1
|
Leguay K, Kent OA. Dynamic Coupling of MAPK Signaling to the Guanine Nucleotide Exchange Factor GEF-H1. Onco Targets Ther 2025; 18:147-159. [PMID: 39882405 PMCID: PMC11776410 DOI: 10.2147/ott.s496228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
The KRAS gene is nearly ubiquitously subjected to activating mutation in pancreatic adenocarcinomas (PDAC), occurring at a frequency of over 90% in tumors. Mutant KRAS drives sustained signaling through the MAPK pathway to affect frequently disrupted cancer phenotypes including transcription, proliferation and cell survival. Recent research has shown that PDAC tumor growth and survival required a guanine nucleotide exchange factor for RAS homolog family member A (RhoA) called GEF-H1. The GEF-H1 protein, encoded by the ARHGEF2 gene, is a microtubule-associated GEF for RhoA that promotes invasion-migration of PDAC cells via activation of RhoA. Unexpectedly, independent of its RhoGEF activity, GEF-H1 was found to potentiate MAPK signaling by scaffolding protein phosphatase 2A (PP2A) to the kinase suppressor of Ras 1 (KSR-1). In a feedback-dependent manner, enhanced MAPK activity drives expression of ARHGEF2 via regulation of transcription factors ETS and SP, and the RAS responsive element-binding protein 1 (RREB1). RREB1 a negative regulator of ARHGEF2 expression, is downregulated in PDAC cells, which permits sustained expression of GEF-H1 for PDAC tumor survival and subsequent MAPK pathway activation. Given that MAPK targeted therapies show limited clinical efficacy, highlights the need for novel targets. This review describes the unexpected complexity of GEF-H1 function leading to positive feedback that potentiates RAS-MAPK signaling and suggests inhibition of GEF-H1 as a therapeutic strategy for RAS-driven cancers.
Collapse
Affiliation(s)
- Kévin Leguay
- Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada
| | - Oliver A Kent
- Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada
| |
Collapse
|
2
|
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Liu NF, Enomoto M, Marshall CB, Ikura M. Reconstitution and characterization of BRAF in complex with 14-3-3 and KRAS4B on nanodiscs. Protein Sci 2024; 33:e5016. [PMID: 38747381 PMCID: PMC11094772 DOI: 10.1002/pro.5016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.
Collapse
Affiliation(s)
- Ningdi F. Liu
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Masahiro Enomoto
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Dedden D, Nitsche J, Schneider EV, Thomsen M, Schwarz D, Leuthner B, Grädler U. Cryo-EM Structures of CRAF 2/14-3-3 2 and CRAF 2/14-3-3 2/MEK1 2 Complexes. J Mol Biol 2024; 436:168483. [PMID: 38331211 DOI: 10.1016/j.jmb.2024.168483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
RAF protein kinases are essential effectors in the MAPK pathway and are important cancer drug targets. Structural understanding of RAF activation is so far based on cryo-electron microscopy (cryo-EM) and X-ray structures of BRAF in different conformational states as inactive or active complexes with KRAS, 14-3-3 and MEK1. In this study, we have solved the first cryo-EM structures of CRAF2/14-3-32 at 3.4 Å resolution and CRAF2/14-3-32/MEK12 at 4.2 Å resolution using CRAF kinase domain expressed as constitutively active Y340D/Y341D mutant in insect cells. The overall architecture of our CRAF2/14-3-32 and CRAF2/14-3-32/MEK12 cryo-EM structures is highly similar to corresponding BRAF structures in complex with 14-3-3 or 14-3-3/MEK1 and represent the activated dimeric RAF conformation. Our CRAF cryo-EM structures provide additional insights into structural understanding of the activated CRAF2/14-3-32/MEK12 complex.
Collapse
Affiliation(s)
- Dirk Dedden
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Julius Nitsche
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | | | - Maren Thomsen
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Daniel Schwarz
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Birgitta Leuthner
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ulrich Grädler
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| |
Collapse
|
5
|
Gao Q, Zhang D, Zhang JL, Wang BJ, Lu CY, Cui S. PGF2alpha Inhibits 20alpha-HSD Expression by Suppressing CK1alpha-induced ERK and SP1 Activation in the Corpus Luteum of Pregnant Mice. Reprod Sci 2024; 31:248-259. [PMID: 37644378 DOI: 10.1007/s43032-023-01322-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Prostaglandin F2α (PGF2α) is a luteolytic hormone that promotes parturition in mammals at the end of pregnancy by reducing progesterone secretion from the corpus luteum (CL). In rodents and primates, PGF2α rapidly converts progesterone to 20α-hydroxyprogesterone (20α-OHP) by promoting 20α-hydroxysteroid dehydrogenase (20α-HSD) expression. However, the specific mechanism of 20α-HSD regulation by PGF2α remains unclear. Casein Kinase 1α (CK1α) is a CK1 family member that regulates a variety of physiological functions, including reproductive development. Here, we investigated the effects of CK1α on pregnancy in female mice. Our experiments showed that CK1α is expressed in mouse CL, and its inhibition enhanced progesterone metabolism, decreased progesterone levels, and affected mouse embryo implantation. Further, CK1α mediated the effect of PGF2α on 20α-HSD in mouse luteal cells in vitro. Our results are the first to show that CK1α affects the 20α-HSD mRNA level by affecting the ERK signalling pathway to regulate the expression of the transcription factor SP1. These findings improve our understanding of PGF2α regulation of 20α-HSD.
Collapse
Affiliation(s)
- Qiao Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing-Lin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Bing-Jie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chen-Yang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
6
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 239] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
7
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
8
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Gao C, Wang SW, Lu JC, Chai XQ, Li YC, Zhang PF, Huang XY, Cai JB, Zheng YM, Guo XJ, Shi GM, Ke AW, Fan J. KSR2-14-3-3ζ complex serves as a biomarker and potential therapeutic target in sorafenib-resistant hepatocellular carcinoma. Biomark Res 2022; 10:25. [PMID: 35468812 PMCID: PMC9036720 DOI: 10.1186/s40364-022-00361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kinase suppressor of Ras 2 (KSR2) is a regulator of MAPK signaling that is overactivated in most hepatocellular carcinoma (HCC). We sought to determine the role of KSR2 in HCC pathogenesis. METHODS We tested the level of KSR2 in HCC tissues and cell lines by tissue microarray, qPCR, and western blotting. Functionally, we determined the effects of KSR2 on the proliferation, migration, and invasion of HCC cells through colony formation assays, scratch assays, transwell migration assays, and xenograft tumor models. Co-immunoprecipitation (co-IP) experiments were used to assess the interaction of phospho-serine binding protein 14-3-3ζ and KSR2, and the effects of this interaction on growth and proliferation of human HCC cells were tested by co-overexpression and knockdown experiments. Additionally, we used flow cytometry to examine whether the KSR2 and 14-3-3ζ interaction conveys HCC resistance to sorafenib. RESULTS KSR2 was significantly upregulated in HCC tissues and cell lines, and high KSR2 expression associated with poor prognosis in HCC patients. KSR2 knockdown significantly suppressed HCC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, co-IP experiments identified that 14-3-3ζ complexed with KSR2, and elevated 14-3-3ζ increased KSR2 protein levels in HCC cells. Importantly, Kaplan-Meier survival analysis showed that patients with both high KSR2 and high 14-3-3ζ expression levels had the shortest survival times and poorest prognoses. Interestingly, HCC cells overexpressing both KSR2 and 14-3-3ζ, rather than either protein alone, showed hyperactivated MAPK signaling and resistance to sorafenib. CONCLUSIONS Our results provide new insights into the pro-tumorigenic role of KSR2 and its regulation of the MAPK pathway in HCC. The KSR2-14-3-3ζ interaction may be a therapeutic target to enhance the sorafenib sensitivity of HCC.
Collapse
Affiliation(s)
- Chao Gao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Si-Wei Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Jia-Cheng Lu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Chai
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yuan-Cheng Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Peng-Fei Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Yong Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Jia-Bin Cai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yi-Min Zheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Jun Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| | - Jia Fan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Ghosh S, Ataman M, Bak M, Börsch A, Schmidt A, Buczak K, Martin G, Dimitriades B, Herrmann CJ, Kanitz A, Zavolan M. CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis. Nucleic Acids Res 2022; 50:3096-3114. [PMID: 35234914 PMCID: PMC8989530 DOI: 10.1093/nar/gkac114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mammalian cleavage factor I (CFIm) has been implicated in alternative polyadenylation (APA) in a broad range of contexts, from cancers to learning deficits and parasite infections. To determine how the CFIm expression levels are translated into these diverse phenotypes, we carried out a multi-omics analysis of cell lines in which the CFIm25 (NUDT21) or CFIm68 (CPSF6) subunits were either repressed by siRNA-mediated knockdown or over-expressed from stably integrated constructs. We established that >800 genes undergo coherent APA in response to changes in CFIm levels, and they cluster in distinct functional classes related to protein metabolism. The activity of the ERK pathway traces the CFIm concentration, and explains some of the fluctuations in cell growth and metabolism that are observed upon CFIm perturbations. Furthermore, multiple transcripts encoding proteins from the miRNA pathway are targets of CFIm-dependent APA. This leads to an increased biogenesis and repressive activity of miRNAs at the same time as some 3′ UTRs become shorter and presumably less sensitive to miRNA-mediated repression. Our study provides a first systematic assessment of a core set of APA targets that respond coherently to changes in CFIm protein subunit levels (CFIm25/CFIm68). We describe the elicited signaling pathways downstream of CFIm, which improve our understanding of the key role of CFIm in integrating RNA processing with other cellular activities.
Collapse
Affiliation(s)
- Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Meric Ataman
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Maciej Bak
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Anastasiya Börsch
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Beatrice Dimitriades
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Christina J Herrmann
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Kanitz
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Dominguez I, Cruz-Gamero JM, Corasolla V, Dacher N, Rangasamy S, Urbani A, Narayanan V, Rebholz H. Okur-Chung neurodevelopmental syndrome-linked CK2α variants have reduced kinase activity. Hum Genet 2021; 140:1077-1096. [PMID: 33944995 DOI: 10.1007/s00439-021-02280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022]
Abstract
The Okur-Chung neurodevelopmental syndrome, or OCNDS, is a newly discovered rare neurodevelopmental disorder. It is characterized by developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, epilepsy and language/verbalization deficits. OCNDS is linked to de novo mutations in CSNK2A1, that lead to missense or deletion/truncating variants in the encoded protein, the protein kinase CK2α. Eighteen different missense CK2α mutations have been identified to date; however, no biochemical or cell biological studies have yet been performed to clarify the functional impact of such mutations. Here, we show that 15 different missense CK2α mutations lead to varying degrees of loss of kinase activity as recombinant purified proteins and when mutants are ectopically expressed in mammalian cells. We further detect changes in the phosphoproteome of three patient-derived fibroblast lines and show that the subcellular localization of CK2α is altered for some of the OCNDS-linked variants and in patient-derived fibroblasts. Our data argue that reduced kinase activity and abnormal localization of CK2α may underlie the OCNDS phenotype.
Collapse
Affiliation(s)
- I Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - J M Cruz-Gamero
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - V Corasolla
- Laboratorio di Proteomica e Metabonomica, CERC-Fondazione S.Lucia, Via del Fosso di Fiorano 64, 00143, Roma, Italy
| | - N Dacher
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - S Rangasamy
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - A Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168, Roma, Italy
| | - V Narayanan
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - H Rebholz
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France. .,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy. .,GHU Psychiatrie et Neurosciences, Paris, France. .,Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria.
| |
Collapse
|
12
|
Impairment of the neurotrophic signaling hub B-Raf contributes to motoneuron degeneration in spinal muscular atrophy. Proc Natl Acad Sci U S A 2021; 118:2007785118. [PMID: 33931501 DOI: 10.1073/pnas.2007785118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.
Collapse
|
13
|
Ischenko I, D'Amico S, Rao M, Li J, Hayman MJ, Powers S, Petrenko O, Reich NC. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat Commun 2021; 12:1482. [PMID: 33674596 PMCID: PMC7935870 DOI: 10.1038/s41467-021-21736-w] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the suppression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment.
Collapse
Affiliation(s)
- Irene Ischenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Stephen D'Amico
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Manisha Rao
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Michael J Hayman
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Oleksi Petrenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.
| | - Nancy C Reich
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
14
|
Parvathaneni S, Li Z, Sacks DB. Calmodulin influences MAPK signaling by binding KSR1. J Biol Chem 2021; 296:100577. [PMID: 33766558 PMCID: PMC8079274 DOI: 10.1016/j.jbc.2021.100577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 03/21/2021] [Indexed: 11/24/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is a fundamental signaling pathway that regulates cell fate decisions in response to external stimuli. Several scaffold proteins bind directly to kinase components of this pathway and regulate their activation by growth factors. One of the best studied MAPK scaffolds is kinase suppressor of Ras1 (KSR1), which is induced by epidermal growth factor (EGF) to translocate to the plasma membrane where it activates extracellular signal-regulated kinase (ERK). While Ca2+ has been shown to modulate MAPK signaling, the molecular mechanisms by which this occurs are incompletely understood. Here we tested the hypothesis that Ca2+ alters MAPK activity at least in part via KSR1. Using several approaches, including fusion proteins, immunoprecipitation, confocal microscopy, and a cell-permeable chemical inhibitor, we investigated the functional interaction between KSR1 and calmodulin. In vitro analysis with pure proteins reveals that calmodulin binds directly to KSR1. Moreover, endogenous calmodulin and KSR1 co-immunoprecipitate from mammalian cell lysates. Importantly, Ca2+ is required for the association between calmodulin and KSR1, both in vitro and in cells. The cell-permeable calmodulin antagonist CGS9343B significantly reduced activation of ERK by EGF in mouse embryo fibroblasts that overexpress KSR1, but not in control cells. Moreover, CGS9343B impaired the ability of EGF to induce KSR1 translocation to the plasma membrane and to stimulate formation of KSR1-ERK and KSR1-pERK (phosphorylated ERK) complexes in cells. Collectively, our data identify a previously unrecognized mechanism by which the scaffold protein KSR1 couples Ca2+ and calmodulin signaling to the MAPK cascade.
Collapse
Affiliation(s)
- Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
15
|
Kasarpalkar N, Deb B, Kumar P, Bhor VM. The Role of Integrin α 4β 7 Signaling in Human Immunodeficiency Virus-1 Pathogenesis and Viral Entry in Primary CD4 + T Cells As Revealed by Comparative Phosphoproteomic Signatures. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:437-450. [PMID: 32522079 DOI: 10.1089/omi.2019.0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Integrin α4β7, a CD4 independent receptor of human immunodeficiency virus-1 (HIV-1) gp120, defines a subset of CD4+T cells preferentially targeted by HIV. It is also considered as a promising therapeutic target for HIV-1 infection. Despite its role in HIV acquisition and disease progression, HIV-1-mediated integrin α4β7 signaling has not been elucidated so far. In view of this, we determined phosphoproteomic signatures of HIV-1 gp120 signaling as well as signaling mediated by the integrin α4β7 ligand, mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1), in primary CD4+ T cells. This is the first comprehensive report on MAdCAM-1 signaling, which is believed to enhance HIV-1 replication. Importantly, we identified proteins associated with both classical and nonclassical integrin functions. We observed that HIV-1 gp120 signaling is associated with proteins that have previously not been associated with HIV-1 pathogenesis and thus, need to be explored further. There was a significant overlap in proteins identified by both MAdCAM-1 and HIV-1 gp120 signaling, which most likely represents cellular processes triggered upon interaction of HIV-1 gp120 with integrin α4β7. Pathway analysis revealed enrichment of processes that could facilitate viral replication as well as viral entry through endocytosis. Although these results warrant independent replication and further validation, they suggest the presence of additional potential therapeutic targets. These results also suggest that combinatorial approaches for targeting both HIV-1 gp120 and MAdCAM-1 signaling may be necessary for efficient control of HIV-1 infection as well as novel innovation strategies in HIV therapeutics.
Collapse
Affiliation(s)
- Nandini Kasarpalkar
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Vikrant M Bhor
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
16
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 368] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
17
|
Park SW, Nhieu J, Persaud SD, Miller MC, Xia Y, Lin YW, Lin YL, Kagechika H, Mayo KH, Wei LN. A new regulatory mechanism for Raf kinase activation, retinoic acid-bound Crabp1. Sci Rep 2019; 9:10929. [PMID: 31358819 PMCID: PMC6662813 DOI: 10.1038/s41598-019-47354-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/30/2019] [Indexed: 12/31/2022] Open
Abstract
The rapidly accelerated fibrosarcoma (Raf) kinase is canonically activated by growth factors that regulate multiple cellular processes. In this kinase cascade Raf activation ultimately results in extracellular regulated kinase 1/2 (Erk1/2) activation, which requires Ras binding to the Ras binding domain (RBD) of Raf. We recently reported that all-trans retinoic acid (atRA) rapidly (within minutes) activates Erk1/2 to modulate cell cycle progression in stem cells, which is mediated by cellular retinoic acid binding protein 1 (Crabp1). But how atRA-bound Crabp1 regulated Erk1/2 activity remained unclear. We now report Raf kinase as the direct target of atRA-Crabp1. Molecularly, Crabp1 acts as a novel atRA-inducible scaffold protein for Raf/Mek/Erk in cells without growth factor stimulation. However, Crabp1 can also compete with Ras for direct interaction with the RBD of Raf, thereby negatively modulating growth factor-stimulated Raf activation, which can be enhanced by atRA binding to Crabp1. NMR heteronuclear single quantum coherence (HSQC) analyses reveal the 6-strand β-sheet face of Crabp1 as its Raf-interaction surface. We identify a new atRA-mimicking and Crabp1-selective compound, C3, that can also elicit such an activity. This study uncovers a new signal crosstalk between endocrine (atRA-Crabp1) and growth factor (Ras-Raf) pathways, providing evidence for atRA-Crabp1 as a novel modulator of cell growth. The study also suggests a new therapeutic strategy by employing Crabp1-selective compounds to dampen growth factor stimulation while circumventing RAR-mediated retinoid toxicity.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jennifer Nhieu
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shawna D Persaud
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Youlin Xia
- Minnesota NMR Center, University of Minnesota, Twin Cities, Minneapolis, Minnesota, 55455, USA
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hiroyuki Kagechika
- Tokyo Medical and Dental University, Institute of Biomaterials and Bioengineering, Tokyo, Japan
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Boned Del Río I, Young LC, Sari S, Jones GG, Ringham-Terry B, Hartig N, Rejnowicz E, Lei W, Bhamra A, Surinova S, Rodriguez-Viciana P. SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics. Proc Natl Acad Sci U S A 2019; 116:13330-13339. [PMID: 31213532 PMCID: PMC6613145 DOI: 10.1073/pnas.1902658116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the crucial role of RAF kinases in cell signaling and disease, we still lack a complete understanding of their regulation. Heterodimerization of RAF kinases as well as dephosphorylation of a conserved "S259" inhibitory site are important steps for RAF activation but the precise mechanisms and dynamics remain unclear. A ternary complex comprised of SHOC2, MRAS, and PP1 (SHOC2 complex) functions as a RAF S259 holophosphatase and gain-of-function mutations in SHOC2, MRAS, and PP1 that promote complex formation are found in Noonan syndrome. Here we show that SHOC2 complex-mediated S259 RAF dephosphorylation is critically required for growth factor-induced RAF heterodimerization as well as for MEK dissociation from BRAF. We also uncover SHOC2-independent mechanisms of RAF and ERK pathway activation that rely on N-region phosphorylation of CRAF. In DLD-1 cells stimulated with EGF, SHOC2 function is essential for a rapid transient phase of ERK activation, but is not required for a slow, sustained phase that is instead driven by palmitoylated H/N-RAS proteins and CRAF. Whereas redundant SHOC2-dependent and -independent mechanisms of RAF and ERK activation make SHOC2 dispensable for proliferation in 2D, KRAS mutant cells preferentially rely on SHOC2 for ERK signaling under anchorage-independent conditions. Our study highlights a context-dependent contribution of SHOC2 to ERK pathway dynamics that is preferentially engaged by KRAS oncogenic signaling and provides a biochemical framework for selective ERK pathway inhibition by targeting the SHOC2 holophosphatase.
Collapse
Affiliation(s)
- Isabel Boned Del Río
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Lucy C Young
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Sibel Sari
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Greg G Jones
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Benjamin Ringham-Terry
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Nicole Hartig
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Ewa Rejnowicz
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Winnie Lei
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Amandeep Bhamra
- Proteomics Research Core Facility, University College London Cancer Institute, WC1E 6DD London, United Kingdom
| | - Silvia Surinova
- Proteomics Research Core Facility, University College London Cancer Institute, WC1E 6DD London, United Kingdom
| | - Pablo Rodriguez-Viciana
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms;
| |
Collapse
|
19
|
Li K, Zhou F, Zhou Y, Zhang S, Li Q, Li Z, Liu L, Wu G, Meng R. Quinalizarin, a specific CK2 inhibitor, can reduce icotinib resistance in human lung adenocarcinoma cell lines. Int J Mol Med 2019; 44:437-446. [PMID: 31173177 PMCID: PMC6605624 DOI: 10.3892/ijmm.2019.4220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/15/2019] [Indexed: 01/22/2023] Open
Abstract
The abnormal activation of the downstream signaling pathways of epidermal growth factor receptor (EGFR) that are independent of EGFR, contribute to the acquisition of EGFR-tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC). The serine/threonine protein kinase casein kinase II (CK2) phosphorylates and modulates several members of the EGFR downstream signaling pathways. Thus, the purpose of the current study was to investigate the effects of the addition of quinalizarin (a specific CK2 inhibitor) to icotinib (an EGFR-TKI) on the proliferation and apoptosis of four NSCLC cell lines and its underlying mechanisms. The human lung adenocarcinoma cell lines HCC827, A549, H1650 and H1975 were employed to represent the EGFR-TKI-sensitive EGFR (EGFR-sensitive) mutation, wild-type EGFR and the EGFR-TKI-resistant EGFR (EGFR-resistant) mutations. The cell viability was determined by the MTT assay. Cell apoptosis was detected by flow cytom-etry using the Annexin V-enhanced green fluorescent protein Apoptosis Detection kit. The level of proteins in the EGFR downstream pathway was observed using a western blot assay. The results showed that the cells with the EGFR-sensitive mutation (HCC827, EGFR E716-A750del) were more sensitive to icotinib compared with those possessing the EGFR wild-type (A549) and the EGFR-resistant mutations (H1650, EGFR E716-A750del and PTEN lost; H1975, EGFR L858R+T790M). Quinalizarin inhibited proliferation and promoted apoptosis in the cells with the EGFR wild-type and resistant mutations, and the addition of quinalizarin to icotinib partially restored their sensitivity to icotinib. Quinalizarin and/or icotinib increased the apoptotic rates in the EGFR-TKI resistant cells, and the combination of these reduced the level of protein downstream of EGFR, including phosphorylated (p-AKT) and p-(ERK). In conclusion, quinalizarin may partially sensitize cells to icotinib by inhibiting proliferation and promoting apoptosis mediated by AKT and ERK in EGFR-TKI resistant NSCLC cell lines.
Collapse
Affiliation(s)
- Ke Li
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fangzheng Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
20
|
Terrell EM, Morrison DK. Ras-Mediated Activation of the Raf Family Kinases. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033746. [PMID: 29358316 DOI: 10.1101/cshperspect.a033746] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular signal-regulated kinase (ERK) cascade comprised of the Raf, MEK, and ERK protein kinases constitutes a key effector cascade used by the Ras GTPases to relay signals regulating cell growth, survival, proliferation, and differentiation. Of the ERK cascade components, the regulation of the Raf kinases is by far the most complex, involving changes in subcellular localization, protein and lipid interactions, as well as alterations in the Raf phosphorylation state. The Raf kinases interact directly with active, membrane-localized Ras, and this interaction is often the first step in the Raf activation process, which ultimately results in ERK activation and the downstream phosphorylation of cellular targets that will specify a particular biological response. Here, we will examine our current understanding of how Ras promotes Raf activation, focusing on the molecular mechanisms that contribute to the Raf activation/inactivation cycle.
Collapse
Affiliation(s)
- Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, Maryland 21702
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, Maryland 21702
| |
Collapse
|
21
|
Yang X, You J, Luo W, Yue J, Ma L, Xiao W, Zhu D, Wu Z, Wang D, Nadiminty N, Gao AC, Zhou Q. The N-terminal kinase suppressor of Ras complex has a weak nucleoside diphosphate kinase activity. Thorac Cancer 2018; 1:109-115. [PMID: 27755802 DOI: 10.1111/j.1759-7714.2010.00020.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION An increasing number of studies have proven that the kinase suppressor of Ras (KSR1) functions as a scaffolding protein that coordinates the assembly of a multiprotein complex containing mitogen-activated protein kinase and its upstream regulators. However, a few studies have reported that KSR1 can activate c-Raf-1. Therefore, whether KSR1 possesses a kinase activity has been an unresolved issue until now. MATERIALS AND METHODS pCMV-Tag2b-KSR plasmids were transfected into 293T cells. In vitro autophosphorylation was assayed by autoradiography and in vitro kinase was assayed by reversed-phase high performance liquid chromatography. RESULTS We observed that wild-type KSR1 (WT-KSR) and N-terminal KSR1 (N-KSR) were phosphorylated, but the C-terminal KSR1 (C-KSR) and vector proteins were not. The high performance liquid chromatography profile showed not only the adenosine diphosphate peak but also the uridine triphosphate peak in the WT-KSR and N-KSR groups; both peaks were considerably more significant in these groups than in the others. The WT-KSR and N-KSR groups exhibited transphosphorylation and autophosphorylation activities, while the other groups revealed almost no activity. DISCUSSION Here, we demonstrate the nucleoside diphosphate kinase activity of the KSR1 complex and that this activity can be independent of the C-terminus of KSR1. Additionally, we found the autophosphorylation activity of the KSR1 complex to be extremely weak, suggesting that the KSR1 complex possesses an extremely weak kinase activity irrespective of whether it is nucleoside diphosphate kinase activity or serine/threonine protein kinase activity. These data suggest that the kinase activity of the KSR1 complex is derived from its associated proteins.
Collapse
Affiliation(s)
- Xueqin Yang
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Jiacong You
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Wei Luo
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Jiao Yue
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Li Ma
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Wen Xiao
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Daxing Zhu
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Zhihao Wu
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Dong Wang
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Nagalakshmi Nadiminty
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Allen C Gao
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China Cancer Center, Institute of Surgery Research and Daping Hospital, Third Military Medical University, Chongqing, China Department of Urology and Cancer Center, University of California Davis Medical Center, Sacramento, USA
| |
Collapse
|
22
|
Eisenhardt AE, Sprenger A, Röring M, Herr R, Weinberg F, Köhler M, Braun S, Orth J, Diedrich B, Lanner U, Tscherwinski N, Schuster S, Dumaz N, Schmidt E, Baumeister R, Schlosser A, Dengjel J, Brummer T. Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles. Oncotarget 2018; 7:26628-52. [PMID: 27034005 PMCID: PMC5042004 DOI: 10.18632/oncotarget.8427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
B-Raf represents a critical physiological regulator of the Ras/RAF/MEK/ERK-pathway and a pharmacological target of growing clinical relevance, in particular in oncology. To understand how B-Raf itself is regulated, we combined mass spectrometry with genetic approaches to map its interactome in MCF-10A cells as well as in B-Raf deficient murine embryonic fibroblasts (MEFs) and B-Raf/Raf-1 double deficient DT40 lymphoma cells complemented with wildtype or mutant B-Raf expression vectors. Using a multi-protease digestion approach, we identified a novel ubiquitination site and provide a detailed B-Raf phospho-map. Importantly, we identify two evolutionary conserved phosphorylation clusters around T401 and S419 in the B-Raf hinge region. SILAC labelling and genetic/biochemical follow-up revealed that these clusters are phosphorylated in the contexts of oncogenic Ras, sorafenib induced Raf dimerization and in the background of the V600E mutation. We further show that the vemurafenib sensitive phosphorylation of the T401 cluster occurs in trans within a Raf dimer. Substitution of the Ser/Thr-residues of this cluster by alanine residues enhances the transforming potential of B-Raf, indicating that these phosphorylation sites suppress its signaling output. Moreover, several B-Raf phosphorylation sites, including T401 and S419, are somatically mutated in tumors, further illustrating the importance of phosphorylation for the regulation of this kinase.
Collapse
Affiliation(s)
- Anja E Eisenhardt
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Adrian Sprenger
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, ALU, Freiburg, Germany.,INSERM U976 and Universitéi Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Michael Röring
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Ricarda Herr
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Florian Weinberg
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Martin Köhler
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Joachim Orth
- Institute for Experimental and Clinical Pharmacology and Toxicology, ALU, Freiburg, Germany
| | - Britta Diedrich
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Department of Dermatology, University Medical Centre, ALU, Freiburg, Germany
| | - Ulrike Lanner
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Natalja Tscherwinski
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Simon Schuster
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Nicolas Dumaz
- INSERM U976 and Universitéi Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Enrico Schmidt
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Ralf Baumeister
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany
| | - Andreas Schlosser
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Jörn Dengjel
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Department of Dermatology, University Medical Centre, ALU, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
23
|
Basu SK, Lee S, Salotti J, Basu S, Sakchaisri K, Xiao Z, Walia V, Westlake CJ, Morrison DK, Johnson PF. Oncogenic RAS-Induced Perinuclear Signaling Complexes Requiring KSR1 Regulate Signal Transmission to Downstream Targets. Cancer Res 2017; 78:891-908. [PMID: 29259016 DOI: 10.1158/0008-5472.can-17-2353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/27/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
Abstract
The precise characteristics that distinguish normal and oncogenic RAS signaling remain obscure. Here, we show that oncogenic RAS and BRAF induce perinuclear relocalization of several RAS pathway proteins, including the kinases CK2 and p-ERK1/2 and the signaling scaffold KSR1. This spatial reorganization requires endocytosis, the kinase activities of MEK-ERK and CK2, and the presence of KSR1. CK2α colocalizes with KSR1 and Rab11, a marker of recycling endosomes, whereas p-ERK associates predominantly with a distinct KSR1-positive endosomal population. Notably, these perinuclear signaling complexes (PSC) are present in tumor cell lines, mouse lung tumors, and mouse embryonic fibroblasts undergoing RAS-induced senescence. PSCs are also transiently induced by growth factors (GF) in nontransformed cells with delayed kinetics (4-6 hours), establishing a novel late phase of GF signaling that appears to be constitutively activated in tumor cells. PSCs provide an essential platform for RAS-induced phosphorylation and activation of the prosenescence transcription factor C/EBPβ in primary MEFs undergoing senescence. Conversely, in tumor cells, C/EBPβ activation is suppressed by 3'UTR-mediated localization of Cebpb transcripts to a peripheral cytoplasmic domain distinct from the PSC region. Collectively, our findings indicate that sustained PSC formation is a critical feature of oncogenic RAS/BRAF signaling in cancer cells that controls signal transmission to downstream targets by regulating selective access of effector kinases to substrates such as C/EBPβ.Significance: In addressing the long-standing question of the difference between normal and oncogenic RAS pathway signaling, this study shows that oncogenic RAS specifically triggers constitutive endocytosis-dependent movement of effector kinases to a perinuclear region, thereby creating connections to unique downstream targets such as the core prosenescence and the inflammatory regulatory transcription factor C/EBPβ. Cancer Res; 78(4); 891-908. ©2017 AACR.
Collapse
Affiliation(s)
- Sandip K Basu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Sook Lee
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Srikanta Basu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Krisada Sakchaisri
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Vijay Walia
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland.
| |
Collapse
|
24
|
An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program. Sci Rep 2017; 7:14327. [PMID: 29085021 PMCID: PMC5662654 DOI: 10.1038/s41598-017-14523-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.
Collapse
|
25
|
Phosphorylation of the C-Raf N Region Promotes Raf Dimerization. Mol Cell Biol 2017; 37:MCB.00132-17. [PMID: 28694330 DOI: 10.1128/mcb.00132-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The activation of Raf kinases by the small GTPase Ras requires two major sets of phosphorylations. One set lies within the activation loop, and the other lies within the N-terminal acidic region (N region). In the most abundant isoform of Raf, C-Raf, N-region phosphorylations occur on serine 338 (S338) and tyrosine 341 (Y341) and are thought to provide allosteric activation of the Raf dimer. We show that the phosphorylations of these N-region sites does not require C-Raf dimerization, but rather, they precede dimerization. One of these phosphorylations (phospho-Y341) is required for C-Raf dimerization, and this action can be replicated by phosphomimetic mutants both in vivo and in vitro The role of the phosphorylation of Y341 in promoting Raf dimerization is distinct from its well-known function in facilitating S338 phosphorylation. In Ras mutant pancreatic cancer cell lines, the phosphorylation and dimerization of C-Raf are basally elevated. Dimerization is thought to contribute to their elevated growth rate through their activation of the mitogen-activated protein (MAP) kinase (extracellular signal-regulated kinase [ERK]) signaling cascade. Blocking the tyrosine phosphorylation of C-Raf with Src family inhibitors blocks growth, basal dimerization, and ERK activation in these cells. We suggest that the kinases mediating C-Raf Y341 phosphorylation are potential candidate drug targets in selected Ras-dependent cancers.
Collapse
|
26
|
Neilsen BK, Frodyma DE, Lewis RE, Fisher KW. KSR as a therapeutic target for Ras-dependent cancers. Expert Opin Ther Targets 2017; 21:499-509. [PMID: 28333549 DOI: 10.1080/14728222.2017.1311325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Targeting downstream effectors required for oncogenic Ras signaling is a potential alternative or complement to the development of more direct approaches targeting Ras in the treatment of Ras-dependent cancers. Areas covered: Here we review literature pertaining to the molecular scaffold Kinase Suppressor of Ras (KSR) and its role in promoting signals critical to tumor maintenance. We summarize the phenotypes in knockout models, describe the role of KSR in cancer, and outline the structure and function of the KSR1 and KSR2 proteins. We then focus on the most recent literature that describes the crystal structure of the kinase domain of KSR2 in complex with MEK1, KSR-RAF dimerization particularly in response to RAF inhibition, and novel attempts to target KSR proteins directly. Expert opinion: KSR is a downstream effector of Ras-mediated tumorigenesis that is dispensable for normal growth and development, making it a desirable target for the development of novel therapeutics with a high therapeutic index. Recent advances have revealed that KSR can be functionally inhibited using a small molecule that stabilizes KSR in an inactive conformation. The efficacy and potential for this novel approach to be used clinically in the treatment of Ras-driven cancers is still being investigated.
Collapse
Affiliation(s)
- Beth K Neilsen
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Danielle E Frodyma
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Robert E Lewis
- a Eppley Institute, Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Kurt W Fisher
- b Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
27
|
Baljuls A, Dobrzyński M, Rauch J, Rauch N, Kolch W. Stabilization of C-RAF:KSR1 complex by DiRas3 reduces availability of C-RAF for dimerization with B-RAF. Cell Signal 2016; 28:1451-62. [DOI: 10.1016/j.cellsig.2016.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 06/18/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
|
28
|
Ser/Thr kinases and polyamines in the regulation of non-canonical functions of elongation factor 1A. Amino Acids 2016; 48:2339-52. [DOI: 10.1007/s00726-016-2311-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
29
|
Zhou B, Ritt DA, Morrison DK, Der CJ, Cox AD. Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. J Biol Chem 2016; 291:17804-15. [PMID: 27226552 DOI: 10.1074/jbc.m115.712885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Indexed: 11/06/2022] Open
Abstract
The protein kinase casein kinase 2 (CK2) is a pleiotropic and constitutively active kinase that plays crucial roles in cellular proliferation and survival. Overexpression of CK2, particularly the α catalytic subunit (CK2α, CSNK2A1), has been implicated in a wide variety of cancers and is associated with poorer survival and resistance to both conventional and targeted anticancer therapies. Here, we found that CK2α protein is elevated in melanoma cell lines compared with normal human melanocytes. We then tested the involvement of CK2α in drug resistance to Food and Drug Administration-approved single agent targeted therapies for melanoma. In BRAF mutant melanoma cells, ectopic CK2α decreased sensitivity to vemurafenib (BRAF inhibitor), dabrafenib (BRAF inhibitor), and trametinib (MEK inhibitor) by a mechanism distinct from that of mutant NRAS. Conversely, knockdown of CK2α sensitized cells to inhibitor treatment. CK2α-mediated RAF-MEK kinase inhibitor resistance was tightly linked to its maintenance of ERK phosphorylation. We found that CK2α post-translationally regulates the ERK-specific phosphatase dual specificity phosphatase 6 (DUSP6) in a kinase dependent-manner, decreasing its abundance. However, we unexpectedly showed, by using a kinase-inactive mutant of CK2α, that RAF-MEK inhibitor resistance did not rely on CK2α kinase catalytic function, and both wild-type and kinase-inactive CK2α maintained ERK phosphorylation upon inhibition of BRAF or MEK. That both wild-type and kinase-inactive CK2α bound equally well to the RAF-MEK-ERK scaffold kinase suppressor of Ras 1 (KSR1) suggested that CK2α increases KSR facilitation of ERK phosphorylation. Accordingly, CK2α did not cause resistance to direct inhibition of ERK by the ERK1/2-selective inhibitor SCH772984. Our findings support a kinase-independent scaffolding function of CK2α that promotes resistance to RAF- and MEK-targeted therapies.
Collapse
Affiliation(s)
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Channing J Der
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and
| | - Adrienne D Cox
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
30
|
Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci 2015; 72:3305-22. [PMID: 25990538 PMCID: PMC11113558 DOI: 10.1007/s00018-015-1929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.
Collapse
Affiliation(s)
- Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Sofia Giacosa
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Yann Wallez
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
31
|
Abstract
RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.
Collapse
|
32
|
Aparicio-Siegmund S, Sommer J, Monhasery N, Schwanbeck R, Keil E, Finkenstädt D, Pfeffer K, Rose-John S, Scheller J, Garbers C. Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget 2015; 5:2131-48. [PMID: 24742922 PMCID: PMC4039151 DOI: 10.18632/oncotarget.1852] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Janus kinase / signal transducer and activator of transcription (Jak/STAT) pathway can be activated by many different cytokines, among them all members of the Interleukin (IL-)6 family. Dysregulation of this pathway, resulting in its constitutive activation, is associated with chronic inflammation and cancer development. In the present study, we show that activity of protein kinase II (CK2), a ubiquitously expressed serine/threonine kinase, is needed for induced activation of STAT1 and STAT3 by IL-6 classic and trans-signaling, IL-11, IL-27, oncostatin M (OSM), leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1). Inhibition of CK2 efficiently prevented STAT phosphorylation and inhibited cytokine-dependent cell proliferation in a Jak1-dependent manner. Conversely, forced activation of CK2 alone was not sufficient to induce activation of the Jak/STAT signaling pathway. Inhibition of CK2 in turn inhibited Jak1-dependent STAT activation by oncogenic gp130 mutations. Furthermore, CK2 inhibition diminished the Jak1- and Src kinase-dependent phosphorylation of a constitutively active STAT3 mutant recently described in human large granular lymphocytic leukemia. In conclusion, we characterize CK2 as an essential component of the Jak/STAT pathway. Pharmacologic inhibition of this kinase is therefore a promising strategy to treat human inflammatory diseases and malignancies associated with constitutive activation of the Jak/STAT pathway.
Collapse
Affiliation(s)
- Samadhi Aparicio-Siegmund
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Karthik D, Majumder P, Palanisamy S, Khairunnisa K, Venugopal V. Targeting cysteine rich C1 domain of Scaffold protein Kinase Suppressor of Ras (KSR) with anthocyanidins and flavonoids - a binding affinity characterization study. Bioinformation 2014; 10:580-5. [PMID: 25352726 PMCID: PMC4209367 DOI: 10.6026/97320630010580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 11/23/2022] Open
Abstract
Kinase Suppressor of Ras (KSR) is a molecular scaffold that interacts with the core kinase components of the ERK cascade, Raf, MEK, ERK to provide spatial and temporal regulation of Ras-dependent ERK cascade signaling. Interruption of this mechanism can have a high influence in inhibiting the downstream signaling of the mutated tyrosine kinase receptor kinase upon ligand binding. Still none of the studies targeted to prevent the binding of Raf, MEK binding on kinase suppressor of RAS. In that perspective the cysteine rich C1 domain of scaffold proteins kinase suppressor of Ras-1 was targeted rather than its ATP binding site with small ligand molecules like flavones and anthocyanidins and analyzed through insilico docking studies. The binding energy evaluation shows the importance of hydroxyl groups at various positions on the flavone and anthocyanidin nucleus. Over all binding interaction shows these ligands occupied the potential sites of cysteine rich C1 domain of scaffold protein KSR.
Collapse
Affiliation(s)
- Dhananjayan Karthik
- Department of Pharmacology, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham University, Kochi, Kerala, India
| | - Pulak Majumder
- Department of Pharmacognosy, Acharya & B.M.Reddy College of Pharmacy, Bangalore, Karnataka, India
| | - Sivanandy Palanisamy
- Department of Pharmacy Practice, International Medical University, Kualalampur, Malaysia
| | | | - Varsha Venugopal
- Department of Pharmacognosy, Government Medical College, Thiruvananthapuram, Kerala, India
| |
Collapse
|
34
|
Son YH, Moon SH, Kim J. The protein kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast differentiation in vitro. Mol Cells 2013; 36:417-23. [PMID: 24293011 PMCID: PMC3887940 DOI: 10.1007/s10059-013-0184-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
Drug repositioning can identify new therapeutic applications for existing drugs, thus mitigating high R&D costs. The Protein kinase 2 (CK2) inhibitor CX-4945 regulates human cancer cell survival and angiogenesis. Here we found that CX-4945 significantly inhibited the RANKL-induced osteoclast differentiation, but enhanced the BMP2-induced osteoblast differentiation in a cell culture model. CX-4945 inhibited the RANKL-induced activation of TRAP and NFATc1 expression accompanied with suppression of Akt phosphorylation, but in contrast, it enhanced the BMP2-mediated ALP induction and MAPK ERK1/2 phosphorylation. CX-4945 is thus a novel drug candidate for bone-related disorders such as osteoporosis.
Collapse
Affiliation(s)
- You Hwa Son
- Laboratory of Translational Therapeutics, Pharmacological Research Center, Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
| | - Seong Hee Moon
- Laboratory of Translational Therapeutics, Pharmacological Research Center, Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 301-746, Korea
| |
Collapse
|
35
|
Shin YJ, Kim YB, Kim JH. Protein kinase CK2 phosphorylates and activates p21-activated kinase 1. Mol Biol Cell 2013; 24:2990-9. [PMID: 23885116 PMCID: PMC3771959 DOI: 10.1091/mbc.e13-04-0204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activation of the p21-activated kinase 1 (PAK1) is achieved through a conformational change that converts an inactive PAK1 dimer to an active monomer. In this paper, we show that this change is necessary but not sufficient to activate PAK1 and that it is, rather, required for CK2-dependent PAK1(S223) phosphorylation that converts a monomeric PAK1 into a catalytically active form. This phosphorylation appears to be essential for autophosphorylation at specific residues and overall activity of PAK1. A phosphomimetic mutation (S223E) bypasses the requirement for GTPases in PAK1 activation, whereas the constitutive activity of the PAK1 mutant (PAK1(H83,86L)), postulated to mimic GTPase-induced structural changes, is abolished by inhibition of S223 phosphorylation. Thus, S223 is likely accessible to CK2 upon conformational changes of PAK1 induced by GTPase-dependent and GTPase-independent stimuli, suggesting that S223 phosphorylation may play a key role in the final step of the PAK1 activation process. The physiological significance of this phosphorylation is reinforced by the observations that CK2 is responsible for epidermal growth factor-induced PAK1 activation and that inhibition of S223 phosphorylation abrogates PAK1-mediated malignant transformation of prostate epithelial cells. Taken together, these findings identify CK2 as an upstream activating kinase of PAK1, providing a novel mechanism for PAK1 activation.
Collapse
Affiliation(s)
- Yong Jae Shin
- Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, DC 20037
| | | | | |
Collapse
|
36
|
Huang XY, Ke AW, Shi GM, Zhang X, Zhang C, Shi YH, Wang XY, Ding ZB, Xiao YS, Yan J, Qiu SJ, Fan J, Zhou J. αB-crystallin complexes with 14-3-3ζ to induce epithelial-mesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology 2013; 57:2235-2247. [PMID: 23316005 DOI: 10.1002/hep.26255] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/13/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED The overall survival of patients with hepatocellular carcinoma (HCC) remains poor, and the molecular pathogenesis remains incompletely defined in HCC. Here we report that increased expression of αB-Crystallin in human HCC predicts poor survival and disease recurrence after surgery. Multivariate analysis identifies αB-Crystallin expression as an independent predictor for postoperative recurrence and overall survival. We show that elevated expression of αB-Crystallin promotes HCC progression in vivo and in vitro. We demonstrate that αB-Crystallin overexpression fosters HCC progression by inducing epithelial-mesenchymal transition (EMT) in HCC cells through activation of the extracellular-regulated protein kinase (ERK) cascade, which can counteract the effect of sorafenib. αB-Crystallin complexes with and elevates 14-3-3ζ protein, leading to up-regulation of ERK1/2 activity. Moreover, overexpression of αB-Crystallin in HCC cells induces EMT progression through an ERK1/2/Fra-1/slug signaling pathway. Clinically, our data reveal that overexpression of both αB-Crystallin and 14-3-3ζ correlates with the HCC poorest survival outcomes, and sorafenib response is impaired in patients with αB-Crystallin overexpression. CONCLUSION These data suggest that the αB-Crystallin-14-3-3ζ complex acts synergistically to promote HCC progression by constitutively activating ERK signaling. This study reveals αB-Crystallin as a potential therapeutic target for HCC and a biomarker for predicting sorafenib treatment response. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bonfiglio JJ, Inda C, Senin S, Maccarrone G, Refojo D, Giacomini D, Turck CW, Holsboer F, Arzt E, Silberstein S. B-Raf and CRHR1 internalization mediate biphasic ERK1/2 activation by CRH in hippocampal HT22 Cells. Mol Endocrinol 2013; 27:491-510. [PMID: 23371389 DOI: 10.1210/me.2012-1359] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
CRH is a key regulator of neuroendocrine, autonomic, and behavioral response to stress. CRH-stimulated CRH receptor 1 (CRHR1) activates ERK1/2 depending on intracellular context. In a previous work, we demonstrated that CRH activates ERK1/2 in limbic areas of the mouse brain (hippocampus and basolateral amygdala). ERK1/2 is an essential mediator of hippocampal physiological processes including emotional behavior, synaptic plasticity, learning, and memory. To elucidate the molecular mechanisms by which CRH activates ERK1/2 in hippocampal neurons, we used the mouse hippocampal cell line HT22. We document for the first time that ERK1/2 activation in response to CRH is biphasic, involving a first cAMP- and B-Raf-dependent early phase and a second phase that critically depends on CRHR1 internalization and β-arrestin2. By means of mass-spectrometry-based screening, we identified B-Raf-associated proteins that coimmunoprecipitate with endogenous B-Raf after CRHR1 activation. Using molecular and pharmacological tools, the functional impact of selected B-Raf partners in CRH-dependent ERK1/2 activation was dissected. These results indicate that 14-3-3 proteins, protein kinase A, and Rap1, are essential for early CRH-induced ERK1/2 activation, whereas dynamin and vimentin are required for the CRHR1 internalization-dependent phase. Both phases of ERK1/2 activation depend on calcium influx and are affected by calcium/calmodulin-dependent protein kinase II inactivation. Thus, this report describes the dynamics and biphasic nature of ERK1/2 activation downstream neuronal CRHR1 and identifies several new critical components of the CRHR1 signaling machinery that selectively controls the early and late phases of ERK1/2 activation, thus providing new potential therapeutic targets for stress-related disorders.
Collapse
Affiliation(s)
- Juan J Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQA Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Witzel F, Maddison L, Blüthgen N. How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches. Front Physiol 2012; 3:475. [PMID: 23267331 PMCID: PMC3527831 DOI: 10.3389/fphys.2012.00475] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/04/2012] [Indexed: 11/13/2022] Open
Abstract
Scaffolding proteins add a new layer of complexity to the dynamics of cell signaling. Above their basic function to bring several components of a signaling pathway together, recent experimental research has found that scaffolds influence signaling in a much more complex way: scaffolds can exert some catalytic function, influence signaling by allosteric mechanisms, are feedback-regulated, localize signaling activity to distinct regions of the cell or increase pathway fidelity. Here we review experimental and theoretical approaches that address the function of two MAPK scaffolds, Ste5, a scaffold of the yeast mating pathway and KSR1/2, a scaffold of the classical mammalian MAPK signaling pathway. For the yeast scaffold Ste5, detailed mechanistic models have been valuable for the understanding of its function. For scaffolds in mammalian signaling, however, models have been rather generic and sketchy. For example, these models predicted narrow optimal scaffold concentrations, but when revisiting these models by assuming typical concentrations, rather a range of scaffold levels optimally supports signaling. Thus, more realistic models are needed to understand the role of scaffolds in mammalian signal transduction, which opens a big opportunity for systems biology.
Collapse
Affiliation(s)
- Franziska Witzel
- Institute of Pathology, Charité-Universitätsmedizin Berlin Berlin, Germany ; Institute for Theoretical Biology, Humboldt University Berlin Berlin, Germany
| | | | | |
Collapse
|
39
|
Kramerov AA, Ahmed K, Ljubimov AV. Cell rounding in cultured human astrocytes and vascular endothelial cells upon inhibition of CK2 is mediated by actomyosin cytoskeleton alterations. J Cell Biochem 2012; 113:2948-56. [PMID: 22552886 DOI: 10.1002/jcb.24171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein kinase CK2 participates in a wide range of cellular events, including the regulation of cellular morphology and migration, and may be an important mediator of angiogenesis. We previously showed that in the retina, CK2 immunolocalizes mostly to vascular endothelium and astrocytes in association with the cytoskeleton. Additionally, CK2 inhibitors significantly reduced retinal neovascularization and stem cell recruitment in the mouse model of oxygen-induced proliferative retinopathy. We have also shown that CK2 and F-actin co-localized in actin stress fibers in microvascular endothelial cells, and that highly specific CK2 inhibitors caused cell rounding in astrocytes and microvascular endothelial cells, which was alleviated by serum that promotes spreading by Rho/Rho-kinase (RhoK) activation of myosin II. Therefore, we examined a possible role of CK2 in the regulation of actin-myosin II-based contractility. Treatment with CK2 inhibitors correlated with disassembly of actomyosin stress fibers and cell shape changes, including cytoplasmic retraction and process formation that were similar to those occurring during astrocyte stellation. Low doses of specific inhibitors of kinases (RhoK and MLCK) that phosphorylate myosin light chain (MLC) enhanced the effect of suboptimal CK2 inhibition on cell shape. Such striking stellation-like alteration was accompanied by decreased level of phospho-MLC, thus implying a CK2 role in regulation of actomyosin cytoskeleton. Our results suggest an important role of CK2 in the control of cell contractility and motility, which may account for suppressing effect of CK2 inhibition on retinal neovascularization. Together, our data implicate protein kinase CK2 for the first time in stellation-like morphological transformation.
Collapse
Affiliation(s)
- A A Kramerov
- Ophthalmology Research Laboratories, Department of Surgery and Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | | | | |
Collapse
|
40
|
Src inhibitors, PP2 and dasatinib, increase retinoic acid-induced association of Lyn and c-Raf (S259) and enhance MAPK-dependent differentiation of myeloid leukemia cells. Leukemia 2011; 26:1180-8. [PMID: 22182854 PMCID: PMC3310950 DOI: 10.1038/leu.2011.390] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
All-trans-retinoic-acid (ATRA)-induced differentiation of human myeloid leukemia cells is characterized by persistent MAPK signaling. Fragmentary data suggests Src family kinase (SFK) inhibitors enhance differentiation and thus have potential therapeutic value. The present study shows that SFK inhibitors PP2 and dasatinib enhance aspects of MAPK signaling and regulate a panel of differentiation markers including CD11b and p47phox. HL-60 and NB4 myeloid leukemia cells show accelerated ATRA-induced G1/0 arrest/differentiation with inhibitor co-treatment. We also identified components of a Lyn- and c-Raf-containing MAPK signaling complex augmented by the inhibitors. PP2 and dasatinib increased ATRA-induced expression of Lyn and c-Raf (total and c-RafpS259) and their interaction. The Lyn-associated serine/threonine kinase CK2 also complexed with c-Raf and c-RafpS259, and the KSR1 scaffold protein bound c-Raf, Lyn, and ERK. c-Raf/ERK association was increased by the inhibitors, which is significant since ERK may cause c-Raf C-terminal domain (CTD) phosphorylation in a putative feedback mechanism. Consistent with this, inhibitor treatment caused more CTD phosphorylation. Lyn knockdown decreased c-Raf CTD and S259 phosphorylation. This is the first evidence suggesting SFK inhibitors enhance ATRA-induced differentiation through a possible feedback loop involving KSR1-scaffolded c-Raf and ERK complexed with Lyn and CK2.
Collapse
|
41
|
Yue J, Shukla R, Accardi R, Zanella-Cleon I, Siouda M, Cros MP, Krutovskikh V, Hussain I, Niu Y, Hu S, Becchi M, Jurdic P, Tommasino M, Sylla BS. Cutaneous human papillomavirus type 38 E7 regulates actin cytoskeleton structure for increasing cell proliferation through CK2 and the eukaryotic elongation factor 1A. J Virol 2011; 85:8477-94. [PMID: 21697493 PMCID: PMC3165781 DOI: 10.1128/jvi.02561-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/06/2011] [Indexed: 01/13/2023] Open
Abstract
We previously reported that the oncoproteins E6 and E7 from cutaneous human papillomavirus type 38 (HPV38) can immortalize primary human keratinocytes in vitro and sensitize transgenic mice to develop skin cancer in vivo. Immunofluorescence staining revealed that human keratinocytes immortalized by HPV38 E6 and E7 display fewer actin stress fibers than do control primary keratinocyte cells, raising the possibility of a role of the viral oncoproteins in the remodeling of the actin cytoskeleton. In this study, we show that HPV38 E7 induces actin stress fiber disruption and that this phenomenon correlates with its ability to downregulate Rho activity. The downregulation of Rho activity by HPV38 E7 is mediated through the activation of the CK2-MEK-extracellular signal-regulated kinase (ERK) pathway. In addition, HPV38 E7 is able to induce actin fiber disruption by binding directly to eukaryotic elongation factor 1A (eEF1A) and abolishing its effects on actin fiber formation. Finally, we found that the downregulation of Rho activity by HPV38 E7 through the CK2-MEK-ERK pathway facilitates cell growth proliferation. Taken together, our data support the conclusion that HPV38 E7 promotes keratinocyte proliferation in part by negatively regulating actin cytoskeleton fiber formation through the CK2-MEK-ERK-Rho pathway and by binding to eEF1A and inhibiting its effects on actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Jiping Yue
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Ruchi Shukla
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Rosita Accardi
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Isabelle Zanella-Cleon
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, IFR 128 Biosciences, Lyon, France
| | - Maha Siouda
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Ishraq Hussain
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Yamei Niu
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Shiqiong Hu
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Michel Becchi
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, IFR 128 Biosciences, Lyon, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | - Bakary S. Sylla
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
42
|
|
43
|
Llobet D, Eritja N, Domingo M, Bergada L, Mirantes C, Santacana M, Pallares J, Macià A, Yeramian A, Encinas M, Moreno-Bueno G, Palacios J, Lewis RE, Matias-Guiu X, Dolcet X. KSR1 is overexpressed in endometrial carcinoma and regulates proliferation and TRAIL-induced apoptosis by modulating FLIP levels. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1529-43. [PMID: 21435442 DOI: 10.1016/j.ajpath.2010.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 11/25/2022]
Abstract
The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway participates in many processes altered in development and progression of cancer in human beings such as proliferation, transformation, differentiation, and apoptosis. Kinase suppressor of Ras 1 (KSR1) can interact with various kinases of the Raf/MEK/extracellular signal-regulated kinase pathway to enhance its activation. The role of KSR1 in endometrial carcinogenesis was investigated. cDNA and tissue microarrays demonstrated that expression of KSR1 was up-regulated in endometrial carcinoma. Furthermore, inhibition of KSR1 expression by specific small hairpin RNA resulted in reduction of both proliferation and anchorage-independent cell growth properties of endometrial cancer cells. Because inhibition of apoptosis has a pivotal role in endometrial carcinogenesis, the effects of KSR1 in regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis were investigated. KSR1 knock-down sensitized resistant endometrial cell lines to both TRAIL- and Fas-induced apoptosis. Sensitization to TRAIL and agonistic anti-Fas antibody was caused by down-regulation of FLIP (FLICE-inhibitory protein). Also investigated was the molecular mechanism by which KSR1 regulates FLIP protein levels. It was demonstrated that KSR1 small hairpin RNA did not affect FLIP transcription or degradation. Rather, FLIP down-regulation was caused by Fas-associated death domain protein-dependent inhibition of FLIP translation triggered after TRAIL stimulation in KSR1-silenced cells. Re-expression of heterologous KSR1 in cells with down-regulated endogenous KSR1 restored FLIP protein levels and TRAIL resistance. In conclusion, KSR1 regulates endometrial sensitivity to TRAIL by regulating FLIP levels.
Collapse
Affiliation(s)
- David Llobet
- Oncologic Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, Departament de Ciencies Mediques Basiques, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chao CC, Ma YL, Lee EHY. Brain-derived neurotrophic factor enhances Bcl-xL expression through protein kinase casein kinase 2-activated and nuclear factor kappa B-mediated pathway in rat hippocampus. Brain Pathol 2011; 21:150-62. [PMID: 20731656 DOI: 10.1111/j.1750-3639.2010.00431.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) was shown to produce its neuroprotective effect through extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol-3 kinase (PI3-K) signaling. But whether other pathways also mediate the neuroprotective effect of BDNF is less known. In this study, we found that direct administration of BDNF to rat hippocampal CA1 area dose-dependently increased the mRNA and protein levels of Bcl-xL. BDNF also increased protein kinase casein kinase II (CK2) activity and NF-κB phosphorylation at Ser529 dose-dependently. Further, transfection of the wild-type CK2α DNA to CA1 neurons increased nuclear factor kappa B (NF-κB) phosphorylation and Bcl-xL mRNA expression, whereas transfection of CK2α156A, the catalytically inactive mutant of CK2α, decreased these measures. Moreover, transfection of CK2α small interfering RNA (siRNA) blocked the enhancing effect of BDNF on NF-κB phosphorylation and Bcl-xL expression. These results were further confirmed by treatment of 4,5,6,7-tetrabromobenzotriazole (TBB), a specific CK2 inhibitor. Transfection of NF-κBS529A, the dominant negative mutant of NF-κB, prevented the enhancing effect of BDNF on Bcl-xL expression. More importantly, BDNF activation of CK2 is not affected by co-administration of the ERK1/2 inhibitor, PD98059, and the PI3-K inhibitor, LY294002. These results demonstrate a novel BDNF signaling pathway and provide an alternative therapeutic strategy for the protective effect of BDNF on hippocampal neurons in vivo.
Collapse
Affiliation(s)
- Chih C Chao
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
45
|
McKay MM, Ritt DA, Morrison DK. RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling. Curr Biol 2011; 21:563-8. [PMID: 21458265 PMCID: PMC3075323 DOI: 10.1016/j.cub.2011.02.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 01/05/2023]
Abstract
RAF kinase inhibitors can induce ERK cascade signaling by promoting dimerization of RAF family members in the presence of oncogenic or normally activated RAS. This interaction is mediated by a dimer interface region in the RAF kinase domain that is conserved in members of the ERK cascade scaffold family, kinase suppressor of RAS (KSR). In this study, we find that most RAF inhibitors also induce the binding of KSR1 to wild-type and oncogenic B-RAF proteins, including V600E B-RAF, but promote little complex formation between KSR1 and C-RAF. The inhibitor-induced KSR1/B-RAF interaction requires direct binding of the drug to B-RAF and is dependent on conserved dimer interface residues in each protein, but, unexpectedly, is not dependent on binding of B-RAF to activated RAS. Inhibitor-induced KSR/B-RAF complex formation can occur in the cytosol and is observed in normal mouse fibroblasts, as well as a variety of human cancer cell lines. Strikingly, we find that KSR1 competes with C-RAF for inhibitor-induced binding to B-RAF and, as a result, alters the effect of the inhibitors on ERK cascade signaling.
Collapse
Affiliation(s)
- Melissa M. McKay
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702
| | - Daniel A. Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
46
|
Baljuls A, Mahr R, Schwarzenau I, Müller T, Polzien L, Hekman M, Rapp UR. Single substitution within the RKTR motif impairs kinase activity but promotes dimerization of RAF kinase. J Biol Chem 2011; 286:16491-503. [PMID: 21454547 DOI: 10.1074/jbc.m110.194167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The serine/threonine kinase RAF is a central component of the MAPK cascade. Regulation of RAF activity is highly complex and involves recruitment to membranes and association with Ras and scaffold proteins as well as multiple phosphorylation and dephosphorylation events. Previously, we identified by molecular modeling an interaction between the N-region and the RKTR motif of the kinase domain in RAF and assigned a new function to this tetrapeptide segment. Here we found that a single substitution of each basic residue within the RKTR motif inhibited catalytic activity of all three RAF isoforms. However, the inhibition and phosphorylation pattern of C-RAF and A-RAF differed from B-RAF. Furthermore, substitution of the first arginine led to hyperphosphorylation and accumulation of A-RAF and C-RAF in plasma membrane fraction, indicating that this residue interferes with the recycling process of A-RAF and C-RAF but not B-RAF. In contrast, all RAF isoforms behave similarly with respect to the RKTR motif-dependent dimerization. The exchange of the second arginine led to exceedingly increased dimerization as long as one of the protomers was not mutated, suggesting that substitution of this residue with alanine may result in similar a structural rearrangement of the RAF kinase domain, as has been found for the C-RAF kinase domain co-crystallized with a dimerization-stabilizing RAF inhibitor. In summary, we provide evidence that each of the basic residues within the RKTR motif is indispensable for correct RAF function.
Collapse
Affiliation(s)
- Angela Baljuls
- Theodor-Boveri Institute of Bioscience, Department of Microbiology, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
48
|
Kramerov AA, Golub AG, Bdzhola VG, Yarmoluk SM, Ahmed K, Bretner M, Ljubimov AV. Treatment of cultured human astrocytes and vascular endothelial cells with protein kinase CK2 inhibitors induces early changes in cell shape and cytoskeleton. Mol Cell Biochem 2011; 349:125-37. [PMID: 21125314 PMCID: PMC3426611 DOI: 10.1007/s11010-010-0667-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/15/2010] [Indexed: 01/01/2023]
Abstract
Ubiquitous protein kinase CK2 is a key regulator of cell migration, proliferation and tumor growth. CK2 is abundant in retinal astrocytes, and its inhibition suppresses retinal neovascularization in a mouse retinopathy model. In human astrocytes, CK2 co-distributes with GFAP-containing intermediate filaments, which implies its association with cytoskeleton. Contrary to astrocytes, CK2 is co-localized in microvascular endothelial cells (HBMVEC) with microtubules and actin stress fibers, but not with vimentin-containing intermediate filaments. Specific CK2 inhibitors (TBB, TBI, TBCA and DMAT) and nine novel CK2 inhibiting compounds (TID43, TID46, Quinolone-7, Quinolone-39, FNH28, FNH62, FNH64, FNH68 and FNH74) were tested at 10-200 μM for their ability to induce morphological alterations in cultured human astrocytes (HAST-40), and HBMVEC (For explanation of the inhibitor names, see "Methods" section). CK2 inhibitors caused dramatic changes in shape of cultured cells with effective inhibitor concentrations between 50 and 100 μM. Attached cells retracted, acquired shortened processes, and eventually rounded up and detached. CK2 inhibitor-induced morphological alterations were completely reversible and were not blocked by caspase inhibition. However, longer treatment or higher inhibitor concentration did cause apoptosis. The speed and potency of the CK2 inhibitors effects on cell shape and adhesion were inversely correlated with serum concentration. Western analyses showed that TBB and TBCA elicited a significant (about twofold) increase in the activation of p38 and ERK1/2 MAP kinases that may be involved in cytoskeleton regulation. This novel early biological cell response to CK2 inhibition may underlie the anti-angiogenic effect of CK2 suppression in the retina.
Collapse
Affiliation(s)
- A A Kramerov
- Ophthalmology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Udell CM, Rajakulendran T, Sicheri F, Therrien M. Mechanistic principles of RAF kinase signaling. Cell Mol Life Sci 2011; 68:553-65. [PMID: 20820846 PMCID: PMC11114552 DOI: 10.1007/s00018-010-0520-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 12/19/2022]
Abstract
The RAF family of kinases are key components acting downstream of receptor tyrosine kinases and cells employ several distinct mechanisms to strictly control their activity. RAF transitions from an inactive state, where the N-terminal regulatory region binds intramolecularly to the C-terminal kinase domain, to an open state capable of executing the phosphoryl transfer reaction. This transition involves changes both within and between the protein domains in RAF. Many different proteins regulate the transition between inactive and active states of RAF, including RAS and KSR, which are arguably the two most prominent regulators of RAF function. Recent developments have added several new twists to our understanding of RAF regulation. Among others, dimerization of the RAF kinase domain is emerging as a crucial step in the RAF activation process. The multitude of regulatory protein-protein interactions involving RAF remains a largely untapped area for therapeutic applications.
Collapse
Affiliation(s)
- Christian M. Udell
- Laboratory of Intracellular Signaling, Département de pathologie et de biologie cellulaire, Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 Canada
| | - Thanashan Rajakulendran
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Frank Sicheri
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Marc Therrien
- Laboratory of Intracellular Signaling, Département de pathologie et de biologie cellulaire, Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 Canada
| |
Collapse
|
50
|
Stark F, Pfannstiel J, Klaiber I, Raabe T. Protein kinase CK2 links polyamine metabolism to MAPK signalling in Drosophila. Cell Signal 2011; 23:876-82. [PMID: 21262350 DOI: 10.1016/j.cellsig.2011.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/13/2011] [Indexed: 01/22/2023]
Abstract
MAPK signalling is a complex process not only requiring the core components Raf, MEK and Erk, but also many proteins like the scaffold protein KSR and several kinases to specifically localize, modulate and fine-tune the outcome of the pathway in a cell context specific manner. In mammals, protein kinase CK2 was shown to bind to the scaffold protein KSR and to phosphorylate Raf proteins at a conserved serine residue in the negative-charge regulatory (N-) region, thereby facilitating maximal activity of the MAPK signalling pathway. In this work we show that in Drosophila CK2 is also bound to KSR. However, despite the presence of a corresponding serine residue in the N-region of DRaf, CK2-mediated phosphorylation of DRaf takes place on a serine residue at the N-terminus and is required for Erk activation. Previous work identified polyamines as regulators of CK2 kinase activity. The main cellular source of polyamines is the catabolism of amino acids. Evidence is provided that phosphorylation of DRaf by CK2 is modulated by polyamines, with spermine being the most potent inhibitor of the reaction. We suggest that CK2 is able to monitor intracellular polyamine levels and translates this information to modulate MAPK signalling.
Collapse
Affiliation(s)
- Felix Stark
- Universität Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung, Versbacherstr. 5, D-97078 Würzburg, Germany
| | | | | | | |
Collapse
|