in the cytoplasm or in lysosomes. Infected neurons displayed an accumulation of autophagic vacuoles and multivesicular bodies. Tau protein was strongly degraded, and phosphorylation increased at T231. Over time, the density of presynaptic boutons was decreased. CONCLUSION P. gingivalis can invade and persist in mature neurons. Infected neurons display signs of AD-like neuropathology including the accumulation of autophagic vacuoles and multivesicular bodies, cytoskeleton disruption, an increase in phospho-tau/tau ratio, and synapse loss. Infection of iPSC-derived mature neurons by P. gingivalis provides a novel model system to study the cellular mechanisms leading to AD and to investigate the potential of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Sandy Hancock
- Laboratory for Neurotoxicity Studies, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Thomas Cecere
- Laboratory for Neurotoxicity Studies, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Mai Nguyen
- Cortexyme, Inc., South San Francisco, CA, USA
| | | | - Sean Broce
- Cortexyme, Inc., South San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
33
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. BIOCHEMISTRY (MOSCOW) 2021; 85:1011-1034. [PMID: 33050849 DOI: 10.1134/s0006297920090035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Active accumulation of the data on new amyloids continuing nowadays dissolves boundaries of the term "amyloid". Currently, it is most often used to designate aggregates with cross-β structure. At the same time, amyloids also exhibit a number of other unusual properties, such as: detergent and protease resistance, interaction with specific dyes, and ability to induce transition of some proteins from a soluble form to an aggregated one. The same features have been also demonstrated for the aggregates lacking cross-β structure, which are commonly called "amyloid-like" and combined into one group, although they are very diverse. We have collected and systematized information on the properties of more than two hundred known amyloids and amyloid-like proteins with emphasis on conflicting examples. In particular, a number of proteins in membraneless organelles form aggregates with cross-β structure that are morphologically indistinguishable from the other amyloids, but they can be dissolved in the presence of detergents, which is not typical for amyloids. Such paradoxes signify the need to clarify the existing definition of the term amyloid. On the other hand, the demonstrated structural diversity of the amyloid-like aggregates shows the necessity of their classification.
Collapse
Affiliation(s)
- A B Matiiv
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - N P Trubitsina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A G Matveenko
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Y A Barbitoff
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Bioinformatics Institute, St. Petersburg, 197342, Russia
| | - G A Zhouravleva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S A Bondarev
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. .,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
34
|
Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol 2021; 141:235-256. [PMID: 33417012 PMCID: PMC7847444 DOI: 10.1007/s00401-020-02254-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The microtubule-associated protein tau has a critical role in Alzheimer's disease and other tauopathies. A proposed pathomechanism in the progression of tauopathies is the trans-synaptic spreading of tau seeds, with a role for exosomes which are secretory nanovesicles generated by late endosomes. Our previous work demonstrated that brain-derived exosomes isolated from tau transgenic rTg4510 mice encapsulate tau seeds with the ability to induce tau aggregation in recipient cells. We had also shown that exosomes can hijack the endosomal pathway to spread through interconnected neurons. Here, we reveal how tau seeds contained within internalized exosomes exploit mechanisms of lysosomal degradation to escape the endosome and induce tau aggregation in the cytosol of HEK293T-derived 'tau biosensor cells'. We found that the majority of the exosome-containing endosomes fused with lysosomes to form endolysosomes. Exosomes induced their permeabilization, irrespective of the presence of tau seeds, or whether the exosomal preparations originated from mouse brains or HEK293T cells. We also found that permeabilization is a conserved mechanism, operating in both non-neuronal tau biosensor cells and primary neurons. However, permeabilization of endolysosomes only occurred in a small fraction of cells, which supports the notion that permeabilization occurs by a thresholded mechanism. Interestingly, tau aggregation was only induced in cells that exhibited permeabilization, presenting this as an escape route of exosomal tau seeds into the cytosol. Overexpression of RAB7, which is required for the formation of endolysosomes, strongly increased tau aggregation. Conversely, inhibition of lysosomal function with alkalinizing agents, or by knocking-down RAB7, decreased tau aggregation. Together, we conclude that the enzymatic activities of lysosomes permeabilize exosomal and endosomal membranes, thereby facilitating access of exosomal tau seeds to cytosolic tau to induce its aggregation. Our data underscore the importance of endosomal membrane integrity in mechanisms of cellular invasion by misfolded proteins that are resistant to lysosomal degradation.
Collapse
|
35
|
Zareba-Paslawska J, Patra K, Kluzer L, Revesz T, Svenningsson P. Tau Isoform-Driven CBD Pathology Transmission in Oligodendrocytes in Humanized Tau Mice. Front Neurol 2021; 11:589471. [PMID: 33519674 PMCID: PMC7845573 DOI: 10.3389/fneur.2020.589471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
The aggregation of abnormally phosphorylated tau protein in neurons and glia is a neuropathological hallmark of several neurodegenerative disorders, collectively known as tauopathies. They are further subclassified based on the preferential pathological aggregation of three carboxyl-terminal repeat domains (3R) and/or 4R tau. Corticobasal degeneration (CBD) is a rare neurodegenerative disorder classified as a 4R tauopathy. In the present study, we extend analysis of CBD-tau cell-type specific pathology transmission with 3R and 4R tau isoform distinguishable changes. We use a humanized tau (hTau) mouse line, which overexpress all six human tau isoforms in a murine tau knockout background and perform intrastriatal inoculation of control and CBD-tau enriched human brain homogenate. We show that CBD-tau causes hyperphosphorylation of tau at Ser202 predominantly in oligodendrocytes. Next, we demonstrate the spread of tau pathology from striatum to the overlaying corpus callosum and further to the contralateral side. Finally, we demonstrate that the almost exclusive oligodendrocyte-based transmission of hyperphosphorylated tau is reflected in the endogenous 4R tau isoform expression and corresponds to subclassification of CBD as a 4R tauopathy. Additionally, we identify functional changes in oligodendrocytes reflected by myelin basic protein abnormalities upon CBD-tau inoculation. These changes are not observed in murine tau knockout mice lacking both human and murine tau. Our study presents not only in vivo tau isoform–driven region- and cell-specific tau pathology, but also underlines that tau pathology seeding and transmission might be oligodendrocyte-based. These results, which need to be extended to more cases, give new insights into why tauopathies might vary greatly in both histopathological and neuroanatomical patterns.
Collapse
Affiliation(s)
- Justyna Zareba-Paslawska
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Kalicharan Patra
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Luca Kluzer
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Tamas Revesz
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
36
|
Greene AN, Parks LG, Solomon MB, Privette Vinnedge LM. Loss of DEK Expression Induces Alzheimer's Disease Phenotypes in Differentiated SH-SY5Y Cells. Front Mol Neurosci 2020; 13:594319. [PMID: 33304240 PMCID: PMC7701170 DOI: 10.3389/fnmol.2020.594319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and is characterized by the buildup of β-amyloid plaques and neurofibrillary Tau tangles. This leads to decreased synaptic efficacy, cell death, and, consequently, brain atrophy in patients. Behaviorally, this manifests as memory loss and confusion. Using a gene ontology analysis, we recently identified AD and other age-related dementias as candidate diseases associated with the loss of DEK expression. DEK is a nuclear phosphoprotein with roles in DNA repair, cellular proliferation, and inhibiting apoptosis. Work from our laboratory determined that DEK is highly expressed in the brain, particularly in regions relevant to learning and memory, including the hippocampus. Moreover, we have also determined that DEK is highly expressed in neurons. Consistent with our gene ontology analysis, we recently reported that cortical DEK protein levels are inversely proportional to dementia severity scores in elderly female patients. However, the functional role of DEK in neurons is unknown. Thus, we knocked down DEK in an in vitro neuronal model, differentiated SH-SY5Y cells, hypothesizing that DEK loss would result in cellular and molecular phenotypes consistent with AD. We found that DEK loss resulted in increased neuronal death by apoptosis (i.e., cleaved caspases 3 and 8), decreased β-catenin levels, disrupted neurite development, higher levels of total and phosphorylated Tau at Ser262, and protein aggregates. We have demonstrated that DEK loss in vitro recapitulates cellular and molecular phenotypes of AD pathology.
Collapse
Affiliation(s)
- Allie N Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lois G Parks
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matia B Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
37
|
Oakley SS, Maina MB, Marshall KE, Al-Hilaly YK, Harrington CR, Wischik CM, Serpell LC. Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Front Neurol 2020; 11:590754. [PMID: 33281730 PMCID: PMC7688747 DOI: 10.3389/fneur.2020.590754] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.
Collapse
Affiliation(s)
- Sebastian S. Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mahmoud B. Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Karen E. Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Charlie R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
38
|
Jaunmuktane Z, Brandner S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 2020; 46:522-545. [PMID: 31868945 PMCID: PMC7687189 DOI: 10.1111/nan.12592] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The prototype of transmissible neurodegenerative proteinopathies is prion diseases, characterized by aggregation of abnormally folded conformers of the native prion protein. A wealth of mechanisms has been proposed to explain the conformational conversion from physiological protein into misfolded, pathological form, mode of toxicity, propagation from cell-to-cell and regional spread. There is increasing evidence that other neurodegenerative diseases, most notably Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), frontotemporal dementia (TDP43, tau or FUS) and motor neurone disease (TDP43), exhibit at least some of the misfolded prion protein properties. In this review, we will discuss to what extent each of the properties of misfolded prion protein is known to occur for Aβ, tau, α-synuclein and TDP43, with particular focus on self-propagation through seeding, conformational strains, selective cellular and regional vulnerability, stability and resistance to inactivation, oligomers, toxicity and summarize the most recent literature on transmissibility of neurodegenerative disorders.
Collapse
Affiliation(s)
- Z. Jaunmuktane
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders
| | - S. Brandner
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Neurodegenerative diseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
39
|
Pollack SJ, Trigg J, Khanom T, Biasetti L, Marshall KE, Al-Hilaly YK, Rickard JE, Harrington CR, Wischik CM, Serpell LC. Paired Helical Filament-Forming Region of Tau (297-391) Influences Endogenous Tau Protein and Accumulates in Acidic Compartments in Human Neuronal Cells. J Mol Biol 2020; 432:4891-4907. [PMID: 32681841 PMCID: PMC7427330 DOI: 10.1016/j.jmb.2020.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Assembly of tau protein into paired helical filaments and straight filaments is a key feature of Alzheimer's disease. Aggregation of tau has been implicated in neurodegeneration, cellular toxicity and the propagation, which accompanies disease progression. We have reported previously that a region of tau (297–391), referred to as dGAE, assembles spontaneously in physiological conditions to form paired helical filament-like fibres in vitro in the absence of additives such as heparin. This provides a valuable tool with which to explore the effects of tau in cell culture. Here we have studied the cellular uptake of soluble oligomeric and fibrillar forms of dGAE and examined the downstream consequences of tau internalisation into differentiated SH-SY5Y neuroblastoma cells using fluorescence and electron microscopy alongside structural and biochemical analyses. The assembled dGAE shows more acute cytotoxicity than the soluble, non-aggregated form. Conversely, the soluble form is much more readily internalised and, once within the cell, is able to associate with endogenous tau resulting in increased phosphorylation and aggregation of endogenous tau, which accumulates in lysosomal/endosomal compartments. It appears that soluble oligomeric forms are able to propagate tau pathology without being acutely toxic. The model system we have developed now permits the molecular mechanisms of propagation of tau pathology to be studied in vitro in a more physiological manner with a view to development of novel therapeutic approaches. Tau297–391 aggregates to form filaments toxic to cells in the absence of additives. Internalisation of soluble tau297–391 into cells leads to increased insoluble Ptau. Soluble tau297–391 accumulates with endogenous tau in endo-lysosomal compartments.
Collapse
Affiliation(s)
- Saskia J Pollack
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E. Sussex, BN1 9QG, UK
| | - Jasmine Trigg
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E. Sussex, BN1 9QG, UK
| | - Tahmida Khanom
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E. Sussex, BN1 9QG, UK
| | - Luca Biasetti
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E. Sussex, BN1 9QG, UK
| | - Karen E Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E. Sussex, BN1 9QG, UK
| | - Youssra K Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E. Sussex, BN1 9QG, UK; Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Janet E Rickard
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZP, UK
| | - Charles R Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZP, UK; TauRx Therapeutics Ltd., Aberdeen, AB24 5RP, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZP, UK; TauRx Therapeutics Ltd., Aberdeen, AB24 5RP, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E. Sussex, BN1 9QG, UK.
| |
Collapse
|
40
|
Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7829842. [PMID: 32685100 PMCID: PMC7350179 DOI: 10.1155/2020/7829842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/18/2022]
Abstract
Tau, a microtubule-associated protein expressed in mature neurons, interacts with tubulin to promote the assembly and stabilization of microtubules. However, abnormally hyperphosphorylated tau dissociates from microtubules and self-aggregates. Tau aggregates, including paired helical filaments and neurofibrillary tangles, promote neuronal dysfunction and death and are the defining neuropathological feature of tauopathies. Therefore, suppressing tau aggregation or stimulating the dissociation of tau aggregates has been proposed as an effective strategy for treating neurodegenerative diseases associated with tau pathology such as Alzheimer's disease (AD) and frontotemporal dementia. Interestingly, ginsenosides extracted from Panax ginseng reduced the hippocampal and cortical expression of phosphorylated tau in a rat model of AD. However, no studies have been conducted into the effect of red ginseng (RG) and its components on tau pathology. Here, we evaluated the effect of Korean red ginseng extract (KRGE) and its components on the aggregation and disassociation of tau. Using the thioflavin T assay, we monitored the change in fluorescence produced by the aggregation or disassociation of tau K18, an aggregation-prone fragment of tau441 containing the microtubule-binding domain. Our analysis revealed that KRGE not only inhibited tau aggregation but also promoted the dissociation of tau aggregates. In addition, the KRGE fractions, such as saponin, nonsaponin, and nonsaponin fraction with rich polysaccharide, also inhibited tau aggregation and promoted the dissociation of tau aggregates. Our observations suggest that RG could be a potential therapeutic agent for the treatment of neurodegenerative diseases associated with tauopathy.
Collapse
|
41
|
Haj‐Yahya M, Gopinath P, Rajasekhar K, Mirbaha H, Diamond MI, Lashuel HA. Site-Specific Hyperphosphorylation Inhibits, Rather than Promotes, Tau Fibrillization, Seeding Capacity, and Its Microtubule Binding. Angew Chem Int Ed Engl 2020; 59:4059-4067. [PMID: 31863676 PMCID: PMC7065254 DOI: 10.1002/anie.201913001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022]
Abstract
The consistent observation of phosphorylated tau in the pathology of Alzheimer's disease has contributed to the emergence of a model where hyperphosphorylation triggers both tau disassociation from microtubules and its subsequent aggregation. Herein, we applied a total chemical synthetic approach to site-specifically phosphorylate the microtubule binding repeat domain of tau (K18) at single (pS356) or multiple (pS356/pS262 and pS356/pS262/pS258) residues. We show that hyperphosphorylation of K18 inhibits 1) its aggregation in vitro, 2) its seeding activity in cells, 3) its binding to microtubules, and 4) its ability to promote microtubule polymerization. The inhibition increased with increasing the number of phosphorylated sites, with phosphorylation at S262 having the strongest effect. Our results argue against the hyperphosphorylation hypothesis and underscore the importance of revisiting the role of site-specific hyperphosphorylation in regulating tau functions in health and disease.
Collapse
Affiliation(s)
- Mahmood Haj‐Yahya
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| | - Pushparathinam Gopinath
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
- Current Address: Department of ChemistrySRM Institute of Science and TechnologyChennaiTamilNaduIndia
| | - Kolla Rajasekhar
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative DiseasesPeter O'Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Marc I. Diamond
- Center for Alzheimer's and Neurodegenerative DiseasesPeter O'Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| |
Collapse
|
42
|
Crowe A, Henderson MJ, Anderson J, Titus SA, Zakharov A, Simeonov A, Buist A, Delay C, Moechars D, Trojanowski JQ, Lee VMY, Brunden KR. Compound screening in cell-based models of tau inclusion formation: Comparison of primary neuron and HEK293 cell assays. J Biol Chem 2020; 295:4001-4013. [PMID: 32034092 DOI: 10.1074/jbc.ra119.010532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) brains are senile plaques, comprising β-amyloid (Aβ) peptides, and neuronal inclusions formed from tau protein. These plaques form 10-20 years before AD symptom onset, whereas robust tau pathology is more closely associated with symptoms and correlates with cognitive status. This temporal sequence of AD pathology development, coupled with repeated clinical failures of Aβ-directed drugs, suggests that molecules that reduce tau inclusions have therapeutic potential. Few tau-directed drugs are presently in clinical testing, in part because of the difficulty in identifying molecules that reduce tau inclusions. We describe here two cell-based assays of tau inclusion formation that we employed to screen for compounds that inhibit tau pathology: a HEK293 cell-based tau overexpression assay, and a primary rat cortical neuron assay with physiological tau expression. Screening a collection of ∼3500 pharmaceutical compounds with the HEK293 cell tau aggregation assay, we obtained only a low number of hit compounds. Moreover, these compounds generally failed to inhibit tau inclusion formation in the cortical neuron assay. We then screened the Prestwick library of mostly approved drugs in the cortical neuron assay, leading to the identification of a greater number of tau inclusion inhibitors. These included four dopamine D2 receptor antagonists, with D2 receptors having previously been suggested to regulate tau inclusions in a Caenorhabditis elegans model. These results suggest that neurons, the cells most affected by tau pathology in AD, are very suitable for screening for tau inclusion inhibitors.
Collapse
Affiliation(s)
- Alex Crowe
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Johnathon Anderson
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Arjan Buist
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Charlotte Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Diederik Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
43
|
Haj‐Yahya M, Gopinath P, Rajasekhar K, Mirbaha H, Diamond MI, Lashuel HA. Site‐Specific Hyperphosphorylation Inhibits, Rather than Promotes, Tau Fibrillization, Seeding Capacity, and Its Microtubule Binding. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mahmood Haj‐Yahya
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute Faculty of Life Sciences Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Pushparathinam Gopinath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute Faculty of Life Sciences Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
- Current Address: Department of Chemistry SRM Institute of Science and Technology Chennai TamilNadu India
| | - Kolla Rajasekhar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute Faculty of Life Sciences Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative Diseases Peter O'Donnell Jr. Brain Institute University of Texas Southwestern Medical Center Dallas TX 75390 USA
| | - Marc I. Diamond
- Center for Alzheimer's and Neurodegenerative Diseases Peter O'Donnell Jr. Brain Institute University of Texas Southwestern Medical Center Dallas TX 75390 USA
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute Faculty of Life Sciences Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| |
Collapse
|
44
|
Targeting Aggrephagy for the Treatment of Alzheimer's Disease. Cells 2020; 9:cells9020311. [PMID: 32012902 PMCID: PMC7072705 DOI: 10.3390/cells9020311] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in older individuals with specific neuropsychiatric symptoms. It is a proteinopathy, pathologically characterized by the presence of misfolded protein (Aβ and Tau) aggregates in the brain, causing progressive dementia. Increasing studies have provided evidence that the defect in protein-degrading systems, especially the autophagy-lysosome pathway (ALP), plays an important role in the pathogenesis of AD. Recent studies have demonstrated that AD-associated protein aggregates can be selectively recognized by some receptors and then be degraded by ALP, a process termed aggrephagy. In this study, we reviewed the role of aggrephagy in AD development and discussed the strategy of promoting aggrephagy using small molecules for the treatment of AD.
Collapse
|
45
|
Varanda AS, Santos M, Soares AR, Vitorino R, Oliveira P, Oliveira C, Santos MAS. Human cells adapt to translational errors by modulating protein synthesis rate and protein turnover. RNA Biol 2020; 17:135-149. [PMID: 31570039 PMCID: PMC6948982 DOI: 10.1080/15476286.2019.1670039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023] Open
Abstract
Deregulation of tRNAs, aminoacyl-tRNA synthetases (aaRS) or tRNA modifying enzymes, increase the level of protein synthesis errors (PSE) and are associated with several diseases, but the cause-effect mechanisms of these pathologies remain elusive. To clarify the role of PSE in human biology, we have engineered a HEK293 cell line to overexpress a wild type (Wt) tRNASer and two tRNASer mutants that misincorporate serine at non-cognate codon sites. Then, we followed long-term adaptation to PSE of such recombinant cells by analysing cell viability, protein synthesis rate and activation of protein quality control mechanisms (PQC). Engineered cells showed higher level of misfolded and aggregated proteins; activated the ubiquitin-proteasome system (UPS) and the unfolded protein response (UPR), indicative of proteotoxic stress. Adaptation to PSE involved increased protein turnover, UPR up-regulation and altered protein synthesis rate. Gene expression analysis showed that engineered cells presented recurrent alterations in the endoplasmic reticulum, cell adhesion and calcium homeostasis. Herein, we unveil new phenotypic consequences of protein synthesis errors in human cells and identify the protein quality control processes that are necessary for long-term adaptation to PSE and proteotoxic stress. Our data provide important insight on how chronic proteotoxic stress may cause disease and highlight potential biological pathways that support the association of PSE with disease.
Collapse
Affiliation(s)
- Ana Sofia Varanda
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Mafalda Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Ana R. Soares
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Patrícia Oliveira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel A. S. Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
46
|
Shin WS, Di J, Cao Q, Li B, Seidler PM, Murray KA, Bitan G, Jiang L. Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation. Alzheimers Res Ther 2019; 11:86. [PMID: 31627745 PMCID: PMC6800506 DOI: 10.1186/s13195-019-0541-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/22/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Repeated failure of drug candidates targeting Alzheimer's disease (AD) in clinical trials likely stems from a lack of understanding of the molecular mechanisms underlying AD pathogenesis. Recent research has highlighted synergistic interactions between aggregated amyloid-β (Aβ) and tau proteins in AD, but the molecular details of how these interactions drive AD pathology remain elusive and speculative. METHODS Here, we test the hypothesis that Aβ potentiates intracellular tau aggregation, and show that oligomeric Aβ specifically exacerbates proteopathic seeding by tau. Using tau-biosensor cells, we show that treatment with sub-toxic concentrations of Aβ oligomers, but not monomers or fibrils, "primes" cells, making them more susceptible to tau seeding. The treatment with Aβ oligomers enhances intracellular tau aggregation in a dose-dependent manner when the cells are seeded with either recombinant or brain-derived tau fibrils, whereas little or no aggregation is observed in the absence of Aβ-oligomer priming. RESULTS Priming by Aβ oligomers appears to be specific to tau, as α-synuclein seeding is unaffected by this treatment. Aβ oligomer-enhanced tau seeding also occurs in primary mouse neurons and human neuroblastoma cells. Using fluorescently labeled tau seeds, we find that treatment with Aβ oligomers significantly enhances the cellular uptake of tau seeds, whereas a known tau-uptake inhibitor blocks the effect of Aβ on tau uptake. CONCLUSION The ability of Aβ to promote tau seeding suggests a specific and plausible mechanism by which extracellular Aβ initiates a deleterious cascade that is unique to AD. These data suggest that the Aβ-mediated potentiation of tau uptake into cells should also be taken into account when designing Aβ-targeted therapeutics.
Collapse
Affiliation(s)
- Woo Shik Shin
- Department of Neurology, David Geffen School of Medicine, UCLA, 635 Charles E Young Drive South, Los Angeles, CA 90095 USA
| | - Jing Di
- Department of Neurology, David Geffen School of Medicine, UCLA, 635 Charles E Young Drive South, Los Angeles, CA 90095 USA
| | - Qin Cao
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, UCLA, Los Angeles, CA 90095-1570 USA
| | - Binsen Li
- Department of Neurology, David Geffen School of Medicine, UCLA, 635 Charles E Young Drive South, Los Angeles, CA 90095 USA
| | - Paul M. Seidler
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, UCLA, Los Angeles, CA 90095-1570 USA
| | - Kevin A. Murray
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, UCLA, Los Angeles, CA 90095-1570 USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, UCLA, 635 Charles E Young Drive South, Los Angeles, CA 90095 USA
- Brain Research Institute, and Molecular Biology Institute, UCLA, Los Angeles, CA 90095 USA
| | - Lin Jiang
- Department of Neurology, David Geffen School of Medicine, UCLA, 635 Charles E Young Drive South, Los Angeles, CA 90095 USA
- Brain Research Institute, and Molecular Biology Institute, UCLA, Los Angeles, CA 90095 USA
| |
Collapse
|
47
|
Nakamura M, Shiozawa S, Tsuboi D, Amano M, Watanabe H, Maeda S, Kimura T, Yoshimatsu S, Kisa F, Karch CM, Miyasaka T, Takashima A, Sahara N, Hisanaga SI, Ikeuchi T, Kaibuchi K, Okano H. Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports 2019; 13:684-699. [PMID: 31543469 PMCID: PMC6829766 DOI: 10.1016/j.stemcr.2019.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
Mutations in the microtubule-associated protein tau (MAPT) gene are known to cause familial frontotemporal dementia (FTD). The R406W tau mutation is a unique missense mutation whose patients have been reported to exhibit Alzheimer's disease (AD)-like phenotypes rather than the more typical FTD phenotypes. In this study, we established patient-derived induced pluripotent stem cell (iPSC) models to investigate the disease pathology induced by the R406W mutation. We generated iPSCs from patients and established isogenic lines using CRISPR/Cas9. The iPSCs were induced into cerebral organoids, which were dissociated into cortical neurons with high purity. In this neuronal culture, the mutant tau protein exhibited reduced phosphorylation levels and was increasingly fragmented by calpain. Furthermore, the mutant tau protein was mislocalized and the axons of the patient-derived neurons displayed morphological and functional abnormalities, which were rescued by microtubule stabilization. The findings of our study provide mechanistic insight into tau pathology and a potential for therapeutic intervention.
Collapse
Affiliation(s)
- Mari Nakamura
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Daisuke Tsuboi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | - Hirotaka Watanabe
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sumihiro Maeda
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taeko Kimura
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 266-8555, Japan
| | - Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Fumihiko Kisa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Celeste M Karch
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tomohiro Miyasaka
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Akihiko Takashima
- Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 266-8555, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
48
|
Siano G, Caiazza MC, Ollà I, Varisco M, Madaro G, Quercioli V, Calvello M, Cattaneo A, Di Primio C. Identification of an ERK Inhibitor as a Therapeutic Drug Against Tau Aggregation in a New Cell-Based Assay. Front Cell Neurosci 2019; 13:386. [PMID: 31496937 PMCID: PMC6712076 DOI: 10.3389/fncel.2019.00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
Formation of Tau aggregates is a common pathological feature of tauopathies and their accumulation directly correlates with cytotoxicity and neuronal degeneration. Great efforts have been made to understand Tau aggregation and to find therapeutics halting or reversing the process, however, progress has been slowed due to the lack of a suitable method for monitoring Tau aggregation. We developed a cell-based assay allowing to detect and quantify Tau aggregation in living cells. The system is based on the FRET biosensor CST able to monitor the molecular dynamic of Tau aggregation in different cellular conditions. We probed candidate compounds that could block Tau hyperphosphorylation. In particular, to foster the drug discovery process, we tested kinase inhibitors approved for the treatment of other diseases. We identified the ERK inhibitor PD-901 as a promising therapeutic molecule since it reduces and prevents Tau aggregation. This evidence establishes the CST cell-based aggregation assay as a reliable tool for drug discovery and suggests that PD-901 might be a promising compound to be tested for further preclinical studies on AD.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | | | - Ivana Ollà
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - Martina Varisco
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - Giuseppe Madaro
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | | | | | - Antonino Cattaneo
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy.,Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | - Cristina Di Primio
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
49
|
Haque MM, Murale DP, Kim YK, Lee JS. Crosstalk between Oxidative Stress and Tauopathy. Int J Mol Sci 2019; 20:ijms20081959. [PMID: 31013607 PMCID: PMC6514575 DOI: 10.3390/ijms20081959] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tauopathy is a collective term for neurodegenerative diseases associated with pathological modifications of tau protein. Tau modifications are mediated by many factors. Recently, reactive oxygen species (ROS) have attracted attention due to their upstream and downstream effects on tauopathy. In physiological conditions, healthy cells generate a moderate level of ROS for self-defense against foreign invaders. Imbalances between ROS and the anti-oxidation pathway cause an accumulation of excessive ROS. There is clear evidence that ROS directly promotes tau modifications in tauopathy. ROS is also highly upregulated in the patients’ brain of tauopathies, and anti-oxidants are currently prescribed as potential therapeutic agents for tauopathy. Thus, there is a clear connection between oxidative stress (OS) and tauopathies that needs to be studied in more detail. In this review, we will describe the chemical nature of ROS and their roles in tauopathy.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Dhiraj P Murale
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Yun Kyung Kim
- Bio-Med Division, KIST-School UST, Seoul 02792, Korea.
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
- Bio-Med Division, KIST-School UST, Seoul 02792, Korea.
| |
Collapse
|
50
|
Tan CC, Zhang XY, Tan L, Yu JT. Tauopathies: Mechanisms and Therapeutic Strategies. J Alzheimers Dis 2019; 61:487-508. [PMID: 29278892 DOI: 10.3233/jad-170187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tauopathies are morphologically, biochemically, and clinically heterogeneous neurodegenerative diseases defined by the accumulation of abnormal tau proteins in the brain. There is no effective method to prevent and reverse the tauopathies, but this gloomy picture has been changed by recent research advances. Evidences from genetic studies, experimental animal models, and molecular and cell biology have shed light on the main mechanisms of the diseases. The development of radiology and biochemistry, especially the development of PET imaging, will provide important biomarkers for the clinical diagnosis and treatment. Given the central role of tau in tauopathies, many treatments have constantly emerged, including targeting phosphorylation, targeting aggregation, increasing microtubule stabilization, tau immunization, clearance of tau, anti-inflammatory treatment, and other therapeutics. There is still a long way to go before we obtain drug therapy targeted at multifactor mechanisms.
Collapse
Affiliation(s)
- Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Yan Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|