1
|
Zhu S, Zhu W, Zhao K, Yu J, Lu W, Zhou R, Fan S, Kong W, Yang F, Shan P. Discovery of a novel hybrid coumarin-hydroxamate conjugate targeting the HDAC1-Sp1-FOSL2 signaling axis for breast cancer therapy. Cell Commun Signal 2024; 22:361. [PMID: 39010083 PMCID: PMC11247895 DOI: 10.1186/s12964-024-01733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most lethal cancers in women. Despite significant advances in the diagnosis and treatment of breast cancer, many patients still succumb to this disease, and thus, novel effective treatments are urgently needed. Natural product coumarin has been broadly investigated since it reveals various biological properties in the medicinal field. Accumulating evidence indicates that histone deacetylase inhibitors (HDACIs) are promising novel anti-breast cancer agents. However, most current HDACIs exhibit only moderate effects against solid tumors and are associated with severe side effects. Thus, to develop more effective HDACIs for breast cancer therapy, hydroxamate of HDACIs was linked to coumarin core, and coumarin-hydroxamate hybrids were designed and synthesized. METHODS A substituted coumarin moiety was incorporated into the classic hydroxamate HDACIs by the pharmacophore fusion strategy. ZN444B was identified by using the HDACI screening kit and cell viability assay. Molecular docking was performed to explore the binding mode of ZN444B with HDAC1. Western blot, immunofluorescent staining, cell viability, colony formation and cell migration and flow cytometry assays were used to analyze the anti-breast cancer effects of ZN444B in vitro. Orthotopic studies in mouse models were applied for preclinical evaluation of efficacy and toxicity in vivo. Proteomic analysis, dual-luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation, immunofluorescent staining assays along with immunohistochemical (IHC) analysis were used to elucidate the molecular basis of the actions of ZN444B. RESULTS We synthesized and identified a novel coumarin-hydroxamate conjugate, ZN444B which possesses promising anti-breast cancer activity both in vitro and in vivo. A molecular docking model showed that ZN444B binds to HDAC1 with high affinity. Further mechanistic studies revealed that ZN444B specifically decreases FOS-like antigen 2 (FOSL2) mRNA levels by inhibiting the deacetylase activity of HDAC1 on Sp1 at K703 and abrogates the binding ability of Sp1 to the FOSL2 promoter. Furthermore, FOSL2 expression positively correlates with breast cancer progression and metastasis. Silencing FOSL2 expression decreases the sensitivity of breast cancer cells to ZN444B treatment. In addition, ZN444B shows no systemic toxicity in mice. CONCLUSIONS Our findings highlight the potential of FOSL2 as a new biomarker and therapeutic target for breast cancer and that targeting the HDAC1-Sp1-FOSL2 signaling axis with ZN444B may be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Sujie Zhu
- Institute of Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Kaihua Zhao
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Jie Yu
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Wenxia Lu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Rui Zhou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Shule Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Weikaixin Kong
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, 00250, Finland.
- Institute Sanqu Technology (Hangzhou) Co., Ltd., Hangzhou, China.
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Peipei Shan
- Institute of Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
2
|
Shan P, Yang F, Yu J, Wang L, Qu Y, Qiu H, Zhang H, Zhu S. A novel histone deacetylase inhibitor exerts promising anti-breast cancer activity via triggering AIFM1-dependent programmed necrosis. Cancer Commun (Lond) 2022; 42:1207-1211. [PMID: 36161715 PMCID: PMC9648389 DOI: 10.1002/cac2.12362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023] Open
Affiliation(s)
- Peipei Shan
- Institute of Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandong266021P. R. China
| | - Feifei Yang
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022P. R. China
| | - Jie Yu
- Qingdao Center Hospital: Qingdao Center Medical GroupQingdaoShandong266042P. R. China
| | - Lirong Wang
- Institute of Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandong266021P. R. China
| | - Yuhua Qu
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022P. R. China
| | - Huiran Qiu
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022P. R. China
| | - Hua Zhang
- School of Biological Science and TechnologyUniversity of JinanJinanShandong250022P. R. China
| | - Sujie Zhu
- Institute of Translational MedicineThe Affiliated Hospital of Qingdao University, College of Medicine, Qingdao UniversityQingdaoShandong266021P. R. China
| |
Collapse
|
3
|
Liu ZB, Zhang T, Ye X, Liu ZQ, Sun X, Zhang LL, Wu CJ. Natural substances derived from herbs or plants are promising sources of anticancer agents against colorectal cancer via triggering apoptosis. J Pharm Pharmacol 2021; 74:162-178. [PMID: 34559879 DOI: 10.1093/jpp/rgab130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Nowadays, one of the most common gastrointestinal cancers is colorectal cancer (CRC). Chemotherapy is still one of the main methods to treat cancer. However, the currently available synthetic chemotherapy drugs often cause serious adverse reactions. Apoptosis is generally considered as an ideal way for induction the death of tumour cells without the body's inflammatory response, and it is reported that lots of natural agents could trigger various cancer cells to apoptosis. The overarching aim of this project was to elucidate the specific mechanisms by which natural substances induce apoptosis in CRC cells and to be used as an alternative therapeutic option in the future. KEY FINDINGS The mechanisms for the pro-apoptotic effects of natural substances derived from herbs or plants include death receptor pathway, mitochondrial pathway, endoplasmic reticulum stress pathway, related signal transduction pathways (PI3K/Akt, MAPK, p53 signalling), and so on. SUMMARY This paper updated this information regarding the anti-tumour effects of natural agents via induction of apoptosis against CRC, which would be beneficial for future new drug research regarding natural products from herbs or plants.
Collapse
Affiliation(s)
- Zi-Bo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zi-Qi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xue Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Li-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | | |
Collapse
|
4
|
Pourbagher-Shahri AM, Farkhondeh T, Ashrafizadeh M, Talebi M, Samargahndian S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed Pharmacother 2021; 136:111214. [PMID: 33450488 DOI: 10.1016/j.biopha.2020.111214] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of the most considerable mortality globally, and it has been tried to find the molecular mechanisms and design new drugs that triggered the molecular target. Curcumin is the main ingredient of Curcuma longa (turmeric) that has been used in traditional medicine for treating several diseases for years. Numerous investigations have indicated the beneficial effect of Curcumin in modulating multiple signaling pathways involved in oxidative stress, inflammation, apoptosis, and proliferation. The cardiovascular protective effects of Curcumin against CVDs have been indicated in several studies. In the current review study, we provided novel information on Curcumin's protective effects against various CVDs and potential molecular signaling targets of Curcumin. Nonetheless, more studies should be performed to discover the exact molecular target of Curcumin against CVDs.
Collapse
Affiliation(s)
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19968 35115, Iran
| | - Saeed Samargahndian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
5
|
The Histone Deacetylase Inhibitor (MS-275) Promotes Differentiation of Human Dental Pulp Stem Cells into Odontoblast-Like Cells Independent of the MAPK Signaling System. Int J Mol Sci 2020; 21:ijms21165771. [PMID: 32796747 PMCID: PMC7460873 DOI: 10.3390/ijms21165771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/31/2022] Open
Abstract
The role of dental pulp stem cells (DPSCs) in dental tissue regeneration is gaining attention because DPSCs can differentiate into odontoblasts and other specialized cell types. Epigenetic modification has been found to play an important role in cell differentiation and regulation, among which histone deacetylase (HDAC) is involved in suppressing genes by removing histone acetyl groups. The use of HDAC inhibitor to control this is increasing and has been widely studied by many researchers. This study aimed to induce differentiation by causing epigenetic changes in odontoblast-related genes and the MAPK signaling pathway in human dental pulp stem cells. Western blot and immunofluorescence staining showed increased expression of DMP-1, ALP, DSPP, and RUNX2 compared to the control. However, activation of the MAPK signaling system was similar to but slightly different from the expression of odontoblast-related proteins. After 3 days, as shown by MTT and LDH assays, proliferation decreased overall, but cytotoxicity decreased at only a specific concentration. We confirmed that there was no change in mRNA expression of caspase 3 or 9 using real-time PCR. In addition, flow cytometry analysis confirmed that differentiation occurred due to the decrease in the expression of the CD73 and CD146. Although overall proliferation was reduced due to the G2/M inhibition of the cell cycle, the expression of BCL-2 protected the cells from cell death. Overall, cell proliferation decreased in response to MS-275, but it did not induce cytotoxicity in 5 nM and 10 nM concentration and induces differentiation into odontoblast-like cells.
Collapse
|
6
|
Yan W, Wu THY, Leung SSY, To KKW. Flavonoids potentiated anticancer activity of cisplatin in non-small cell lung cancer cells in vitro by inhibiting histone deacetylases. Life Sci 2020; 258:118211. [PMID: 32768576 DOI: 10.1016/j.lfs.2020.118211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
AIMS Cisplatin is the mainstay of first-line treatment for advanced non-small cell lung cancer (NSCLC). Accumulating evidence suggests that flavonoids inhibit histone deacetylase (HDAC) to mediate their anticancer effect in various cancer types. The study was conducted to investigate the inhibition of HDAC and the modulation of apoptotic and cell cycle regulatory genes by selected flavonoids to potentiate the anticancer effect of cisplatin. MAIN METHODS Combinations of cisplatin and selected flavonoids were investigated in three NSCLC cell lines (A549, H460, and H1299). Sulforhodamine B assay was used to evaluate cytotoxicity of drug combinations. Western blot analysis was conducted to evaluate histone acetylation. Flow cytometric assays were used to investigate the apoptotic and cell cycle effect. Chromatin immunoprecipitation assay was performed to elucidate the binding of transcription factors to promoters of selected apoptotic and cell cycle regulatory genes. KEY FINDINGS Apigenin was found to exhibit the strongest HDAC inhibitory effect among all flavonoids tested. Cisplatin-apigenin combination was shown to produce significantly more S phase prolongation and G2/M cell cycle arrest, and apoptosis compared with cisplatin or apigenin alone, by inducing p21 and PUMA, respectively. More pronounced effect was observed in p53-proficient than p53-null NSCLC cells. Mechanistically, apigenin was found to reduce the binding of HDAC1 but increase the association of RNA polymerase II and Sp1 to p21 and PUMA promoters. SIGNIFICANCE Our findings provide a better insight about the mechanism contributing to the HDAC inhibitory effect of apigenin to potentiate anticancer effect of cisplatin by inducing apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Wei Yan
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Tracy H Y Wu
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Sharon S Y Leung
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
7
|
Wahab S, Saettone A, Nabeel-Shah S, Dannah N, Fillingham J. Exploring the Histone Acetylation Cycle in the Protozoan Model Tetrahymena thermophila. Front Cell Dev Biol 2020; 8:509. [PMID: 32695779 PMCID: PMC7339932 DOI: 10.3389/fcell.2020.00509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic histone acetylation cycle is composed of three classes of proteins, histone acetyltransferases (HATs) that add acetyl groups to lysine amino acids, bromodomain (BRD) containing proteins that are one of the most characterized of several protein domains that recognize acetyl-lysine (Kac) and effect downstream function, and histone deacetylases (HDACs) that catalyze the reverse reaction. Dysfunction of selected proteins of these three classes is associated with human disease such as cancer. Additionally, the HATs, BRDs, and HDACs of fungi and parasitic protozoa present potential drug targets. Despite their importance, the function and mechanisms of HATs, BRDs, and HDACs and how they relate to chromatin remodeling (CR) remain incompletely understood. Tetrahymena thermophila (Tt) provides a highly tractable single-celled free-living protozoan model for studying histone acetylation, featuring a massively acetylated somatic genome, a property that was exploited in the identification of the first nuclear/type A HAT Gcn5 in the 1990s. Since then, Tetrahymena remains an under-explored model for the molecular analysis of HATs, BRDs, and HDACs. Studies of HATs, BRDs, and HDACs in Tetrahymena have the potential to reveal the function of HATs and BRDs relevant to both fundamental eukaryotic biology and to the study of disease mechanisms in parasitic protozoa.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
8
|
Chen J, Li N, Liu B, Ling J, Yang W, Pang X, Li T. Pracinostat (SB939), a histone deacetylase inhibitor, suppresses breast cancer metastasis and growth by inactivating the IL-6/STAT3 signalling pathways. Life Sci 2020; 248:117469. [PMID: 32109485 DOI: 10.1016/j.lfs.2020.117469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
AIMS Histone deacetylases inhibitors have shown favorable antitumor activity in clinical investigations. In the present study, we assessed the effects of a novel hydroxamic acid-based HDAC inhibitor, SB939, on breast cancer metastasis and tumor growth and characterized the underlying molecular mechanisms. MAIN METHODS MTS, Wound-healing, and Transwell chamber invasion assays were used to detect the inhibition effects of SB939 on proliferation, migration, and invasion of breast cancer cells. Western blot, cellular immunofluorescence, and EMSA were used to explore the molecular mechanism of SB939 in suppressing breast cancer metastasis. MDA-MB-231 subcutaneous tumor-bearing model of nude mice and the spontaneous metastasis model of breast cancer were both applied to verify in vivo anti-tumor growth and anti-metastatic effects. KEY FINDINGS Our results demonstrated that SB939 at 0.5-1 μmol/L markedly impaired the chemotactic motility of breast cancer cells. SB939 reversed epithelial-mesenchymal transition (EMT) process, as evidenced by upregulation E-cadherin expression and downregulation expressions of N-cadherin and vimentin through increasing the levels of ac-histone H3 and H4 and drecreasing the expressiongs of HDAC 5 and 4. This cascade inhibition mediated by SB939 was well interpreted by inactivating phosphorylation of STAT3, blocking its DNA-binding activity, and decreasing the expressions of STAT3-dependent target genes, including MMP2 and MMP9. Furhtermore, we found that SB939 significantly inhibited breast cancer metastasis and tumor growth in vivo and showed superior anti-tumor properties compared with SAHA in two breast cancer animal models. SIGNIFICANCE Our findings indicate that SB939 may be an effective therapeutic option for treating advanced breast cancer.
Collapse
Affiliation(s)
- Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Na Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China; Center for neurological diseases, The First People's Hospital of Shizuishan, Shizuishan 753200, China
| | - Boxia Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Jun Ling
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Wenjun Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Tao Li
- Department of Oncology, General Hospital of the Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
9
|
Sharma MC, Sharma S. Molecular modeling study of uracil-based hydroxamic acids-containing histone deacetylase inhibitors. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Deb S, Phukan BC, Mazumder MK, Dutta A, Paul R, Bhattacharya P, Sandhir R, Borah A. Garcinol, a multifaceted sword for the treatment of Parkinson's disease. Neurochem Int 2019; 128:50-57. [PMID: 30986504 DOI: 10.1016/j.neuint.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022]
Abstract
Garcinol, the principal phytoconstituent of plants belonging to the genus Garcinia, is known for its anti-oxidant as well as anti-inflammatory properties, which can be extended to its possible neuroprotective role. Recent reports disseminate the capacity of garcinol to influence neuronal growth and survival, alter the neurochemical status in brain, as well as regulate memory and cognition. The concomitant neuro-rescue property of garcinol may render it as an effective compound in Parkinson's disease (PD) therapeutics since it is capable of ameliorating the related pathophysiological changes. Emerging pieces of evidence linking histone acetylation defects to the progression of neurodegenerative diseases provide an effective basis for targeting PD. Hyperacetylation of histones has been reported in Parkinsonian brain, which demands the use of pharmacological inhibitors of histone acetyltransferases (HAT). Garcinol serves as a potent natural HAT inhibitor and has unveiled promising results in molecular interaction studies against Monoamine oxidase B (MAO-B) and Catechol-O-Methyltransferase (COMT), as well as in L-DOPA induced dyskinesia. This review highlights the prospective implications of garcinol as a novel anti-Parkinsonian agent, and establishes a bridge between histone acetylation defects and the pathological aspects of PD.
Collapse
Affiliation(s)
- Satarupa Deb
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Banashree Chetia Phukan
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Muhammed Khairujjaman Mazumder
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Rajib Paul
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, 788723, Karimganj, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, 382355, Gandhinagar, Gujarat, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
11
|
Kaneko J, Okinaga T, Ariyoshi W, Hikiji H, Fujii S, Iwanaga K, Tominaga K, Nishihara T. Ky-2, a hybrid compound histone deacetylase inhibitor, regulated inflammatory response in LPS-driven human macrophages. Cell Biol Int 2018; 42:1622-1631. [DOI: 10.1002/cbin.11058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Junya Kaneko
- Division of Infections and Molecular Biology; Department of Health Promotion; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
- School of Oral Health Sciences; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Toshinori Okinaga
- Department of Bacteriology; Osaka Dental University; Hirakata Osaka 573-1121 Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology; Department of Health Promotion; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Hisako Hikiji
- Division of Oral and Maxillofacial Surgery; Department of Science of Physical Functions; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Seiko Fujii
- School of Oral Health Sciences; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Kenjiro Iwanaga
- Division of Preventive Dentistry; Department of Oral Health and Development Sciences; Tohoku University Graduate School of Dentistry; Sendai Miyagi 980-8575 Japan
| | - Kazuhiro Tominaga
- School of Oral Health Sciences; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology; Department of Health Promotion; Kyushu Dental University; Kitakyushu Fukuoka 803-8580 Japan
| |
Collapse
|
12
|
Wang TY, Chai YR, Jia YL, Gao JH, Peng XJ, Han HF. Crosstalk among the proteome, lysine phosphorylation, and acetylation in romidepsin-treated colon cancer cells. Oncotarget 2018; 7:53471-53501. [PMID: 27472459 PMCID: PMC5288200 DOI: 10.18632/oncotarget.10840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 07/17/2016] [Indexed: 01/07/2023] Open
Abstract
Romidepsin (FK228) is one of the most promising histone-deacetylase inhibitors due to its potent antitumor activity, and has been used as a practical option for cancer therapy. However, FK228-induced changes in protein modifications and the crosstalk between different modifications has not been reported. To better understand the underlying mechanisms of FK228-related cancer therapy, we investigated the acetylome, phosphorylation, and crosstalk between modification datasets in colon cancer cells treated with FK228 by using stable-isotope labeling with amino acids in cell culture and affinity enrichment, followed by high-resolution liquid chromatography tandem mass spectrometry analysis. In total, 2728 protein groups, 1175 lysine-acetylation sites, and 4119 lysine-phosphorylation sites were quantified. When the quantification ratio thresholds were set to > 2.0 and < 0.5, respectively, a total of 115 and 38 lysine-acetylation sites in 85 and 32 proteins were quantified as increased and decreased targets, respectively, and 889 and 370 lysine-phosphorylation sites in 599 and 289 proteins were quantified as increased and decreased targets, respectively. Furthermore, we identified 274 proteins exhibiting both acetylation and phosphorylation modifications. These findings indicated possible involvement of these proteins in FK228-related treatment of colon cancer, and provided insight for further analysis of their biological function.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, 453003, China.,Henan Collaborative Innovation Canter of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, 453003, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yan-Long Jia
- Pharmacy Collage, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jian-Hui Gao
- Henan Collaborative Innovation Canter of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, 453003, China
| | - Xiao-Jun Peng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Hua-Feng Han
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| |
Collapse
|
13
|
Synthesis and evaluation of haloperidol metabolite II prodrugs as anticancer agents. Future Med Chem 2017; 9:1749-1764. [DOI: 10.4155/fmc-2017-0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The use of haloperidol metabolite II (HP-metabolite II) prodrugs is an emerging strategy in the treatment of cancer. HP-metabolite II exhibits antiproliferative properties at micromolar concentrations inducing apoptosis in different types of cancer. Thus, the application of the prodrug approach appears as a useful method leading to much more desirable pharmacokinetic and pharmacodynamic properties. Some studies have shown that the esterification of the hydroxyl group of HP-metabolite II with 4-phenylbutiric acid (4-PBA) or valproic acid enhances the anticancer therapeutic potency. The current progresses in the design, synthesis and evaluation of anticancer activity of HP metabolite II prodrugs will be discussed in this review.
Collapse
|
14
|
Fluoxetine induces apoptosis through endoplasmic reticulum stress via mitogen-activated protein kinase activation and histone hyperacetylation in SK-N-BE(2)-M17 human neuroblastoma cells. Apoptosis 2017. [PMID: 28647884 DOI: 10.1007/s10495-017-1390-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Yan X, Pan B, Lv T, Liu L, Zhu J, Shen W, Huang X, Tian J. Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis. J Biomed Sci 2017; 24:1. [PMID: 28056970 PMCID: PMC5217636 DOI: 10.1186/s12929-016-0310-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/05/2016] [Indexed: 02/01/2023] Open
Abstract
Background Prenatal alcohol exposure may cause cardiac development defects, however, the underlying mechanisms are not yet clear. In the present study we have investigated the roles of histone modification by curcumin on alcohol induced fetal cardiac abnormalities during the development. Methods and results Q-PCR and Western blot results showed that alcohol exposure increased gene and active forms of caspase-3 and caspase-8, while decreased gene and protein of bcl-2. ChIP assay results showed that, alcohol exposure increased the acetylation of histone H3K9 near the promoter region of caspase-3 and caspase-8, and decreased the acetylation of histone H3K9 near the promoter region of bcl-2. TUNEL assay data revealed that alcohol exposure increased the apoptosis levels in the embryonic hearts. In vitro experiments demonstrated that curcumin treatment could reverse the up-regulation of active forms of caspase-3 and caspase-8, and down-regulation of bcl-2 induced by alcohol treatment. In addition, curcumin also corrected the high level of histone H3K9 acetylation induced by alcohol. Moreover, the high apoptosis level induced by alcohol was reversed after curcumin treatment in cardiac cells. Conclusions These findings indicate that histone modification may play an important role in mediating alcohol induced fetal cardiac apoptosis, possibly through the up-regulation of H3K9 acetylation near the promoter regions of apoptotic genes. Curcumin treatment may correct alcohol-mediated fetal cardiac apoptosis, suggesting that curcumin may play a protective role against alcohol abuse caused cardiac damage during pregnancy.
Collapse
Affiliation(s)
- Xiaochen Yan
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China.,Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Bo Pan
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China.,Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tiewei Lv
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China
| | - Lingjuan Liu
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China
| | - Jing Zhu
- Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Wen Shen
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| | - Jie Tian
- Department of Cardiology, Heart Centre, The Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Rold, Yu Zhong District, Chongqing, 400014, China.
| |
Collapse
|
16
|
Walsh L, Gallagher WM, O’Connor DP, Ní Chonghaile T. Diagnostic and Therapeutic Implications of Histone Epigenetic Modulators in Breast Cancer. Expert Rev Mol Diagn 2016; 16:541-51. [DOI: 10.1586/14737159.2016.1156534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Louise Walsh
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - William M. Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- OncoMark Limited, NovaUCD, Belfield Innovation Park, Belfield, Dublin 4, Ireland
| | - Darran P. O’Connor
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
17
|
Tapadar S, Fathi S, Raji I, Omesiete W, Kornacki JR, Mwakwari SC, Miyata M, Mitsutake K, Li JD, Mrksich M, Oyelere AK. A structure-activity relationship of non-peptide macrocyclic histone deacetylase inhibitors and their anti-proliferative and anti-inflammatory activities. Bioorg Med Chem 2015; 23:7543-64. [PMID: 26585275 DOI: 10.1016/j.bmc.2015.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/21/2015] [Accepted: 10/31/2015] [Indexed: 10/22/2022]
Abstract
Inhibition of the enzymatic activity of histone deacetylase (HDAC) is a promising therapeutic strategy for cancer treatment and several distinct small molecule histone deacetylase inhibitors (HDACi) have been reported. We have previously identified a new class of non-peptide macrocyclic HDACi derived from 14- and 15-membered macrolide skeletons. In these HDACi, the macrocyclic ring is linked to the zinc chelating hydroxamate moiety through a para-substituted aryl-triazole cap group. To further delineate the depth of the SAR of this class of HDACi, we have synthesized series of analogous compounds and investigated the influence of various substitution patterns on their HDAC inhibitory, anti-proliferative and anti-inflammatory activities. We identified compounds 25b and 38f with robust anti-proliferative activities and compound 26f (IC50 47.2 nM) with superior anti-inflammatory (IC50 88 nM) activity relative to SAHA.
Collapse
Affiliation(s)
- Subhasish Tapadar
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Shaghayegh Fathi
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Idris Raji
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Wilson Omesiete
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - James R Kornacki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Sandra C Mwakwari
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Masanori Miyata
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Kazunori Mitsutake
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
18
|
Predicting the unpredictable: Recent structure–activity studies on peptide-based macrocycles. Bioorg Chem 2015; 60:74-97. [DOI: 10.1016/j.bioorg.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022]
|
19
|
Wei JY, Lu QN, Li WM, He W. Intracellular translocation of histone deacetylase 5 regulates neuronal cell apoptosis. Brain Res 2015; 1604:15-24. [PMID: 25661252 DOI: 10.1016/j.brainres.2015.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 01/07/2023]
Abstract
Histone deacetylase 5 (HDAC5) undergoes signal-dependent shuttling between the nucleus and cytoplasm, which is regulated in part by calcium/calmodulin-dependent kinase (CaMK)-mediated phosphorylation. Here, we report that HDAC5 regulates the survival of cortical neurons in pathological conditions. HDAC5 was evenly localized to the nucleus and cytoplasm in cultured cortical neurons. However, in response to 50μM NMDA conditions that induced neuronal cell apoptosis, nuclear-distributed HDAC5 was rapidly phosphorylated and translocated into cytoplasm of the cultured cortical neurons. Treatment with a CaMKII inhibitor KN93 suppressed HDAC5 phosphorylation and nuclear translocation induced by NMDA, whereas constitutively active CaMKIIα (T286D) stimulated HDAC5 nuclear export. Importantly, we showed that ectopic expression of nuclear-localized HDAC5 in cortical neurons suppressed NMDA-induced apoptosis. Finally, inactivation of HDAC5 by treatment with the class II-specific HDAC inhibitor trichostatin A (TSA) promoted NMDA-induced neuronal cell apoptosis. Altogether, these data identify HDAC5 and its intracellular translocation as key effectors of multiple pathways that regulate neuronal cell apoptosis.
Collapse
Affiliation(s)
- Jia-Yi Wei
- Department of Developmental Biology, Key Lab of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang 110001, China
| | - Qiu-Nan Lu
- Department of Developmental Biology, Key Lab of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang 110001, China
| | - Wan-Ming Li
- Department of Developmental Biology, Key Lab of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang 110001, China
| | - Wei He
- Department of Developmental Biology, Key Lab of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang 110001, China.
| |
Collapse
|
20
|
Zhang T, Chen Y, Li J, Yang F, Wu H, Dai F, Hu M, Lu X, Peng Y, Liu M, Zhao Y, Yi Z. Antitumor action of a novel histone deacetylase inhibitor, YF479, in breast cancer. Neoplasia 2014; 16:665-77. [PMID: 25220594 PMCID: PMC4234873 DOI: 10.1016/j.neo.2014.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/23/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Abstract
Accumulating evidence demonstrates important roles for histone deacetylase in tumorigenesis (HDACs), highlighting them as attractive targets for antitumor drug development. Histone deactylase inhibitors (HDACIs), which have shown favorable anti-tumor activity with low toxicity in clinical investigations, are a promising class of anticancer therapeutics. Here, we screened our compound library to explore small molecules that possess anti-HDAC activity and identified a novel HDACI, YF479. Suberoylanilide hydroxamic acid (SAHA), which was the first approved HDAC inhibitor for clinical treatment by the FDA, was as positive control in our experiments. We further demonstrated YF479 abated cell viability, suppressed colony formation and tumor cell motility in vitro. To investigate YF479 with superior pharmacodynamic properties, we developed spontaneous and experimental breast cancer animal models. Our results showed YF479 significantly inhibited breast tumor growth and metastasis in vivo. Further study indicated YF479 suppressed both early and end stages of metastatic progression. Subsequent adjuvant chemotherapy animal experiment revealed the elimination of local-regional recurrence (LRR) and distant metastasis by YF479. More important, YF479 remarkably prolonged the survival of tumor-bearing mice. Intriguingly, YF479 displayed more potent anti-tumor activity in vitro and in vivo compared with SAHA. Together, our results suggest that YF479, a novel HDACI, inhibits breast tumor growth, metastasis and recurrence. In light of these results, YF479 may be an effective therapeutic option in clinical trials for patients burdened by breast cancer.
Collapse
Key Words
- hdac, histone deacetylase
- hdacis, histone deacetylase inhibitors
- saha, suberoylanilide hydroxamic acid
- lrr, local-regional recurrence
- hats, histone acetyltransferases
- vpa, valproic acid
- dapi, 4, 6-diamidino-2-phenylindole
- pcna, proliferation cell nuclear antigen
- parp, poly adp ribose polymerase
- mmp, matrix metalloproteinase
- timp, tissue inhibitor of mmp
Collapse
Affiliation(s)
- Tao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jingjie Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feifei Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Haigang Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fujun Dai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Meichun Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaoling Lu
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, 22 Shuang Yong Rd. Nanning, Guangxi 530021, China
| | - Yi Peng
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, 22 Shuang Yong Rd. Nanning, Guangxi 530021, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030.
| | - Yongxiang Zhao
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, 22 Shuang Yong Rd. Nanning, Guangxi 530021, China.
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
21
|
Chen F, Chai H, Su MB, Zhang YM, Li J, Xie X, Nan FJ. Potent and orally efficacious bisthiazole-based histone deacetylase inhibitors. ACS Med Chem Lett 2014; 5:628-33. [PMID: 24944733 DOI: 10.1021/ml400470s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/04/2014] [Indexed: 01/18/2023] Open
Abstract
Inspired by the thiazole-thiazoline cap group in natural product largazole, a series of structurally simplified bisthiazole-based histone deacetylase inhibitors were prepared and evaluated. Compound 8f was evaluated in vivo in an experimental autoimmune encephalomyelitis (EAE) model and found to be orally efficacious in ameliorating clinical symptoms of EAE mice.
Collapse
Affiliation(s)
- Fei Chen
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Hui Chai
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Ming-Bo Su
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Yang-Ming Zhang
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Jia Li
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Xin Xie
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| | - Fa-Jun Nan
- Chinese National Center for
Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, 189 Guoshoujing Road, Shanghai, 201203, China
| |
Collapse
|
22
|
Schotes C, Ostrovskyi D, Senger J, Schmidtkunz K, Jung M, Breit B. Total synthesis of (18S)- and (18R)-homolargazole by rhodium-catalyzed hydrocarboxylation. Chemistry 2014; 20:2164-8. [PMID: 24478039 DOI: 10.1002/chem.201303300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 11/05/2022]
Abstract
Homolargazole derivatives, in which the macrocycle of natural largazole is extended by one methylene group, were prepared by the recently developed rhodium-catalyzed hydrocarboxylation reaction onto allenes. This strategy gives access to both the (18S)- and (18R)-stereoisomers in high stereoselectivity under ligand control.
Collapse
Affiliation(s)
- Christoph Schotes
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg i. Bg. (Germany), Fax: (+49) 761-203-8715
| | | | | | | | | | | |
Collapse
|
23
|
Tan Q, Zhang Z, Hui J, Zhao Y, Zhu L. Synthesis and anticancer activities of thieno[3,2-d]pyrimidines as novel HDAC inhibitors. Bioorg Med Chem 2014; 22:358-65. [DOI: 10.1016/j.bmc.2013.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
|
24
|
Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor. Biochem Biophys Res Commun 2013; 434:413-20. [DOI: 10.1016/j.bbrc.2013.03.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/17/2013] [Indexed: 10/27/2022]
|
25
|
Beauharnois JM, Bolívar BE, Welch JT. Sirtuin 6: a review of biological effects and potential therapeutic properties. MOLECULAR BIOSYSTEMS 2013; 9:1789-806. [DOI: 10.1039/c3mb00001j] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Ma J, Zhao J, Lu J, Jiang Y, Yang H, Li P, Zhao M, Liu K, Dong Z. Coxsackievirus and adenovirus receptor promotes antitumor activity of oncolytic adenovirus H101 in esophageal cancer. Int J Mol Med 2012; 30:1403-9. [PMID: 22992863 DOI: 10.3892/ijmm.2012.1133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/02/2012] [Indexed: 11/05/2022] Open
Abstract
Esophageal cancer is an intractable disease due to late diagnosis, high incidence of post-surgical locoregional recurrence and frequent distant metastasis. Oncolytic adenovirus (Ad) vectors are a promising method for cancer treatment. The H101 virus is a recombinant Ad which has replication-selective properties and replicates only in tumor cells. The coxsackievirus and adenovirus receptor (CAR) is considered a surrogate marker that monitors the outcome of Ad-mediated gene therapy. Accumulating evidence indicates that CAR expression levels are lower in various types of tumors such as ovarian, lung, breast and bladder when compared to their normal counterparts. In this study, we reported that trichostatin A (TSA) induced the expression of CAR in esophageal squamous cell carcinoma (ESCC) cell lines through the MAPK/ERK1/2 signaling pathway. The expression levels of CAR were positively related with the antitumor activity of H101. Our results suggest that TSA increases the antitumor activity of the oncolytic adenovirus H101 through the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Junfen Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jalali-Heravi M, Mani-Varnosfaderani A. Navigating Drug-Like Chemical Space of Anticancer Molecules Using Genetic Algorithms and Counterpropagation Artificial Neural Networks. Mol Inform 2012; 31:63-74. [DOI: 10.1002/minf.201100098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/30/2011] [Indexed: 11/12/2022]
|
28
|
Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology 2011; 32:586-95. [PMID: 21777615 DOI: 10.1016/j.neuro.2011.05.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/22/2011] [Accepted: 05/23/2011] [Indexed: 11/15/2022]
Abstract
Environmental neurotoxic exposure to agrochemicals has been implicated in the etiopathogenesis of Parkinson's disease (PD). The widely used herbicide paraquat is among the few environmental chemicals potentially linked with PD. Since epigenetic changes are beginning to emerge as key mechanisms in neurodegenerative diseases, herein we examined the effects of paraquat on histone acetylation, a major epigenetic change in chromatin that can regulate gene expression, chromatin remodeling, cell survival and cell death. Exposure of N27 dopaminergic cells to paraquat induced histone H3 acetylation in a time-dependent manner. However, paraquat did not alter acetylation of another core histone H4. Paraquat-induced histone acetylation was associated with decreased total histone deacetylase (HDAC) activity and HDAC4 and 7 protein expression levels. To determine if histone acetylation plays a role in paraquat-induced apoptosis, the novel HAT inhibitor anacardic acid was used. Anacardic acid treatment significantly attenuated paraquat-induced caspase-3 enzyme activity, suppressed proteolytic activation and kinase activity of protein kinase C delta (PKCδ) and also blocked paraquat-induced cytotoxicity. Together, these results demonstrate that the neurotoxic agent paraquat induced acetylation of core histones in cell culture models of PD and that the inhibition of HAT activity by anacardic acid protects against apoptotic cell death, indicating that histone acetylation may represent key epigenetic changes in dopaminergic neuronal cells during neurotoxic insults.
Collapse
Affiliation(s)
- C Song
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
29
|
Zhao X, Yang W, Shi C, Ma W, Liu J, Wang Y, Jiang G. The G1 phase arrest and apoptosis by intrinsic pathway induced by valproic acid inhibit proliferation of BGC-823 gastric carcinoma cells. Tumour Biol 2010; 32:335-46. [PMID: 21113745 DOI: 10.1007/s13277-010-0126-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/29/2010] [Indexed: 01/06/2023] Open
Abstract
Recent studies have demonstrated that the histone deacetylation level was closely related to the genesis and development of tumors. Thus, activating histone acetyltransferases and/or suppressing histone deacetylases (HDACs) can become an approach for tumor chemotherapy. The histone acetylation regulation often results in the inhibition of cell proliferation, induction of cell apoptosis or differentiation, and cell cycle arrest in G1 phase. It has been demonstrated recently that the traditional anticonvulsant valproic acid was an efficient class I HDAC inhibitor (HDACI); however, its antitumor effect and mechanisms on gastric cancers so far has not been elucidated clearly. In the present study, gastric carcinoma cell lines BGC-823, HGC-27, and SGC-7901 were cultured with valproic acid (VPA) in vitro. The cell morphology was observed by invert microscope, the proliferation was detected by MTT assay, the apoptosis and cell cycle were analyzed by flow cytometry assay with Annexin V/PI and PI, the activities and protein expressions of Caspase 3, Caspase 8, Caspase 9 of BGC-823 cells were detected by spectrophotometry and indirect immunofluorescence technique, respectively. The protein expressions of Cyclin A, Cyclin D1, Cyclin E, P21(Waf/cip1) of BGC-823 cells were analyzed by indirect immunofluorescence assay, and messenger ribonucleic acid (mRNA) expressions were detected by RT-PCR assay. The results showed that the proliferation of three kinds of gastric carcinoma cells could be inhibited obviously by VPA, which was related to the apoptosis induction and cell cycle arrest in G1 phase. The intrinsic pathway (cytochrome C pathway) was chiefly involved in the mechanism of apoptosis, which was indicated by activation of Caspase 9 and Caspase 3. The extrinsic pathway was partially involved, with slight activation of Caspase 8. The mechanism underlying its effect on cell cycle arrest in G1 phase induction was due to the upregulation of P21(Waf/cip1), Mad1 expression and downregulation of Cyclin A, c-Myc expression.
Collapse
Affiliation(s)
- Xia Zhao
- The Central Laboratory, Qianfoshan Hospital of Shandong Province, Jinan 250014, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Szpilman AM, Carreira EM. Probing the Biology of Natural Products: Molecular Editing by Diverted Total Synthesis. Angew Chem Int Ed Engl 2010; 49:9592-628. [DOI: 10.1002/anie.200904761] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Szpilman AM, Carreira EM. Untersuchung der Biologie von Naturstoffen: systematische Strukturvariation durch umgelenkte Totalsynthese. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904761] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
HDAC inhibitors with different gene regulation activities depend on the mitochondrial pathway for the sensitization of leukemic T cells to TRAIL-induced apoptosis. Cancer Lett 2010; 297:91-100. [DOI: 10.1016/j.canlet.2010.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/31/2010] [Accepted: 04/30/2010] [Indexed: 11/13/2022]
|
33
|
Antiproliferative activity of phenylbutyrate ester of haloperidol metabolite II [(±)-MRJF4] in prostate cancer cells. Eur J Med Chem 2010; 46:433-8. [PMID: 21055848 DOI: 10.1016/j.ejmech.2010.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/11/2010] [Indexed: 11/20/2022]
Abstract
Complex mechanisms of prostate cancer progression prompt to novel therapeutic strategies concerning a combination of drugs or of single molecules able to interact with more crucial targets. Histone deacetylase inhibitors and sigma ligands with mixed σ(1) antagonist and σ(2) agonist properties were proposed as new potential tools for treatment of prostate cancer. (±)-MRJF4 was synthesized as phenylbutyrate ester of haloperidol metabolite II, which is a molecule consisting of a histone deacetilase inhibitor (4-phenylbutyric acid) and a sigma ligand (haloperidol metabolite II). Antiproliferatives activities of 4-phenylbutyric acid, haloperidol metabolite II, equimolar mixture of both compounds and (±)-MRJF4 were evaluated in vitro on LNCaP and PC3 prostate cancer cells. Preliminary binding studies of (±)-MRJF4 for σ(1), σ(2), D(2) and D(3) receptors and inhibition HDAC activity were reported. MTT cell viability assays highlighted a notable increase of antiproliferative activity of (±)-MRJF4 (IC(50) = 11 and 13 μM for LNCaP and PC3, respectively) compared to 4-phenylbutyric acid, haloperidol metabolite II and the respective equimolar pharmacological association. (±)-MRJF4 was also used in combination with σ(1) agonist (+)-pentazocine and σ(2) antagonist AC927 in order to evaluate the role of σ receptor subtypes in prostate cancer cell death.
Collapse
|
34
|
Mwakwari SC, Guerrant W, Patil V, Khan SI, Tekwani BL, Gurard-Levin ZA, Mrksich M, Oyelere AK. Non-peptide macrocyclic histone deacetylase inhibitors derived from tricyclic ketolide skeleton. J Med Chem 2010; 53:6100-11. [PMID: 20669972 DOI: 10.1021/jm100507q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inhibition of histone deacetylase (HDAC) function is a validated therapeutic strategy for cancer treatment. Of the several structurally distinct small molecule histone deacetylase inhibitors (HDACi) reported, macrocyclic depsipeptides possess the most complex cap groups and have demonstrated excellent HDAC inhibition potency and isoform selectivity. Unfortunately, the development of macrocyclic depsipeptides has been hampered in part because of development problems characteristic of large peptides and the complex reaction schemes required for their synthesis. Herein we report that tricyclic ketolide TE-802 is an excellent mimetic for the peptide backbone of macrocyclic HDACi. Compounds derived from this template are particularly selective against HDACs 1 and 2 with nanomolar inhibitory activity. Interrogation of the association between a subset of these compounds and key HDAC isoforms, using AutoDock, enables a molecular description of the interaction between the HDAC enzyme's outer rim and the inhibitors' macrocyclic cap group that are responsible for compound affinity and presumably isoform selectivity.
Collapse
Affiliation(s)
- Sandra C Mwakwari
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG. Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol 2010; 77:621-32. [PMID: 20097775 PMCID: PMC2847769 DOI: 10.1124/mol.109.062174] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/19/2010] [Indexed: 11/22/2022] Open
Abstract
Pesticide exposure has been implicated in the etiopathogenesis of Parkinson's disease (PD); in particular, the organochlorine insecticide dieldrin is believed to be associated with PD. Emerging evidence indicates that histone modifications play a critical role in cell death. In this study, we examined the effects of dieldrin treatment on histone acetylation and its role in dieldrin-induced apoptotic cell death in dopaminergic neuronal cells. In mesencephalic dopaminergic neuronal cells, dieldrin induced a time-dependent increase in the acetylation of core histones H3 and H4. Histone acetylation occurred within 10 min of dieldrin exposure indicating that acetylation is an early event in dieldrin neurotoxicity. The hyperacetylation was attributed to dieldrin-induced proteasomal dysfunction, resulting in accumulation of a key histone acetyltransferase (HAT), cAMP response element-binding protein. The novel HAT inhibitor anacardic acid significantly attenuated dieldrin-induced histone acetylation, Protein kinase C delta proteolytic activation and DNA fragmentation in dopaminergic cells protected against dopaminergic neuronal degeneration in primary mesencephalic neuronal cultures. Furthermore, 30-day exposure of dieldrin in mouse models induced histone hyperacetylation in the striatum and substantia nigra. For the first time, our results collectively demonstrate that exposure to the neurotoxic pesticide dieldrin induces acetylation of core histones because of proteasomal dysfunction and that hyperacetylation plays a key role in dopaminergic neuronal degeneration after exposure of dieldrin.
Collapse
Affiliation(s)
- C Song
- Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
36
|
Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma. Blood 2010; 116:406-17. [PMID: 20351311 DOI: 10.1182/blood-2009-07-235663] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bortezomib is now widely used for the treatment of multiple myeloma (MM); however, its action mechanisms are not fully understood. Despite the initial results, recent investigations have indicated that bortezomib does not inactivate nuclear factor-kappaB activity in MM cells, suggesting the presence of other critical pathways leading to cytotoxicity. In this study, we show that histone deacetylases (HDACs) are critical targets of bortezomib, which specifically down-regulated the expression of class I HDACs (HDAC1, HDAC2, and HDAC3) in MM cell lines and primary MM cells at the transcriptional level, accompanied by reciprocal histone hyperacetylation. Transcriptional repression of HDACs was mediated by caspase-8-dependent degradation of Sp1 protein, the most potent transactivator of class I HDAC genes. Short-interfering RNA-mediated knockdown of HDAC1 enhanced bortezomib-induced apoptosis and histone hyperacetylation, whereas HDAC1 overexpression inhibited them. HDAC1 overexpression conferred resistance to bortezomib in MM cells, and administration of the HDAC inhibitor romidepsin restored sensitivity to bortezomib in HDAC1-overexpressing cells both in vitro and in vivo. These results suggest that bortezomib targets HDACs via distinct mechanisms from conventional HDAC inhibitors. Our findings provide a novel molecular basis and rationale for the use of bortezomib in MM treatment.
Collapse
|
37
|
Abstract
Although the majority of children with acute lymphoblastic leukemia (ALL) can be cured with combination chemotherapy, the challenge remains to salvage patients with resistant disease and to reduce treatment related toxicity. To meet this challenge, it will be essential to incorporate new agents targeting the biological Achilles Heels of this cancer more rapidly into currently available treatment regimen. Here we review the principles of current ALL therapy, recent advances in understanding ALL biology and discuss a selection of promising areas for drug development that may take advantage of the underlying leukemia biology. We focus particularly on strategies to interfere with common effector mechanisms that can be trigged by different individual oncogenic lesions and on new agents from drug development programs in adult oncology, as such agents will come with better chances for sustainable commercial development.
Collapse
|
38
|
Ortore G, Di Colo F, Martinelli A. Docking of hydroxamic acids into HDAC1 and HDAC8: a rationalization of activity trends and selectivities. J Chem Inf Model 2010; 49:2774-85. [PMID: 19947584 DOI: 10.1021/ci900288e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A docking protocol using Gold software was developed to predict the binding disposition of histone deacetylase (HDAC) inhibitors, starting from the X-ray structures of HDAC8. The optimized procedure was subsequently utilized to dock into HDAC8 and into a homology model of HDAC1 nearly 40 compounds that had been tested for their inhibitory activity against the two HDAC isozymes. Evaluation of the best binding poses allowed us to identify the ligand properties and the protein residues important for activity and selectivity. HDACs are important anticancer drug targets, and their study is currently being actively pursued. As such, our results could help design new isozyme-selective HDAC inhibitors. Furthermore, this strategy may also be used for the investigation of other HDACs.
Collapse
Affiliation(s)
- Gabriella Ortore
- Dipartimento di Scienze Farmaceutiche, Universita di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | | | | |
Collapse
|
39
|
Li X, Chen BD. Histone Deacetylase Inhibitor M344 Inhibits Cell Proliferation and Induces Apoptosis in Human THP-1 Leukemia Cells. ACTA ACUST UNITED AC 2009; 1:352-363. [PMID: 20526416 DOI: 10.5099/aj090400352] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Histone acetylation plays an important role in the silencing and activation of genes involved in tumoregenesis. Trichostatin A, originally identified as an anti-fungal drug, is a potent inhibitor of histone deacetylase (HDAC) with potential anti-tumor activity. In this study, we investigated the effect of M344, an amide analogues of trichostatin A, on the growth and differentiation of THP-1 human leukemia cells. We showed that at low doses, (< 0.2 muM), M344 could inhibit the growth of THP-1 cells at G1 phase in vitro with low cytotoxic effect. Low dose of M344 exerted some differentiating effect on THP-1 cells as judged by the expression of c-fms proto-oncogene (M-CSF receptor) and appearance of adherent cells. Growth arrest induced by M344 is associated with increased levels of cyclin-dependent protein kinase inhibitor p21 and cyclin E, in agreement with G1 phase arrest. At higher doses (2 muM), M344 could induce THP-1 cells to undergo apoptosis, which was associated with the cleavage of PARP, cytochrome c release and activation of both caspases-8, -9, followed by the activation of caspase-3. In addition, M344 could increase the levels of pro-apoptotic protein Bax but decreased the levels of anti-apoptotic protein XIAP. M344 is a potent activator of NF-kappaB transcription factor. RT-PCR assay showed that the M344 could transiently increase IL-1 expression yet markedly decreased TNF-alpha expression. Our results show that M344 is a potent growth inhibitor and inducer of apoptosis in human leukemia cells and suggest potential therapeutic strategies of HDAC inhibitors for patients with leukemias.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Internal medicine and Karmanos Cancer Institute, Wayne State University School of Medicine, 550 E. Canfield, Detroit, MI 48201
| | | |
Collapse
|
40
|
Munshi A, Shafi G, Aliya N, Jyothy A. Histone modifications dictate specific biological readouts. J Genet Genomics 2009; 36:75-88. [PMID: 19232306 DOI: 10.1016/s1673-8527(08)60094-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/23/2008] [Accepted: 10/30/2008] [Indexed: 12/21/2022]
Abstract
The basic unit of chromatin is the nucleosomal core particle, containing 147 bp of DNA that wraps twice around an octamer of core histones. The core histones bear a highly dynamic N-terminal amino acid tail around 20-35 residues in length and rich in basic amino acids. These tails extending from the surface of nucleosome play an important role in folding of nucleosomal arrays into higher order chromatin structure, which plays an important role in eukaryotic gene regulation. The amino terminal tails protruding from the nuclesomes get modified by the addition of small groups such as methyl, acetyl and phosphoryl groups. In this review, we focus on these complex modification patterns and their biological functions. Moreover, these modifications seem to be part of a complex scheme where distinct histone modifications act in a sequential manner or in combination to form a "histone code" read by other proteins to control the structure and/or function of the chromatin fiber. Errors in this histone code may be involved in many human diseases especially cancer, the nature of which could be therapeutically exploited. Increasing evidence suggests that many proteins bear multiple, distinct modifications, and the ability of one modification to antagonize or synergize the deposition of another can have significant biological consequences.
Collapse
Affiliation(s)
- Anjana Munshi
- Institute of Genetics and Hospital for Genetic Diseases, Begumpet, Hyderabad, India.
| | | | | | | |
Collapse
|
41
|
Bowers AA, West N, Newkirk TL, Troutman-Youngman AE, Schreiber SL, Wiest O, Bradner JE, Williams RM. Synthesis and histone deacetylase inhibitory activity of largazole analogs: alteration of the zinc-binding domain and macrocyclic scaffold. Org Lett 2009; 11:1301-4. [PMID: 19239241 DOI: 10.1021/ol900078k] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fourteen analogs of the marine natural product largazole have been prepared and assayed against histone deacetylases (HDACs) 1, 2, 3, and 6. Olefin cross-metathesis was used to efficiently access six variants of the side-chain zinc-binding domain, while adaptation of our previously reported modular synthesis allowed probing of the macrocyclic cap group.
Collapse
Affiliation(s)
- Albert A Bowers
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Two of the most common signalling pathways in breast cancer are the ER (oestrogen receptor) ligand activation pathway and the E-cadherin snai1 slug EMT (epithelial-mesenchymal transition) pathway. Although these pathways have been thought to interact indirectly, the present study is the first to observe direct interactions between these pathways that involves the regulation of slug expression. Specifically we report that ligand-activated ERalpha suppressed slug expression directly by repression of transcription and that knockdown of ERalpha with RNA interference increased slug expression. More specifically, slug expression was down-regulated in ERalpha-negative MDA-MB-468 cells transfected with ERalpha after treatment with E2 (17beta-oestradiol). The down-regulation of slug in the ERalpha-positive MCF-7 cell line was mediated by direct repression of slug transcription by the formation of a co-repressor complex involving ligand-activated ERalpha protein, HDAC1 (histone deacetylase 1) and N-CoR (nuclear receptor co-repressor). This finding was confirmed by sequential ChIP (chromatin immunoprecipitation) studies. In the MCF-7 cell line, slug expression normally was low. In addition, knockdown of ERalpha with RNA interference in this cell line increased slug expression. This effect could be partially reversed by treatment of the cells with E2. The efficacy of the effect of ERalpha on slug repression was dependent on the overall level of ERalpha. These observations confirmed that slug was an E2-responsive gene.
Collapse
|
43
|
Bowers A, West N, Taunton J, Schreiber SL, Bradner JE, Williams RM. Total synthesis and biological mode of action of largazole: a potent class I histone deacetylase inhibitor. J Am Chem Soc 2008; 130:11219-22. [PMID: 18642817 PMCID: PMC3090445 DOI: 10.1021/ja8033763] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient total synthesis of the recently described natural substance largazole (1) and its active metabolite largazole thiol (2) is described. The synthesis required eight linear steps and proceeded in 37% overall yield. It is demonstrated that largazole is a pro-drug that is activated by removal of the octanoyl residue from the 3-hydroxy-7-mercaptohept-4-enoic acid moiety to generate the active metabolite 2, which is an extraordinarily potent Class I histone deacetylase inhibitor. Synthetic largazole and 2 have been evaluated side-by-side with FK228 and SAHA for inhibition of HDACs 1, 2, 3, and 6. Largazole and largazole thiol were further assayed for cytotoxic activity against a panel of chemoresistant melanoma cell lines, and it was found that largazole is substantially more cytotoxic than largazole thiol; this difference is attributed to differences in the cell permeability of the two substances.
Collapse
Affiliation(s)
- Albert Bowers
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
| | - Nathan West
- Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, UC San Francisco, San Francisco, CA 94158
| | - Stuart L. Schreiber
- Howard Hughes Medical Institute, Chemistry & Chemical Biology, Harvard University, Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - James E. Bradner
- Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115
| | - Robert M. Williams
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
- University of Colorado Cancer Center, Aurora, Colorado 80045
| |
Collapse
|
44
|
Dessalew N. QSAR study on aminophenylbenzamides and acrylamides as histone deacetylase inhibitors: An insight into the structural basis of antiproliferative activity. Med Chem Res 2008. [DOI: 10.1007/s00044-007-9085-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Greshock TJ, Johns DM, Noguchi Y, Williams RM. Improved total synthesis of the potent HDAC inhibitor FK228 (FR-901228). Org Lett 2008; 10:613-6. [PMID: 18205373 DOI: 10.1021/ol702957z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A scaleable synthesis of the potent histone deacetylase (HDAC) inhibitor FK228 is described. A reliable strategy for preparing the key beta-hydroxy mercapto heptenoic acid partner was accomplished in nine steps and 13% overall yield. A Noyori asymmetric hydrogen-transfer reaction established the hydroxyl stereochemistry in >99:1 er via the reduction of a propargylic ketone.
Collapse
Affiliation(s)
- Thomas J Greshock
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Neural stem cell is presently the research hotspot in neuroscience. Recent progress indicates that epigenetic modulation is closely related to the self-renewal and differentiation of neural stem cell. Epigenetics refer to the study of mitotical/meiotical heritage changes in gene function that cannot be explained by changes in the DNA sequence. Major epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, genomic imprinting, and non-coding RNA. In this review, we focus on the new insights into the epigenetic mechanism for neural stem cells fate.
Collapse
Affiliation(s)
- Hai-Liang Tang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, 200040 China
- National Key Laboratory for Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jian-Hong Zhu
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, 200040 China
- National Key Laboratory for Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
47
|
Charrier C, Roche J, Gesson JP, Bertrand P. Antiproliferative activities of a library of hybrids between indanones and HDAC inhibitor SAHA and MS-275 analogues. Bioorg Med Chem Lett 2007; 17:6142-6. [PMID: 17897824 DOI: 10.1016/j.bmcl.2007.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/07/2007] [Accepted: 09/08/2007] [Indexed: 10/22/2022]
Abstract
New compounds derived from inhibitors of histone deacetylases (HDACs) have been synthesized and their antiproliferative activities towards non small lung cancer cell line H661 evaluated. Their design is based on hybrids between indanones to limit conformational mobility and other known HDAC inhibitors (SAHA, MS-275). The synthesis of these new derivatives was achieved by alkylation of appropriate indanones to introduce the side chain bearing a terminal ester group, the latter being a precursor of hydroxamic acid and aminobenzamide derivatives. These new analogues were found to be moderately active to inhibit H661 cell proliferation.
Collapse
Affiliation(s)
- Cédric Charrier
- Synthèse et Réactivité des Substances Naturelles, CNRS UMR 6514, Université de Poitiers, 40 Avenue du Recteur Pineau, Poitiers, France
| | | | | | | |
Collapse
|
48
|
Phillips JA, Griffin BE. Pilot study of sodium phenylbutyrate as adjuvant in cyclophosphamide-resistant endemic Burkitt's lymphoma. Trans R Soc Trop Med Hyg 2007; 101:1265-9. [PMID: 17915270 DOI: 10.1016/j.trstmh.2007.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 06/13/2007] [Accepted: 06/13/2007] [Indexed: 11/21/2022] Open
Abstract
Burkitt's lymphoma (BL) accounts for the majority of childhood malignancies seen in sub-Saharan Africa. In Malawi, cyclophosphamide (CPM), the mainstay of treatment for endemic BL, is effective in around 50% of cases. Evidence exists in support of an association between activation of replication of Epstein-Barr virus (EBV) in the tumour and response to this chemotheraupeutic agent. Phenylbutyrate (PB), approved for treatment of inborn errors of the urea cycle with minimal toxicity in children, induces EBV replication and cell lysis in BL-derived cell cultures. It has also shown some success as adjuvant in treatment of chronic leukaemia and lymphoma. We tested in African BL patients with CPM-resistant tumours, and thus unlikely to survive, the hypothesis that PB can reverse this resistance. A study of five patients showed PB before CPM to induce shrinkage of CPM-resistant tumours in two of them. Findings suggested that for this effect PB pre-treatment should be given for a week before CPM treatment. A larger study is indicated.
Collapse
Affiliation(s)
- John A Phillips
- Paediatric Department, Kamuzu Central Hospital, Box 149, Lilongwe, Malawi.
| | | |
Collapse
|
49
|
Zhu K, Qu D, Sakamoto T, Fukasawa I, Hayashi M, Inaba N. Telomerase expression and cell proliferation in ovarian cancer cells induced by histone deacetylase inhibitors. Arch Gynecol Obstet 2007; 277:15-9. [PMID: 17680259 DOI: 10.1007/s00404-007-0423-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Telomerase is composed primarily of catalytic subunit (hTERT) and RNA template (hTERC). Histone deacetylase (HDAC) inhibitors are known to modulate transcription and change the expression of hTERT and hTERC mRNA and telomerase activity in several types of cancer cells, but it is unclear if there is a similar effect in ovarian cancer cells. METHOD The present study was designed to evaluate the effects of HDAC inhibitors on hTERT and hTERC mRNA expression in ovarian cancer cells. SK-V-3 cells were treated with the HDAC inhibitors, trichostatinA (TSA) and sodium butyrate (NaB); the expression of hTERC and hTERT mRNA and telomerase activity were evaluated by RT-PCR and TRAP assay, respectively. RESULTS In SK-OV-3 cells, TSA and NaB inhibited cell proliferation and induced apoptosis. The expression of hTERT and hTERT mRNA was not suppressed even after treatment with 1.0 microM TSA and 6 mM NaB, respectively. The telomerase activity was not changed by either TSA or NaB. CONCLUSION Histone deacetylase inhibitors inhibited cell proliferation and induced apoptosis, but had no effect on the expression of hTERC and hTERT mRNA and on telomerase activity.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Obstetrics and Gynecology, Dokkyo Medical University, 880 kita-Kobayashi, Mibu, Shimotsuga, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Duvic M, Vu J. Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs 2007; 16:1111-20. [PMID: 17594194 DOI: 10.1517/13543784.16.7.1111] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic regulation of gene transcription by small-molecule inhibitors of histone deacetylases (HDACs) is a novel cancer therapy. Vorinostat (suberoylanilide hydroxamic acid) is the first FDA-approved HDAC inhibitor for the treatment of cutaneous manifestations of cutaneous T-cell lymphoma (CTCL). Vorinostat was active against solid tumors and hematologic malignancies as intravenous and oral preparations in Phase I development. In two Phase II trials, vorinostat 400 mg/day was safe and effective with an overall response rate of 24-30% in refractory advanced patients with CTCL including large cell transformation and Sézary syndrome. The common side effects of vorinostat, which are similar in all studies, include gastrointestinal symptoms, fatigue and thrombocytopenia and the most common serious event was thrombosis.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drugs, Investigational
- Female
- Histone Deacetylase Inhibitors
- Humans
- Hydroxamic Acids/administration & dosage
- Hydroxamic Acids/pharmacology
- Immunohistochemistry
- Lymphoma, T-Cell, Cutaneous/diagnosis
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/mortality
- Male
- Maximum Tolerated Dose
- Mice
- Mice, Nude
- Neoplasm Staging
- Prognosis
- Risk Assessment
- Survival Analysis
- Treatment Outcome
- Vorinostat
Collapse
Affiliation(s)
- Madeleine Duvic
- University of Texas MD Anderson Cancer Center, Department of Dermatology, Houston, TX 77030, USA.
| | | |
Collapse
|