1
|
Sproles AE, Berndt A, Fields FJ, Mayfield SP. Improved high-throughput screening technique to rapidly isolate Chlamydomonas transformants expressing recombinant proteins. Appl Microbiol Biotechnol 2022; 106:1677-1689. [PMID: 35129657 PMCID: PMC8882119 DOI: 10.1007/s00253-022-11790-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Abstract
The single-celled eukaryotic green alga Chlamydomonas reinhardtii has long been a model system for developing genetic tools for algae, and is also considered a potential platform for the production of high-value recombinant proteins. Identifying transformants with high levels of recombinant protein expression has been a challenge in this organism, as random integration of transgenes into the nuclear genome leads to low frequency of cell lines with high gene expression. Here, we describe the design of an optimized vector for the expression of recombinant proteins in Chlamydomonas, that when transformed and screened using a dual antibiotic selection, followed by screening using fluorescence activated cell sorting (FACS), permits rapid identification and isolation of microalgal transformants with high expression of a recombinant protein. This process greatly reduces the time required for the screening process, and can produce large populations of recombinant algae transformants with between 60 and 100% of cells producing the recombinant protein of interest, in as little as 3 weeks, that can then be used for whole population sequencing or individual clone analysis. Utilizing this new vector and high-throughput screening (HTS) process resulted in an order of magnitude improvement over existing methods, which normally produced under 1% of algae transformants expressing the protein of interest. This process can be applied to other algal strains and recombinant proteins to enhance screening efficiency, thereby speeding up the discovery and development of algal-derived recombinant protein products. Key points • A protein expression vector using double-antibiotic resistance genes was designed • Double antibiotic selection causes fewer colonies with more positive for phenotype • Coupling the new vector with FACS improves microalgal screening efficiency > 60% Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11790-9.
Collapse
Affiliation(s)
- Ashley E Sproles
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Berndt
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Francis J Fields
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Stephen P Mayfield
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA. .,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Channelrhodopsin-Dependent Photo-Behavioral Responses in the Unicellular Green Alga Chlamydomonas reinhardtii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:21-33. [PMID: 33398805 DOI: 10.1007/978-981-15-8763-4_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Channelrhodopsins (ChRs) are the light-gated ion channels that have opened the research field of optogenetics. They were originally identified in the green alga Chlamydomonas reinhardtii, a biciliated unicellular alga that inhabits in freshwater, swims with the cilia, and undergoes photosynthesis. It has various advantages as an experimental organism and is used in a wide range of research fields including photosynthesis, cilia, and sexual reproduction. ChRs function as the primary photoreceptor for the cell's photo-behavioral responses, seen as changes in the manner of swimming after photoreception. In this chapter, we will introduce C. reinhardtii as an experimental organism and explain our current understanding of how the cell senses light and shows photo-behavioral responses.
Collapse
|
3
|
Disruption of Dhcr7 and Insig1/2 in cholesterol metabolism causes defects in bone formation and homeostasis through primary cilium formation. Bone Res 2020; 8:1. [PMID: 31934493 PMCID: PMC6946666 DOI: 10.1038/s41413-019-0078-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Human linkage studies suggest that craniofacial deformities result from either genetic mutations related to cholesterol metabolism or high-cholesterol maternal diets. However, little is known about the precise roles of intracellular cholesterol metabolism in the development of craniofacial bones, the majority of which are formed through intramembranous ossification. Here, we show that an altered cholesterol metabolic status results in abnormal osteogenesis through dysregulation of primary cilium formation during bone formation. We found that cholesterol metabolic aberrations, induced through disruption of either Dhcr7 (which encodes an enzyme involved in cholesterol synthesis) or Insig1 and Insig2 (which provide a negative feedback mechanism for cholesterol biosynthesis), result in osteoblast differentiation abnormalities. Notably, the primary cilia responsible for sensing extracellular cues were altered in number and length through dysregulated ciliary vesicle fusion in Dhcr7 and Insig1/2 mutant osteoblasts. As a consequence, WNT/β-catenin and hedgehog signaling activities were altered through dysregulated primary cilium formation. Strikingly, the normalization of defective cholesterol metabolism by simvastatin, a drug used in the treatment of cholesterol metabolic aberrations, rescued the abnormalities in both ciliogenesis and osteogenesis in vitro and in vivo. Thus, our results indicate that proper intracellular cholesterol status is crucial for primary cilium formation during skull formation and homeostasis.
Collapse
|
4
|
Böhm M, Boness D, Fantisch E, Erhard H, Frauenholz J, Kowalzyk Z, Marcinkowski N, Kateriya S, Hegemann P, Kreimer G. Channelrhodopsin-1 Phosphorylation Changes with Phototactic Behavior and Responds to Physiological Stimuli in Chlamydomonas. THE PLANT CELL 2019; 31:886-910. [PMID: 30862615 PMCID: PMC6501600 DOI: 10.1105/tpc.18.00936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 05/26/2023]
Abstract
The unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) exhibits oriented movement responses (phototaxis) to light over more than three log units of intensity. Phototaxis thus depends on the cell's ability to adjust the sensitivity of its photoreceptors to ambient light conditions. In Chlamydomonas, the photoreceptors for phototaxis are the channelrhodopsins (ChR)1 and ChR2; these light-gated cation channels are located in the plasma membrane. Although ChRs are widely used in optogenetic studies, little is known about ChR signaling in algae. We characterized the in vivo phosphorylation of ChR1. Its reversible phosphorylation occurred within seconds as a graded response to changes in the light intensity and ionic composition of the medium and depended on an elevated cytosolic Ca2+ concentration. Changes in the phototactic sign were accompanied by alterations in the phosphorylation status of ChR1. Furthermore, compared with the wild type, a permanently negative phototactic mutant required higher light intensities to evoke ChR1 phosphorylation. C-terminal truncation of ChR1 disturbed its reversible phosphorylation, whereas it was normal in ChR2-knockout and eyespot-assembly mutants. The identification of phosphosites in regions important for ChR1 function points to their potential regulatory role(s). We propose that multiple ChR1 phosphorylation, regulated via a Ca2+-based feedback loop, is an important component in the adaptation of phototactic sensitivity in Chlamydomonas.
Collapse
Affiliation(s)
- Michaela Böhm
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - David Boness
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Elisabeth Fantisch
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Hanna Erhard
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Julia Frauenholz
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Zarah Kowalzyk
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Nadin Marcinkowski
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, 110067 New Delhi, India
| | - Peter Hegemann
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Revenkova E, Liu Q, Gusella GL, Iomini C. The Joubert syndrome protein ARL13B binds tubulin to maintain uniform distribution of proteins along the ciliary membrane. J Cell Sci 2018; 131:jcs212324. [PMID: 29592971 PMCID: PMC5992585 DOI: 10.1242/jcs.212324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/23/2018] [Indexed: 01/09/2023] Open
Abstract
Cilia-mediated signal transduction involves precise targeting and localization of selected molecules along the ciliary membrane. However, the molecular mechanism underlying these events is unclear. The Joubert syndrome protein ARL13B is a membrane-associated G-protein that localizes along the cilium and functions in protein transport and signaling. We identify tubulin as a direct interactor of ARL13B and demonstrate that the association occurs via the G-domain and independently from the GTPase activity of ARL13B. The G-domain is necessary for the interaction of ARL13B with the axoneme both in vitro and in vivo We further show that exogenously expressed mutants lacking the tubulin-binding G-domain (ARL13B-ΔGD) or whose GTPase domain is inactivated (ARL13B-T35N) retain ciliary localization, but fail to rescue ciliogenesis defects of null Arl13bhnn mouse embryonic fibroblasts (MEFs). However, while ARL13B-ΔGD and the membrane proteins Smoothened (SMO) and Somatostatin receptor-3 (SSTR3) distribute unevenly along the cilium of Arl13bhnn MEFs, ARL13B-T35N distributes evenly along the cilium and enables the uniform distribution of SMO and SSTR3. Thus, we propose a so far unknown function of ARL13B in anchoring ciliary membrane proteins to the axoneme through the direct interaction of its G-domain with tubulin.
Collapse
Affiliation(s)
- Ekaterina Revenkova
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qing Liu
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - G Luca Gusella
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Carlo Iomini
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
6
|
Ide T, Mochiji S, Ueki N, Yamaguchi K, Shigenobu S, Hirono M, Wakabayashi KI. Identification of the agg1 mutation responsible for negative phototaxis in a "wild-type" strain of Chlamydomonas reinhardtii. Biochem Biophys Rep 2016; 7:379-385. [PMID: 28955929 PMCID: PMC5613634 DOI: 10.1016/j.bbrep.2016.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/22/2016] [Accepted: 07/18/2016] [Indexed: 12/02/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a model organism for various studies in biology. CC-124 is a laboratory strain widely used as a wild type. However, this strain is known to carry agg1 mutation, which causes cells to swim away from the light source (negative phototaxis), in contrast to the cells of other wild-type strains, which swim toward the light source (positive phototaxis). Here we identified the causative gene of agg1 (AGG1) using AFLP-based gene mapping and whole genome next-generation sequencing. This gene encodes a 36-kDa protein containing a Fibronectin type III domain and a CHORD-Sgt1 (CS) domain. The gene product is localized to the cell body and not to flagella or basal body. agg1, a mutation harbored in CC-124 (a widely used wild-type strain), was identified. A retrotransposon, TOC1, is inserted in the 5′ UTR of AGG1 gene (Cre13.g590400). AGG1 encodes a 36-kDa protein of unknown function. This protein localizes to the cell body but not to the eyespot, flagella or basal body.
Collapse
Affiliation(s)
- Takahiro Ide
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Shota Mochiji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Noriko Ueki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.,Department of Biological Sciences, Graduate School of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, Faculty of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Masafumi Hirono
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
7
|
Lin H, Dutcher SK. Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii. Methods Cell Biol 2015; 127:349-86. [PMID: 25837400 DOI: 10.1016/bs.mcb.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Flagellar assembly requires intraflagellar transport of components from the cell body to the flagellar tip for assembly. The understanding of flagellar assembly has been aided by the ease of biochemistry and the availability of mutants in the unicellular green alga, Chlamydomonas reinhardtii. In this chapter, we discuss means to identify genes involved in these processes using forward and reverse genetics. In particular, the ease and low cost of whole genome sequencing (WGS) will help to make gene identification easier and promote the understanding of this important process.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University, St. Louis, MO, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, MO, USA.
| |
Collapse
|
8
|
Dentler W. Ciliary and Flagellar Membrane Vesicle (Ectosome) Purification. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
9
|
Dutcher SK. The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2013; 71:79-94. [PMID: 24272949 DOI: 10.1002/cm.21157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/19/2013] [Indexed: 11/08/2022]
Abstract
Cilia/flagella and basal bodies/centrioles play key roles in human health and homeostasis. Among the organisms used to study these microtubule-based organelles, the green alga Chlamydomonas reinhardtii has several advantages. One is the existence of a temporary phase of the life cycle, termed the dikaryon. These cells are formed during mating when the cells fuse and the behavior of flagella from two genetically distinguishable parents can be observed. During this stage, the cytoplasms mix allowing for a defect in the flagella of one parent to be rescued by proteins from the other parent. This offers the unique advantage of adding back wild-type gene product or labeled protein at endogenous levels that can used to monitor various flagellar and basal body phenotypes. Mutants that show rescue and ones that fail to show rescue are both informative about the nature of the flagella and basal body defects. When rescue occurs, it can be used to determine the mutant gene product and to follow the temporal and spatial patterns of flagellar assembly. This review describes many examples of insights into basal body and flagellar proteins' function and assembly that have been discovered using dikaryons and discusses the potential for further analyses.
Collapse
Affiliation(s)
- Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
10
|
Nechipurenko IV, Doroquez DB, Sengupta P. Primary cilia and dendritic spines: different but similar signaling compartments. Mol Cells 2013; 36:288-303. [PMID: 24048681 PMCID: PMC3837705 DOI: 10.1007/s10059-013-0246-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023] Open
Abstract
Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - David B. Doroquez
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
11
|
Höhner R, Barth J, Magneschi L, Jaeger D, Niehues A, Bald T, Grossman A, Fufezan C, Hippler M. The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics. Mol Cell Proteomics 2013; 12:2774-90. [PMID: 23820728 PMCID: PMC3790290 DOI: 10.1074/mcp.m113.029991] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Indexed: 11/06/2022] Open
Abstract
Iron is a crucial cofactor in numerous redox-active proteins operating in bioenergetic pathways including respiration and photosynthesis. Cellular iron management is essential to sustain sufficient energy production and minimize oxidative stress. To produce energy for cell growth, the green alga Chlamydomonas reinhardtii possesses the metabolic flexibility to use light and/or carbon sources such as acetate. To investigate the interplay between the iron-deficiency response and growth requirements under distinct trophic conditions, we took a quantitative proteomics approach coupled to innovative hierarchical clustering using different "distance-linkage combinations" and random noise injection. Protein co-expression analyses of the combined data sets revealed insights into cellular responses governing acclimation to iron deprivation and regulation associated with photosynthesis dependent growth. Photoautotrophic growth requirements as well as the iron deficiency induced specific metabolic enzymes and stress related proteins, and yet differences in the set of induced enzymes, proteases, and redox-related polypeptides were evident, implying the establishment of distinct response networks under the different conditions. Moreover, our data clearly support the notion that the iron deficiency response includes a hierarchy for iron allocation within organelles in C. reinhardtii. Importantly, deletion of a bifunctional alcohol and acetaldehyde dehydrogenase (ADH1), which is induced under low iron based on the proteomic data, attenuates the remodeling of the photosynthetic machinery in response to iron deficiency, and at the same time stimulates expression of stress-related proteins such as NDA2, LHCSR3, and PGRL1. This finding provides evidence that the coordinated regulation of bioenergetics pathways and iron deficiency response is sensitive to the cellular and chloroplast metabolic and/or redox status, consistent with systems approach data.
Collapse
Affiliation(s)
- Ricarda Höhner
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Johannes Barth
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Leonardo Magneschi
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Daniel Jaeger
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Anna Niehues
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Till Bald
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Arthur Grossman
- §Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Christian Fufezan
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Michael Hippler
- From the ‡Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| |
Collapse
|
12
|
Wojtyniak M, Brear AG, O'Halloran DM, Sengupta P. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans. J Cell Sci 2013; 126:4381-95. [PMID: 23886944 DOI: 10.1242/jcs.127274] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.
Collapse
Affiliation(s)
- Martin Wojtyniak
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
13
|
Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H. Plant mechanosensing and Ca2+ transport. TRENDS IN PLANT SCIENCE 2013; 18:227-33. [PMID: 23291244 DOI: 10.1016/j.tplants.2012.12.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 05/18/2023]
Abstract
Mechanical stimuli generate Ca(2+) signals and influence growth and development in plants. Recently, candidates for Ca(2+)-permeable mechanosensitive (MS) channels have been identified. These channels are thought to be responsible for sensing osmotic shock, touch, and gravity. One candidate is the MscS-like (MSL) protein family, a homolog of the typical bacterial MS channels. Some of the MSL proteins are localized to plastids to maintain their shape and size. Another candidate is the mid1-complementing activity (MCA) protein family, which is structurally unique to the plant kingdom. MCA proteins are localized in the plasma membrane and are suggested to be involved in mechanosensing and to be functionally related to reactive oxygen species (ROS) signaling. Here, we review their structural features and role in planta.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | |
Collapse
|
14
|
Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 2013; 24:1134-52. [PMID: 23427265 PMCID: PMC3623635 DOI: 10.1091/mbc.e12-11-0801] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nexin–dynein regulatory complex (N-DRC) is implicated in the control of dynein activity as a structural component of the nexin link. This study identifies several new subunits of the N-DRC and demonstrates for the first time that it forms a discrete biochemical complex that maintains outer doublet integrity and regulates microtubule sliding. The nexin–dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Engel BD, Ishikawa H, Wemmer KA, Geimer S, Wakabayashi KI, Hirono M, Craige B, Pazour GJ, Witman GB, Kamiya R, Marshall WF. The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. ACTA ACUST UNITED AC 2013; 199:151-67. [PMID: 23027906 PMCID: PMC3461521 DOI: 10.1083/jcb.201206068] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An inducible dynein heavy chain 1b mutant reveals that robust retrograde intraflagellar transport is required for flagellar assembly and function but not the maintenance of flagellar length. The maintenance of flagellar length is believed to require both anterograde and retrograde intraflagellar transport (IFT). However, it is difficult to uncouple the functions of retrograde transport from anterograde, as null mutants in dynein heavy chain 1b (DHC1b) have stumpy flagella, demonstrating solely that retrograde IFT is required for flagellar assembly. We isolated a Chlamydomonas reinhardtii mutant (dhc1b-3) with a temperature-sensitive defect in DHC1b, enabling inducible inhibition of retrograde IFT in full-length flagella. Although dhc1b-3 flagella at the nonpermissive temperature (34°C) showed a dramatic reduction of retrograde IFT, they remained nearly full-length for many hours. However, dhc1b-3 cells at 34°C had strong defects in flagellar assembly after cell division or pH shock. Furthermore, dhc1b-3 cells displayed altered phototaxis and flagellar beat. Thus, robust retrograde IFT is required for flagellar assembly and function but is dispensable for the maintenance of flagellar length. Proteomic analysis of dhc1b-3 flagella revealed distinct classes of proteins that change in abundance when retrograde IFT is inhibited.
Collapse
Affiliation(s)
- Benjamin D Engel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Esparza JM, O’Toole E, Li L, Giddings TH, Kozak B, Albee AJ, Dutcher SK. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii. PLoS One 2013; 8:e53940. [PMID: 23320108 PMCID: PMC3540033 DOI: 10.1371/journal.pone.0053940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/04/2012] [Indexed: 12/26/2022] Open
Abstract
Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19) and p80 (pf15) subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin) alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.
Collapse
Affiliation(s)
- Jessica M. Esparza
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eileen O’Toole
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Linya Li
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas H. Giddings
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Benjamin Kozak
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alison J. Albee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins.
Collapse
|
18
|
Arakaki A, Iwama D, Liang Y, Murakami N, Ishikura M, Tanaka T, Matsunaga T. Glycosylceramides from marine green microalga Tetraselmis sp. PHYTOCHEMISTRY 2013; 85:107-114. [PMID: 23089133 DOI: 10.1016/j.phytochem.2012.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 08/08/2012] [Accepted: 09/19/2012] [Indexed: 06/01/2023]
Abstract
Glycosylceramides are ubiquitous and important components of the plasma membrane in most eukaryotic cells and a few bacteria. They play significant roles in a variety of cellular functions. Their molecular structures are well recognized in animals, higher plants, and fungi, but are poorly characterized in lower plants. In this study, a high glycosylceramide-producing microalgal strain Tetraselmis sp. NKG 400013 was found. TLC and MS analyses established the presence of glycosylceramides, GT1 and GT2, in this strain. Their chemical structures were determined by NMR spectroscopy and GC/MS, and were identified as glycosylceramides consisting of the typical botanical sphingoid base ([4E, 8E]-sphinga-4, 8-dienine) and 2-hydroxy-Δ3-unsaturated fatty acyl chains, respectively. To our knowledge, the occurrence of glycosylceramides in microalga of the class Prasinophyceae was previously unknown.
Collapse
Affiliation(s)
- Atsushi Arakaki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kurusu T, Yamanaka T, Nakano M, Takiguchi A, Ogasawara Y, Hayashi T, Iida K, Hanamata S, Shinozaki K, Iida H, Kuchitsu K. Involvement of the putative Ca²⁺-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca²⁺ uptake, Ca²⁺-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells. JOURNAL OF PLANT RESEARCH 2012; 125:555-68. [PMID: 22080252 DOI: 10.1007/s10265-011-0462-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/24/2011] [Indexed: 05/18/2023]
Abstract
To gain insight into the cellular functions of the mid1-complementing activity (MCA) family proteins, encoding putative Ca²⁺-permeable mechanosensitive channels, we isolated two MCA homologs of tobacco (Nicotiana tabacum) BY-2 cells, named NtMCA1 and NtMCA2. NtMCA1 and NtMCA2 partially complemented the lethality and Ca²⁺ uptake defects of yeast mutants lacking mechanosensitive Ca²⁺ channel components. Furthermore, in yeast cells overexpressing NtMCA1 and NtMCA2, the hypo-osmotic shock-induced Ca²⁺ influx was enhanced. Overexpression of NtMCA1 or NtMCA2 in BY-2 cells enhanced Ca²⁺ uptake, and significantly alleviated growth inhibition under Ca²⁺ limitation. NtMCA1-overexpressing BY-2 cells showed higher sensitivity to hypo-osmotic shock than control cells, and induced the expression of the touch-inducible gene, NtERF4. We found that both NtMCA1-GFP and NtMCA2-GFP were localized at the plasma membrane and its interface with the cell wall, Hechtian strands, and at the cell plate and perinuclear vesicles of dividing cells. NtMCA2 transcript levels fluctuated during the cell cycle and were highest at the G1 phase. These results suggest that NtMCA1 and NtMCA2 play roles in Ca²⁺-dependent cell proliferation and mechanical stress-induced gene expression in BY-2 cells, by regulating the Ca²⁺ influx through the plasma membrane.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
VanderWaal KE, Yamamoto R, Wakabayashi KI, Fox L, Kamiya R, Dutcher SK, Bayly PV, Sale WS, Porter ME. bop5 Mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms. Mol Biol Cell 2011; 22:2862-74. [PMID: 21697502 PMCID: PMC3154882 DOI: 10.1091/mbc.e11-03-0270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations in the IC138 regulatory subunit of I1 dynein alter dynein motor activity and the flagellar waveform but do not affect phototaxis. I1 dynein, or dynein f, is a highly conserved inner arm isoform that plays a key role in the regulation of flagellar motility. To understand how the IC138 IC/LC subcomplex modulates I1 activity, we characterized the molecular lesions and motility phenotypes of several bop5 alleles. bop5-3, bop5-4, and bop5-5 are null alleles, whereas bop5-6 is an intron mutation that reduces IC138 expression. I1 dynein assembles into the axoneme, but the IC138 IC/LC subcomplex is missing. bop5 strains, like other I1 mutants, swim forward with reduced swimming velocities and display an impaired reversal response during photoshock. Unlike mutants lacking the entire I1 dynein, however, bop5 strains exhibit normal phototaxis. bop5 defects are rescued by transformation with the wild-type IC138 gene. Analysis of flagellar waveforms reveals that loss of the IC138 subcomplex reduces shear amplitude, sliding velocities, and the speed of bend propagation in vivo, consistent with the reduction in microtubule sliding velocities observed in vitro. The results indicate that the IC138 IC/LC subcomplex is necessary to generate an efficient waveform for optimal motility, but it is not essential for phototaxis. These findings have significant implications for the mechanisms by which IC/LC complexes regulate dynein motor activity independent of effects on cargo binding or complex stability.
Collapse
Affiliation(s)
- Kristyn E VanderWaal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Reduction-oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2011; 108:11280-4. [PMID: 21690384 DOI: 10.1073/pnas.1100592108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many phototrophic microorganisms and plants, chloroplasts change their positions relative to the incident light to achieve optimal photosynthesis. In the case of motile green algae, cells change their swimming direction by switching between positive and negative phototaxis, i.e., swimming toward or away from the light source, depending on environmental and internal conditions. However, little is known about the molecular signals that determine the phototactic direction. Using the green alga Chlamydomonas reinhardtii, we found that cellular reduction-oxidation (redox) poise plays a key role: Cells always exhibited positive phototaxis after treatment with reactive oxygen species (ROS) and always displayed negative phototaxis after treatment with ROS quenchers. The redox-dependent switching of the sign of phototaxis may contribute in turn to the maintenance of cellular redox homeostasis.
Collapse
|
22
|
Song WY, Hörtensteiner S, Tomioka R, Lee Y, Martinoia E. Common functions or only phylogenetically related? The large family of PLAC8 motif-containing/PCR genes. Mol Cells 2011; 31:1-7. [PMID: 21347707 PMCID: PMC3906873 DOI: 10.1007/s10059-011-0024-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 11/27/2022] Open
Abstract
PLAC8 motif-containing proteins form a large family and members can be found in fungi, algae, higher plants and animals. They include the PCR proteins of plants. The name giving PLAC8 domain was originally found in a protein residing in the spongiotrophoblast layer of the placenta of mammals. A further motif found in a large number of these proteins including several PCR proteins is the CCXXXXCPC or CLXXXXCPC motif. Despite their wide distribution our knowledge about the function of these proteins is very limited. For most of them two membrane-spanning α-helices are predicted, indicating that they are membrane associated or membrane intrinsic proteins. In plants PLAC8 motif-containing proteins have been described to be implicated in two very different functions. On one hand, it has been shown that they are involved in the determination of fruit size and cell number. On the other hand, two members of this family, AtPCR1 and AtPCR2 play an important role in transport of heavy metals such as cadmium or zinc. Transport experiments and approaches to model the 3_D structure of these proteins indicate that they could act as transporters for these divalent cations by forming homomultimers. In this minireview we discuss the present knowledge about this protein family and try to give an outlook on how to integrate the different proposed functions into a common picture about the role of PLAC8 motif-containing proteins.
Collapse
Affiliation(s)
- Won-Yong Song
- Institute of Plant Biology, University Zurich, Zurich, Switzerland
- POSTECH-UZH Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | - Rie Tomioka
- Institute of Plant Biology, University Zurich, Zurich, Switzerland
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Youngsook Lee
- POSTECH-UZH Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Enrico Martinoia
- Institute of Plant Biology, University Zurich, Zurich, Switzerland
- POSTECH-UZH Cooperative Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
23
|
Evans SK, Pearce AA, Ibezim PK, Primm TP, Gaillard AR. Select acetophenones modulate flagellar motility in chlamydomonas. Chem Biol Drug Des 2010; 75:333-7. [PMID: 20659114 DOI: 10.1111/j.1747-0285.2009.00933.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetophenones were screened for activity against positive phototaxis of Chlamydomonas cells, a process that requires co-ordinated flagellar motility. The structure-activity relationships of a series of acetophenones are reported, including acetophenones that affect flagellar motility and cell viability. Notably, 4-methoxyacetophenone, 3,4-dimethoxyacetophenone, and 4-hydroxyacetophenone induced negative phototaxis in Chlamydomonas, suggesting interference with activity of flagellar proteins and control of flagellar dominance.
Collapse
Affiliation(s)
- Shakila K Evans
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | | | | | | | | |
Collapse
|
24
|
Composition and sensory function of the trypanosome flagellar membrane. Curr Opin Microbiol 2010; 13:466-72. [PMID: 20580599 DOI: 10.1016/j.mib.2010.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/02/2010] [Accepted: 06/02/2010] [Indexed: 12/15/2022]
Abstract
A cilium is an extension of the cell that contains an axonemal complex of microtubules and associated proteins bounded by a membrane which is contiguous with the cell body membrane. Cilia may be nonmotile or motile, the latter having additional specific roles in cell or fluid movement. The term flagellum refers to the motile cilium of free-living single cells (e.g. bacteria, archaea, spermatozoa, and protozoa). In eukaryotes, both nonmotile and motile cilia possess sensory functions. The ciliary interior (cilioplasm) is separated from the cytoplasm by a selective barrier that prevents passive diffusion of molecules between the two domains. The sensory functions of cilia reside largely in the membrane and signals generated in the cilium are transduced into a variety of cellular responses. In this review we discuss the structure and biogenesis of the cilium, with special attention to the trypanosome flagellar membrane, its lipid and protein composition and its proposed roles in sensing and signaling.
Collapse
|
25
|
Emmer BT, Maric D, Engman DM. Molecular mechanisms of protein and lipid targeting to ciliary membranes. J Cell Sci 2010; 123:529-36. [PMID: 20145001 DOI: 10.1242/jcs.062968] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cilia are specialized surface regions of eukaryotic cells that serve a variety of functions, ranging from motility to sensation and to regulation of cell growth and differentiation. The discovery that a number of human diseases, collectively known as ciliopathies, result from defective cilium function has expanded interest in these structures. Among the many properties of cilia, motility and intraflagellar transport have been most extensively studied. The latter is the process by which multiprotein complexes associate with microtubule motors to transport structural subunits along the axoneme to and from the ciliary tip. By contrast, the mechanisms by which membrane proteins and lipids are specifically targeted to the cilium are still largely unknown. In this Commentary, we review the current knowledge of protein and lipid targeting to ciliary membranes and outline important issues for future study. We also integrate this information into a proposed model of how the cell specifically targets proteins and lipids to the specialized membrane of this unique organelle.
Collapse
Affiliation(s)
- Brian T Emmer
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. ACTA ACUST UNITED AC 2010; 187:1117-32. [PMID: 20038682 PMCID: PMC2806276 DOI: 10.1083/jcb.200909183] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Bardet-Biedl syndrome protein complex (BBSome) is a cargo adapter rather than an essential part of the intraflagellar transport (IFT) machinery. In humans, seven evolutionarily conserved genes that cause the cilia-related disorder Bardet-Biedl syndrome (BBS) encode proteins that form a complex termed the BBSome. The function of the BBSome in the cilium is not well understood. We purified a BBSome-like complex from Chlamydomonas reinhardtii flagella and found that it contains at least BBS1, -4, -5, -7, and -8 and undergoes intraflagellar transport (IFT) in association with a subset of IFT particles. C. reinhardtii insertional mutants defective in BBS1, -4, and -7 assemble motile, full-length flagella but lack the ability to phototax. In the bbs4 mutant, the assembly and transport of IFT particles are unaffected, but the flagella abnormally accumulate several signaling proteins that may disrupt phototaxis. We conclude that the BBSome is carried by IFT but is an adapter rather than an integral component of the IFT machinery. C. reinhardtii BBS4 may be required for the export of signaling proteins from the flagellum via IFT.
Collapse
|
28
|
|
29
|
Huang K, Diener DR, Rosenbaum JL. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. ACTA ACUST UNITED AC 2009; 186:601-13. [PMID: 19704024 PMCID: PMC2733750 DOI: 10.1083/jcb.200903066] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The disassembly of cilia and flagella is linked to the cell cycle and environmental cues. We have found that ubiquitination of flagellar proteins is an integral part of flagellar disassembly. Free ubiquitin and the ubiquitin-conjugating enzyme CrUbc13 are detected in flagella, and several proteins are ubiquitinated in isolated flagella when exogenous ubiquitin and adenosine triphosphatase are added, suggesting that the ubiquitin conjugation system operates in flagella. Levels of ubiquitinated flagellar proteins increase during flagellar resorption, especially in intraflagellar transport (IFT) mutants, suggesting that disassembly products are labeled with ubiquitin and transported to the cell body by IFT. Substrates of the ubiquitin conjugation system include α-tubulin (but not β-tubulin), a dynein subunit (IC2), two signaling proteins involved in the mating process, cyclic guanosine monophosphate–dependent kinase, and the cation channel polycystic kidney disease 2. Ubiquitination of flagellar proteins is enhanced early in mating, suggesting that ubiquitination also plays an active role in regulating signaling pathways in flagella.
Collapse
Affiliation(s)
- Kaiyao Huang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
30
|
Christian N, May P, Kempa S, Handorf T, Ebenhöh O. An integrative approach towards completing genome-scale metabolic networks. MOLECULAR BIOSYSTEMS 2009; 5:1889-903. [PMID: 19763335 DOI: 10.1039/b915913b] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale metabolic networks which have been automatically derived through sequence comparison techniques are necessarily incomplete. We propose a strategy that incorporates genomic sequence data and metabolite profiles into modeling approaches to arrive at improved gene annotations and more complete genome-scale metabolic networks. The core of our strategy is an algorithm that computes minimal sets of reactions by which a draft network has to be extended in order to be consistent with experimental observations. A particular strength of our approach is that alternative possibilities are suggested and thus experimentally testable hypotheses are produced. We carefully evaluate our strategy on the well-studied metabolic network of Escherichia coli, demonstrating how the predictions can be improved by incorporating sequence data. Subsequently, we apply our method to the recently sequenced green alga Chlamydomonas reinhardtii. We suggest specific genes in the genome of Chlamydomonas which are the strongest candidates for coding the responsible enzymes.
Collapse
Affiliation(s)
- Nils Christian
- Max-Planck-Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
31
|
Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. Motile cilia of human airway epithelia are chemosensory. Science 2009; 325:1131-4. [PMID: 19628819 PMCID: PMC2894709 DOI: 10.1126/science.1173869] [Citation(s) in RCA: 524] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia are microscopic projections that extend from eukaryotic cells. There are two general types of cilia; primary cilia serve as sensory organelles, whereas motile cilia exert mechanical force. The motile cilia emerging from human airway epithelial cells propel harmful inhaled material out of the lung. We found that these cells express sensory bitter taste receptors, which localized on motile cilia. Bitter compounds increased the intracellular calcium ion concentration and stimulated ciliary beat frequency. Thus, airway epithelia contain a cell-autonomous system in which motile cilia both sense noxious substances entering airways and initiate a defensive mechanical mechanism to eliminate the offending compound. Hence, like primary cilia, classical motile cilia also contain sensors to detect the external environment.
Collapse
Affiliation(s)
- Alok S Shah
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Yehuda Ben-Shahar
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Thomas O Moninger
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Joel N Kline
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Michael J Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
32
|
Hollm JA, Khan RP, Marongelli EN, Guilford WH. Laser Trap Characterization and Modeling of Phototaxis in Chlamydomonas reinhardtii. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0062-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Yagi T, Uematsu K, Liu Z, Kamiya R. Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella. J Cell Sci 2009; 122:1306-14. [DOI: 10.1242/jcs.045096] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The movements of cilia and flagella are driven by multiple species of dynein heavy chains (DHCs), which constitute inner- and outer-dynein arms. In Chlamydomonas, 11 DHC proteins have been identified in the axoneme, but 14 genes encoding axonemal DHCs are present in the genome. Here, we assigned each previously unassigned DHC gene to a particular DHC protein and found that DHC3, DHC4 and DHC11 encode novel, relatively low abundance DHCs. Immunofluorescence microcopy revealed that DHC11 is localized exclusively to the proximal ∼2 μm region of the ∼12 μm long flagellum. Analyses of growing flagella suggested that DHC3 and DHC4 are also localized to the proximal region. By contrast, the DHC of a previously identified inner-arm dynein, dynein b, displayed an inverse distribution pattern. Thus, the proximal portion of the flagellar axoneme apparently differs in dynein composition from the remaining portion; this difference might be relevant to the special function performed by the flagellar base.
Collapse
Affiliation(s)
- Toshiki Yagi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
- Department of Biological Science, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keigo Uematsu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Zhongmei Liu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
34
|
Tyler KM, Fridberg A, Toriello KM, Olson CL, Cieslak JA, Hazlett TL, Engman DM. Flagellar membrane localization via association with lipid rafts. J Cell Sci 2009; 122:859-66. [PMID: 19240119 DOI: 10.1242/jcs.037721] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic flagellar membrane has a distinct composition from other domains of the plasmalemma. Our work shows that the specialized composition of the trypanosome flagellar membrane reflects increased concentrations of sterols and saturated fatty acids, correlating with direct observation of high liquid order by laurdan fluorescence microscopy. These findings indicate that the trypanosome flagellar membrane possesses high concentrations of lipid rafts: discrete regions of lateral heterogeneity in plasma membranes that serve to sequester and organize specialized protein complexes. Consistent with this, a dually acylated Ca(2+) sensor that is concentrated in the flagellum is found in detergent-resistant membranes and mislocalizes if the lipid rafts are disrupted. Detergent-extracted cells have discrete membrane patches localized on the surface of the flagellar axoneme, suggestive of intraflagellar transport particles. Together, these results provide biophysical and biochemical evidence to indicate that lipid rafts are enriched in the trypanosome flagellar membrane, providing a unique mechanism for flagellar protein localization and illustrating a novel means by which specialized cellular functions may be partitioned to discrete membrane domains.
Collapse
Affiliation(s)
- Kevin M Tyler
- BioMedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Kreimer G. The green algal eyespot apparatus: a primordial visual system and more? Curr Genet 2008; 55:19-43. [PMID: 19107486 DOI: 10.1007/s00294-008-0224-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 11/28/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Most flagellate green algae exhibiting phototaxis posses a singular specialized light sensitive organelle, the eyespot apparatus (EA). Its design principles are similar in all green algae and produce, in conjunction with the movement pattern of the cell, a highly directional optical device. It enables an oriented movement response with respect to the direction and intensity of light. The functional EA involves local specializations of different compartments (plasma membrane, cytosol, and chloroplast) and utilizes specialized microbial-type rhodopsins, which act as directly light-gated ion channels. Due to their elaborate structures and the presence of retinal-based photoreceptors in some lineages, algal EAs are thought to play an important role in the evolution of photoreception and are thus not only of interest to plant biologists. In green algae considerable progress in the molecular dissection of components of this primordial visual system has been made by genetic and proteomic approaches in recent years. This review summarizes general aspects of the green algal EA as well as recent progress in the identification of proteins related to it. Further, novel data supporting a link between eyespot globules and plastoglobules will be presented and potential additional roles of the EA besides those in photoreception will be discussed.
Collapse
Affiliation(s)
- Georg Kreimer
- Department Biologie, Friedrich-Alexander Universität Erlangen, 91058, Erlangen, Germany.
| |
Collapse
|
36
|
Abstract
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.
Collapse
|
37
|
Unstable RNAi effects through epigenetic silencing of an inverted repeat transgene in Chlamydomonas reinhardtii. Genetics 2008; 180:1927-44. [PMID: 18832355 DOI: 10.1534/genetics.108.092395] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA interferences in the unicellular green alga, Chlamydomonas reinhardtii, can be silenced. We have used the silencing of a transgene (aadA) that confers resistance to spectinomycin to investigate the mechanisms responsible for silencing by an artificial inverted repeat (IR) of the aadA gene. The IR construct provided strong silencing, but the RNAi efficiency varied among subclones of a single RNAi-transformed strain with successive cell divisions. Northern blot analyses revealed an inverse correlation between the copy number of the hairpin RNA and the spectinomycin resistance of the subclones. There is an inverse correlation between the efficiency of RNAi and the frequency of methylated CpG (*CpG) in the silenced region. No significant methylated cytosine was observed in the target aadA gene, which suggests the absence of RNA-directed DNA methylation in trans. Several experiments suggest the existence of an intrinsic IR sequence-dependent but a transcription-independent DNA methylation system in C. reinhardtii. The correlation between the *CpG levels and the IR transcript implies the existence of IR DNA-dependent DNA methylation. Treatment of RNAi-induced cells with a histone deacetylase inhibitor, Trichostatin A, rapidly increased the amount of the hairpin RNA and suggests that transcription of the silencer construct was repressed by *CpG-related silencing mechanisms.
Collapse
|
38
|
Abstract
Most vertebrate cell types display solitary nonmotile cilia on their surface that serve as cellular antennae to sense the extracellular environment. These organelles play key roles in the development of mammals by coordinating the actions of a single cell with events occurring around them. Severe defects in cilia lead to midgestational lethality in mice while more subtle defects lead to pathology in most organs of the body. These pathologies range from cystic diseases of the kidney, liver, and pancreas, to retinal degeneration, to bone and skeletal defects, hydrocephaly, and obesity. The sensory functions of cilia rely on proteins localized specifically to the ciliary membrane. Even though the ciliary membrane is a subdomain of the plasma membrane and is continuous with the plasma membrane, cells have the ability to specifically localize proteins to this domain. In this chapter, we will review what is currently known about the structure and function of the ciliary membrane. We will further discuss ongoing work to understand how the ciliary membrane is assembled and maintained, and discuss protein machinery that is thought to play a role in sorting or trafficking proteins to the ciliary membrane.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, USA
| | | |
Collapse
|
39
|
Abstract
Almost every vertebrate cell has a specialized cell surface projection called a primary cilium. Although these structures were first described more than a century ago, the full scope of their functions remains poorly understood. Here, we review emerging evidence that in addition to their well-established roles in sight, smell, and mechanosensation, primary cilia are key participants in intercellular signaling. This new appreciation of primary cilia as cellular antennae that sense a wide variety of signals could help explain why ciliary defects underlie such a wide range of human disorders, including retinal degeneration, polycystic kidney disease, Bardet-Biedl syndrome, and neural tube defects.
Collapse
Affiliation(s)
- Veena Singla
- Program in Developmental and Stem Cell Biology, and Diabetes Center, University of California, San Francisco, CA 94143-0525, USA
| | | |
Collapse
|