1
|
Yokoyama H, Tateishi K, Baba Y, Kobayashi A, Hashimoto M, Fukuda S, Yamao H, Maruyama T, Nakata M, Matsushita M. Thrombin cleaves recombinant soluble thrombomodulin into a lectin-like domain fragment and a fragment with protein C-activating cofactor activity. Biosci Trends 2022; 16:444-446. [PMID: 36450579 DOI: 10.5582/bst.2022.01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thrombomodulin (TM) is a transmembrane protein that plays an important role in regulating the coagulation system by acting as a cofactor for thrombin in protein C activation. Additionally, TM is involved in inflammation. Previous studies have shown that soluble fragments of TM of varying sizes, which are derived from membrane-bound TM, are present in plasma and urine. Soluble fragments of TM are speculated to exhibit biological activity. Among these, a lectin-like domain fragment (TMD1) is of particular importance. Recombinant TMD1 has previously been shown to attenuate lipopolysaccharide-induced inflammation. Here, we report that thrombin cleaves recombinant soluble TM, which is used for the treatment of disseminated intravascular coagulation associated with sepsis, into TMD1 and a fragment comprising the C-terminal portion of TM (TMD23), the latter of which retains the cofactor activity for activating protein C. Our findings suggest that thrombin not only activates protein C on membrane-bound TM but may also cleave TM to generate TMD1.
Collapse
Affiliation(s)
- Hirota Yokoyama
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Koichiro Tateishi
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Yurie Baba
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Akina Kobayashi
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Manami Hashimoto
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Shion Fukuda
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Hinano Yamao
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Taiga Maruyama
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Munehiro Nakata
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| |
Collapse
|
2
|
Vasconcelos-Cardoso M, Batista-Almeida D, Rios-Barros LV, Castro-Gomes T, Girao H. Cellular and molecular mechanisms underlying plasma membrane functionality and integrity. J Cell Sci 2022; 135:275922. [PMID: 35801807 DOI: 10.1242/jcs.259806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane not only protects the cell from the extracellular environment, acting as a selective barrier, but also regulates cellular events that originate at the cell surface, playing a key role in various biological processes that are essential for the preservation of cell homeostasis. Therefore, elucidation of the mechanisms involved in the maintenance of plasma membrane integrity and functionality is of utmost importance. Cells have developed mechanisms to ensure the quality of proteins that inhabit the cell surface, as well as strategies to cope with injuries inflicted to the plasma membrane. Defects in these mechanisms can lead to the development or onset of several diseases. Despite the importance of these processes, a comprehensive and holistic perspective of plasma membrane quality control is still lacking. To tackle this gap, in this Review, we provide a thorough overview of the mechanisms underlying the identification and targeting of membrane proteins that are to be removed from the cell surface, as well as the membrane repair mechanisms triggered in both physiological and pathological conditions. A better understanding of the mechanisms underlying protein quality control at the plasma membrane can reveal promising and unanticipated targets for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maria Vasconcelos-Cardoso
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Daniela Batista-Almeida
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Laura Valeria Rios-Barros
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Wang L, Liu XX, Yang YM, Wang Y, Song YY, Gao S, Li LY, Zhang ZS. RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression. Cancer Cell Int 2021; 21:590. [PMID: 34736454 PMCID: PMC8567583 DOI: 10.1186/s12935-021-02277-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Background The rhomboids are a family of multi-transmembrane proteins, many of which have been implicated in facilitating tumor progression. Little is yet known, however, about rhomboid-associated biomarkers in cancers. An analysis of such biomarkers could yield important insights into the role of the rhomboids in cancer pathology. Methods In this study, we carried out the univariate Cox regression analysis and compared gene expression patterns of several rhomboid genes in 30 types of cancers by using The Cancer Genome Atlas (TCGA) database and the methods delineated in Gene Expression Profiling Interactive Analysis (GEPIA). We then used datasets GSE47032, GSE126964, GSE68417 and 75 paired pathological specimens to verify the influences of the rhomboid genes in cancer progression. Moreover, we carried out Weighted Gene Correlation Network Analysis (WGCNA) to investigate gene-related functions and we exploited potential correlations between rhomboid genes expression and immune cell infiltration in cancer tissues. Furthermore, we constructed gene-knockdown cancer cell lines to investigate rhomboid gene functions. Results We find that kidney renal clear cell carcinoma (KIRC) disease progression is affected by fluctuations in the expression of a number of the rhomboid family of genes and, more specifically, high levels of RHBDF2 gene expression are a good indicator of poor prognosis of the disease, as patients with high RHBDF2 expression levels exhibit less favorable survival rates compared to those with low RHBDF2 levels. Silencing of the RHBDF2 gene in KIRC cell lines leads to significantly diminished cell proliferation and migration; this is in good agreement with the identification of an enhanced presence of a number of cell growth and migration promoting signaling molecules in KIRC tumors. We found that, although high level of RHBDF2 correlated with increased infiltration of lymphocytes in cancer tissues, artificially overexpressed RHBDF2 led to an inhibition of the activity of the infiltrated immune cells through sustaining PD-L1 protein level. Furthermore, we show that RHBDF2 related cell migration and PD-L1 regulation were potentially mediated by EGFR signaling pathway. Conclusions RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression and may serve as a critical prognostic biomarker for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02277-0.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xiu-Xiu Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yu-Meng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yuan-Yuan Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
4
|
Koch L, Kespohl B, Agthe M, Schumertl T, Düsterhöft S, Lemberg MK, Lokau J, Garbers C. Interleukin-11 (IL-11) receptor cleavage by the rhomboid protease RHBDL2 induces IL-11 trans-signaling. FASEB J 2021; 35:e21380. [PMID: 33566379 DOI: 10.1096/fj.202002087r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-11 (IL-11) is a pleiotropic cytokine with both pro- and anti-inflammatory properties. It activates its target cells via binding to the membrane-bound IL-11 receptor (IL-11R), which then recruits a homodimer of the ubiquitously expressed, signal-transducing receptor gp130. Besides this classic signaling pathway, IL-11 can also bind to soluble forms of the IL-11R (sIL-11R), and IL-11/sIL-11R complexes activate cells via the induction of gp130 homodimerization (trans-signaling). We have previously reported that the metalloprotease ADAM10 cleaves the membrane-bound IL-11R and thereby generates sIL-11R. In this study, we identify the rhomboid intramembrane protease RHBDL2 as a so far unrecognized alternative sheddase that can efficiently trigger IL-11R secretion. We determine the cleavage site used by RHBDL2, which is located in the extracellular part of the receptor in close proximity to the plasma membrane, between Ala-370 and Ser-371. Furthermore, we identify critical amino acid residues within the transmembrane helix that are required for IL-11R proteolysis. We also show that ectopically expressed RHBDL2 is able to cleave the IL-11R within the early secretory pathway and not only at the plasma membrane, indicating that its subcellular localization plays a central role in controlling its activity. Moreover, RHBDL2-derived sIL-11R is biologically active and able to perform IL-11 trans-signaling. Finally, we show that the human mutation IL-11R-A370V does not impede IL-11 classic signaling, but prevents RHBDL2-mediated IL-11R cleavage.
Collapse
Affiliation(s)
- Lydia Koch
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Birte Kespohl
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Maria Agthe
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Tim Schumertl
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Juliane Lokau
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Chen CH, Lai CH, Hong YK, Lu JM, Lin SY, Lee TC, Chang LY, Ho ML, Conway EM, Wu HL, Cheng TL. Thrombomodulin Functional Domains Support Osteoblast Differentiation and Bone Healing in Diabetes in Mice. J Bone Miner Res 2020; 35:1812-1823. [PMID: 32329910 DOI: 10.1002/jbmr.4036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 11/05/2022]
Abstract
Thrombomodulin (TM) is a transmembrane glycoprotein that contains five functional domains. Soluble TM (sTM), comprising extracellular domains TMD1 (lectin-like), TMD2 (epidermal growth factor [EGF]-like repeat containing), and TMD3 (serine-threonine rich), can be shed from cells by the intramembrane protease rhomboid-like-2 (RHBDL2). TM is expressed by osteoblasts, yet its role there has not been determined. Herein we aimed to investigate the properties of TM and its domains in osteoblast function and bone repair following injury in diabetes. In response to a scratch injury of cultured osteoblast-like MG63 cells, expression of TM and RHBDL2 was enhanced, with increased release of sTM. Conditioned media from the injured cells promoted osteoblast migration, an effect that was lacking with conditioned media from MG63 cells in which TM was silenced by shRNA. Exogenous recombinant TMD1 had no effect on osteoblast activities or on bone repair in vivo. However, TM domains 2 and 3 (TMD2/3), induced MG63 cell migration, proliferation and mineralization in vitro, and when locally administered in mice, improved in vivo healing of injured calvarium. This beneficial effect of TMD2/3, mediated via fibroblast growth factor receptor (FGFR)/ERK signaling pathways, was also observed in vitro under high glucose conditions where endogenous TM expression was reduced, and in vivo in diabetic mice following tibia fracture or calvarium injury, where the osteoblastic response and healing were otherwise dampened. Taken together, osteoblast TM participates in bone healing, and recombinant TMD2/3 holds promise as a novel therapy for diabetic bone defect healing. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chao-Han Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Ming Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lan-Yun Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Edward M Conway
- Centre for Blood Research, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Škerle J, Humpolíčková J, Johnson N, Rampírová P, Poláchová E, Fliegl M, Dohnálek J, Suchánková A, Jakubec D, Strisovsky K. Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations. Biophys J 2020; 118:1861-1875. [PMID: 32246901 DOI: 10.1016/j.bpj.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/06/2020] [Accepted: 03/13/2020] [Indexed: 11/19/2022] Open
Abstract
Many membrane proteins are thought to function as dimers or higher oligomers, but measuring membrane protein oligomerization in lipid membranes is particularly challenging. Förster resonance energy transfer (FRET) and fluorescence cross-correlation spectroscopy are noninvasive, optical methods of choice that have been applied to the analysis of dimerization of single-spanning membrane proteins. However, the effects inherent to such two-dimensional systems, such as the excluded volume of polytopic transmembrane proteins, proximity FRET, and rotational diffusion of fluorophore dipoles, complicate interpretation of FRET data and have not been typically accounted for. Here, using FRET and fluorescence cross-correlation spectroscopy, we introduce a method to measure surface protein density and to estimate the apparent Förster radius, and we use Monte Carlo simulations of the FRET data to account for the proximity FRET effect occurring in confined two-dimensional environments. We then use FRET to analyze the dimerization of human rhomboid protease RHBDL2 in giant plasma membrane vesicles. We find no evidence for stable oligomers of RHBDL2 in giant plasma membrane vesicles of human cells even at concentrations that highly exceed endogenous expression levels. This indicates that the rhomboid transmembrane core is intrinsically monomeric. Our findings will find use in the application of FRET and fluorescence correlation spectroscopy for the analysis of oligomerization of transmembrane proteins in cell-derived lipid membranes.
Collapse
Affiliation(s)
- Jan Škerle
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.
| | - Nicholas Johnson
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Petra Rampírová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Edita Poláchová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Fliegl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Jan Dohnálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic; University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Anna Suchánková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - David Jakubec
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.
| |
Collapse
|
7
|
Welter BH, Walters HA, Temesvari LA. Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica. PLoS One 2020; 15:e0219870. [PMID: 32134930 PMCID: PMC7058331 DOI: 10.1371/journal.pone.0219870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
Entamoeba histolytica is a food- and waterborne parasite that causes amebic dysentery and amoebic liver abscesses. Adhesion is one of the most important virulence functions as it facilitates motility, colonization of host, destruction of host tissue, and uptake of nutrients by the parasite. The parasite cell surface adhesin, the Gal/GalNAc lectin, facilitates parasite-host interaction by binding to galactose or N-acetylgalactosamine residues on host components. It is composed of heavy (Hgl), intermediate (Igl), and light (Lgl) subunits. Igl is constitutively localized to lipid rafts (cholesterol-rich membrane domains), whereas Hgl and Lgl transiently associate with rafts. When all three subunits are localized to rafts, galactose-sensitive adhesion is enhanced. Thus, submembrane location may regulate the function of this adhesion. Rhomboid proteases are a conserved family of intramembrane proteases that also participate in the regulation of parasite-host interactions. In E. histolytica, one rhomboid protease, EhROM1, cleaves Hgl as a substrate, and knockdown of its expression inhibits parasite-host interactions. Since rhomboid proteases are found within membranes, it is not surprising that lipid composition regulates their activity and enzyme-substrate binding. Given the importance of the lipid environment for both rhomboid proteases and the Gal/GalNAc lectin, we sought to gain insight into the relationship between rhomboid proteases and submembrane location of the lectin in E. histolytica. We demonstrated that EhROM1, itself, is enriched in highly buoyant triton-insoluble membranes reminiscent of rafts. Reducing rhomboid protease activity, either pharmacologically or genetically, correlated with an enrichment of Hgl and Lgl in rafts. In a mutant cell line with reduced EhROM1 expression, there was also a significant augmentation of the level of all three Gal/GalNAc subunits on the cell surface and an increase in the molecular weight of Hgl and Lgl. Overall, the study provides insight into the molecular mechanisms governing parasite-host adhesion for this pathogen.
Collapse
Affiliation(s)
- Brenda H. Welter
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, United States of America
| | - Heather A. Walters
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, United States of America
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovations Center (EPIC), Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
8
|
Contradictory to its effects on thrombin, C1-inhibitor reduces plasmin generation in the presence of thrombomodulin. J Thromb Thrombolysis 2019; 48:81-87. [PMID: 31030323 DOI: 10.1007/s11239-019-01869-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
C1-inhibitor (C1INH) was shown to enhance thrombin generation (TG) in the presence of thrombomodulin (TM) by reducing production of activated protein C. Because C1INH is known to inhibit fibrinolytic system proteases, the objective of this study was to evaluate the effect of moderate (3 IU/ml) and high (16 IU/ml) C1INH concentrations on TG and plasmin generation (PG) in the presence of TM. These concentrations were evaluated based on expected maximum plasma levels following C1INH replacement therapy and recently suggested supraphysiologic dosing. TG and PG were investigated in platelet poor plasmas obtained from 21 healthy donors. An assay designed to monitor the continuous generation of the 7-amino-4-methylcoumarin fluorescence from substrates specific to thrombin or plasmin was used to evaluate the impact of C1INH activity. To characterize the C1INH effects on TG and PG, the thrombin and plasmin concentration peaks and production rates were calculated. TM addition to donor plasma shifted the concentration dependence of C1INH on TG parameters from reduction to enhancement. Conversely, PG parameters were significantly reduced by 16 IU/ml in both the presence and absence of TM. Moderate C1INH concentration (3 IU/ml) reduced TG and PG in the absence of TM but did not significantly affect these parameters in the presence of TM. Finally, 3 IU/ml of C1INH reduced PG more so than TG in the absence of TM. The presented results suggest a mechanism by which C1INH could potentiate thrombosis by inhibition of fibrinolysis.
Collapse
|
9
|
Rhomboid-Like-2 Intramembrane Protease Mediates Metalloprotease-Independent Regulation of Cadherins. Int J Mol Sci 2019; 20:ijms20235958. [PMID: 31783481 PMCID: PMC6928865 DOI: 10.3390/ijms20235958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Cadherins are a major family of cell-cell adhesive receptors, which are implicated in development, tissue homeostasis, and cancer. Here, we show a novel mechanism of post-translational regulation of E-cadherin in cancer cells by an intramembrane protease of the Rhomboid family, RHBDL2, which leads to the shedding of E-cadherin extracellular domain. In addition, our data indicate that RHBDL2 mediates a similar activity on VE-cadherin, which is selectively expressed by endothelial cells. We show that RHBDL2 promotes cell migration, which is consistent with its ability to interfere with the functional role of cadherins as negative regulators of motility; moreover, the two players appear to lie in the same functional pathway. Importantly, we show that RHBDL2 expression is induced by the inflammatory chemokine TNFα. The E-cadherin extracellular domain is known to be released by metalloproteases (MMPs); however, here, we provide evidence of a novel MMP-independent, TNFα inducible, E-cadherin processing mechanism that is mediated by RHBDL2. Thus, the intramembrane protease RHBDL2 is a novel regulator of cadherins promoting cell motility.
Collapse
|
10
|
Beard HA, Barniol-Xicota M, Yang J, Verhelst SHL. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chem Biol 2019; 14:2372-2388. [PMID: 31287658 DOI: 10.1021/acschembio.9b00404] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intramembrane proteases (IMPs) are localized within lipid bilayers of membranes-either the cell membrane or membranes of various organelles. Cleavage of substrates often results in release from the membrane, leading to a downstream biological effect. This mechanism allows different signaling events to happen through intramembrane proteolysis. Over the years, various mechanistically distinct families of IMPs have been discovered, but the research progress has generally been slower than for soluble proteases due to the challenges associated with membrane proteins. In this review we summarize how each mechanistic family of IMPs was discovered, which chemical tools are available for the study of IMPs, and which techniques have been developed for the discovery of IMP substrates. Finally, we discuss the various roles in cellular physiology of some of these IMPs.
Collapse
Affiliation(s)
- Hester A. Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Jian Yang
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Khan KA, McMurray JL, Mohammed F, Bicknell R. C-type lectin domain group 14 proteins in vascular biology, cancer and inflammation. FEBS J 2019; 286:3299-3332. [PMID: 31287944 PMCID: PMC6852297 DOI: 10.1111/febs.14985] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
The C‐type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker‐1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Jack L McMurray
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Roy Bicknell
- Institutes of Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
12
|
Paschkowsky S, Hsiao JM, Young JC, Munter LM. The discovery of proteases and intramembrane proteolysis. Biochem Cell Biol 2019; 97:265-269. [DOI: 10.1139/bcb-2018-0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Jacqueline Melissa Hsiao
- Department of Biochemistry, McGill University, McIntyre Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, McIntyre Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
13
|
Lichtenthaler SF, Lemberg MK, Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J 2018; 37:e99456. [PMID: 29976761 PMCID: PMC6068445 DOI: 10.15252/embj.201899456] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/05/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolytic removal of membrane protein ectodomains (ectodomain shedding) is a post-translational modification that controls levels and function of hundreds of membrane proteins. The contributing proteases, referred to as sheddases, act as important molecular switches in processes ranging from signaling to cell adhesion. When deregulated, ectodomain shedding is linked to pathologies such as inflammation and Alzheimer's disease. While proteases of the "a disintegrin and metalloprotease" (ADAM) and "beta-site APP cleaving enzyme" (BACE) families are widely considered as sheddases, in recent years a much broader range of proteases, including intramembrane and soluble proteases, were shown to catalyze similar cleavage reactions. This review demonstrates that shedding is a fundamental process in cell biology and discusses the current understanding of sheddases and their substrates, molecular mechanisms and cellular localizations, as well as physiological functions of protein ectodomain shedding. Moreover, we provide an operational definition of shedding and highlight recent conceptual advances in the field. While new developments in proteomics facilitate substrate discovery, we expect that shedding is not a rare exception, but rather the rule for many membrane proteins, and that many more interesting shedding functions await discovery.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, School of Medicine, and Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedizinisches Centrum (BMC), Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
14
|
Jourdy Y, Enjolras N, Le Quellec S, Bordet JC, Négrier C, Vinciguerra C, Dargaud Y. Why patients with THBD c.1611C>A (p.Cys537X) nonsense mutation have high levels of soluble thrombomodulin? PLoS One 2017; 12:e0188213. [PMID: 29145514 PMCID: PMC5690669 DOI: 10.1371/journal.pone.0188213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/02/2017] [Indexed: 11/19/2022] Open
Abstract
Background Recently our group has described a new autosomal dominant bleeding disorder characterized by very high plasma levels of soluble thrombomodulin (TM). The THBD c.1611C>A (p.Cys537X) mutation in heterozygous state was found in the propositus. This mutation leads to the synthesis of a truncated TM which has lost the last three amino-acids of the transmembrane domain and the cytoplasmic tail. Objective We investigated the mechanism responsible for TM shedding in endothelial cells with THBD c.1611C>A mutation. Methods Complementary DNA of TM wild type (TM-WT) was incorporated into a pcDNA3.1 vector for transient transfection in COS-1 cells. Mutagenesis was performed to create the c.1611C<A (TM1-536) mutant and 4 other TM mutants (TM1-515, TM1-525, TM1-533 and TM1-537) with a transmembrane domain having different lengths. The effect of shear stress, metalloprotease inhibitor, certain proteases and reducing agents were tested on TM shedding. Results Western blot and immunofluorescent analysis showed that TM1-536 was produced and a certain amount of TM1-536 was anchored on the cell membrane. A significantly higher levels of soluble TM was observed in the TM1-536 cell medium in comparison with TM-WT (56.3 +/- 5.2 vs 8.8 +/- 1.6 ng/mL, respectively, p = 0.001). The shedding of TM1-536 was 75% decreased in cells cultured in the presence of a metalloprotease inhibitor. No difference was observed between TM1-536 and TM-WT shedding after cell exposure to cathepsin G, elastase, several reducing agents and high shear stress (5000 s-1). Significantly higher levels of soluble TM were observed in the cell media of TM1-533, TM1-525, TM1-515 in comparison with TM-WT (p < 0.05). Conclusion The mechanism responsible for TM shedding is complex and is not completely understood: higher sensitivity of the TM1-536 to the proteolysis by metalloproteases and a defect of synthesis due to the decreased size of the transmembrane domain might explain the high levels of soluble TM in plasma of the carriers.
Collapse
Affiliation(s)
- Yohann Jourdy
- Hospices Civils de Lyon, Centre de Biologie et Pathologies Est, Service d’hématologie Biologique, Bron, France
- EAM 4609 Hémostase et cancer, Université Claude Bernard, France
- * E-mail:
| | | | - Sandra Le Quellec
- Hospices Civils de Lyon, Centre de Biologie et Pathologies Est, Service d’hématologie Biologique, Bron, France
- EAM 4609 Hémostase et cancer, Université Claude Bernard, France
- Hospices Civils de Lyon, Hôpital Cardiologique Louis Pradel, Unité d'Hémostase Clinique, Bron, France
| | - Jean Claude Bordet
- Hospices Civils de Lyon, Centre de Biologie et Pathologies Est, Service d’hématologie Biologique, Bron, France
- EAM 4609 Hémostase et cancer, Université Claude Bernard, France
| | - Claude Négrier
- Hospices Civils de Lyon, Centre de Biologie et Pathologies Est, Service d’hématologie Biologique, Bron, France
- EAM 4609 Hémostase et cancer, Université Claude Bernard, France
- Hospices Civils de Lyon, Hôpital Cardiologique Louis Pradel, Unité d'Hémostase Clinique, Bron, France
| | - Christine Vinciguerra
- Hospices Civils de Lyon, Centre de Biologie et Pathologies Est, Service d’hématologie Biologique, Bron, France
- EAM 4609 Hémostase et cancer, Université Claude Bernard, France
| | - Yesim Dargaud
- Hospices Civils de Lyon, Centre de Biologie et Pathologies Est, Service d’hématologie Biologique, Bron, France
- EAM 4609 Hémostase et cancer, Université Claude Bernard, France
- Hospices Civils de Lyon, Hôpital Cardiologique Louis Pradel, Unité d'Hémostase Clinique, Bron, France
| |
Collapse
|
15
|
Johnson N, Březinová J, Stephens E, Burbridge E, Freeman M, Adrain C, Strisovsky K. Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis. Sci Rep 2017; 7:7283. [PMID: 28779096 PMCID: PMC5544772 DOI: 10.1038/s41598-017-07556-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023] Open
Abstract
Rhomboids are intramembrane serine proteases conserved in all kingdoms of life. They regulate epidermal growth factor receptor signalling in Drosophila by releasing signalling ligands from their transmembrane tethers. Their functions in mammals are poorly understood, in part because of the lack of endogenous substrates identified thus far. We used a quantitative proteomics approach to investigate the substrate repertoire of rhomboid protease RHBDL2 in human cells. We reveal a range of novel substrates that are specifically cleaved by RHBDL2, including the interleukin-6 receptor (IL6R), cell surface protease inhibitor Spint-1, the collagen receptor tyrosine kinase DDR1, N-Cadherin, CLCP1/DCBLD2, KIRREL, BCAM and others. We further demonstrate that these substrates can be shed by endogenously expressed RHBDL2 and that a subset of them is resistant to shedding by cell surface metalloproteases. The expression profiles and identity of the substrates implicate RHBDL2 in physiological or pathological processes affecting epithelial homeostasis.
Collapse
Affiliation(s)
- Nicholas Johnson
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo n. 2, Prague, 166 10, Czech Republic
| | - Jana Březinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo n. 2, Prague, 166 10, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Elaine Stephens
- MRC Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | | | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom.,Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Colin Adrain
- Instituto Gulbenkian de Ciência, Lisbon, Portugal.
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo n. 2, Prague, 166 10, Czech Republic.
| |
Collapse
|
16
|
Dhingra S, Cramer RA. Regulation of Sterol Biosynthesis in the Human Fungal Pathogen Aspergillus fumigatus: Opportunities for Therapeutic Development. Front Microbiol 2017; 8:92. [PMID: 28203225 PMCID: PMC5285346 DOI: 10.3389/fmicb.2017.00092] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
Sterols are a major component of eukaryotic cell membranes. For human fungal infections caused by the filamentous fungus Aspergillus fumigatus, antifungal drugs that target sterol biosynthesis and/or function remain the standard of care. Yet, an understanding of A. fumigatus sterol biosynthesis regulatory mechanisms remains an under developed therapeutic target. The critical role of sterol biosynthesis regulation and its interactions with clinically relevant azole drugs is highlighted by the basic helix loop helix (bHLH) class of transcription factors known as Sterol Regulatory Element Binding Proteins (SREBPs). SREBPs regulate transcription of key ergosterol biosynthesis genes in fungi including A. fumigatus. In addition, other emerging regulatory pathways and target genes involved in sterol biosynthesis and drug interactions provide additional opportunities including the unfolded protein response, iron responsive transcriptional networks, and chaperone proteins such as Hsp90. Thus, targeting molecular pathways critical for sterol biosynthesis regulation presents an opportunity to improve therapeutic options for the collection of diseases termed aspergillosis. This mini-review summarizes our current understanding of sterol biosynthesis regulation with a focus on mechanisms of transcriptional regulation by the SREBP family of transcription factors.
Collapse
Affiliation(s)
- Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| |
Collapse
|
17
|
Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα. Sci Rep 2016; 6:27342. [PMID: 27264103 PMCID: PMC4893610 DOI: 10.1038/srep27342] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/16/2016] [Indexed: 12/17/2022] Open
Abstract
Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes.
Collapse
|
18
|
Kim JE, Yoo HJ, Gu JY, Kim HK. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation. PLoS One 2016; 11:e0156763. [PMID: 27258428 PMCID: PMC4892514 DOI: 10.1371/journal.pone.0156763] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/19/2016] [Indexed: 01/11/2023] Open
Abstract
The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Hemato-oncology, Healthcare Innovation Park, Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | - Hyun Ju Yoo
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Yoon Gu
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
19
|
Noy PJ, Swain RK, Khan K, Lodhia P, Bicknell R. Sprouting angiogenesis is regulated by shedding of the C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed by rhomboid-like 2 protein (RHBDL2). FASEB J 2016; 30:2311-23. [PMID: 26939791 DOI: 10.1096/fj.201500122r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/18/2016] [Indexed: 11/11/2022]
Abstract
C-type lectin family 14, member A (CLEC14A), is a single-pass transmembrane glycoprotein that is overexpressed in tumor endothelial cells, and it promotes sprouting angiogenesis and modulates endothelial function via interactions with extracellular matrix proteins. Here, we show that CLEC14A is cleaved by rhomboid-like protein 2 (RHBDL2), one of 3 catalytic mammalian rhomboid-like (RHBDL) proteases, but that it is not cleaved by RHBDL1 or -3. Site-directed mutagenesis identified the precise site at which RHBDL2 cleaves CLEC14A, and targeted, small interfering RNAs that knockdown endogenous CLEC14A and RHBDL2 in human endothelial cells validated the specificity of CLEC14A shedding by RHBDL2. Loss of endogenous cleaved CLEC14A increased endothelial migration 2-fold, whereas that addition of recombinant cleaved CLEC14A inhibited the sprouting of human and murine endothelial cells 3-fold in several in vitro models. We assessed the in vivo role of cleaved CLEC14A in angiogenesis by using the rodent subcutaneous sponge implant model, and we found that CLEC14A protein inhibited vascular density by >50%. Finally, we show that cleaved CLEC14A binds to sprouting endothelial tip cells. Our data show that the ectodomain of CLEC14A regulates sprouting angiogenesis and suggests a role for RHBDL2 in endothelial function.-Noy, P. J., Swain, R. K., Khan, K., Lodhia, P., Bicknell, R. Sprouting angiogenesis is regulated by shedding of the C-type lectin family 14, member A (CLEC14A) ectodomain, catalyzed by rhomboid-like 2 protein (RHBDL2).
Collapse
Affiliation(s)
- Peter J Noy
- Angiogenesis Laboratory, Institutes for Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rajeeb K Swain
- Angiogenesis Laboratory, Institutes for Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kabir Khan
- Angiogenesis Laboratory, Institutes for Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Puja Lodhia
- Angiogenesis Laboratory, Institutes for Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Roy Bicknell
- Angiogenesis Laboratory, Institutes for Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Song W, Liu W, Zhao H, Li S, Guan X, Ying J, Zhang Y, Miao F, Zhang M, Ren X, Li X, Wu F, Zhao Y, Tian Y, Wu W, Fu J, Liang J, Wu W, Liu C, Yu J, Zong S, Miao S, Zhang X, Wang L. Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway. Nat Commun 2015; 6:8022. [PMID: 26300397 PMCID: PMC4560765 DOI: 10.1038/ncomms9022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 07/07/2015] [Indexed: 01/22/2023] Open
Abstract
Rhomboid proteins perform a wide range of important functions in a variety of organisms. Recent studies have revealed that rhomboid proteins are involved in human cancer progression; however, the underlying molecular mechanism remains largely unclear. Here we show that RHBDD1, a rhomboid intramembrane serine protease, is highly expressed and closely associated with survival in patients with colorectal cancer. We observe that inactivation of RHBDD1 decreases tumor cell growth. Further studies show that RHBDD1 interacts with proTGFα and induces the ADAM-independent cleavage and secretion of proTGFα. The secreted TGFα further triggers the activation of the EGFR/Raf/MEK/ERK signalling pathway. Finally, the positive correlation of RHBDD1 expression with the EGFR/Raf/MEK/ERK signalling pathway is further corroborated in a murine model of colitis-associated colorectal cancer. These findings provide evidence of a growth-promoting role for RHBDD1 in colorectal cancer and may aid the development of tumor biomarkers or antitumor therapeutics.
Collapse
Affiliation(s)
- Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Wenjie Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Hong Zhao
- Department of Abdominal Surgical Oncology, Cancer Hospital &Institute, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Shangze Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Guan
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jianming Ying
- Department of Pathology, Cancer Hospital &Institute, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yefan Zhang
- Department of Abdominal Surgical Oncology, Cancer Hospital &Institute, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Fei Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Mengmeng Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoxia Ren
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Fan Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yuechao Zhao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yuanyuan Tian
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jun Fu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Changzheng Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Shudong Zong
- National Research Institute for Family Planning, WHO Collaboration Center of Human Reproduction, Beijing 100081, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaodong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
21
|
Li Q, Zhang N, Zhang L, Ma H. Differential evolution of members of the rhomboid gene family with conservative and divergent patterns. THE NEW PHYTOLOGIST 2015; 206:368-380. [PMID: 25417867 DOI: 10.1111/nph.13174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/16/2014] [Indexed: 05/29/2023]
Abstract
Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Plant Biology Center for Evolutionary Biology, Fudan University, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
| | - Ning Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Plant Biology Center for Evolutionary Biology, Fudan University, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
| | - Liangsheng Zhang
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Plant Biology Center for Evolutionary Biology, Fudan University, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
22
|
Characterization of an autosomal dominant bleeding disorder caused by a thrombomodulin mutation. Blood 2015; 125:1497-501. [PMID: 25564403 DOI: 10.1182/blood-2014-10-604553] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We describe a family with an autosomal dominant disorder characterized by severe trauma- and surgery-related bleeding. The proband, who experienced life-threatening bleeding during a routine operation, had normal clotting times, but markedly reduced prothrombin consumption. Plasma levels of all coagulation factors and of the main coagulation inhibitors were normal. Thrombin generation at low triggers was severely impaired and mixing experiments suggested the presence of a coagulation inhibitor. Using whole exome sequencing, the underlying genetic defect was identified as the THBD c.1611C>A mutation (p.Cys537Stop), which predicts a truncated form of thrombomodulin that is shed from the vascular endothelium. The patient had decreased expression of endothelium-bound thrombomodulin, but extremely elevated levels of soluble thrombomodulin in plasma, impairing the propagation phase of coagulation via rapid activation of protein C and consequent inactivation of factors Va and VIIIa. The same thrombomodulin mutation has been recently described in an unrelated British family with strikingly similar features.
Collapse
|
23
|
Martin FA, McLoughlin A, Rochfort KD, Davenport C, Murphy RP, Cummins PM. Regulation of thrombomodulin expression and release in human aortic endothelial cells by cyclic strain. PLoS One 2014; 9:e108254. [PMID: 25238231 PMCID: PMC4169621 DOI: 10.1371/journal.pone.0108254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023] Open
Abstract
Background and Objectives Thrombomodulin (TM), an integral membrane glycoprotein expressed on the lumenal surface of vascular endothelial cells, promotes anti-coagulant and anti-inflammatory properties. Release of functional TM from the endothelium surface into plasma has also been reported. Much is still unknown however about how endothelial TM is regulated by physiologic hemodynamic forces (and particularly cyclic strain) intrinsic to endothelial-mediated vascular homeostasis. Methods This study employed human aortic endothelial cells (HAECs) to investigate the effects of equibiaxial cyclic strain (7.5%, 60 cycles/min, 24 hrs), and to a lesser extent, laminar shear stress (10 dynes/cm2, 24 hrs), on TM expression and release. Time-, dose- and frequency-dependency studies were performed. Results Our initial studies demonstrated that cyclic strain strongly downregulated TM expression in a p38- and receptor tyrosine kinase-dependent manner. This was in contrast to the upregulatory effect of shear stress. Moreover, both forces significantly upregulated TM release over a 48 hr period. With continuing focus on the cyclic strain-induced TM release, we noted both dose (0–7.5%) and frequency (0.5–2.0 Hz) dependency, with no attenuation of strain-induced TM release observed following inhibition of MAP kinases (p38, ERK-1/2), receptor tyrosine kinase, or eNOS. The concerted impact of cyclic strain and inflammatory mediators on TM release from HAECs was also investigated. In this respect, both TNFα (100 ng/ml) and ox-LDL (10–50 µg/ml) appeared to potentiate strain-induced TM release. Finally, inhibition of neither MMPs (GM6001) nor rhomboids (3,4-dichloroisocoumarin) had any effect on strain-induced TM release. However, significantly elevated levels (2.1 fold) of TM were observed in isolated microparticle fractions following 7.5% strain for 24 hrs. Conclusions A preliminary in vitro investigation into the effects of cyclic strain on TM in HAECs is presented. Physiologic cyclic strain was observed to downregulate TM expression, whilst upregulating in a time-, dose- and frequency-dependent manner the release of TM.
Collapse
Affiliation(s)
- Fiona A. Martin
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Alisha McLoughlin
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Keith D. Rochfort
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Colin Davenport
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Ronan P. Murphy
- School of Health & Human Performance, Dublin City University, Glasnevin, Dublin, Ireland
- Centre for Preventive Medicine, Dublin City University, Glasnevin, Dublin, Ireland
| | - Philip M. Cummins
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
- Centre for Preventive Medicine, Dublin City University, Glasnevin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
24
|
RHBDL2 is a critical membrane protease for anoikis resistance in human malignant epithelial cells. ScientificWorldJournal 2014; 2014:902987. [PMID: 24977233 PMCID: PMC4058132 DOI: 10.1155/2014/902987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/14/2014] [Accepted: 05/11/2014] [Indexed: 01/11/2023] Open
Abstract
Anoikis resistance allows metastatic tumor cells to survive in a homeless environment. Activation of epithelial growth factor receptor (EGFR) signaling is one of the key mechanisms for metastatic tumor cells to resist anoikis, yet the regulation mechanisms of homeless-triggered EGFR activation in metastatic tumor cells remain unclear. Rhomboid-like-2 (RHBDL2), an evolutionally conserved intramembrane serine protease, can cleave the EGF ligand and thus trigger EGFR activation. Herein, we demonstrated that RHBDL2 overexpression in human epithelial cells resulted in promotion of cell proliferation, reduction of cell adhesion, and suppression of anoikis. During long-term suspension cultures, increased RHBDL2 was only detected in aggressive tumor cell lines. Treatment with the rhomboid protease inhibitor or RHBDL2 shRNA increased cleaved caspase 3, a marker of apoptosis. Finally, inhibition of EGFR activation increased the cleaved caspase 3 and attenuated the detachment-induced focal adhesion kinase phosphorylation. Taken together, these findings provide evidence for the first time that RHBDL2 is a critical molecule in anoikis resistance of malignant epithelial cells, possibly through the EGFR-mediated signaling. Our study demonstrates RHBDL2 as a new therapeutic target for cancer metastasis.
Collapse
|
25
|
Rhbdf2 mutations increase its protein stability and drive EGFR hyperactivation through enhanced secretion of amphiregulin. Proc Natl Acad Sci U S A 2014; 111:E2200-9. [PMID: 24825892 DOI: 10.1073/pnas.1323908111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rhomboid 5 homolog 2 (Rhbdf2) gene encodes an inactive rhomboid (iRhom) protease, iRhom2, one of a family of enzymes containing a long cytosolic N terminus and a dormant peptidase domain of unknown function. iRhom2 has been implicated in epithelial regeneration and cancer growth through constitutive activation of epidermal growth factor receptor (EGFR) signaling. However, little is known about the physiological substrates for iRhom2 or the molecular mechanisms underlying these functions. We show that iRhom2 is a short-lived protein whose stability can be increased by select mutations in the N-terminal domain. In turn, these stable variants function to augment the secretion of EGF family ligands, including amphiregulin, independent of metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) activity. In vivo, N-terminal iRhom2 mutations induce accelerated wound healing as well as accelerated tumorigenesis, but they do not drive spontaneous tumor development. This work underscores the physiological prominence of iRhom2 in controlling EGFR signaling events involved in wound healing and neoplastic growth, and yields insight into the function of key iRhom2 domains.
Collapse
|
26
|
Adrain C, Freeman M. Regulation of receptor tyrosine kinase ligand processing. Cold Spring Harb Perspect Biol 2014; 6:6/1/a008995. [PMID: 24384567 DOI: 10.1101/cshperspect.a008995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary mode of regulating receptor tyrosine kinase (RTK) signaling is to control access of ligand to its receptor. Many RTK ligands are synthesized as transmembrane proteins. Frequently, the active ligand must be released from the membrane by proteolysis before signaling can occur. Here, we discuss RTK ligand shedding and describe the proteases that catalyze it in flies and mammals. We focus principally on the control of EGF receptor ligand shedding, but also refer to ligands of other RTKs. Two prominent themes emerge. First, control by regulated trafficking and cellular compartmentalization of the proteases and their ligand substrates plays a key role in shedding. Second, many external signals converge on the shedding proteases and their control machinery. Proteases therefore act as regulatory hubs that integrate information that the cell receives and translate it into precise outgoing signals. The activation of signaling by proteases is therefore an essential element of the cellular communication machinery.
Collapse
Affiliation(s)
- Colin Adrain
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
27
|
Martin FA, Murphy RP, Cummins PM. Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am J Physiol Heart Circ Physiol 2013; 304:H1585-97. [PMID: 23604713 PMCID: PMC7212260 DOI: 10.1152/ajpheart.00096.2013] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thrombomodulin (TM) is a 557-amino acid protein with a broad cell and tissue distribution consistent with its wide-ranging physiological roles. When expressed on the lumenal surface of vascular endothelial cells in both large vessels and capillaries, its primary function is to mediate endothelial thromboresistance. The complete integral membrane-bound protein form displays five distinct functional domains, although shorter soluble (functional) variants comprising the extracellular domains have also been reported in fluids such as serum and urine. TM-mediated binding of thrombin is known to enhance the specificity of the latter serine protease toward both protein C and thrombin activatable fibrinolysis inhibitor (TAFI), increasing their proteolytic activation rate by almost three orders of magnitude with concomitant anticoagulant, antifibrinolytic, and anti-inflammatory benefits to the vascular wall. Recent years have seen an abundance of research into the cellular mechanisms governing endothelial TM production, processing, and regulation (including flow-mediated mechanoregulation)--from transcriptional and posttranscriptional (miRNA) regulation of TM gene expression, to posttranslational processing and release of the expressed protein--facilitating greater exploitation of its therapeutic potential. The goal of the present paper is to comprehensively review the endothelial/TM system from these regulatory perspectives and draw some fresh conclusions. This paper will conclude with a timely examination of the current status of TM's growing therapeutic appeal, from novel strategies to improve the clinical efficacy of recombinant TM analogs for resolution of vascular disorders such as disseminated intravascular coagulation (DIC), to an examination of the complex pleiotropic relationship between statin treatment and TM expression.
Collapse
Affiliation(s)
- Fiona A Martin
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
28
|
Rhomboid domain containing 1 inhibits cell apoptosis by upregulating AP‐1 activity and its downstream target Bcl‐3. FEBS Lett 2013; 587:1793-8. [DOI: 10.1016/j.febslet.2013.04.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
|
29
|
Abstract
Rhomboid protease was first discovered in Drosophila. Mutation of the fly gene interfered with growth factor signaling and produced a characteristic phenotype of a pointed head skeleton. The name rhomboid has since been widely used to describe a large family of related membrane proteins that have diverse biological functions but share a common catalytic core domain composed of six membrane-spanning segments. Most rhomboid proteases cleave membrane protein substrates near the N terminus of their transmembrane domains. How these proteases function within the confines of the membrane is not completely understood. Recent progress in crystallographic analysis of the Escherichia coli rhomboid protease GlpG in complex with inhibitors has provided new insights into the catalytic mechanism of the protease and its conformational change. Improved biochemical assays have also identified a substrate sequence motif that is specifically recognized by many rhomboid proteases.
Collapse
Affiliation(s)
- Ya Ha
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
30
|
Wan C, Fu J, Wang Y, Miao S, Song W, Wang L. Exosome-related multi-pass transmembrane protein TSAP6 is a target of rhomboid protease RHBDD1-induced proteolysis. PLoS One 2012; 7:e37452. [PMID: 22624035 PMCID: PMC3356283 DOI: 10.1371/journal.pone.0037452] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 04/21/2012] [Indexed: 11/18/2022] Open
Abstract
We have previously reported that rhomboid domain containing 1 (RHBDD1), a mammalian rhomboid protease highly expressed in the testis, can cleave the Bcl-2 protein Bik. In this study, we identified a multi-pass transmembrane protein, tumor suppressor activated pathway-6 (TSAP6) as a potential substrate of RHBDD1. RHBDD1 was found to induce the proteolysis of TSAP6 in a dose- and activity-dependent manner. The cleavage of TSAP6 was not restricted to its glycosylated form and occurred in three different regions. In addition, mass spectrometry and mutagenesis analyses both indicated that the major cleavage site laid in the C-terminal of the third transmembrane domain of TSAP6. A somatic cell knock-in approach was used to genetically inactivate the endogenous RHBDD1 in HCT116 and RKO colon cancer cells. Exosome secretion was significantly elevated when RHBDD1 was inactivated in the two cells lines. The increased exosome secretion was verfied through the detection of certain exosomal components, including Tsg101, Tf-R, FasL and Trail. In addition, the elevation of exosome secretion by RHBDD1 inactivation was reduced when TSAP6 was knocked down, indicating that the role of RHBDD1 in regulating exosomal trafficking is very likely to be TSAP6-dependent. We found that the increase in FasL and Trail increased exosome-induced apoptosis in Jurkat cells. Taken together, our findings suggest that RHBDD1 is involved in the regulation of a nonclassical exosomal secretion pathway through the restriction of TSAP6.
Collapse
Affiliation(s)
- Chunhua Wan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, China
- School of Public Health, Nantong University, Nantong, China
| | - Jun Fu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yong Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Shiying Miao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Wei Song
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, China
- * E-mail: (WS); (LW)
| | - Linfang Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, China
- * E-mail: (WS); (LW)
| |
Collapse
|
31
|
Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34:107-25. [PMID: 21805323 DOI: 10.1007/s00281-011-0282-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022]
Abstract
The goal is to provide an extensive review of the physiologic role of thrombomodulin (TM) in maintaining vascular homeostasis, with a focus on its anti-inflammatory properties. Data were collected from published research. TM is a transmembrane glycoprotein expressed on the surface of all vascular endothelial cells. Expression of TM is tightly regulated to maintain homeostasis and to ensure a rapid and localized hemostatic and inflammatory response to injury. By virtue of its strategic location, its multidomain structure and complex interactions with thrombin, protein C (PC), thrombin activatable fibrinolysis inhibitor (TAFI), complement components, the Lewis Y antigen, and the cytokine HMGB1, TM exhibits a range of physiologically important anti-inflammatory, anti-coagulant, and anti-fibrinolytic properties. TM is an essential cofactor that impacts on multiple biologic processes. Alterations in expression of TM and its partner proteins may be manifest by inflammatory and thrombotic disorders. Administration of soluble forms of TM holds promise as effective therapies for inflammatory diseases, and infections and malignancies that are complicated by disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Edward M Conway
- Division of Hematology-Oncology, Department of Medicine, Centre for Blood Research (CBR), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
32
|
Abstract
Summary Rhomboid proteases are the largest family of enzymes that hydrolyze peptide bonds within the cell membrane. Although discovered to be serine proteases only a decade ago, rhomboid proteases are already considered to be the best understood intramembrane proteases. The presence of rhomboid proteins in all domains of life emphasizes their importance but makes their evolutionary history difficult to chart with confidence. Phylogenetics nevertheless offers three guiding principles for interpreting rhomboid function. The near ubiquity of rhomboid proteases across evolution suggests broad, organizational roles that are not directly essential for cell survival. Functions have been deciphered in only about a dozen organisms and fall into four general categories: initiating cell signaling in animals, facilitating bacterial quorum sensing, regulating mitochondrial homeostasis, and dismantling adhesion complexes of parasitic protozoa. Although in no organism has the full complement of rhomboid function yet been elucidated, links to devastating human disease are emerging rapidly, including to Parkinson's disease, type II diabetes, cancer, and bacterial and malaria infection. Rhomboid proteases are unlike most proteolytic enzymes, because they are membrane-immersed; understanding how the membrane immersion affects their function remains a key challenge.
Collapse
Affiliation(s)
- Sinisa Urban
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
33
|
Adrain C, Strisovsky K, Zettl M, Hu L, Lemberg MK, Freeman M. Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep 2011; 12:421-7. [PMID: 21494248 PMCID: PMC3090019 DOI: 10.1038/embor.2011.50] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines.
Collapse
Affiliation(s)
- Colin Adrain
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Kvido Strisovsky
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Markus Zettl
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Landian Hu
- Molecular Genetics Lab, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, 225 Chongqing Nan Road, Shanghai 200025, China
| | - Marius K Lemberg
- ZMBH, DKFZ–ZMBH Allianz, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
34
|
Zettl M, Adrain C, Strisovsky K, Lastun V, Freeman M. Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 2011; 145:79-91. [PMID: 21439629 PMCID: PMC3149277 DOI: 10.1016/j.cell.2011.02.047] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 11/26/2010] [Accepted: 02/28/2011] [Indexed: 01/05/2023]
Abstract
Intramembrane proteolysis governs many cellular control processes, but little is known about how intramembrane proteases are regulated. iRhoms are a conserved subfamily of proteins related to rhomboid intramembrane serine proteases that lack key catalytic residues. We have used a combination of genetics and cell biology to determine that these "pseudoproteases" inhibit rhomboid-dependent signaling by the epidermal growth factor receptor pathway in Drosophila, thereby regulating sleep. iRhoms prevent the cleavage of potential rhomboid substrates by promoting their destabilization by endoplasmic reticulum (ER)-associated degradation; this mechanism has been conserved in mammalian cells. The exploitation of the intrinsic quality control machinery of the ER represents a new mode of regulation of intercellular signaling. Inactive cognates of enzymes are common, but their functions are mostly unclear; our data indicate that pseudoenzymes can readily evolve into regulatory proteins, suggesting that this may be a significant evolutionary mechanism.
Collapse
Affiliation(s)
- Markus Zettl
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Colin Adrain
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Kvido Strisovsky
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Viorica Lastun
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
35
|
Vinothkumar KR, Strisovsky K, Andreeva A, Christova Y, Verhelst S, Freeman M. The structural basis for catalysis and substrate specificity of a rhomboid protease. EMBO J 2010; 29:3797-809. [PMID: 20890268 PMCID: PMC2989101 DOI: 10.1038/emboj.2010.243] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/06/2010] [Indexed: 12/28/2022] Open
Abstract
Rhomboids are intramembrane proteases that use a catalytic dyad of serine and histidine for proteolysis. They are conserved in both prokaryotes and eukaryotes and regulate cellular processes as diverse as intercellular signalling, parasitic invasion of host cells, and mitochondrial morphology. Their widespread biological significance and consequent medical potential provides a strong incentive to understand the mechanism of these unusual enzymes for identification of specific inhibitors. In this study, we describe the structure of Escherichia coli rhomboid GlpG covalently bound to a mechanism-based isocoumarin inhibitor. We identify the position of the oxyanion hole, and the S₁- and S₂'-binding subsites of GlpG, which are the key determinants of substrate specificity. The inhibitor-bound structure suggests that subtle structural change is sufficient for catalysis, as opposed to large changes proposed from previous structures of unliganded GlpG. Using bound inhibitor as a template, we present a model for substrate binding at the active site and biochemically test its validity. This study provides a foundation for a structural explanation of rhomboid specificity and mechanism, and for inhibitor design.
Collapse
Affiliation(s)
| | | | | | | | - Steven Verhelst
- Center for Integrated Protein Science Munich, Lehrstuhl Chemie der Biopolymere, Technische Universität München, Freising, Germany
| | | |
Collapse
|
36
|
Yu L, Lee T, Lin N, Wolf MJ. Affecting Rhomboid-3 function causes a dilated heart in adult Drosophila. PLoS Genet 2010; 6:e1000969. [PMID: 20523889 PMCID: PMC2877733 DOI: 10.1371/journal.pgen.1000969] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 04/23/2010] [Indexed: 11/18/2022] Open
Abstract
Drosophila is a well recognized model of several human diseases, and recent investigations have demonstrated that Drosophila can be used as a model of human heart failure. Previously, we described that optical coherence tomography (OCT) can be used to rapidly examine the cardiac function in adult, awake flies. This technique provides images that are similar to echocardiography in humans, and therefore we postulated that this approach could be combined with the vast resources that are available in the fly community to identify new mutants that have abnormal heart function, a hallmark of certain cardiovascular diseases. Using OCT to examine the cardiac function in adult Drosophila from a set of molecularly-defined genomic deficiencies from the DrosDel and Exelixis collections, we identified an abnormally enlarged cardiac chamber in a series of deficiency mutants spanning the rhomboid 3 locus. Rhomboid 3 is a member of a highly conserved family of intramembrane serine proteases and processes Spitz, an epidermal growth factor (EGF)-like ligand. Using multiple approaches based on the examination of deficiency stocks, a series of mutants in the rhomboid-Spitz-EGF receptor pathway, and cardiac-specific transgenic rescue or dominant-negative repression of EGFR, we demonstrate that rhomboid 3 mediated activation of the EGF receptor pathway is necessary for proper adult cardiac function. The importance of EGF receptor signaling in the adult Drosophila heart underscores the concept that evolutionarily conserved signaling mechanisms are required to maintain normal myocardial function. Interestingly, prior work showing the inhibition of ErbB2, a member of the EGF receptor family, in transgenic knock-out mice or individuals that received herceptin chemotherapy is associated with the development of dilated cardiomyopathy. Our results, in conjunction with the demonstration that altered ErbB2 signaling underlies certain forms of mammalian cardiomyopathy, suggest that an evolutionarily conserved signaling mechanism may be necessary to maintain post-developmental cardiac function.
Collapse
Affiliation(s)
- Lin Yu
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Teresa Lee
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Na Lin
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Matthew J. Wolf
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
37
|
Hill RB, Pellegrini L. The PARL family of mitochondrial rhomboid proteases. Semin Cell Dev Biol 2010; 21:582-92. [PMID: 20045481 DOI: 10.1016/j.semcdb.2009.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/10/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Rhomboids are an ancient and conserved family of intramembrane-cleaving proteases, a small group of proteolytic enzymes capable of hydrolyzing a peptide bond within a transmembrane helix that anchors a substrate protein to the membrane. Mitochondrial rhomboids evolved in eukaryotes to coordinate a critical aspect of cell biology, the regulation of mitochondrial membranes dynamics. This function appears to have required the emergence of a structural feature that is unique among all other rhomboids: an additional transmembrane helix (TMH) positioned at the N-terminus of six TMHs that form the core proteolytic domain of all prokaryotic and eukaryotic rhomboids. This "1+6" structure, which is shared only among mitochondrial rhomboids, defines a subfamily of rhomboids with the prototypical family member being mammalian Parl. Here, we present the findings that in 11 years have elevated mitochondrial rhomboids as the gatekeepers of mitochondrial dynamics and apoptosis; further, we discuss the aspects of their biology that are bound to introduce new paradigm shifts in our understanding of how the organelle uses this unique type of protease to govern stress, signaling to the nucleus, and other key mitochondrial activities in health and disease.
Collapse
Affiliation(s)
- R Blake Hill
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|
38
|
Strisovsky K, Sharpe HJ, Freeman M. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol Cell 2009; 36:1048-59. [PMID: 20064469 PMCID: PMC2941825 DOI: 10.1016/j.molcel.2009.11.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/27/2009] [Accepted: 09/23/2009] [Indexed: 11/21/2022]
Abstract
Members of the widespread rhomboid family of intramembrane proteases cleave transmembrane domain (TMD) proteins to regulate processes as diverse as EGF receptor signaling, mitochondrial dynamics, and invasion by apicomplexan parasites. However, lack of information about their substrates means that the biological role of most rhomboids remains obscure. Knowledge of how rhomboids recognize their substrates would illuminate their mechanism and might also allow substrate prediction. Previous work has suggested that rhomboid substrates are specified by helical instability in their TMD. Here we demonstrate that rhomboids instead primarily recognize a specific sequence surrounding the cleavage site. This recognition motif is necessary for substrate cleavage, it determines the cleavage site, and it is more strictly required than TM helix-destabilizing residues. Our work demonstrates that intramembrane proteases can be sequence specific and that genome-wide substrate prediction based on their recognition motifs is feasible.
Collapse
Affiliation(s)
- Kvido Strisovsky
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Hayley J. Sharpe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
39
|
Erez E, Fass D, Bibi E. How intramembrane proteases bury hydrolytic reactions in the membrane. Nature 2009; 459:371-8. [PMID: 19458713 DOI: 10.1038/nature08146] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intramembrane proteolysis is increasingly seen as a regulatory step in a range of diverse processes, including development, organelle shaping, metabolism, pathogenicity and degenerative disease. Initial scepticism over the existence of intramembrane proteases was soon replaced by intense exploration of their catalytic mechanisms, substrate specificities, regulation and structures. Crystal structures of metal-dependent and serine intramembrane proteases have revealed active sites embedded in the plane of the membrane but accessible by water, a requirement for hydrolytic reactions. Efforts to understand how these membrane-bound proteases carry out their reactions have started to yield results.
Collapse
Affiliation(s)
- Elinor Erez
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
40
|
Wang Y, Song W, Li S, Guan X, Miao S, Zong S, Koide SS, Wang L. GC-1 mRHBDD1 knockdown spermatogonia cells lose their spermatogenic capacity in mouse seminiferous tubules. BMC Cell Biol 2009; 10:25. [PMID: 19358743 PMCID: PMC2679709 DOI: 10.1186/1471-2121-10-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 04/10/2009] [Indexed: 01/03/2023] Open
Abstract
Background Apoptosis is important for regulating spermatogenesis. The protein mRHBDD1 (mouse homolog of human RHBDD1)/rRHBDD1 (rat homolog of human RHBDD1) is highly expressed in the testis and is involved in apoptosis of spermatogonia. GC-1, a spermatogonia cell line, has the capacity to differentiate into spermatids within the seminiferous tubules. We constructed mRHBDD1 knockdown GC-1 cells and evaluated their capacity to differentiate into spermatids in mouse seminiferous tubules. Results Stable mRHBDD1 knockdown GC-1 cells were sensitive to apoptotic stimuli, PS341 and UV irradiation. In vitro, they survived and proliferated normally. However, they lost the ability to survive and differentiate in mouse seminiferous tubules. Conclusion Our findings suggest that mRHBDD1 may be associated with mammalian spermatogenesis.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University 5 Dong Dan San Tiao, Beijing 100005, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ha Y. Structure and mechanism of intramembrane protease. Semin Cell Dev Biol 2009; 20:240-50. [PMID: 19059492 PMCID: PMC2760405 DOI: 10.1016/j.semcdb.2008.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/06/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Many functionally important membrane proteins are cleaved within their transmembrane helices to become activated. This unusual reaction is catalyzed by a group of highly specialized and membrane-bound proteases. Here I briefly summarize current knowledge about their structure and mechanism, with a focus on the rhomboid family. It has now become clear that rhomboid protease can cleave substrates not only within transmembrane domains, but also in the solvent-exposed juxtamembrane region. This dual specificity seems possible because the protease active site is positioned in a shallow pocket that can directly open to aqueous solution through the movement of a flexible capping loop. The narrow membrane-spanning region of the protease suggests a possible mechanism for accessing scissile bonds that are located near the end of substrate transmembrane helices. Similar principles may apply to the metalloprotease family, where a crystal structure has also become available. Although how the GxGD proteases work is still less clear, recent results indicate that presenilin also appears to clip substrate from the end of transmembrane helices.
Collapse
Affiliation(s)
- Ya Ha
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 2008; 112:3661-70. [PMID: 18711002 DOI: 10.1182/blood-2008-03-142760] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thrombomodulin (TM), a widely expressing glycoprotein originally identified in vascular endothelium, is an important cofactor in the protein C anticoagulant system. TM appears to exhibit anti-inflammatory ability through both protein C-dependent and -independent pathways. We presently have demonstrated that recombinant N-terminal lectinlike domain of TM (rTMD1) functions as a protective agent against sepsis caused by Gram-negative bacterial infections. rTMD1 caused agglutination of Escherichia coli and Klebsiella pneumoniae and enhanced the macrophage phagocytosis of these Gram-negative bacteria. Moreover, rTMD1 bound to the Klebsiella pneumoniae and lipopolysaccharide (LPS) by specifically interacting with Lewis Y antigen. rTMD1 inhibited LPS-induced inflammatory mediator production via interference with CD14 and LPS binding. Furthermore, rTMD1 modulated LPS-induced mitogen-activated protein kinase and nuclear factor-kappaB signaling pathway activations and inducible nitric oxide synthase expression in macrophages. Administration of rTMD1 protected the host by suppressing inflammatory responses induced by LPS and Gram-negative bacteria, and enhanced LPS and bacterial clearance in sepsis. Thus, rTMD1 can be used to defend against bacterial infection and inhibit LPS-induced inflammatory responses, suggesting that rTMD1 may be valuable in the treatment of severe inflammation in sepsis, especially in Gram-negative bacterial infections.
Collapse
|
43
|
Abstract
Rhomboid intramembrane proteases occur throughout the kingdoms of life. In this issue of Genes & Development, Baxt and colleagues (pp. 1636-1646) report that the single proteolytic rhomboid (EhROM1) from Entamoeba histolytica cleaves cell surface galactose-binding or N-acetylgalactosamine-binding (Gal/Gal-NAc) lectins. EhROM1 and lectins colocalize during phagocytosis and receptor capping. EhROM1 is found at the base of the cap rather than in the cap proper, suggesting a role in receptor shedding and implying that EhROM1 is crucial for amoebal infection.
Collapse
Affiliation(s)
- Robert B Rawson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
44
|
Lemberg MK, Freeman M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genes Dev 2007; 17:1634-46. [PMID: 17938163 PMCID: PMC2045146 DOI: 10.1101/gr.6425307] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 08/28/2007] [Indexed: 12/30/2022]
Abstract
Rhomboids are a recently discovered family of widely distributed intramembrane serine proteases. They have diverse biological functions, including the regulation of growth factor signaling, mitochondrial fusion, and parasite invasion. Despite their existence in all branches of life, the sequence identity between rhomboids is low. We have combined BLAST-based database mining with functional and structural data to generate a comprehensive genomic analysis of eukaryotic rhomboid-like proteins. We show that robust membrane topology models are necessary to classify active rhomboid proteases unambiguously, and we define rules for distinguishing predicted active proteases from the larger evolutionary group of rhomboid-like proteins. This leads to a revision of estimates of numbers of proteolytically active rhomboids. We identify three groups of eukaryotic rhomboid-like proteins: true active rhomboids, a tightly clustered group of novel inactive rhomboids that we name the iRhoms, and a small number of other inactive rhomboid-like proteins. The active proteases are themselves subdivided into secretase and PARL-type (mitochondrial) subfamilies; these have distinct transmembrane topologies. This enhanced genomic analysis leads to conclusions about rhomboid enzyme function. It suggests that a given rhomboid can only cleave a single orientation of substrate, and that both products of rhomboid catalyzed intramembrane cleavage can be released from the membrane. Our phylogeny predictions also have evolutionary implications: Despite the complex classification of rhomboids, our data suggest that a rhomboid-type intramembrane protease may have been present in the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Marius K. Lemberg
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
45
|
O'Donnell RA, Hackett F, Howell SA, Treeck M, Struck N, Krnajski Z, Withers-Martinez C, Gilberger TW, Blackman MJ. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 2006; 174:1023-33. [PMID: 17000879 PMCID: PMC2064393 DOI: 10.1083/jcb.200604136] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/18/2006] [Indexed: 11/22/2022] Open
Abstract
Apicomplexan pathogens are obligate intracellular parasites. To enter cells, they must bind with high affinity to host cell receptors and then uncouple these interactions to complete invasion. Merozoites of Plasmodium falciparum, the parasite responsible for the most dangerous form of malaria, invade erythrocytes using a family of adhesins called Duffy binding ligand-erythrocyte binding proteins (DBL-EBPs). The best-characterized P. falciparum DBL-EBP is erythrocyte binding antigen 175 (EBA-175), which binds erythrocyte surface glycophorin A. We report that EBA-175 is shed from the merozoite at around the point of invasion. Shedding occurs by proteolytic cleavage within the transmembrane domain (TMD) at a site that is conserved across the DBL-EBP family. We show that EBA-175 is cleaved by PfROM4, a rhomboid protease that localizes to the merozoite plasma membrane, but not by other rhomboids tested. Mutations within the EBA-175 TMD that abolish cleavage by PfROM4 prevent parasite growth. Our results identify a crucial role for intramembrane proteolysis in the life cycle of this pathogen.
Collapse
Affiliation(s)
- Rebecca A O'Donnell
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Clemmer KM, Sturgill GM, Veenstra A, Rather PN. Functional characterization of Escherichia coli GlpG and additional rhomboid proteins using an aarA mutant of Providencia stuartii. J Bacteriol 2006; 188:3415-9. [PMID: 16621838 PMCID: PMC1447467 DOI: 10.1128/jb.188.9.3415-3419.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 02/16/2006] [Indexed: 11/20/2022] Open
Abstract
The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and required for the production of an extracellular signaling molecule that regulates cellular functions including peptidoglycan acetylation, methionine transport, and cysteine biosynthesis. Additional aarA-dependent phenotypes include (i) loss of an extracellular yellow pigment, (ii) inability to grow on MacConkey agar, and (iii) abnormal cell division. Since these phenotypes are easily assayed, the P. stuartii aarA mutant serves as a useful host system to investigate rhomboid function. The Escherichia coli GlpG protein was shown to be functionally similar to AarA and rescued the above aarA-dependent phenotypes in P. stuartii. GlpG proteins containing single alanine substitutions at the highly conserved catalytic triad of asparagine (N154A), serine (S201A), or histidine (H254A) residues were nonfunctional. The P. stuartii aarA mutant was also used as a biosensor to demonstrate that proteins from a variety of diverse sources exhibited rhomboid activity. In an effort to further investigate the role of a rhomboid protein in cell physiology, a glpG mutant of E. coli was constructed. In phenotype microarray experiments, the glpG mutant exhibited a slight increase in resistance to the beta-lactam antibiotic cefotaxime.
Collapse
Affiliation(s)
- Katy M Clemmer
- Laboratories of Microbial Pathogenesis, Atlanta VA Medical Center, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
47
|
Urban S, Wolfe MS. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc Natl Acad Sci U S A 2005; 102:1883-8. [PMID: 15684070 PMCID: PMC548546 DOI: 10.1073/pnas.0408306102] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intramembrane proteolysis is a new paradigm in biology that controls signaling events throughout evolution. Hydrolysis of peptide bonds is thought to occur within the normally hydrophobic membrane environment, but insights into this unusual activity have been lacking because of difficulty in recapitulating activity in vitro. We have reconstituted intramembrane proteolysis with a pure recombinant substrate and rhomboid proteins in both detergent micelles and artificial membrane environments. Rhomboid proteins from diverse organisms including two model bacteria, a pathogen, an extremophile, and an animal were robustly active in pure form, proving that rhomboids are a new class of enzymes and do not require cofactors to catalyze intramembrane proteolysis. Rhomboid proteins directly recognized their substrates in vitro by the top of the substrate transmembrane domain, displaying specificity apparently reciprocal to that of gamma-secretase, the only other activity known to cleave type-I transmembrane domains. Rhomboid proteases represent a different evolutionary path to a serine protease mechanism and exhibited an inhibitor profile unlike other serine proteases. Intriguingly, activity was dramatically modulated by different membrane phospholipid environments, suggesting a mechanism for regulating these proteases. This analysis promises to help reveal the biochemical mechanisms and biological roles of this most widely conserved membrane protein family.
Collapse
Affiliation(s)
- Sinisa Urban
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
48
|
Lemberg MK, Menendez J, Misik A, Garcia M, Koth CM, Freeman M. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J 2004; 24:464-72. [PMID: 15616571 PMCID: PMC548647 DOI: 10.1038/sj.emboj.7600537] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 12/08/2004] [Indexed: 11/09/2022] Open
Abstract
Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water-requiring hydrolysis reaction. These enzymes include site-2 protease, gamma-secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of their high hydrophobicity, have been difficult to purify. We have now developed an in vitro assay to monitor rhomboid activity in the detergent solubilised state. This has allowed us to isolate for the first time a highly pure rhomboid with catalytic activity. Our results suggest that detergent-solubilised rhomboid activity mimics its activity in biological membranes in many aspects. Analysis of purified mutant proteins suggests that rhomboids use a serine protease catalytic dyad instead of the previously proposed triad. This analysis also suggests that other conserved residues participate in subsidiary functions like ligand binding and water supply. We identify a motif shared between rhomboids and the recently discovered derlins, which participate in translocation of misfolded membrane proteins.
Collapse
Affiliation(s)
| | - Javier Menendez
- Ontario Center for Structural Proteomics, University of Toronto, Toronto, Ontario, Canada
| | - Angelika Misik
- Ontario Center for Structural Proteomics, University of Toronto, Toronto, Ontario, Canada
| | - Maite Garcia
- Ontario Center for Structural Proteomics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher M Koth
- Ontario Center for Structural Proteomics, University of Toronto, Toronto, Ontario, Canada
- Ontario Center for Structural Proteomics, University of Toronto, 112 College Street, Toronto, Ontario, Canada M5G 1L6. Tel.: +1 416 946 0074; E-mail:
| | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Cell Biology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 402351; Fax: +44 1223 412142; E-mail:
| |
Collapse
|