1
|
Du X, Crodelle J, Barranca VJ, Li S, Shi Y, Gao S, Zhou D. Biophysical modeling and experimental analysis of the dynamics of C. elegans body-wall muscle cells. PLoS Comput Biol 2025; 21:e1012318. [PMID: 39869659 PMCID: PMC11781704 DOI: 10.1371/journal.pcbi.1012318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/30/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials. We develop Hodgkin-Huxley-based models for these channels and integrate them to capture the cells' electrical activity. To ensure the model accurately reflects cellular responses under depolarizing currents, we develop a parallel simulation-based inference method for determining the model's free parameters. This method performs rapid parallel sampling across high-dimensional parameter spaces, fitting the model to the responses of muscle cells to specific stimuli and yielding accurate parameter estimates. We validate our model by comparing its predictions against cellular responses to various current stimuli in experiments and show that our approach effectively determines suitable parameters for accurately modeling the dynamics in mutant cases. Additionally, we discover an optimal response frequency in body-wall muscle cells, which corresponds to a burst firing mode rather than regular firing mode. Our work provides the first experimentally constrained and biophysically detailed muscle cell model of C. elegans, and our analytical framework combined with robust and efficient parametric estimation method can be extended to model construction in other species.
Collapse
Affiliation(s)
- Xuexing Du
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai, China
| | - Jennifer Crodelle
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, United States of America
| | - Victor James Barranca
- Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Songting Li
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai, China
| | - Yunzhu Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Douglas Zhou
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Frontier Science Center of Modern Analysis, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
3
|
Zhuang S, He M, Feng J, Peng S, Jiang H, Li Y, Hua N, Zheng Y, Ye Q, Hu M, Nie Y, Yu P, Yue X, Qian J, Yang W. Near-Infrared Photothermal Manipulates Cellular Excitability and Animal Behavior in Caenorhabditis elegans. SMALL METHODS 2023; 7:e2300848. [PMID: 37681531 DOI: 10.1002/smtd.202300848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/12/2023] [Indexed: 09/09/2023]
Abstract
Near-infrared (NIR) photothermal manipulation has emerged as a promising and noninvasive technology for neuroscience research and disease therapy for its deep tissue penetration. NIR stimulated techniques have been used to modulate neural activity. However, due to the lack of suitable in vivo control systems, most studies are limited to the cellular level. Here, a NIR photothermal technique is developed to modulate cellular excitability and animal behaviors in Caenorhabditis elegans in vivo via the thermosensitive transient receptor potential vanilloid 1 (TRPV1) channel with an FDA-approved photothermal agent indocyanine green (ICG). Upon NIR stimuli, exogenous expression of TRPV1 in AFD sensory neurons causes Ca2+ influx, leading to increased neural excitability and reversal behaviors, in the presence of ICG. The GABAergic D-class motor neurons can also be activated by NIR irradiation, resulting in slower thrashing behaviors. Moreover, the photothermal manipulation is successfully applied in different types of muscle cells (striated muscles and nonstriated muscles), enhancing muscular excitability, causing muscle contractions and behavior changes in vivo. Altogether, this study demonstrates a noninvasive method to precisely regulate the excitability of different types of cells and related behaviors in vivo by NIR photothermal manipulation, which may be applied in mammals and clinical therapy.
Collapse
Affiliation(s)
- Siyi Zhuang
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mubin He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Feng
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shiyi Peng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Haochen Jiang
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yunhao Li
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ning Hua
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yujie Zheng
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qizhen Ye
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Miaojin Hu
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ying Nie
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Peilin Yu
- Department of Toxicology, Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiaomin Yue
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Wei Yang
- Department of Biophysics, Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
4
|
Jordan A, Glauser DA. Distinct clusters of human pain gene orthologs in Caenorhabditis elegans regulate thermo-nociceptive sensitivity and plasticity. Genetics 2023; 224:iyad047. [PMID: 36947448 PMCID: PMC10158838 DOI: 10.1093/genetics/iyad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/13/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The detection and avoidance of harmful stimuli are essential animal capabilities. The molecular and cellular mechanisms controlling nociception and its plasticity are conserved, genetically controlled processes of broad biomedical interest given their relevance to understand and treat pain conditions that represent a major health burden. Recent genome-wide association studies (GWAS) have identified a rich set of polymorphisms related to different pain conditions and pointed to many human pain gene candidates, whose connection to the pain pathways is however often poorly understood. Here, we used a computer-assisted Caenorhabditis elegans thermal avoidance analysis pipeline to screen for behavioral defects in a set of 109 mutants for genes orthologous to human pain-related genes. We measured heat-evoked reversal thermosensitivity profiles, as well as spontaneous reversal rate, and compared naïve animals with adapted animals submitted to a series of repeated noxious heat stimuli, which in wild type causes a progressive habituation. Mutations affecting 28 genes displayed defects in at least one of the considered parameters and could be clustered based on specific phenotypic footprints, such as high-sensitivity mutants, nonadapting mutants, or mutants combining multiple defects. Collectively, our data reveal the functional architecture of a network of conserved pain-related genes in C. elegans and offer novel entry points for the characterization of poorly understood human pain genes in this genetic model.
Collapse
Affiliation(s)
- Aurore Jordan
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | |
Collapse
|
5
|
Thapliyal S, Glauser DA. Neurogenetic Analysis in Caenorhabditis elegans. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Mori S, Tachibana Y, Suzuki M, Harada Y. Automatic worm detection to solve overlapping problems using a convolutional neural network. Sci Rep 2022; 12:8521. [PMID: 35595864 PMCID: PMC9122895 DOI: 10.1038/s41598-022-12576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
The nematode Caenorhabditis elegans is a powerful experimental model to investigate vital functions of higher organisms. We recently established a novel method, named "pond assay for the sensory systems (PASS)”, that dramatically improves both the evaluation accuracy of sensory response of worms and the efficiency of experiments. This method uses many worms in numbers that are impractical to count manually. Although several automated detection systems have been introduced, detection of overlapped worms remains difficult. To overcome this problem, we developed an automated worm detection system based on a deep neural network (DNN). Our DNN was based on a “YOLOv4″ one-stage detector with one-class classification (OCC) and multi-class classification (MCC). The OCC defined a single class for worms, while the MCC defined four classes for the number of overlapped worms. For the training data, a total of 2000 model sub-images were prepared by manually drawing square worm bounding boxes from 150 images. To make simulated images, a total of 10–80 model images for each class were randomly selected and randomly placed on a simulated microscope field. A total of 19,000 training datasets and 1000 validation datasets with a ground-truth bounding-box were prepared. We evaluated detection accuracy using 150 images, which were different from the training data. Evaluation metrics were detection error, precision, recall, and average precision (AP). Precision values were 0.91 for both OCC and MCC. However, the recall value for MCC (= 0.93) was higher than that for OCC (= 0.79). The number of detection errors for OCC increased with increasing the ground truth; however, that for MCC was independent of the ground truth. AP values were 0.78 and 0.90 for the OCC and the MCC, respectively. Our worm detection system with MCC provided better detection accuracy for large numbers of worms with overlapping positions than that with the OCC.
Collapse
Affiliation(s)
- Shinichiro Mori
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, 263-8555, Japan.
| | - Yasuhiko Tachibana
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, 263-8555, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Yoshinobu Harada
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
7
|
Disease Modeling of Rare Neurological Disorders in Zebrafish. Int J Mol Sci 2022; 23:ijms23073946. [PMID: 35409306 PMCID: PMC9000079 DOI: 10.3390/ijms23073946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are those which affect a small number of people compared to the general population. However, many patients with a rare disease remain undiagnosed, and a large majority of rare diseases still have no form of viable treatment. Approximately 40% of rare diseases include neurologic and neurodevelopmental disorders. In order to understand the characteristics of rare neurological disorders and identify causative genes, various model organisms have been utilized extensively. In this review, the characteristics of model organisms, such as roundworms, fruit flies, and zebrafish, are examined, with an emphasis on zebrafish disease modeling in rare neurological disorders.
Collapse
|
8
|
Badertscher L, Porritt MJ. Utilizing CRISPR/Cas9 Technologies for
in vivo
Disease Modeling and Therapy. GENOME EDITING IN DRUG DISCOVERY 2022:93-110. [DOI: 10.1002/9781119671404.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Lam EK, Abegaz M, Gunderson AR, Tsukimura B, Stillman JH. Interactions Between Temperature Variability and Reproductive Physiology Across Traits in an Intertidal Crab. Front Physiol 2022; 13:796125. [PMID: 35350692 PMCID: PMC8957995 DOI: 10.3389/fphys.2022.796125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Thermal extremes alter population processes, which can result in part from temperature-induced movement at different spatial and temporal scales. Thermal thresholds for animal movement likely change based on underlying thermal physiology and life-history stage, a topic that requires greater study. The intertidal porcelain crab Petrolisthes cinctipes currently experiences temperatures that can reach near-lethal levels in the high-intertidal zone at low tide. However, the thermal thresholds that trigger migration to cooler microhabitats, and the extent to which crabs move in response to temperature, remain unknown. Moreover, the influence of reproductive status on these thresholds is rarely investigated. We integrated demographic, molecular, behavioral, and physiological measurements to determine if behavioral thermal limits varied due to reproductive state. Demographic data showed a trend for gravid, egg bearing, crabs to appear more often under rocks in the cooler intertidal zone where crab density is highest. In situ expression of 31 genes related to stress, metabolism, and growth in the field differed significantly based on intertidal elevation, with mid-intertidal crabs expressing the gene for the reproductive yolk protein vitellogenin (vg) earlier in the season. Furthermore, VG protein levels were shown to increase with density for female hemolymph. Testing for temperatures that elicit movement revealed that gravid females engage in heat avoidance behavior at lower temperatures (i.e., have a lower voluntary thermal maximum, VTmax) than non-gravid females. VTmax was positively correlated with the temperature of peak firing rate for distal afferent nerve fibers in the walking leg, a physiological relationship that could correspond to the mechanistic underpinning for temperature dependent movement. The vulnerability of marine organisms to global change is predicated by their ability to utilize and integrate physiological and behavioral strategies in response to temperature to maximize survival and reproduction. Interactions between fine-scale temperature variation and reproductive biology can have important consequences for the ecology of species, and is likely to influence how populations respond to ongoing climate change.
Collapse
Affiliation(s)
- Emily K. Lam
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Biology, San Francisco State University, San Francisco, CA, United States
- *Correspondence: Emily K. Lam,
| | - Metadel Abegaz
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Alex R. Gunderson
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Brian Tsukimura
- Department of Biology, California State University, Fresno, CA, United States
| | - Jonathon H. Stillman
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
10
|
Juanez K, Ghose P. Repurposing the Killing Machine: Non-canonical Roles of the Cell Death Apparatus in Caenorhabditis elegans Neurons. Front Cell Dev Biol 2022; 10:825124. [PMID: 35237604 PMCID: PMC8882910 DOI: 10.3389/fcell.2022.825124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Here we highlight the increasingly divergent functions of the Caenorhabditis elegans cell elimination genes in the nervous system, beyond their well-documented roles in cell dismantling and removal. We describe relevant background on the C. elegans nervous system together with the apoptotic cell death and engulfment pathways, highlighting pioneering work in C. elegans. We discuss in detail the unexpected, atypical roles of cell elimination genes in various aspects of neuronal development, response and function. This includes the regulation of cell division, pruning, axon regeneration, and behavioral outputs. We share our outlook on expanding our thinking as to what cell elimination genes can do and noting their versatility. We speculate on the existence of novel genes downstream and upstream of the canonical cell death pathways relevant to neuronal biology. We also propose future directions emphasizing the exploration of the roles of cell death genes in pruning and guidance during embryonic development.
Collapse
|
11
|
Marques F, Falquet L, Vandewyer E, Beets I, Glauser DA. Signaling via the FLP-14/FRPR-19 neuropeptide pathway sustains nociceptive response to repeated noxious stimuli in C. elegans. PLoS Genet 2021; 17:e1009880. [PMID: 34748554 PMCID: PMC8601619 DOI: 10.1371/journal.pgen.1009880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/18/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
In order to thrive in constantly changing environments, animals must adaptively respond to threatening events. Noxious stimuli are not only processed according to their absolute intensity, but also to their context. Adaptation processes can cause animals to habituate at different rates and degrees in response to permanent or repeated stimuli. Here, we used a forward genetic approach in Caenorhabditis elegans to identify a neuropeptidergic pathway, essential to prevent fast habituation and maintain robust withdrawal responses to repeated noxious stimuli. This pathway involves the FRPR-19A and FRPR-19B G-protein coupled receptor isoforms produced from the frpr-19 gene by alternative splicing. Loss or overexpression of each or both isoforms can impair withdrawal responses caused by the optogenetic activation of the polymodal FLP nociceptor neuron. Furthermore, we identified FLP-8 and FLP-14 as FRPR-19 ligands in vitro. flp-14, but not flp-8, was essential to promote withdrawal response and is part of the same genetic pathway as frpr-19 in vivo. Expression and cell-specific rescue analyses suggest that FRPR-19 acts both in the FLP nociceptive neurons and downstream interneurons, whereas FLP-14 acts from interneurons. Importantly, genetic impairment of the FLP-14/FRPR-19 pathway accelerated the habituation to repeated FLP-specific optogenetic activation, as well as to repeated noxious heat and harsh touch stimuli. Collectively, our data suggest that well-adjusted neuromodulation via the FLP-14/FRPR-19 pathway contributes to promote nociceptive signals in C. elegans and counteracts habituation processes that otherwise tend to rapidly reduce aversive responses to repeated noxious stimuli.
Collapse
Affiliation(s)
- Filipe Marques
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Elke Vandewyer
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
12
|
Kropp PA, Bauer R, Zafra I, Graham C, Golden A. Caenorhabditis elegans for rare disease modeling and drug discovery: strategies and strengths. Dis Model Mech 2021; 14:dmm049010. [PMID: 34370008 PMCID: PMC8380043 DOI: 10.1242/dmm.049010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although nearly 10% of Americans suffer from a rare disease, clinical progress in individual rare diseases is severely compromised by lack of attention and research resources compared to common diseases. It is thus imperative to investigate these diseases at their most basic level to build a foundation and provide the opportunity for understanding their mechanisms and phenotypes, as well as potential treatments. One strategy for effectively and efficiently studying rare diseases is using genetically tractable organisms to model the disease and learn about the essential cellular processes affected. Beyond investigating dysfunctional cellular processes, modeling rare diseases in simple organisms presents the opportunity to screen for pharmacological or genetic factors capable of ameliorating disease phenotypes. Among the small model organisms that excel in rare disease modeling is the nematode Caenorhabditis elegans. With a staggering breadth of research tools, C. elegans provides an ideal system in which to study human disease. Molecular and cellular processes can be easily elucidated, assayed and altered in ways that can be directly translated to humans. When paired with other model organisms and collaborative efforts with clinicians, the power of these C. elegans studies cannot be overstated. This Review highlights studies that have used C. elegans in diverse ways to understand rare diseases and aid in the development of treatments. With continuing and advancing technologies, the capabilities of this small round worm will continue to yield meaningful and clinically relevant information for human health.
Collapse
Affiliation(s)
| | | | | | | | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Reiss AP, Rankin CH. Gaining an understanding of behavioral genetics through studies of foraging in Drosophila and learning in C. elegans. J Neurogenet 2021; 35:119-131. [PMID: 34151727 DOI: 10.1080/01677063.2021.1928113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The pursuit of understanding behavior has led to investigations of how genes, the environment, and the nervous system all work together to produce and influence behavior, giving rise to a field of research known as behavioral neurogenetics. This review focuses on the research journeys of two pioneers of aspects of behavioral neurogenetic research: Dr. Marla Sokolowski and Dr. Catharine Rankin as examples of how different approaches have been used to understand relationships between genes and behavior. Marla Sokolowski's research is centered around the discovery and analysis of foraging, a gene responsible for the natural behavioral polymorphism of Drosophila melanogaster larvae foraging behavior. Catharine Rankin's work began with demonstrating the ability to learn in Caenorhabditis elegans and then setting out to investigate the mechanisms underlying the "simplest" form of learning, habituation. Using these simple invertebrate organisms both investigators were able to perform in-depth dissections of behavior at genetic and molecular levels. By exploring their research and highlighting their findings we present ways their work has furthered our understanding of behavior and contributed to the field of behavioral neurogenetics.
Collapse
Affiliation(s)
- Aaron P Reiss
- Department of Psychology, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H Rankin
- Department of Psychology, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Ge A, Hu L, Fan J, Ge M, Wang X, Wang S, Feng X, Du W, Liu BF. A low-cost microfluidic platform coupled with light emitting diode for optogenetic analysis of neuronal response in C. elegans. Talanta 2021; 223:121646. [PMID: 33303134 DOI: 10.1016/j.talanta.2020.121646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 11/24/2022]
Abstract
Optogenetic method is widely used for dissecting the neuronal function and connectivity in a specific neural circuit, which can help understanding how the animal process information and generate behavior. The nematode C. elegans has a simple but complete nervous system, making it an attractive model to study the dynamics signals of neural circuits. However, in vivo analysis on neural circuits usually rely on the complex and expensive optical equipment to allow optogenetic stimulating the neuron while recording its activities in such a freely moving animal. Hence, in this paper we reported a portable optofluidic platform that works based on optical fiber illumination and functional imaging for worm optogenetic manipulation. A light beam from LED laser pen crossing the 3D-printed optical fiber channel is used to activate the neurons specific-expressed with light sensitive proteins ChR-2. The imaging light path is perpendicular to the stimulation light, which allows activating neuron precisely and measuring cellular signals simultaneously. By using such an easy-to-assemble device, optical stimulation of the specific neurons and detection of dynamic calcium responses of other neurons could be proceeded simultaneously. Thus, the developed microfluidic platform puts forward a simple, rapid and low-cost strategy for further neural circuits studies.
Collapse
Affiliation(s)
- Anle Ge
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Single Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Liang Hu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - JiaXing Fan
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Minghai Ge
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xixian Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Single Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Shanshan Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
15
|
Maertens T, Schöll E, Ruiz J, Hövel P. Multilayer network analysis of C. elegans: Looking into the locomotory circuitry. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Alicea B. Raising the Connectome: The Emergence of Neuronal Activity and Behavior in Caenorhabditis elegans. Front Cell Neurosci 2020; 14:524791. [PMID: 33100971 PMCID: PMC7522492 DOI: 10.3389/fncel.2020.524791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022] Open
Abstract
The differentiation of neurons and formation of connections between cells is the basis of both the adult phenotype and behaviors tied to cognition, perception, reproduction, and survival. Such behaviors are associated with local (circuits) and global (connectome) brain networks. A solid understanding of how these networks emerge is critical. This opinion piece features a guided tour of early developmental events in the emerging connectome, which is crucial to a new view on the connectogenetic process. Connectogenesis includes associating cell identities with broader functional and developmental relationships. During this process, the transition from developmental cells to terminally differentiated cells is defined by an accumulation of traits that ultimately results in neuronal-driven behavior. The well-characterized developmental and cell biology of Caenorhabditis elegans will be used to build a synthesis of developmental events that result in a functioning connectome. Specifically, our view of connectogenesis enables a first-mover model of synaptic connectivity to be demonstrated using data representing larval synaptogenesis. In a first-mover model of Stackelberg competition, potential pre- and postsynaptic relationships are shown to yield various strategies for establishing various types of synaptic connections. By comparing these results to what is known regarding principles for establishing complex network connectivity, these strategies are generalizable to other species and developmental systems. In conclusion, we will discuss the broader implications of this approach, as what is presented here informs an understanding of behavioral emergence and the ability to simulate related biological phenomena.
Collapse
Affiliation(s)
- Bradly Alicea
- Orthogonal Research and Education Laboratory, Champaign, IL, United States
- OpenWorm Foundation, Boston, MA, United States
| |
Collapse
|
17
|
Marques F, Saro G, Lia AS, Poole RJ, Falquet L, Glauser DA. Identification of avoidance genes through neural pathway-specific forward optogenetics. PLoS Genet 2019; 15:e1008509. [PMID: 31891575 PMCID: PMC6938339 DOI: 10.1371/journal.pgen.1008509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
Understanding how the nervous system bridges sensation and behavior requires the elucidation of complex neural and molecular networks. Forward genetic approaches, such as screens conducted in C. elegans, have successfully identified genes required to process natural sensory stimuli. However, functional redundancy within the underlying neural circuits, which are often organized with multiple parallel neural pathways, limits our ability to identify 'neural pathway-specific genes', i.e. genes that are essential for the function of some, but not all of these redundant neural pathways. To overcome this limitation, we developed a 'forward optogenetics' screening strategy in which natural stimuli are initially replaced by the selective optogenetic activation of a specific neural pathway. We used this strategy to address the function of the polymodal FLP nociceptors mediating avoidance of noxious thermal and mechanical stimuli. According to our expectations, we identified both mutations in 'general' avoidance genes that broadly impact avoidance responses to a variety of natural noxious stimuli (unc-4, unc-83, and eat-4) and mutations that produce a narrower impact, more restricted to the FLP pathway (syd-2, unc-14 and unc-68). Through a detailed follow-up analysis, we further showed that the Ryanodine receptor UNC-68 acts cell-autonomously in FLP to adjust heat-evoked calcium signals and aversive behaviors. As a whole, our work (i) reveals the importance of properly regulated ER calcium release for FLP function, (ii) provides new entry points for new nociception research and (iii) demonstrates the utility of our forward optogenetic strategy, which can easily be transposed to analyze other neural pathways.
Collapse
Affiliation(s)
- Filipe Marques
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gabriella Saro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Andrei-Stefan Lia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Richard J. Poole
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | | |
Collapse
|
18
|
Fuest M, Nocera GM, Modena MM, Riedel D, Mejia YX, Burg TP. Cryofixation during live-imaging enables millisecond time-correlated light and electron microscopy. J Microsc 2018; 272:87-95. [PMID: 30088278 DOI: 10.1111/jmi.12747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
Abstract
Correlating live-cell imaging with electron microscopy is among the most promising approaches to relate dynamic functions of cells or small organisms to their underlying ultrastructure. The time correlation between light and electron micrographs, however, is limited by the sample handling and fixation required for electron microscopy. Current cryofixation methods require a sample transfer step from the light microscope to a dedicated instrument for cryofixation. This transfer step introduces a time lapse of one second or more between live imaging and the fixed state, which is studied by electron microscopy. In this work, we cryofix Caenorhabditis elegans directly within the light microscope field of view, enabling millisecond time-correlated live imaging and electron microscopy. With our approach, the time-correlation is limited only by the sample cooling rate. C. elegans was used as a model system to establish compatibility of in situ cryofixation and subsequent transmission electron microscopy (TEM). TEM images of in situ cryofixed C. elegans show that the ultrastructure of the sample was well preserved with this method. We expect that the ability to correlate live imaging and electron microscopy at the millisecond scale will enable new paradigms to study biological processes across length scales based on real-time selection and arrest of a desired state. LAY DESCRIPTION Researchers seek to link cellular functions to their smallest structural components. Currently this requires correlation of two imaging techniques, live imaging and electron microscopy. Current correlative methods, however, have limited time resolution due to the sample preparation procedures for electron microscopy. Following live imaging, samples are transferred from the light microscope to a cryofixation, or ultra-fast freezing, instrument. The biological process progresses until the sample freezes, 1 second or more after the last live image. In this work, samples are cryofixed directly within the light microscope field of view. By eliminating the transfer step, time correlation between light and electron microscopy images of our samples is limited only by the freezing rate to the order of milliseconds rather than seconds.
Collapse
Affiliation(s)
- M Fuest
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - G M Nocera
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - M M Modena
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - D Riedel
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Y X Mejia
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - T P Burg
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| |
Collapse
|
19
|
Schlegel P, Costa M, Jefferis GS. Learning from connectomics on the fly. CURRENT OPINION IN INSECT SCIENCE 2017; 24:96-105. [PMID: 29208230 DOI: 10.1016/j.cois.2017.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Parallels between invertebrates and vertebrates in nervous system development, organisation and circuits are powerful reasons to use insects to study the mechanistic basis of behaviour. The last few years have seen the generation in Drosophila melanogaster of very large light microscopy data sets, genetic driver lines and tools to report or manipulate neural activity. These resources in conjunction with computational tools are enabling large scale characterisation of neuronal types and their functional properties. These are complemented by 3D electron microscopy, providing synaptic resolution data. A whole brain connectome of the fly larva is approaching completion based on manual reconstruction of electron-microscopy data. An adult whole brain dataset is already publicly available and focussed reconstruction is under way, but its 40× greater volume would require ∼500-5000 person-years of manual labour. Nevertheless rapid technical improvements in imaging and especially automated segmentation will likely deliver a complete adult connectome in the next 5 years. To enhance our understanding of the circuit basis of behaviour, light and electron microscopy outputs must be integrated with functional and physiological information into comprehensive databases. We review presently available data, tools and opportunities in Drosophila. We then consider the limits and potential of future progress and how this may impact neuroscience in rich model systems provided by larger insects and vertebrates.
Collapse
Affiliation(s)
- Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Gregory Sxe Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
20
|
Stratton P, Hasselmo M, Milford M. Unlocking neural complexity with a robotic key. J Physiol 2016; 594:6559-6567. [PMID: 26844804 DOI: 10.1113/jp271444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Complex brains evolved in order to comprehend and interact with complex environments in the real world. Despite significant progress in our understanding of perceptual representations in the brain, our understanding of how the brain carries out higher level processing remains largely superficial. This disconnect is understandable, since the direct mapping of sensory inputs to perceptual states is readily observed, while mappings between (unknown) stages of processing and intermediate neural states is not. We argue that testing theories of higher level neural processing on robots in the real world offers a clear path forward, since (1) the complexity of the neural robotic controllers can be staged as necessary, avoiding the almost intractable complexity apparent in even the simplest current living nervous systems; (2) robotic controller states are fully observable, avoiding the enormous technical challenge of recording from complete intact brains; and (3) unlike computational modelling, the real world can stand for itself when using robots, avoiding the computational intractability of simulating the world at an arbitrary level of detail. We suggest that embracing the complex and often unpredictable closed-loop interactions between robotic neuro-controllers and the physical world will bring about deeper understanding of the role of complex brain function in the high-level processing of information and the control of behaviour.
Collapse
Affiliation(s)
- Peter Stratton
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Michael Hasselmo
- Department of Psychology, Program in Neurosciences, Boston University, Boston, MA, USA
| | - Michael Milford
- Australian Centre for Robotic Vision and School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Izquierdo EJ, Beer RD. The whole worm: brain-body-environment models of C. elegans. Curr Opin Neurobiol 2016; 40:23-30. [PMID: 27336738 DOI: 10.1016/j.conb.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/20/2022]
Abstract
Brain, body and environment are in continuous dynamical interaction, and it is becoming increasingly clear that an animal's behavior must be understood as a product not only of its nervous system, but also of the ongoing feedback of this neural activity through the biomechanics of its body and the ecology of its environment. Modeling has an essential integrative role to play in such an understanding. But successful whole-animal modeling requires an animal for which detailed behavioral, biomechanical and neural information is available and a modeling methodology which can gracefully cope with the constantly changing balance of known and unknown biological constraints. Here we review recent progress on both optogenetic techniques for imaging and manipulating neural activity and neuromechanical modeling in the nematode worm Caenorhabditis elegans. This work demonstrates both the feasibility and challenges of whole-animal modeling.
Collapse
Affiliation(s)
- Eduardo J Izquierdo
- Cognitive Science Program, Program in Neuroscience, School of Informatics and Computing, Indiana University, United States
| | - Randall D Beer
- Cognitive Science Program, Program in Neuroscience, School of Informatics and Computing, Indiana University, United States.
| |
Collapse
|
22
|
Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling. J Neurosci 2015; 35:9409-23. [PMID: 26109664 DOI: 10.1523/jneurosci.0800-15.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glial cells play a critical role in shaping neuronal development, structure, and function. In a screen for Caenorhabditis elegans mutants that display dopamine (DA)-dependent, Swimming-Induced Paralysis (Swip), we identified a novel gene, swip-10, the expression of which in glia is required to support normal swimming behavior. swip-10 mutants display reduced locomotion rates on plates, consistent with our findings of elevated rates of presynaptic DA vesicle fusion using fluorescence recovery after photobleaching. In addition, swip-10 mutants exhibit elevated DA neuron excitability upon contact with food, as detected by in vivo Ca(2+) monitoring, that can be rescued by glial expression of swip-10. Mammalian glia exert powerful control of neuronal excitability via transporter-dependent buffering of extracellular glutamate (Glu). Consistent with this idea, swip-10 paralysis was blunted in mutants deficient in either vesicular Glu release or Glu receptor expression and could be phenocopied by mutations that disrupt the function of plasma membrane Glu transporters, most noticeably glt-1, the ortholog of mammalian astrocytic GLT1 (EAAT2). swip-10 encodes a protein containing a highly conserved metallo-β-lactamase domain, within which our swip-10 mutations are located and where engineered mutations disrupt Swip rescue. Sequence alignments identify the CNS-expressed gene MBLAC1 as a putative mammalian ortholog. Together, our studies provide evidence of a novel pathway in glial cells regulated by swip-10 that limits DA neuron excitability, DA secretion, and DA-dependent behaviors through modulation of Glu signaling.
Collapse
|
23
|
Abstract
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.
Collapse
Affiliation(s)
- Ann K Corsi
- Biology Department, The Catholic University of America, Washington, DC 20064
| | - Bruce Wightman
- Biology Department, Muhlenberg College, Allentown, Pennsylvania 18104
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
24
|
Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans. Genetics 2015; 200:1029-34. [PMID: 26022242 DOI: 10.1534/genetics.115.177956] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/22/2015] [Indexed: 02/03/2023] Open
Abstract
By enabling a tight control of cell excitation, optogenetics is a powerful approach to study the function of neurons and neural circuits. With its transparent body, a fully mapped nervous system, easily quantifiable behaviors and many available genetic tools, Caenorhabditis elegans is an extremely well-suited model to decipher the functioning logic of the nervous system with optogenetics. Our goal was to establish an efficient dual color optogenetic system for the independent excitation of different neurons in C. elegans. We combined two recently discovered channelrhodopsins: the red-light sensitive Chrimson from Chlamydomonas noctigama and the blue-light sensitive CoChR from Chloromonas oogama. Codon-optimized versions of Chrimson and CoChR were designed for C. elegans and expressed in different mechanosensory neurons. Freely moving animals produced robust behavioral responses to light stimuli of specific wavelengths. Since CoChR was five times more sensitive to blue light than the commonly used ChR2, we were able to use low blue light intensities producing no cross-activation of Chrimson. Thanks to these optogenetics tools, we revealed asymmetric cross-habituation effects between the gentle and harsh touch sensory motor pathways. Collectively, our results establish the Chrimson/CoChR pair as a potent tool for bimodal neural excitation in C. elegans and equip this genetic model organism for the next generation of in vivo optogenetic analyses.
Collapse
|
25
|
Rabinowitch I, Schafer WR. Engineering new synaptic connections in the C. elegans connectome. WORM 2015; 4:e992668. [PMID: 26430564 PMCID: PMC4588382 DOI: 10.4161/21624054.2014.992668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/14/2023]
Abstract
Most of what we currently know about how neural circuits work we owe to methods based on the electrical or optical recording of neural activity. This is changing dramatically. First, the advent of optogenetic techinques has enabled precise manipulation of the activity of specific neurons. Second, the development of super-resolution methods for obtaining detailed maps of synaptic connectivity has paved the way for uncovering the connectomes of entire brains or brain regions. We describe a third and complementary new strategy for investigating and manipulating neural circuits: the artificial insertion of new synapses into existing neural circuits using genetic engineering tools. We have successfully accomplished this in C. elegans. Thus, In addition to being the first animal with an entirely mapped connectome, C. elegans is now also the first animal to have an editable connectome. Variations on this approach may be applicable in more complex nervous systems.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Basic Sciences Division; Fred Hutchinson Cancer Research Center ; Seattle, WA USA
| | - William R Schafer
- Cell Biology Division; MRC Laboratory of Molecular Biology ; Cambridge, UK
| |
Collapse
|
26
|
Basu N. Applications and implications of neurochemical biomarkers in environmental toxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:22-9. [PMID: 25331165 DOI: 10.1002/etc.2783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 05/20/2023]
Abstract
Thousands of environmental contaminants have neurotoxic properties, but their ecological risk is poorly characterized. Contaminant-associated disruptions to animal behavior and reproduction, both of which are regulated by the nervous system, provide decision makers with compelling evidence of harm, but such apical endpoints are of limited predictive or harm-preventative value. Neurochemical biomarkers, which may be used to indicate subtle changes at the subcellular level, may help overcome these limitations. Neurochemical biomarkers have been used for decades in the human health sciences and are now gaining increased attention in the environmental realm. In the present review, the applications and implications of neurochemical biomarkers to the field of ecotoxicology are discussed. The review provides a brief introduction to neurochemistry, covers neurochemical-based adverse outcome pathways, discusses pertinent strengths and limitations of neurochemical biomarkers, and provides selected examples across invertebrate and vertebrate taxa (worms, bivalves, fish, terrestrial and marine mammals, and birds) to document contaminant-associated neurochemical disruption. With continued research and development, neurochemical biomarkers may increase understanding of the mechanisms that underlie injury to ecological organisms, complement other measures of neurological health, and be integrated into risk assessment practices.
Collapse
Affiliation(s)
- Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Abstract
Over the past decade, studies conducted in Caenorhabditis elegans have helped to uncover the ancient and complex origins of body fat regulation. This review highlights the powerful combination of genetics, pharmacology, and biochemistry used to study energy balance and the regulation of cellular fat metabolism in C. elegans. The complete wiring diagram of the C. elegans nervous system has been exploited to understand how the sensory nervous system regulates body fat and how food perception is coupled with the production of energy via fat metabolism. As a model organism, C. elegans also offers a unique opportunity to discover neuroendocrine factors that mediate direct communication between the nervous system and the metabolic tissues. The coming years are expected to reveal a wealth of information on the neuroendocrine control of body fat in C. elegans.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Chemical Physiology and Dorris Neuroscience Center, The Scripps Research Institute (TSRI), La Jolla, California 92037;
| |
Collapse
|
28
|
Ramakrishnan K, Ray P, Okkema PG. CEH-28 activates dbl-1 expression and TGF-β signaling in the C. elegans M4 neuron. Dev Biol 2014; 390:149-59. [PMID: 24690231 PMCID: PMC4023489 DOI: 10.1016/j.ydbio.2014.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
M4 is a multifunctional neuron in the Caenorhabditis elegans pharynx that can both stimulate peristaltic contractions of the muscles in the pharyngeal isthmus and function systemically to regulate an enhanced sensory response under hypoxic conditions. Here we identify a third function for M4 that depends on activation of the TGF-β family gene dbl-1 by the homeodomain transcription factor CEH-28. dbl-1 is expressed in M4 and a subset of other neurons, and we show CEH-28 specifically activates dbl-1 expression in M4. Characterization of the dbl-1 promoter indicates that CEH-28 targets an M4-specific enhancer within the dbl-1 promoter region, while expression in other neurons is mediated by separate regulatory sequences. Unlike ceh-28 mutants, dbl-1 mutants do not exhibit M4 synaptic and signaling defects. Instead, both ceh-28 and dbl-1 mutants exhibit morphological defects in the g1 gland cells located adjacent to M4 in the pharynx, and these defects can be partially rescued by M4-specific expression of dbl-1 in these mutants. Identical gland cell defects are observed in sma-6 and daf-4 mutants defective in the receptor for DBL-1, but they are not observed in sma-2 and sma-3 mutants lacking the R-Smads functioning downstream of this receptor. Together these results identify a novel neuroendocrine function for M4 and provide evidence for an R-Smad-independent mechanism for DBL-1 signaling in C. elegans.
Collapse
Affiliation(s)
- Kalpana Ramakrishnan
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue (MC567), Chicago, IL 60607, USA
| | - Paramita Ray
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue (MC567), Chicago, IL 60607, USA
| | - Peter G Okkema
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue (MC567), Chicago, IL 60607, USA.
| |
Collapse
|
29
|
Skardal PS, Arenas A. Disorder induces explosive synchronization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062811. [PMID: 25019837 DOI: 10.1103/physreve.89.062811] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Indexed: 06/03/2023]
Abstract
We study explosive synchronization, a phenomenon characterized by first-order phase transitions between incoherent and synchronized states in networks of coupled oscillators. While explosive synchronization has been the subject of many recent studies, in each case strong conditions on the heterogeneity of the network, its link weights, or its initial construction are imposed to engineer a first-order phase transition. This raises the question of how robust explosive synchronization is in view of more realistic structural and dynamical properties. Here we show that explosive synchronization can be induced in mildly heterogeneous networks by the addition of quenched disorder to the oscillators' frequencies, demonstrating that it is not only robust to, but moreover promoted by, this natural mechanism. We support these findings with numerical and analytical results, presenting simulations of a real neural network as well as a self-consistency theory used to study synthetic networks.
Collapse
Affiliation(s)
- Per Sebastian Skardal
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Alex Arenas
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
30
|
Schild LC, Glauser DA. Dynamic switching between escape and avoidance regimes reduces Caenorhabditis elegans exposure to noxious heat. Nat Commun 2014; 4:2198. [PMID: 23887613 DOI: 10.1038/ncomms3198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/26/2013] [Indexed: 01/30/2023] Open
Abstract
To survive, animals need to minimize exposure to damaging agents. They can either stay away from noxious stimuli (defined as avoidance), requiring the detection of remote warning cues, or run away upon exposure to noxious stimuli (defined as escape). Here we combine behavioural quantitative analyses, simulations and genetics to determine how Caenorhabditis elegans minimizes exposure to noxious heat when navigating in thermogradients. We find that worms use both escape and avoidance strategies, each involving the modulation of multiple parameters like speed and the frequency of steering and withdrawal behaviours. As some behavioural parameters promote escape while impairing avoidance, and vice versa, worms need to dynamically tune those parameters according to temperature. Furthermore, selectively disrupting avoidance or escape, through mutations affecting neuropeptide or TRPV channel signalling, increases exposure to heat. We conclude that dynamically switching between avoidance and escape regimes along the innocuous-noxious temperature continuum efficiently minimizes exposure to noxious heat.
Collapse
Affiliation(s)
- Lisa C Schild
- Department of Zoology/Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | | |
Collapse
|
31
|
Li C, Kim K. Family of FLP Peptides in Caenorhabditis elegans and Related Nematodes. Front Endocrinol (Lausanne) 2014; 5:150. [PMID: 25352828 PMCID: PMC4196577 DOI: 10.3389/fendo.2014.00150] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/09/2014] [Indexed: 11/16/2022] Open
Abstract
Neuropeptides regulate all aspects of behavior in multicellular organisms. Because of their ability to act at long distances, neuropeptides can exert their effects beyond the conventional synaptic connections, thereby adding an intricate layer of complexity to the activity of neural networks. In the nematode Caenorhabditis elegans, a large number of neuropeptide genes that are expressed throughout the nervous system have been identified. The actions of these peptides supplement the synaptic connections of the 302 neurons, allowing for fine tuning of neural networks and increasing the ways in which behaviors can be regulated. In this review, we focus on a large family of genes encoding FMRFamide-related peptides (FaRPs). These genes, the flp genes, have been used as a starting point to identifying flp genes throughout Nematoda. Nematodes have the largest family of FaRPs described thus far. The challenges in the future are the elucidation of their functions and the identification of the receptors and signaling pathways through which they function.
Collapse
Affiliation(s)
- Chris Li
- Department of Biology, City College of New York and The Graduate Center, City University of New York, New York, NY, USA
- *Correspondence: Chris Li, 160 Convent Avenue, MR526, New York, NY 10031, USA e-mail: ; Kyuhyung Kim, 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu 711-873, South Korea e-mail:
| | - Kyuhyung Kim
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- *Correspondence: Chris Li, 160 Convent Avenue, MR526, New York, NY 10031, USA e-mail: ; Kyuhyung Kim, 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu 711-873, South Korea e-mail:
| |
Collapse
|
32
|
Scharf A, Piechulek A, von Mikecz A. Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS NANO 2013; 7:10695-703. [PMID: 24256469 DOI: 10.1021/nn403443r] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Invertebrate animal models such as the nematode Caenorhabditis elegans (C. elegans) are increasingly used in nanotechnological applications. Research in this area covers a wide range from remote control of worm behavior by nanoparticles (NPs) to evaluation of organismal nanomaterial safety. Despite of the broad spectrum of investigated NP-bio interactions, little is known about the role of nanomaterials with respect to aging processes in C. elegans. We trace NPs in single cells of adult C. elegans and correlate particle distribution with the worm's metabolism and organ function. By confocal microscopy analysis of fluorescently labeled NPs in living worms, we identify two entry portals for the uptake of nanomaterials via the pharynx to the intestinal system and via the vulva to the reproductive system. NPs are localized throughout the cytoplasm and the cell nucleus in single intestinal, and vulval B and D cells. Silica NPs induce an untimely accumulation of insoluble ubiquitinated proteins, nuclear amyloid and reduction of pharyngeal pumping that taken together constitute a premature aging phenotype of C. elegans on the molecular and behavioral level, respectively. Screening of different nanomaterials for their effects on protein solubility shows that polystyrene or silver NPs do not induce accumulation of ubiquitinated proteins suggesting that alteration of protein homeostasis is a unique property of silica NPs. The nematode C. elegans represents an excellent model to investigate the effect of different types of nanomaterials on aging at the molecule, cell, and whole organism level.
Collapse
Affiliation(s)
- Andrea Scharf
- IUF-Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf , Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
33
|
Sasakura H, Tsukada Y, Takagi S, Mori I. Japanese studies on neural circuits and behavior of Caenorhabditis elegans. Front Neural Circuits 2013; 7:187. [PMID: 24348340 PMCID: PMC3842693 DOI: 10.3389/fncir.2013.00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/03/2013] [Indexed: 01/25/2023] Open
Abstract
The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipulation techniques enable researchers to study the dynamic properties of nervous systems with great precision. Behavioral and molecular genetic analyses of this tiny animal have contributed greatly to the advancement of neural circuit research. Here, we will review the recent studies on the neural circuits of C. elegans that have been conducted in Japan. Several laboratories have established unique and clever methods to study the underlying neuronal substrates of behavioral regulation in C. elegans. The technological advances applied to studies of C. elegans have allowed new approaches for the studies of complex neural systems. Through reviewing the studies on the neuronal circuits of C. elegans in Japan, we will analyze and discuss the directions of neural circuit studies.
Collapse
Affiliation(s)
- Hiroyuki Sasakura
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Yuki Tsukada
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Shin Takagi
- Laboratory of Brain Function and Structure, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Ikue Mori
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| |
Collapse
|
34
|
Song BM, Faumont S, Lockery S, Avery L. Recognition of familiar food activates feeding via an endocrine serotonin signal in Caenorhabditis elegans. eLife 2013; 2:e00329. [PMID: 23390589 PMCID: PMC3564447 DOI: 10.7554/elife.00329] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/22/2012] [Indexed: 02/04/2023] Open
Abstract
Familiarity discrimination has a significant impact on the pattern of food intake across species. However, the mechanism by which the recognition memory controls feeding is unclear. Here, we show that the nematode Caenorhabditis elegans forms a memory of particular foods after experience and displays behavioral plasticity, increasing the feeding response when they subsequently recognize the familiar food. We found that recognition of familiar food activates the pair of ADF chemosensory neurons, which subsequently increase serotonin release. The released serotonin activates the feeding response mainly by acting humorally and directly activates SER-7, a type 7 serotonin receptor, in MC motor neurons in the feeding organ. Our data suggest that worms sense the taste and/or smell of novel bacteria, which overrides the stimulatory effect of familiar bacteria on feeding by suppressing the activity of ADF or its upstream neurons. Our study provides insight into the mechanism by which familiarity discrimination alters behavior.DOI:http://dx.doi.org/10.7554/eLife.00329.001.
Collapse
Affiliation(s)
- Bo-mi Song
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, United States
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Shawn Lockery
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Leon Avery
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, United States
| |
Collapse
|
35
|
Musselman HN, Neal-Beliveau B, Nass R, Engleman EA. Chemosensory cue conditioning with stimulants in a Caenorhabditis elegans animal model of addiction. Behav Neurosci 2012; 126:445-56. [PMID: 22642886 PMCID: PMC3367381 DOI: 10.1037/a0028303] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The underlying molecular mechanisms of drug abuse and addiction behaviors are poorly understood. Caenorhabditis elegans (C. elegans) provide a simple, whole animal model with conserved molecular pathways well suited for studying the foundations of complex diseases. Historically, chemotaxis has been a measure used to examine sensory approach and avoidance behavior in worms. Chemotaxis can be modulated by previous experience, and cue-dependent conditioned learning has been demonstrated in C. elegans, but such conditioning with drugs of abuse has not been reported. Here we show that pairing a distinctive salt cue with a drug (cocaine or methamphetamine) results in a concentration-dependent change in preference for the cue that was paired with the drug during conditioning. Further, we demonstrate that pairing of either drug with a distinctive food type can also increase preference for the drug-paired food in the absence of the drug. Dopamine-deficient mutants did not develop drug-paired, cue-conditioned responses. The findings suggest that, like vertebrates, C. elegans display a conditioned preference for environments containing cues previously associated with drugs of abuse, and this response is dependent on dopamine neurotransmission. This model provides a new and powerful method to study the genetic and molecular mechanisms that mediate drug preference.
Collapse
|
36
|
Serotonin activates overall feeding by activating two separate neural pathways in Caenorhabditis elegans. J Neurosci 2012; 32:1920-31. [PMID: 22323705 DOI: 10.1523/jneurosci.2064-11.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Food intake in the nematode Caenorhabditis elegans requires two distinct feeding motions, pharyngeal pumping and isthmus peristalsis. Bacteria, the natural food of C. elegans, activate both feeding motions (Croll, 1978; Horvitz et al., 1982; Chiang et al., 2006). The mechanisms by which bacteria activate the feeding motions are largely unknown. To understand the process, we studied how serotonin, an endogenous pharyngeal pumping activator whose action is triggered by bacteria, activates feeding motions. Here, we show that serotonin, like bacteria, activates overall feeding by activating isthmus peristalsis as well as pharyngeal pumping. During active feeding, the frequencies and the timing of onset of the two motions were distinct, but each isthmus peristalsis was coupled to the preceding pump. We found that serotonin activates the two feeding motions mainly by activating two separate neural pathways in response to bacteria. For activating pumping, the SER-7 serotonin receptor in the MC motor neurons in the feeding organ activated cholinergic transmission from MC to the pharyngeal muscles by activating the Gsα signaling pathway. For activating isthmus peristalsis, SER-7 in the M4 (and possibly M2) motor neuron in the feeding organ activated the G(12)α signaling pathway in a cell-autonomous manner, which presumably activates neurotransmission from M4 to the pharyngeal muscles. Based on our results and previous calcium imaging of pharyngeal muscles (Shimozono et al., 2004), we propose a model that explains how the two feeding motions are separately regulated yet coupled. The feeding organ may have evolved this way to support efficient feeding.
Collapse
|
37
|
Shi W, Wen H, Lu Y, Shi Y, Lin B, Qin J. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans. LAB ON A CHIP 2010; 10:2855-63. [PMID: 20882233 DOI: 10.1039/c0lc00256a] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A droplet-based microfluidic device integrated with a novel floatage-based trap array and a tapered immobilization channel array was presented for characterizing the neurotoxin-induced multiple responses in individual Caenorhabditis elegans (C. elegans) continuously. The established device enabled the evaluations of movement and fluorescence imaging analysis of individual C. elegans simultaneously. The utility of this device was demonstrated by the pharmacological evaluation of neurotoxin (6-hydroxydopamine, 6-OHDA) triggered mobility defects, neuron degeneration and oxidative stress in individual worms. Exposure of living worms to 6-OHDA could cause obvious mobility defects, selective degeneration of dopaminergic (DAergic) neurons, and increased oxidative stress in a dose dependent manner. These results are important towards the understanding of mechanisms leading to DAergic toxicity by neurotoxin and will be of benefit for the screening of new therapeutics for neurodegenerative diseases. This device was simple, stable and easy to operate, with the potential to facilitate whole-animal assays and drug screening in a high throughput manner at single animal resolution.
Collapse
Affiliation(s)
- Weiwei Shi
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China
| | | | | | | | | | | |
Collapse
|
38
|
Ben Arous J, Laffont S, Chatenay D. Molecular and sensory basis of a food related two-state behavior in C. elegans. PLoS One 2009; 4:e7584. [PMID: 19851507 PMCID: PMC2762077 DOI: 10.1371/journal.pone.0007584] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 10/01/2009] [Indexed: 11/18/2022] Open
Abstract
Most animals display multiple behavioral states and control the time allocation to each of their activity phases depending on their environment. Here we develop a new quantitative method to analyze Caenorhabditis elegans behavioral states. We show that the dwelling and roaming two-state behavior of C. elegans is tightly controlled by the concentration of food in the environment of the animal. Sensory perception through the amphid neurons is necessary to extend roaming phases while internal metabolic perception of food nutritional value is needed to induce dwelling. Our analysis also shows that the proportion of time spent in each state is modulated by past nutritional experiences of the animal. This two-state behavior is regulated through serotonin as well as insulin and TGF-beta signaling pathways. We propose a model where food nutritional value is assessed through internal metabolic signaling. Biogenic amines signaling could allow the worm to adapt to fast changes in the environment when peptide transcriptional pathways may mediate slower adaptive changes.
Collapse
Affiliation(s)
- Juliette Ben Arous
- Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris, France.
| | | | | |
Collapse
|
39
|
Berri S, Boyle JH, Tassieri M, Hope IA, Cohen N. Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait. HFSP JOURNAL 2009; 3:186-93. [PMID: 19639043 DOI: 10.2976/1.3082260] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 01/28/2009] [Indexed: 11/19/2022]
Abstract
The ability of an animal to locomote through its environment depends crucially on the interplay between its active endogenous control and the physics of its interactions with the environment. The nematode worm Caenorhabditis elegans serves as an ideal model system for studying the respective roles of neural control and biomechanics, as well as the interaction between them. With only 302 neurons in a hard-wired neural circuit, the worm's apparent anatomical simplicity belies its behavioural complexity. Indeed, C. elegans exhibits a rich repertoire of complex behaviors, the majority of which are mediated by its adaptive undulatory locomotion. The conventional wisdom is that two kinematically distinct C. elegans locomotion behaviors-swimming in liquids and crawling on dense gel-like media-correspond to distinct locomotory gaits. Here we analyze the worm's motion through a series of different media and reveal a smooth transition from swimming to crawling, marked by a linear relationship between key locomotion metrics. These results point to a single locomotory gait, governed by the same underlying control mechanism. We further show that environmental forces play only a small role in determining the shape of the worm, placing conditions on the minimal pattern of internal forces driving locomotion.
Collapse
|
40
|
Roysam B, Shain W, Ascoli GA. The central role of neuroinformatics in the National Academy of Engineering's grandest challenge: reverse engineer the brain. Neuroinformatics 2009; 7:1-5. [PMID: 19140032 DOI: 10.1007/s12021-008-9043-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 11/28/2008] [Indexed: 11/29/2022]
|
41
|
Tsechpenakis G, Bianchi L, Metaxas D, Driscoll M. A novel computational approach for simultaneous tracking and feature extraction of C. elegans populations in fluid environments. IEEE Trans Biomed Eng 2008; 55:1539-49. [PMID: 18440900 DOI: 10.1109/tbme.2008.918582] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a genetic model widely used to dissect conserved basic biological mechanisms of development and nervous system function. C. elegans locomotion is under complex neuronal regulation and is impacted by genetic and environmental factors; thus, its analysis is expected to shed light on how genetic, environmental, and pathophysiological processes control behavior. To date, computer-based approaches have been used for analysis of C. elegans locomotion; however, none of these is both high resolution and high throughput. We used computer vision methods to develop a novel automated approach for analyzing the C. elegans locomotion. Our method provides information on the position, trajectory, and body shape during locomotion and is designed to efficiently track multiple animals (C. elegans) in cluttered images and under lighting variations. We used this method to describe in detail C. elegans movement in liquid for the first time and to analyze six unc-8, one mec-4, and one odr-1 mutants. We report features of nematode swimming not previously noted and show that our method detects differences in the swimming profile of mutants that appear at first glance similar.
Collapse
Affiliation(s)
- Gabriel Tsechpenakis
- Department of Electrical and Computer Engineering, University of Miami, Miami, FL 33124, USA.
| | | | | | | |
Collapse
|
42
|
Kammenga JE, Phillips PC, De Bono M, Doroszuk A. Beyond induced mutants: using worms to study natural variation in genetic pathways. Trends Genet 2008; 24:178-85. [PMID: 18325626 DOI: 10.1016/j.tig.2008.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 01/30/2023]
Abstract
Induced mutants in the nematode Caenorhabditis elegans are used to study genetic pathways of processes ranging from aging to behavior. The effects of such mutations are usually analyzed in a single wildtype background: N2. However, studies in other species demonstrate that the phenotype(s) of induced mutations can vary widely depending on the genetic background. Moreover, induced mutations in one genetic background do not reveal the allelic effects that segregate in natural populations and contribute to phenotypic variation. Because other wildtype Caenorhabditis spp., including C. elegans, are now available, we review how current mapping resources and methodologies within and between species support the use of Caenorhabditis spp. for studying genetic variation, with a focus on pathways associated with human disease.
Collapse
Affiliation(s)
- Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Worm thermotaxis: a model system for analyzing thermosensation and neural plasticity. Curr Opin Neurobiol 2008; 17:712-9. [PMID: 18242074 DOI: 10.1016/j.conb.2007.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 11/29/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
Elucidation of the principal mechanism for sensory transduction, learning and memory is a fundamental question in neurobiology. The simple nervous system composed of only 302 neurons and the description of neural wiring combined with developed imaging techniques facilitate cellular and circuit level analysis of behavior in the nematode Caenorhabditis elegans. Recent comprehensive analysis of worm thermotaxis, an experience-modulated behavior, has begun to reveal molecular, cellular, and neural circuit basis of thermosensation and neural plasticity.
Collapse
|
44
|
Lerchner W, Xiao C, Nashmi R, Slimko EM, van Trigt L, Lester HA, Anderson DJ. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel. Neuron 2007; 54:35-49. [PMID: 17408576 DOI: 10.1016/j.neuron.2007.02.030] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/09/2007] [Accepted: 02/22/2007] [Indexed: 02/03/2023]
Abstract
Several genetic strategies for inhibiting neuronal function in mice have been described, but no system that directly suppresses membrane excitability and is triggered by a systemically administered drug, has been validated in awake behaving animals. We expressed unilaterally in mouse striatum a modified heteromeric ivermectin (IVM)-gated chloride channel from C. elegans (GluClalphabeta), systemically administered IVM, and then assessed amphetamine-induced rotational behavior. Rotation was observed as early as 4 hr after a single intraperitoneal IVM injection (10 mg/kg), reached maximal levels by 12 hr, and was almost fully reversed by 4 days. Multiple cycles of silencing and recovery could be performed in a single animal. In striatal slice preparations from GluClalphabeta-expressing animals, IVM rapidly suppressed spiking. The two-subunit GluCl/IVM system permits "intersectional" strategies designed to increase the cellular specificity of silencing in transgenic animals.
Collapse
Affiliation(s)
- Walter Lerchner
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
OBJECTIVE To present the argument that the only secure foundation for a theory of behaviour, and ultimately of mind, rests at the level of single neurons, and to assess progress at this level of explanation. METHODS Relevant data were obtained by a search of PubMed, last updated in January 2007, focused on implemented models from single-neuron studies. RESULTS Technical limitations on recording neural activity produce trade-offs between temporal and spatial resolution and the ability to track the massively parallel activity of the nervous system. The properties of the single neuron that would need to be measured and the techniques available to obtain the data are described. The concept of a fixed neuronal identity may be impeding progress and should be replaced with the concept of dynamically assigned neuron identity. CONCLUSION Modern data collection techniques make it possible to obtain data at the single-neuron level on the complete nervous systems of simple organisms. Present models based on this data do not provide an integrated explanation of behaviour. However, there do not appear to be insurmountable theoretical or practical obstacles to building such models in the future or of scaling the data collection up to more complex organisms.
Collapse
Affiliation(s)
- Richard M Vickery
- 1School of Medical Sciences, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
46
|
Jefferis GSXE, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR, Luo L. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 2007; 128:1187-203. [PMID: 17382886 PMCID: PMC1885945 DOI: 10.1016/j.cell.2007.01.040] [Citation(s) in RCA: 454] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/10/2006] [Accepted: 01/17/2007] [Indexed: 11/30/2022]
Abstract
In Drosophila, ∼50 classes of olfactory receptor neurons (ORNs) send axons to 50 corresponding glomeruli in the antennal lobe. Uniglomerular projection neurons (PNs) relay olfactory information to the mushroom body (MB) and lateral horn (LH). Here, we combine single-cell labeling and image registration to create high-resolution, quantitative maps of the MB and LH for 35 input PN channels and several groups of LH neurons. We find (1) PN inputs to the MB are stereotyped as previously shown for the LH; (2) PN partners of ORNs from different sensillar groups are clustered in the LH; (3) fruit odors are represented mostly in the posterior-dorsal LH, whereas candidate pheromone-responsive PNs project to the anterior-ventral LH; (4) dendrites of single LH neurons each overlap with specific subsets of PN axons. Our results suggest that the LH is organized according to biological values of olfactory input.
Collapse
|
47
|
Katz PS. Evolution and development of neural circuits in invertebrates. Curr Opin Neurobiol 2006; 17:59-64. [PMID: 17174546 DOI: 10.1016/j.conb.2006.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 12/07/2006] [Indexed: 01/06/2023]
Abstract
Developmental mechanisms can shed light on how evolutionary diversity has arisen. Invertebrate nervous systems offer a wealth of diverse structures and functions from which to relate development to evolution. Individual homologous neurons have been shown to have distinct roles in species with different behaviors. In addition, specific neurons have been lost or gained in some phylogenetic lineages. The ability to address the neural basis of behavior at the cellular level in invertebrates has facilitated discoveries showing that species-specific behavior can arise from differences in synaptic strength, in neuronal structure and in neuromodulation. The mechanisms involved in the development of neural circuits lead to these differences across species.
Collapse
Affiliation(s)
- Paul S Katz
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA.
| |
Collapse
|
48
|
Abstract
'Form follows function' is an architectural philosophy attributed to the great American architect Louis Sullivan, and later taken up by the Bauhaus movement. It stresses that the form of a building should reflect its function. Neuroscientists have used the converse of this dictum to learn the functions of neural circuits, believing that if we study neural architecture, it will lead us to an understanding of how neural systems function. New tools for studying the structure of neural circuits are being developed, so it is important to discuss what the old techniques have taught us about how to derive function from the form of a neural circuit.
Collapse
Affiliation(s)
- William B Kristan
- University of California San Diego, Division of Biological Sciences, Neurobiology Section, 9500 Gilman Drive, La Jolla, California 92093-0357, USA.
| | | |
Collapse
|
49
|
Briggman KL, Denk W. Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol 2006; 16:562-70. [PMID: 16962767 DOI: 10.1016/j.conb.2006.08.010] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Electron microscopy is the only currently available technique with a resolution adequate to identify and follow every axon and dendrite in dense neuropil. Reconstructions of large volumes of neural tissue, necessary to reconstruct even local neural circuits, have, however, been inhibited by the daunting task of serially sectioning and reconstructing thousands of sections. Recent technological developments have improved the quality of volume electron microscopy data and automated its acquisition. This opens up the prospect of reconstructing almost complete invertebrate and sizable fractions of vertebrate nervous systems. Such reconstructions of complete neural wiring diagrams could rekindle the tradition of relating neural function to the underlying neuroanatomical circuitry.
Collapse
Affiliation(s)
- Kevin L Briggman
- Max-Planck Institute for Medical Research, Jahnstrasse 29,69120 Heidelberg, Germany
| | | |
Collapse
|
50
|
Foster KW, Josef K, Saranak J, Tuck N. Dynamics of a sensory signaling network in a unicellular eukaryote. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:252-255. [PMID: 17946810 DOI: 10.1109/iembs.2006.259451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The processing components and the dynamic signaling network that an individual cell uses to do signal integration and make decisions based on multiple sensory inputs are being identified in a well studied free-swimming unicellular green algal model organism, Chlamydomonas. It has many sensory photoreceptors and measurable behavior associated with its orienting and swimming with respect to light sources in its environment. Study of the dynamics of the beating of its two steering cilia reveals their complex specialization.
Collapse
|