1
|
Batho-Samblas C, Smith J, Keavey L, Clancy N, McTeir L, Davey MG. Characterisation of the avascular mesenchyme during digit outgrowth. Dev Biol 2025; 523:99-110. [PMID: 40210155 DOI: 10.1016/j.ydbio.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The avascular mesenchyme at the tip of the developing digit contributes to digit outgrowth and patterning, however, it has been poorly characterised. Using newly developed fate mapping approaches, tissue manipulation and single-cell mRNA sequencing data, we explore the transcriptional nature and developmental potential of this tissue. We find that the avascular mesenchyme is essential to normal segmental patterning of the digit and has a distinct transcriptional identity. In addition, we uncover an unexpected relationship between the unspecified tissue of the avascular mesenchyme and the committed phalanx forming region, which controls patterning, but not outgrowth of the digit. This multifaceted approach provides insights into the mechanics and genetic pathways that regulate digit outgrowth and patterning.
Collapse
Affiliation(s)
- Cameron Batho-Samblas
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Jonathan Smith
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lois Keavey
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; UK Dementia Research Institute, University of Edinburgh, EH16 4SB, UK
| | - Noah Clancy
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Lynn McTeir
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Megan G Davey
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; RICE- Roslin Institute Chicken Embryology, UK.
| |
Collapse
|
2
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580629. [PMID: 38405698 PMCID: PMC10888970 DOI: 10.1101/2024.02.16.580629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
3
|
Grall E, Feregrino C, Fischer S, De Courten A, Sacher F, Hiscock TW, Tschopp P. Self-organized BMP signaling dynamics underlie the development and evolution of digit segmentation patterns in birds and mammals. Proc Natl Acad Sci U S A 2024; 121:e2304470121. [PMID: 38175868 PMCID: PMC10786279 DOI: 10.1073/pnas.2304470121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024] Open
Abstract
Repeating patterns of synovial joints are a highly conserved feature of articulated digits, with variations in joint number and location resulting in diverse digit morphologies and limb functions across the tetrapod clade. During the development of the amniote limb, joints form iteratively within the growing digit ray, as a population of distal progenitors alternately specifies joint and phalanx cell fates to segment the digit into distinct elements. While numerous molecular pathways have been implicated in this fate choice, it remains unclear how they give rise to a repeating pattern. Here, using single-cell RNA sequencing and spatial gene expression profiling, we investigate the transcriptional dynamics of interphalangeal joint specification in vivo. Combined with mathematical modeling, we predict that interactions within the BMP signaling pathway-between the ligand GDF5, the inhibitor NOGGIN, and the intracellular effector pSMAD-result in a self-organizing Turing system that forms periodic joint patterns. Our model is able to recapitulate the spatiotemporal gene expression dynamics observed in vivo, as well as phenocopy digit malformations caused by BMP pathway perturbations. By contrasting in silico simulations with in vivo morphometrics of two morphologically distinct digits, we show how changes in signaling parameters and growth dynamics can result in variations in the size and number of phalanges. Together, our results reveal a self-organizing mechanism that underpins amniote digit segmentation and its evolvability and, more broadly, illustrate how Turing systems based on a single molecular pathway may generate complex repetitive patterns in a wide variety of organisms.
Collapse
Affiliation(s)
- Emmanuelle Grall
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Christian Feregrino
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Sabrina Fischer
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Aline De Courten
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Fabio Sacher
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| | - Tom W. Hiscock
- Institute of Medical Sciences, University of Aberdeen, AberdeenAB25 2ZD, Scotland, United Kingdom
| | - Patrick Tschopp
- Zoology, Department of Environmental Sciences, University of Basel, Basel4051, Switzerland
| |
Collapse
|
4
|
Zhu M, Tabin CJ. The role of timing in the development and evolution of the limb. Front Cell Dev Biol 2023; 11:1135519. [PMID: 37200627 PMCID: PMC10185760 DOI: 10.3389/fcell.2023.1135519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
The term heterochrony was coined to describe changes in the timing of developmental processes relative to an ancestral state. Limb development is a well-suited system to address the contribution of heterochrony to morphological evolution. We illustrate how timing mechanisms have been used to establish the correct pattern of the limb and provide cases where natural variations in timing have led to changes in limb morphology.
Collapse
|
5
|
Sun L, Rong X, Liu X, Yu Z, Zhang Q, Ren W, Yang G, Xu S. Evolutionary genetics of flipper forelimb and hindlimb loss from limb development-related genes in cetaceans. BMC Genomics 2022; 23:797. [DOI: 10.1186/s12864-022-09024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Cetacean hindlimbs were lost and their forelimb changed into flippers characterized by webbed digits and hyperphalangy, thus allowing them to adapt to a completely aquatic environment. However, the underlying molecular mechanism behind cetacean limb development remains poorly understood.
Results
In the present study, we explored the evolution of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with that of other mammals. TBX5, a forelimb specific expression gene, was identified to have been under accelerated evolution in the ancestral branches of cetaceans. In addition, 32 cetacean-specific changes were examined in the SHH signaling network (SHH, PTCH1, TBX5, BMPs and SMO), within which mutations could yield webbed digits or an additional phalange. These findings thus suggest that the SHH signaling network regulates cetacean flipper formation. By contrast, the regulatory activity of the SHH gene enhancer—ZRS in cetaceans—was significantly lower than in mice, which is consistent with the cessation of SHH gene expression in the hindlimb bud during cetacean embryonic development. It was suggested that the decreased SHH activity regulated by enhancer ZRS might be one of the reasons for hindlimb degeneration in cetaceans. Interestingly, a parallel / convergent site (D42G) and a rapidly evolving CNE were identified in marine mammals in FGF10 and GREM1, respectively, and shown to be essential to restrict limb bud size; this is molecular evidence explaining the convergence of flipper-forelimb and shortening or degeneration of hindlimbs in marine mammals.
Conclusions
We did evolutionary analyses of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with those of other mammals to provide novel insights into the molecular basis of flipper forelimb and hindlimb loss in cetaceans.
Collapse
|
6
|
Lancman JJ, Hasso SM, Suzuki T, Kherdjemil Y, Kmita M, Ferris A, Dong PDS, Ros MA, Fallon JF. Downregulation of Grem1 expression in the distal limb mesoderm is a necessary precondition for phalanx development. Dev Dyn 2022; 251:1439-1455. [PMID: 34719843 PMCID: PMC9054941 DOI: 10.1002/dvdy.431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The phalanges are the final skeletal elements to form in the vertebrate limb and their identity is regulated by signaling at the phalanx forming region (PFR) located at the tip of the developing digit ray. Here, we seek to explore the relationship between PFR activity and phalanx morphogenesis, which define the most distal limb skeletal elements, and signals associated with termination of limb outgrowth. RESULTS As Grem1 is extinguished in the distal chick limb mesoderm, the chondrogenesis marker Aggrecan is up-regulated in the metatarsals and phalanges. Fate mapping confirms that subridge mesoderm cells contribute to the metatarsal and phalanges when subridge Grem1 is down-regulated. Grem1 overexpression specifically blocks chick phalanx development by inhibiting PFR activity. PFR activity and digit development are also disrupted following overexpression of a Gli3 repressor, which results in Grem1 expression in the distal limb and downregulation of Bmpr1b. CONCLUSIONS Based on expression and fate mapping studies, we propose that downregulation of Grem1 in the distal limb marks the transition from metatarsal to phalanx development. This suggests that downregulation of Grem1 in the distal limb mesoderm is necessary for phalanx development. Grem1 downregulation allows for full PFR activity and phalanx progenitor cell commitment to digit fate.
Collapse
Affiliation(s)
- Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sean M Hasso
- Heat Biologics, Morrisville, North Carolina, USA
| | - Takayuki Suzuki
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yacine Kherdjemil
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrea Ferris
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria-Sociedad para al Desarrollo Cantabria, Santander, Spain
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - John F Fallon
- Department of Anatomy, University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Huang BL, Mackem S. Rethinking positional information and digit identity: The role of late interdigit signaling. Dev Dyn 2021; 251:1414-1422. [PMID: 34811837 DOI: 10.1002/dvdy.440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Seminal work from John Fallon's lab has illuminated how digit identity determination involves ongoing late regulation and occurs progressively during phalanx formation. Complementary genetic analyses in mice and several papers in this special issue have begun to flesh out how interdigit signaling accomplishes this, but major questions remain unaddressed, including how uncommitted progenitors from which phalanges arise are maintained, and what factors set limits on digit extension and phalanx number, particularly in mammals. This review summarizes what has been learned in the two decades since control of digit identity by late interdigit signals was first identified and what remains poorly understood, and will hopefully spark renewed interest in a process that is critical to evolutionary limb adaptations but nevertheless remains enigmatic.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland, USA
| |
Collapse
|
8
|
Sun L, Cao Y, Kong Q, Huang X, Yu Z, Sun D, Ren W, Yang G, Xu S. Over-expression of the bottlenose dolphin Hoxd13 gene in zebrafish provides new insights into the cetacean flipper formation. Genomics 2021; 113:2925-2933. [PMID: 34166750 DOI: 10.1016/j.ygeno.2021.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 06/19/2021] [Indexed: 11/24/2022]
Abstract
Cetaceans have evolved elongated soft-tissue flipper with digits made of hyperphalangy. Cetaceans were found to have 2-3 more alanine residues in Hoxd13 than other mammals, which were suggested to be related to their flipper. However, how Hoxd13 regulates other genes and induces hyperphalangy in cetaceans remain poorly understood. Here, we overexpressed the bottlenose dolphin Hoxd13 in zebrafish (Danio rerio). Combined with transcriptome data and evolutionary analyses, our results revealed that the Wingless/Integrated (Wnt) and Hedgehog signaling pathways and multiple genes might regulate hyperphalangy development in cetaceans. Meanwhile, the Notch and mitogen-activated protein kinase (Mapk) signaling pathways and Fibroblast growth factor receptor 1 (Fgfr1) are probably correlated with interdigital tissues retained in the cetacean flipper. In conclusion, this is the first study to use a transgenic zebrafish to explore the molecular evolution of Hoxd13 in cetaceans, and it provides new insights into cetacean flipper formation.
Collapse
Affiliation(s)
- Linxia Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yang Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qian Kong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
9
|
Tissières V, Geier F, Kessler B, Wolf E, Zeller R, Lopez-Rios J. Gene Regulatory and Expression Differences between Mouse and Pig Limb Buds Provide Insights into the Evolutionary Emergence of Artiodactyl Traits. Cell Rep 2021; 31:107490. [PMID: 32268095 PMCID: PMC7166081 DOI: 10.1016/j.celrep.2020.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 08/19/2019] [Accepted: 03/16/2020] [Indexed: 10/28/2022] Open
Abstract
Digit loss/reductions are evolutionary adaptations in cursorial mammals such as pigs. To gain mechanistic insight into these processes, we performed a comparative molecular analysis of limb development in mouse and pig embryos, which revealed a loss of anterior-posterior polarity during distal progression of pig limb bud development. These alterations in pig limb buds are paralleled by changes in the mesenchymal response to Sonic hedgehog (SHH) signaling, which is altered upstream of the reduction and loss of Fgf8 expression in the ectoderm that overlaps the reduced and vestigial digit rudiments of the pig handplate, respectively. Furthermore, genome-wide open chromatin profiling using equivalent developmental stages of mouse and pig limb buds reveals the functional divergence of about one-third of the regulatory genome. This study uncovers widespread alterations in the regulatory landscapes of genes essential for limb development that likely contributed to the morphological diversion of artiodactyl limbs from the pentadactyl archetype of tetrapods.
Collapse
Affiliation(s)
- Virginie Tissières
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - Florian Geier
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel and University Hospital, 4053 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain.
| |
Collapse
|
10
|
Camaiti M, Evans AR, Hipsley CA, Chapple DG. A farewell to arms and legs: a review of limb reduction in squamates. Biol Rev Camb Philos Soc 2021; 96:1035-1050. [PMID: 33538028 DOI: 10.1111/brv.12690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/02/2023]
Abstract
Elongated snake-like bodies associated with limb reduction have evolved multiple times throughout vertebrate history. Limb-reduced squamates (lizards and snakes) account for the vast majority of these morphological transformations, and thus have great potential for revealing macroevolutionary transitions and modes of body-shape transformation. Here we present a comprehensive review on limb reduction, in which we examine and discuss research on these dramatic morphological transitions. Historically, there have been several approaches to the study of squamate limb reduction: (i) definitions of general anatomical principles of snake-like body shapes, expressed as varying relationships between body parts and morphometric measurements; (ii) framing of limb reduction from an evolutionary perspective using morphological comparisons; (iii) defining developmental mechanisms involved in the ontogeny of limb-reduced forms, and their genetic basis; (iv) reconstructions of the evolutionary history of limb-reduced lineages using phylogenetic comparative methods; (v) studies of functional and biomechanical aspects of limb-reduced body shapes; and (vi) studies of ecological and biogeographical correlates of limb reduction. For each of these approaches, we highlight their importance in advancing our understanding, as well as their weaknesses and limitations. Lastly, we provide suggestions to stimulate further studies, in which we underscore the necessity of widening the scope of analyses, and of bringing together different perspectives in order to understand better these morphological transitions and their evolution. In particular, we emphasise the importance of investigating and comparing the internal morphology of limb-reduced lizards in contrast to external morphology, which will be the first step in gaining a deeper insight into body-shape variation.
Collapse
Affiliation(s)
- Marco Camaiti
- School of Biological Sciences, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Alistair R Evans
- School of Biological Sciences, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Christy A Hipsley
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Sciences, Museums Victoria, 11 Nicholson St, Carlton, Melbourne, VIC, 3053, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, 19 Rainforest Walk, Clayton, VIC, 3800, Australia
| |
Collapse
|
11
|
Funston GF, Chinzorig T, Tsogtbaatar K, Kobayashi Y, Sullivan C, Currie PJ. A new two-fingered dinosaur sheds light on the radiation of Oviraptorosauria. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201184. [PMID: 33204472 PMCID: PMC7657903 DOI: 10.1098/rsos.201184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Late Cretaceous trends in Asian dinosaur diversity are poorly understood, but recent discoveries have documented a radiation of oviraptorosaur theropods in China and Mongolia. However, little work has addressed the factors that facilitated this diversification. A new oviraptorid from the Late Cretaceous of Mongolia sheds light on the evolution of the forelimb, which appears to have played a role in the radiation of oviraptorosaurs. Surprisingly, the reduced arm has only two functional digits, highlighting a previously unrecognized occurrence of digit loss in theropods. Phylogenetic analysis shows that the onset of this reduction coincides with the radiation of heyuannine oviraptorids, following dispersal from southern China into the Gobi region. This suggests expansion into a new niche in the Gobi region, which relied less on the elongate, grasping forelimbs inherited by oviraptorosaurs. Variation in forelimb length and manus morphology provides another example of niche partitioning in oviraptorosaurs, which may have made possible their incredible diversity in the latest Cretaceous of Asia.
Collapse
Affiliation(s)
- Gregory F. Funston
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tsogtbaatar Chinzorig
- Hokkaido University Museum, Hokkaido University, Sapporo, Japan
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | | | | | - Corwin Sullivan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Philip J. Currie Dinosaur Museum, Wembley, Alberta, Canada
| | - Philip J. Currie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Abstract
The vertebrate limb continues to serve as an influential model of growth, morphogenesis and pattern formation. With this Review, we aim to give an up-to-date picture of how a population of undifferentiated cells develops into the complex pattern of the limb. Focussing largely on mouse and chick studies, we concentrate on the positioning of the limbs, the formation of the limb bud, the establishment of the principal limb axes, the specification of pattern, the integration of pattern formation with growth and the determination of digit number. We also discuss the important, but little understood, topic of how gene expression is interpreted into morphology.
Collapse
Affiliation(s)
- Caitlin McQueen
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Matthew Towers
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
13
|
Cordeiro IR, Yu R, Tanaka M. Regulation of the limb shape during the development of the Chinese softshell turtles. Evol Dev 2020; 22:451-462. [PMID: 32906209 PMCID: PMC7757393 DOI: 10.1111/ede.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Interdigital cell death is an important mechanism employed by amniotes to shape their limbs; inhibiting this process leads to the formation of webbed fingers, as seen in bats and ducks. The Chinese softshell turtle Pelodiscus sinensis (Reptilia: Testudines: Trionychidae) has a distinctive limb morphology: the anterior side of the limbs has partially webbed fingers with claw‐like protrusions, while the posterior fingers are completely enclosed in webbings. Here, P. sinensis embryos were investigated to gain insights on the evolution of limb‐shaping mechanisms in amniotes. We found cell death and cell senescence in their interdigital webbings. Spatial or temporal modulation of these processes were correlated with the appearance of indentations in the webbings, but not a complete regression of this tissue. No differences in interdigital cell proliferation were found. In subsequent stages, differential growth of the finger cartilages led to a major difference in limb shape. While no asymmetry in bone morphogenetic protein signaling was evident during interdigital cell death stages, some components of this pathway were expressed exclusively in the clawed digit tips, which also had earlier ossification. In addition, a delay and/or truncation in the chondrogenesis of the posterior digits was found in comparison with the anterior digits of P. sinensis, and also when compared with the previously published pattern of digit skeletogenesis of turtles without posterior webbings. In conclusion, modulation of cell death, as well as a heterochrony in digit chondrogenesis, may contribute to the formation of the unique limbs of the Chinese softshell turtles. Cell death and senescence shape the interdigital webbings of Pelodiscus sinensis. Delayed chondrogenesis/ossification and truncated tips are found in posterior digits, as well as differential expression of bone morphogenetic proteins and Msh homeobox 1 transcription factors.
Collapse
Affiliation(s)
- Ingrid R Cordeiro
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Reiko Yu
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
14
|
Vincent E, Villiard E, Sader F, Dhakal S, Kwok BH, Roy S. BMP signaling is essential for sustaining proximo-distal progression in regenerating axolotl limbs. Development 2020; 147:dev.170829. [PMID: 32665245 DOI: 10.1242/dev.170829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/30/2020] [Indexed: 02/04/2023]
Abstract
Amputation of a salamander limb triggers a regeneration process that is perfect. A limited number of genes have been studied in this context and even fewer have been analyzed functionally. In this work, we use the BMP signaling inhibitor LDN193189 on Ambystoma mexicanum to explore the role of BMPs in regeneration. We find that BMP signaling is required for proper expression of various patterning genes and that its inhibition causes major defects in the regenerated limbs. Fgf8 is downregulated when BMP signaling is blocked, but ectopic injection of either human or axolotl protein did not rescue the defects. By administering LDN193189 treatments at different time points during regeneration, we show clearly that limb regeneration progresses in a proximal to distal fashion. This demonstrates that BMPs play a major role in patterning of regenerated limbs and that regeneration is a progressive process like development.
Collapse
Affiliation(s)
- Etienne Vincent
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Eric Villiard
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Fadi Sader
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Sabin Dhakal
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, H3T 1J4, Canada
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, H3T 1J4, Canada
| | - Stéphane Roy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada .,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
15
|
Scoones JC, Hiscock TW. A dot-stripe Turing model of joint patterning in the tetrapod limb. Development 2020; 147:dev183699. [PMID: 32127348 PMCID: PMC7174842 DOI: 10.1242/dev.183699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/24/2020] [Indexed: 01/11/2023]
Abstract
Iterative joints are a hallmark of the tetrapod limb, and their positioning is a key step during limb development. Although the molecular regulation of joint formation is well studied, it remains unclear what controls the location, number and orientation (i.e. the pattern) of joints within each digit. Here, we propose the dot-stripe mechanism for joint patterning, comprising two coupled Turing systems inspired by published gene expression patterns. Our model can explain normal joint morphology in wild-type limbs, hyperphalangy in cetacean flippers, mutant phenotypes with misoriented joints and suggests a reinterpretation of the polydactylous Ichthyosaur fins as a polygonal joint lattice. By formulating a generic dot-stripe model, describing joint patterns rather than molecular joint markers, we demonstrate that the insights from the model should apply regardless of the biological specifics of the underlying mechanism, thus providing a unifying framework to interrogate joint patterning in the tetrapod limb.
Collapse
Affiliation(s)
| | - Tom W Hiscock
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| |
Collapse
|
16
|
Forelimb shortening of Carcharodontosauria (Dinosauria: Theropoda): an update on evolutionary anterior micromelias in non-avian theropods. ZOOLOGY 2020; 139:125756. [PMID: 32088525 DOI: 10.1016/j.zool.2020.125756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Evolutionary teratology recognises certain anatomical modifications as developmental anomalies. Within non avian-theropod dinosaurs, the strong forelimb shortening of Tyrannosauridae, Carnotaurinae and Limusaurus - associated with a reduction or loss of autonomy - have been previously diagnosed as evolutionary anterior micromelias. The feature is here examined with Acrocanthosaurus atokensis (Carcharodontosauridae) and Gualicho shinyae (Neovenatoridae). The micromelic diagnosis is confirmed for Acrocanthosaurus, without supplementary malformations. Gualicho is considered as a borderline case, outside of the micromelic spectrum, but shows a total phalangeal loss on digit III. The reduction in the biomechanical range of Acrocanthosaurus' forelimbs was compensated by the skull and jaws as main predatory organs. The same is assumed for Gualicho, but its robust first digit and raptorial claw are to be underlined. Other gigantic-sized and derived representatives of Carcharodontosauridae probably shared the anterior micromelia condition, potentially due to developmental modifications involving differential forelimbs/hindlimbs embryological growth rates, secondarily associated with post-natal growth rates leading to large and gigantic sizes; a converging state with Tyrannosauridae. Nevertheless, whereas developmental growth rates are also considered in the shortened condition of Gualicho, there is no association with post-natal gigantism. Finally, the digit III reduction likely followed the same evolutionary pathways as Tyrannosauridae, potentially involving BMPs, Fgfs and Shh signalling.
Collapse
|
17
|
Grall E, Tschopp P. A sense of place, many times over ‐ pattern formation and evolution of repetitive morphological structures. Dev Dyn 2019; 249:313-327. [DOI: 10.1002/dvdy.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
|
18
|
Feregrino C, Sacher F, Parnas O, Tschopp P. A single-cell transcriptomic atlas of the developing chicken limb. BMC Genomics 2019; 20:401. [PMID: 31117954 PMCID: PMC6530069 DOI: 10.1186/s12864-019-5802-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Through precise implementation of distinct cell type specification programs, differentially regulated in both space and time, complex patterns emerge during organogenesis. Thanks to its easy experimental accessibility, the developing chicken limb has long served as a paradigm to study vertebrate pattern formation. Through decades' worth of research, we now have a firm grasp on the molecular mechanisms driving limb formation at the tissue-level. However, to elucidate the dynamic interplay between transcriptional cell type specification programs and pattern formation at its relevant cellular scale, we lack appropriately resolved molecular data at the genome-wide level. Here, making use of droplet-based single-cell RNA-sequencing, we catalogue the developmental emergence of distinct tissue types and their transcriptome dynamics in the distal chicken limb, the so-called autopod, at cellular resolution. RESULTS Using single-cell RNA-sequencing technology, we sequenced a total of 17,628 cells coming from three key developmental stages of chicken autopod patterning. Overall, we identified 23 cell populations with distinct transcriptional profiles. Amongst them were small, albeit essential populations like the apical ectodermal ridge, demonstrating the ability to detect even rare cell types. Moreover, we uncovered the existence of molecularly distinct sub-populations within previously defined compartments of the developing limb, some of which have important signaling functions during autopod pattern formation. Finally, we inferred gene co-expression modules that coincide with distinct tissue types across developmental time, and used them to track patterning-relevant cell populations of the forming digits. CONCLUSIONS We provide a comprehensive functional genomics resource to study the molecular effectors of chicken limb patterning at cellular resolution. Our single-cell transcriptomic atlas captures all major cell populations of the developing autopod, and highlights the transcriptional complexity in many of its components. Finally, integrating our data-set with other single-cell transcriptomics resources will enable researchers to assess molecular similarities in orthologous cell types across the major tetrapod clades, and provide an extensive candidate gene list to functionally test cell-type-specific drivers of limb morphological diversification.
Collapse
Affiliation(s)
| | - Fabio Sacher
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Oren Parnas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Present address: The Concern Foundation Laboratories at the Lautenberg Centre for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120 Jerusalem, Israel
| | - Patrick Tschopp
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
19
|
Habenicht R, Mann M, Guéro S, Ezaki M, Oberg KC. Distal Dorsal Dimelia: A Disturbance of Dorsal-Ventral Digit Development. J Hand Surg Am 2019; 44:421.e1-421.e8. [PMID: 30292712 DOI: 10.1016/j.jhsa.2018.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE Congenital palmar nail (distal dorsal dimelia [dDD]) of the hand is a rare malformation most commonly affecting the little finger. The purpose of this report was to review the features and associations of this rare disorder and discuss the suspected underlying etiology in light of our current understanding of developmental biology. METHODS In this retrospective cohort study from 3 practices, we describe our collective experience and review the reported literature on this disorder both as an isolated condition and in conjunction with other anomalies. RESULTS We examined 15 fingers with dDD, 5 of which involved little fingers. We also found dDD in 6 cases with radial polydactyly (preaxial polydactyl type II [PPD2]) and in 1 case of cleft hand involving digits adjacent to the clefted web space (the index and middle fingers). Cases of little finger dDD were also associated with prominent clefting of the adjacent web space in 4 of 5 cases. All cases had stiffness of the interphalangeal joints and loss of palmar creases consistent with dorsalization of the palmar aspect of the digit. When combined with 63 fingers reported in the literature with dDD, 3 patterns were evident. The most common form occurred in little fingers (n = 50; 64%; dDDu). The next most common form was reported in association with cleft hands (n = 16; 21%; dDDc). Radial digits in association with either radial polydactyly (PPD2) or radial longitudinal deficiency were also susceptible to dDD (n = 12; 15%; dDDr). CONCLUSIONS Congenital dDD is a disturbance of terminal dorsal-ventral digit patterning. The distribution of this condition with little fingers, clefting, and altered radial digit formation (PPD2 or radial longitudinal deficiency), as well as recent genetic and animal studies, suggests that dDD and altered dorsal-ventral patterning are linked to abnormal apical ectodermal ridge boundary formation. TYPE OF STUDY/LEVEL OF EVIDENCE Diagnostic IV.
Collapse
Affiliation(s)
- Rolf Habenicht
- Department of Hand Surgery, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Max Mann
- Department of Hand Surgery, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | | | - Marybeth Ezaki
- Department of Orthopedics, Texas Scottish Rite Hospital for Children, Dallas, TX
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA.
| |
Collapse
|
20
|
Yuan ML, Wake MH, Wang IJ. Phenotypic integration between claw and toepad traits promotes microhabitat specialization in the
Anolis
adaptive radiation. Evolution 2019; 73:231-244. [DOI: 10.1111/evo.13673] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Michael L. Yuan
- Department of Environmental Science, Policy, and Management, College of Natural Resources University of California Berkeley California 94720
- Museum of Vertebrate Zoology University of California Berkeley California 94720
- Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution Washington District of Columbia 20560
| | - Marvalee H. Wake
- Museum of Vertebrate Zoology University of California Berkeley California 94720
- Department of Integrative Biology, College of Letters and Sciences University of California Berkeley California 94720
| | - Ian J. Wang
- Department of Environmental Science, Policy, and Management, College of Natural Resources University of California Berkeley California 94720
- Museum of Vertebrate Zoology University of California Berkeley California 94720
| |
Collapse
|
21
|
Cooperation of BMP and IHH signaling in interdigital cell fate determination. PLoS One 2018; 13:e0197535. [PMID: 29771958 PMCID: PMC5957397 DOI: 10.1371/journal.pone.0197535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 01/20/2023] Open
Abstract
The elaborate anatomy of hands and feet is shaped by coordinated formation of digits and regression of the interdigital mesenchyme (IM). A failure of this process causes persistence of interdigital webbing and consequently cutaneous syndactyly. Bone morphogenetic proteins (BMPs) are key inductive factors for interdigital cell death (ICD) in vivo. NOGGIN (NOG) is a major BMP antagonist that can interfere with BMP-induced ICD when applied exogenously, but its in vivo role in this process is unknown. We investigated the physiological role of NOG in ICD and found that Noggin null mice display cutaneous syndactyly and impaired interdigital mesenchyme specification. Failure of webbing regression was caused by lack of cell cycle exit and interdigital apoptosis. Unexpectedly, Noggin null mutants also exhibit increased Indian hedgehog (Ihh) expression within cartilage condensations that leads to aberrant extension of IHH downstream signaling into the interdigital mesenchyme. A converse phenotype with increased apoptosis and reduced cell proliferation was found in the interdigital mesenchyme of Ihh mutant embryos. Our data point towards a novel role for NOG in balancing Ihh expression in the digits impinging on digit-interdigit cross talk. This suggests a so far unrecognized physiological role for IHH in interdigital webbing biology.
Collapse
|
22
|
Towers M. Evolution of antero-posterior patterning of the limb: Insights from the chick. Genesis 2018; 56:e23047. [PMID: 28734068 PMCID: PMC5811799 DOI: 10.1002/dvg.23047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/30/2023]
Abstract
The developing limbs of chicken embryos have served as pioneering models for understanding pattern formation for over a century. The ease with which chick wing and leg buds can be experimentally manipulated, while the embryo is still in the egg, has resulted in the discovery of important developmental organisers, and subsequently, the signals that they produce. Sonic hedgehog (Shh) is produced by mesenchyme cells of the polarizing region at the posterior margin of the limb bud and specifies positional values across the antero-posterior axis (the axis running from the thumb to the little finger). Detailed experimental embryology has revealed the fundamental parameters required to specify antero-posterior positional values in response to Shh signaling in chick wing and leg buds. In this review, the evolution of the avian wing and leg will be discussed in the broad context of tetrapod paleontology, and more specifically, ancestral theropod dinosaur paleontology. How the parameters that dictate antero-posterior patterning could have been modulated to produce the avian wing and leg digit patterns will be considered. Finally, broader speculations will be made regarding what the antero-posterior patterning of chick limbs can tell us about the evolution of other digit patterns, including those that were found in the limbs of the earliest tetrapods.
Collapse
Affiliation(s)
- Matthew Towers
- Department of Biomedical ScienceThe Bateson Centre, University of SheffieldWestern BankSheffieldS10 2TNUnited Kingdom
| |
Collapse
|
23
|
Powell GL, Osgood GJ, Russell AP. Ontogenetic allometry of the digital rays of the leopard gecko (Gekkota: Eublepharidae;Eublepharis macularius). ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Geoffrey J. Osgood
- Department of Biological Sciences; University of Victoria; Victoria BC Canada
| | - Anthony P. Russell
- Department of Biological Sciences; University of Calgary; Calgary AB Canada
| |
Collapse
|
24
|
Zhu J, Mackem S. John Saunders' ZPA, Sonic hedgehog and digit identity - How does it really all work? Dev Biol 2017; 429:391-400. [PMID: 28161524 PMCID: PMC5540801 DOI: 10.1016/j.ydbio.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
Among John Saunders' many seminal contributions to developmental biology, his discovery of the limb 'zone of polarizing activity' (ZPA) is arguably one of the most memorable and ground-breaking. This discovery introduced the limb as a premier model for understanding developmental patterning and promoted the concept of patterning by a morphogen gradient. In the 50 years since the discovery of the ZPA, Sonic hedgehog (Shh) has been identified as the ZPA factor and the basic components of the signaling pathway and many aspects of its regulation have been elucidated. Although much has also been learned about how it regulates growth, the mechanism by which Shh patterns the limb, how it acts to instruct digit 'identity', nevertheless remains an enigma. This review focuses on what has been learned about Shh function in the limb and the outstanding puzzles that remain to be solved.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States.
| |
Collapse
|
25
|
Pickering J, Towers M. Inhibition of Shh signalling in the chick wing gives insights into digit patterning and evolution. Development 2017; 143:3514-3521. [PMID: 27702785 PMCID: PMC5087615 DOI: 10.1242/dev.137398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022]
Abstract
In an influential model of pattern formation, a gradient of Sonic hedgehog (Shh) signalling in the chick wing bud specifies cells with three antero-posterior positional values, which give rise to three morphologically different digits by a self-organizing mechanism with Turing-like properties. However, as four of the five digits of the mouse limb are morphologically similar in terms of phalangeal pattern, it has been suggested that self-organization alone could be sufficient. Here, we show that inhibition of Shh signalling at a specific stage of chick wing development results in a pattern of four digits, three of which can have the same number of phalanges. These patterning changes are dependent on a posterior extension of the apical ectodermal ridge, and this also allows the additional digit to arise from the Shh-producing cells of the polarizing region – an ability lost in ancestral theropod dinosaurs. Our analyses reveal that, if the specification of antero-posterior positional values is curtailed, self-organization can then produce several digits with the same number of phalanges. We present a model that may give important insights into how the number of digits and phalanges has diverged during the evolution of avian and mammalian limbs. Highlighted Article: In the chick wing, the relative timing of the specification of antero-posterior positional values and self-organising mechanisms determines digit patterning and identity.
Collapse
Affiliation(s)
- Joseph Pickering
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Matthew Towers
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
26
|
Abourachid A, Fabre AC, Cornette R, Höfling E. Foot shape in arboreal birds: two morphological patterns for the same pincer-like tool. J Anat 2017; 231:1-11. [PMID: 28542878 PMCID: PMC5472528 DOI: 10.1111/joa.12614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 11/30/2022] Open
Abstract
The feet are the only contact between the body and the substrate in limbed animals and as such they provide a crucial interface between the animal and its environment. This is especially true for bipedal and arboreal species living in a complex three-dimensional environment that likely induces strong selection on foot morphology. In birds, foot morphology is highly variable, with different orientations of the toes, making it a good model for the study of the role of functional, developmental, and phylogenetic constraints in the evolution of phenotypic diversity. Our data on the proportions of the phalanges analyzed in a phylogenetic context show that two different morphological patterns exist that depend mainly on habitat and toe orientation. In the anisodactyl foot, the hallux is the only backward-oriented toe and is enlarged in climbing species and reduced in terrestrial ones. Moreover, a proximo-distal gradient in phalanx size is observed depending on the degree of terrestriality. In the two other cases (heterodactyl and zygodactyl) that have two toes that point backward, the hallux is rather small in contrast to the other backward-pointing toe, which is enlarged. The first pattern is convergent and common among tetrapods and follows rules of skeletal development. The second pattern is unique for the clade and under muscle-morphogenetic control. In all cases, the functional result is the same tool, a pincer-like foot.
Collapse
Affiliation(s)
- Anick Abourachid
- UMR 7179, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | | | - Raphaël Cornette
- UMR 7205, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Elizabeth Höfling
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Montero JA, Lorda-Diez CI, Francisco-Morcillo J, Chimal-Monroy J, Garcia-Porrero JA, Hurle JM. Sox9 Expression in Amniotes: Species-Specific Differences in the Formation of Digits. Front Cell Dev Biol 2017; 5:23. [PMID: 28386540 PMCID: PMC5362607 DOI: 10.3389/fcell.2017.00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/07/2017] [Indexed: 01/05/2023] Open
Abstract
In tetrapods the digit pattern has evolved to adapt to distinct locomotive strategies. The number of digits varies between species or even between hindlimb and forelimb within the same species. These facts illustrate the plasticity of embryonic limb autopods. Sox9 is a precocious marker of skeletal differentiation of limb mesenchymal cells. Its pattern of expression in the developing limb has been widely studied and reflects the activity of signaling cascades responsible for skeletogenesis. In this assay we stress previously overlooked differences in the pattern of expression of Sox9 in limbs of avian, mouse and turtle embryos which may reflect signaling differences associated with distinct limb skeletal morphologies observed in these species. Furthermore, we show that Sox9 gene expression is higher and maintained in the interdigital region in species with webbed digits in comparison with free digit animals.
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria Santander, Spain
| | | | - Jesus Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Juan A Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria Santander, Spain
| |
Collapse
|
28
|
Huang BL, Trofka A, Furusawa A, Norrie JL, Rabinowitz AH, Vokes SA, Mark Taketo M, Zakany J, Mackem S. An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5'Hoxd-Gli3 antagonism. Nat Commun 2016; 7:12903. [PMID: 27713395 PMCID: PMC5059757 DOI: 10.1038/ncomms12903] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
The number of phalanges and joints are key features of digit 'identity' and are central to limb functionality and evolutionary adaptation. Prior chick work indicated that digit phalanges and their associated joints arise in a different manner than the more sparsely jointed long bones, and their identity is regulated by differential signalling from adjacent interdigits. Currently, there is no genetic evidence for this model, and the molecular mechanisms governing digit joint specification remain poorly understood. Using genetic approaches in mouse, here we show that functional 5'Hoxd-Gli3 antagonism acts indirectly, through Bmp signalling from the interdigital mesenchyme, to regulate specification of joint progenitors, which arise in conjunction with phalangeal precursors at the digit tip. Phalanx number, although co-regulated, can be uncoupled from joint specification. We propose that 5'Hoxd genes and Gli3 are part of an interdigital signalling centre that sets net Bmp signalling levels from different interdigits to coordinately regulate phalanx and joint formation.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Anna Trofka
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Aki Furusawa
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Jacqueline L. Norrie
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Adam H. Rabinowitz
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Steven A. Vokes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - M. Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606–8501, Japan
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva 4 1211, Switzerland
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| |
Collapse
|
29
|
Spatiotemporal distribution of proliferation, proapoptotic and antiapoptotic factors in the early human limb development. Acta Histochem 2016; 118:527-36. [PMID: 27282649 DOI: 10.1016/j.acthis.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 12/28/2022]
Abstract
Involvement of proliferation and apoptosis in the human limb development was analyzed electronmicroscopically and immunohistochemically in histological sections of 8 human embryos, 4(th) -10(th) week old, using apoptotic (caspase-3, AIF, BAX), anti-apoptotic (Bcl-2) and proliferation (Ki-67) markers, and TUNEL method. The data were analyzed by Mann-Whitney test, Kruskal-Wallis and Dunn's post hoc test. Initially, developing human limbs consisted of mesenchymal core and surface ectoderm with apical ectodermal ridge (AER). During progression of development, strong proliferation activity gradually decreased in the mesenchyme (from 78% to 68%) and in the epithelium (from 62% to 42%), while in the differentiating finger cartilages proliferation was constantly low (26-7%). Apoptotic caspase-3 and AIF-positive cells characterized mesenchyme and AER at earliest stages, while during digit separation they appeared in interdigital mesenchyme as well. Strong Bcl-2 expression was observed in AER, subridge mesenchyme and phalanges, while BAX expression charaterized limb areas undergoing apoptosis. Ultrastructurally, proliferating cells showed mitotic figures, while apoptotic cells were characterized by nuclear fragmentation. Macrophages were observed around the apoptotic cells. We suggest that intense proliferation enables growth and elongation of human limb primordia, and differential growth of digits. Both caspase-3 and AIF-dependant pathways of cell death control the extent of AER and numer of cells in the subridge mesenchyme at earliest developmental stages, as well as process of digit separation at later stages of limb development. Spatio-temporal co-expresson of Bcl-2 and BAX indicates their role in suppression of apoptosis and selective stimulation of growth during human limb morphogenesis.
Collapse
|
30
|
Quijano LM, Lynch KM, Allan CH, Badylak SF, Ahsan T. Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. TISSUE ENGINEERING. PART B, REVIEWS 2016; 22:251-62. [PMID: 26603349 PMCID: PMC4892205 DOI: 10.1089/ten.teb.2015.0401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
Approximately 2 million people have had limb amputations in the United States due to disease or injury, with more than 185,000 new amputations every year. The ability to promote epimorphic regeneration, or the regrowth of a biologically based digit or limb, would radically change the prognosis for amputees. This ambitious goal includes the regrowth of a large number of tissues that need to be properly assembled and patterned to create a fully functional structure. We have yet to even identify, let alone address, all the obstacles along the extended progression that limit epimorphic regeneration in humans. This review aims to present introductory fundamentals in epimorphic regeneration to facilitate design and conduct of research from a tissue engineering and regenerative medicine perspective. We describe the clinical scenario of human digit healing, featuring published reports of regenerative potential. We then broadly delineate the processes of epimorphic regeneration in nonmammalian systems and describe a few mammalian regeneration models. We give particular focus to the murine digit tip, which allows for comparative studies of regeneration-competent and regeneration-incompetent outcomes in the same animal. Finally, we describe a few forward-thinking opportunities for promoting epimorphic regeneration in humans.
Collapse
Affiliation(s)
- Lina M. Quijano
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Kristen M. Lynch
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Christopher H. Allan
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| |
Collapse
|
31
|
Abstract
An "organizer" is formally defined as a region, or group of cells in an embryo that can both induce (change the fate) and pattern (generate an organized set of structures) adjacent embryonic cells. To date, about four such regions have been demonstrated: the primary or Spemann organizer (Hensen's node in amniotes), the notochord, the zone of polarizing activity of the limb bud, and the mid-hindbrain boundary. Here we review the evidence for these and compare them with a few other regions which have been proposed to represent other organizers and we speculate on why so few such regions have been discovered.
Collapse
Affiliation(s)
- Claire Anderson
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Claudio D Stern
- Department of Cell & Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
32
|
Gradients, waves and timers, an overview of limb patterning models. Semin Cell Dev Biol 2016; 49:109-15. [DOI: 10.1016/j.semcdb.2015.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/07/2015] [Accepted: 12/19/2015] [Indexed: 11/21/2022]
|
33
|
Seki R, Kitajima K, Matsubara H, Suzuki T, Saito D, Yokoyama H, Tamura K. AP-2β is a transcriptional regulator for determination of digit length in tetrapods. Dev Biol 2015; 407:75-89. [DOI: 10.1016/j.ydbio.2015.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
|
34
|
Mentink RA, Tsiantis M. From limbs to leaves: common themes in evolutionary diversification of organ form. Front Genet 2015; 6:284. [PMID: 26442102 PMCID: PMC4561821 DOI: 10.3389/fgene.2015.00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
An open problem in biology is to derive general principles that capture how morphogenesis evolved to generate diverse forms in different organisms. Here we discuss recent work investigating the morphogenetic basis for digit loss in vertebrate limbs and variation in form of marginal outgrowths of angiosperm (flowering plant) leaves. Two pathways underlie digit loss in vertebrate limbs. First, alterations to digit patterning arise through modification of expression of the Patched 1 receptor, which senses the Sonic Hedgehog morphogen and limits its mobility in the limb bud. Second, evolutionary changes to the degree of programmed cell death between digits influence their development after their initiation. Similarly, evolutionary modification of leaf margin outgrowths occurs via two broad pathways. First, species-specific transcription factor expression modulates outgrowth patterning dependent on regulated transport of the hormone auxin. Second, species-specific expression of the newly discovered REDUCED COMPLEXITY homeodomain transcription factor influences growth between individual outgrowths after their initiation. These findings demonstrate that in both plants and animals tinkering with either patterning or post-patterning processes can cause morphological change. They also highlight the considerable flexibility of morphological evolution and indicate that it may be possible to derive broad principles that capture how morphogenesis evolved across complex eukaryotes.
Collapse
Affiliation(s)
- Remco A Mentink
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany
| |
Collapse
|
35
|
Khannoon ER, Russell AP, Tucker AS. Developmental mechanisms underlying differential claw expression in the autopodia of geckos. EvoDevo 2015; 6:8. [PMID: 25878768 PMCID: PMC4397723 DOI: 10.1186/s13227-015-0003-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The limb and autopodium are frequently employed to study pattern formation during embryonic development, providing insights into how cells give rise to complex anatomical structures. With regard to the differentiation of structures at the distal tips of digits, geckos constitute an attractive clade, because within their ranks they exhibit multiple independent occurrences of claw loss and reduction, these being linked to the development of adhesive pads. The developmental patterns that lead to claw loss, however, remain undescribed. Among geckos, Tarentola is a genus characterized by large claws on digits III and IV of the manus and pes, with digits I, II, and V bearing only vestigial claws, or lacking them entirely. The variable expression of claws on different digits provides the opportunity to investigate the processes leading to claw reduction and loss within a single species. RESULTS Here, we document the embryonic developmental dynamics that lead to this intraspecifically variable pattern, focusing on the cellular processes of proliferation and cell death. We find that claws initially develop on all digits of all autopodia, but, later in development, those of digits I, II, and V regress, leading to the adult condition in which robust claws are evident only on digits III and IV. Early apoptotic activity at the digit tips, followed by apoptosis of the claw primordium, premature ossification of the terminal phalanges, and later differential proliferative activity are collectively responsible for claw regression in particular digits. CONCLUSIONS Claw reduction and loss in Tarentola result from differential intensities of apoptosis and cellular proliferation in different digits, and these processes have already had some effect before visible signs of claw development are evident. The differential processes persist through later developmental stages. Variable expression of iteratively homologous structures between digits within autopodia makes claw reduction and loss in Tarentola an excellent vehicle for exploring the developmental mechanisms that lead to evolutionary reduction and loss of structures.
Collapse
Affiliation(s)
- Eraqi R Khannoon
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, 63514 Egypt ; King's College London, Floor 27 Guy's Tower, Guy's Hospital, Great Maze Pond, London Bridge, London, SE1 9RT UK
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 Canada
| | - Abigail S Tucker
- King's College London, Floor 27 Guy's Tower, Guy's Hospital, Great Maze Pond, London Bridge, London, SE1 9RT UK
| |
Collapse
|
36
|
Huang BL, Mackem S. Tamoxifen-dependent, inducible Bmp2CreER drives selective recombinase activity in early interdigital mesenchyme and digit collateral ligaments. PLoS One 2015; 10:e0123325. [PMID: 25850076 PMCID: PMC4388723 DOI: 10.1371/journal.pone.0123325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
During limb development, the interdigital mesenchyme has been proposed to play a signaling role instructing morphogenesis of different digit types, as well as undergoing programmed cell death necessary to free digits in animals not adapted for swimming or flying. We have generated a conditional, tamoxifen-dependent Cre line, Bmp2CreER, which drives highly selective recombination restricted to the distal limb mesoderm, largely restricted to the interdigits, and selectively active in digit ligament but not tendon progenitors at later stages. The Bmp2CreER provides a valuable new tool to dissect roles of interdigital mesenchyme and potentially investigate divergence of ligament and tendon lineages.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, United States of America
| | - Susan Mackem
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Decker RS, Koyama E, Enomoto-Iwamoto M, Maye P, Rowe D, Zhu S, Schultz PG, Pacifici M. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin. Dev Biol 2014; 395:255-67. [PMID: 25238962 PMCID: PMC4253021 DOI: 10.1016/j.ydbio.2014.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
Abstract
Limb development requires the coordinated growth of several tissues and structures including long bones, joints and tendons, but the underlying mechanisms are not wholly clear. Recently, we identified a small drug-like molecule - we named Kartogenin (KGN) - that greatly stimulates chondrogenesis in marrow-derived mesenchymal stem cells (MSCs) and enhances cartilage repair in mouse osteoarthritis (OA) models. To determine whether limb developmental processes are regulated by KGN, we tested its activity on committed preskeletal mesenchymal cells from mouse embryo limb buds and whole limb explants. KGN did stimulate cartilage nodule formation and more strikingly, boosted digit cartilaginous anlaga elongation, synovial joint formation and interzone compaction, tendon maturation as monitored by ScxGFP, and interdigit invagination. To identify mechanisms, we carried out gene expression analyses and found that several genes, including those encoding key signaling proteins, were up-regulated by KGN. Amongst highly up-regulated genes were those encoding hedgehog and TGFβ superfamily members, particularly TFGβ1. The former response was verified by increases in Gli1-LacZ activity and Gli1 mRNA expression. Exogenous TGFβ1 stimulated cartilage nodule formation to levels similar to KGN, and KGN and TGFβ1 both greatly enhanced expression of lubricin/Prg4 in articular superficial zone cells. KGN also strongly increased the cellular levels of phospho-Smads that mediate canonical TGFβ and BMP signaling. Thus, limb development is potently and harmoniously stimulated by KGN. The growth effects of KGN appear to result from its ability to boost several key signaling pathways and in particular TGFβ signaling, working in addition to and/or in concert with the filamin A/CBFβ/RUNX1 pathway we identified previously to orchestrate overall limb development. KGN may thus represent a very powerful tool not only for OA therapy, but also limb regeneration and tissue repair strategies.
Collapse
Affiliation(s)
- Rebekah S Decker
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Peter Maye
- Department of Reconstructive Sciences, University of Connecticut Health Center School of, Dental Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - David Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center School of, Dental Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Shoutian Zhu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA
| | - Peter G Schultz
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children׳s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Abstract
Isolated familial non-syndromic brachydactyly is interesting from the embryological point of view because the phenotypes of isolated brachydactyly are frequently overlapping, yet they are caused by different gene mutations and the ring finger is frequently relatively preserved. We review the embryology of isolated familial brachydactyly with special attention to these two features.
Collapse
Affiliation(s)
- M M Al-Qattan
- Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Tokita M. How the pterosaur got its wings. Biol Rev Camb Philos Soc 2014; 90:1163-78. [PMID: 25361444 DOI: 10.1111/brv.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body-plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, U.S.A
| |
Collapse
|
40
|
Cooper KL, Sears KE, Uygur A, Maier J, Baczkowski KS, Brosnahan M, Antczak D, Skidmore JA, Tabin CJ. Patterning and post-patterning modes of evolutionary digit loss in mammals. Nature 2014; 511:41-5. [PMID: 24990742 PMCID: PMC4228958 DOI: 10.1038/nature13496] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/22/2014] [Indexed: 11/09/2022]
Abstract
A reduction in the number of digits has evolved many times in tetrapods, particularly in cursorial mammals that travel over deserts and plains, yet the underlying developmental mechanisms have remained elusive. Here we show that digit loss can occur both during early limb patterning and at later post-patterning stages of chondrogenesis. In the 'odd-toed' jerboa (Dipus sagitta) and horse and the 'even-toed' camel, extensive cell death sculpts the tissue around the remaining toes. In contrast, digit loss in the pig is orchestrated by earlier limb patterning mechanisms including downregulation of Ptch1 expression but no increase in cell death. Together these data demonstrate remarkable plasticity in the mechanisms of vertebrate limb evolution and shed light on the complexity of morphological convergence, particularly within the artiodactyl lineage.
Collapse
Affiliation(s)
- Kimberly L Cooper
- 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA. [3]
| | - Karen E Sears
- 1] Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA [2]
| | - Aysu Uygur
- 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2]
| | - Jennifer Maier
- Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Margaret Brosnahan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Doug Antczak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
|
42
|
Lopez-Rios J, Duchesne A, Speziale D, Andrey G, Peterson KA, Germann P, Ünal E, Liu J, Floriot S, Barbey S, Gallard Y, Müller-Gerbl M, Courtney AD, Klopp C, Rodriguez S, Ivanek R, Beisel C, Wicking C, Iber D, Robert B, McMahon AP, Duboule D, Zeller R. Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs. Nature 2014; 511:46-51. [DOI: 10.1038/nature13289] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/27/2014] [Indexed: 11/09/2022]
|
43
|
Preaxial polydactyly of the upper limb viewed as a spectrum of severity of embryonic events. Ann Plast Surg 2014; 71:118-24. [PMID: 23364674 DOI: 10.1097/sap.0b013e318248b67f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Preaxial polydactyly (PPD) is a common congenital abnormality and its classification varies among geneticists and hand surgeons. For example, the triphalangeal thumb, preaxial polysyndactyly, and the mirror hand deformity are considered as forms of PPD only in the genetics literature. Preaxial polydactyly is an error in the anteroposterior axis of the development of the upper limb. In this paper, the development of this axis is detailed and all molecular events that are known to lead to PPD are reviewed. Finally, based on the review, PPD is viewed as a spectrum of severity of embryonic events.
Collapse
|
44
|
Lorda-Diez CI, Montero JA, Garcia-Porrero JA, Hurle JM. Divergent differentiation of skeletal progenitors into cartilage and tendon: lessons from the embryonic limb. ACS Chem Biol 2014; 9:72-9. [PMID: 24228739 DOI: 10.1021/cb400713v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Repairing damaged cartilage and tendons is a major challenge of regenerative medicine. There has been great progress in the past decade toward obtaining stem cells for regenerative purposes from a variety of sources. However, the development of procedures to direct and maintain the differentiation of progenitors into cartilage or tendon is still a hurdle to overcome in regenerative medicine of the musculoskeletal system. This is because connective tissues often lack stable phenotypes and retain plasticity to return to the initial stages of differentiation or to transdifferentiate into another connective tissue cell lineage. This makes it necessary to unravel the molecular basis that is responsible for the differentiation of connective tissue cell lineages. In this review, we summarize the investigations performed in the past two decades to unravel the signals that regulate the differentiation of skeletal cell progenitors into cartilage and tendons during embryonic limb development. The data obtained in those studies demonstrate that Tgfβ, BMP, FGF, and Wnt establish a complex signaling network that directs the differentiation of skeletal cell progenitors. Remarkably, in the embryonic digit model, the divergent differentiation of progenitors depends on the temporal coordination of those signals, rather than being specified by an individual signaling pathway. Due to its potential medical relevance, we highlight the importance of the coordinate influence of the Tgfβ and BMP pathways in the differentiation of cell progenitors into tendon or cartilage.
Collapse
Affiliation(s)
- Carlos I. Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| | - Juan A. Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| |
Collapse
|
45
|
Abstract
Evolutionary theory has long argued that the entrenched rules of development constrain the range of variations in a given form, but few empirical examples are known. Here we provide evidence for a very deeply conserved skeletal module constraining the morphology of the phalanges within a digit. We measured the sizes of phalanges within populations of two bird species and found that successive phalanges within a digit exhibit predictable relative proportions, whether those phalanges are nearly equal in size or exhibit a more striking gradient in size from large to small. Experimental perturbations during early stages of digit formation demonstrate that the sizes of the phalanges within a digit are regulated as a system rather than individually. However, the sizes of the phalanges are independent of the metatarsals. Temporal studies indicate that the relative sizes of the phalanges are established at the time of initial cell condensation. Measurements of phalanges across species from six major taxonomic lineages showed that the same predictable range of variants is conserved across vast taxonomic diversity and evolutionary time, starting with the very origins of tetrapods. Although in general phalangeal variations fall within a range of nearly equal-sized phalanges to those following a steep large-to-small gradient, a novel derived condition of excessive elongation of the distal-most phalanges has evolved convergently in multiple lineages, for example under selection for grasping rather than walking or swimming. Even in the context of this exception, phalangeal variations observed in nature are a small subset of potential morphospace.
Collapse
|
46
|
Evidence that the limb bud ectoderm is required for survival of the underlying mesoderm. Dev Biol 2013; 381:341-52. [DOI: 10.1016/j.ydbio.2013.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 11/21/2022]
|
47
|
Benazet JD, Zeller R. Dual requirement of ectodermal Smad4 during AER formation and termination of feedback signaling in mouse limb buds. Genesis 2013; 51:660-6. [PMID: 23818325 DOI: 10.1002/dvg.22412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/20/2013] [Indexed: 12/29/2022]
Abstract
BMP signaling is pivotal for normal limb bud development in vertebrate embryos and genetic analysis of receptors and ligands in the mouse revealed their requirement in both mesenchymal and ectodermal limb bud compartments. In this study, we genetically assessed the potential essential functions of SMAD4, a mediator of canonical BMP/TGFß signal transduction, in the mouse limb bud ectoderm. Msx2-Cre was used to conditionally inactivate Smad4 in the ectoderm of fore- and hindlimb buds. In hindlimb buds, the Smad4 inactivation disrupts the establishment and signaling by the apical ectodermal ridge (AER) from early limb bud stages onwards, which results in severe hypoplasia and/or aplasia of zeugo- and autopodal skeletal elements. In contrast, the developmentally later inactivation of Smad4 in forelimb buds does not alter AER formation and signaling, but prolongs epithelial-mesenchymal feedback signaling in advanced limb buds. The late termination of SHH and AER-FGF signaling delays distal progression of digit ray formation and inhibits interdigit apoptosis. In summary, our genetic analysis reveals the temporally and functionally distinct dual requirement of ectodermal Smad4 during initiation and termination of AER signaling.
Collapse
Affiliation(s)
- Jean-Denis Benazet
- Department Biomedicine, Developmental Genetics, University of Basel, Mattenstrasse 28, CH 4058, Basel, Switzerland
| | | |
Collapse
|
48
|
Casanova JC, Badia-Careaga C, Uribe V, Sanz-Ezquerro JJ. Bambi and Sp8 expression mark digit tips and their absence shows that chick wing digits 2 and 3 are truncated. PLoS One 2012; 7:e52781. [PMID: 23285181 PMCID: PMC3532063 DOI: 10.1371/journal.pone.0052781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/20/2012] [Indexed: 11/19/2022] Open
Abstract
An often overlooked aspect of digit development is the special nature of the terminal phalanx, a specialized structure with characteristics distinct from other phalanges, for example the presence of ectodermal derivatives such as nails and claws. Here, we describe the unique ossification pattern of distal phalanges and characteristic gene expression in the digit tips of chick and duck embryos. Our results show that the distal phalanx of chick wing digit 1 is a genuine tip with a characteristic ossification pattern and expression of Bambi and Sp8; however, the terminal phalanx of digits 2* and 3 is not a genuine tip, and these are therefore truncated digits. Bambi and Sp8 expression in the chick wing provides a direct molecular assessment of digit identity changes after experimental manipulations of digit primordia. In contrast, digits 1 and 2 of the duck wing both possess true tips. Although chick wing-tip development was not rescued by application of Fgf8, this treatment induced the development of extra phalanges. Grafting experiments show that competence for tip formation, including nails, is latent in the interdigital tissue. Our results deepen understanding of the mechanisms of digit tip formation, highlighting its developmental autonomy and modular nature, with implications for digit reduction or loss during evolution. * Numbering of wing digits is 1, 2, 3 from anterior to posterior.
Collapse
Affiliation(s)
- Jesús C. Casanova
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Claudio Badia-Careaga
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Verónica Uribe
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Juan José Sanz-Ezquerro
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
49
|
Seki R, Kamiyama N, Tadokoro A, Nomura N, Tsuihiji T, Manabe M, Tamura K. Evolutionary and Developmental Aspects of Avian-Specific Traits in Limb Skeletal Pattern. Zoolog Sci 2012; 29:631-44. [DOI: 10.2108/zsj.29.631] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Rabinowitz AH, Vokes SA. Integration of the transcriptional networks regulating limb morphogenesis. Dev Biol 2012; 368:165-80. [PMID: 22683377 DOI: 10.1016/j.ydbio.2012.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022]
Abstract
The developing limb is one of the best described vertebrate systems for understanding how coordinated gene expression during embryogenesis leads to the structures present in the mature organism. This knowledge, derived from decades of research, is largely based upon gain- and loss-of-function experiments. These studies have provided limited information about how the key signaling pathways interact with each other and the downstream effectors of these pathways. We summarize our current understanding of known genetic interactions in the context of three temporally defined gene regulatory networks. These networks crystallize our current knowledge, depicting a dynamic process involving multiple feedback loops between the ectoderm and mesoderm. At the same time, they highlight the fact that many essential processes are still largely undescribed. Much of the dynamic transcriptional activity occurring during development is regulated by distal cis-regulatory elements. Modern genomic tools have provided new approaches for studying the function of cis-regulatory elements and we discuss the results of these studies in regard to understanding limb development. Ultimately, these genomic techniques will allow scientists to understand how multiple signaling pathways are integrated in space and time to drive gene expression and regulate the formation of the limb.
Collapse
Affiliation(s)
- Adam H Rabinowitz
- Section of Molecular Cell & Developmental Biology, Institute for Cellular and Molecular Biology, One University Station A4800, Austin, TX 78712, USA
| | | |
Collapse
|