1
|
Pan C, Hou Y, Hou Y, Wang R, Qian M, Bai X, Liang M, Wang J, Liu J, Wei Q, Pan Z, Wang T, Hu C, Xiang K, Yang C, Wang C, Chen H, Zhang J. Integrated analysis reveals that miR-548ab promotes the development of obesity and T2DM. J Genet Genomics 2025; 52:231-244. [PMID: 39608671 DOI: 10.1016/j.jgg.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Dysregulation of microRNA (miRNA) expression following the development of obesity is closely linked to the onset of type 2 diabetes mellitus (T2DM). Identifying differentially expressed miRNAs and their roles in regulating glucose metabolism will provide a theoretical foundation for the molecular mechanisms underlying obesity-induced T2DM. Here, we perform a genome-wide association study involving 5 glycolipid metabolism traits in 1783 Kazakh and 1198 Uyghur individuals to identify miRNAs associated with fasting plasma glucose (FPG) levels. A miR-548ab mimic and inhibitor are administered to hepatocytes and adipocytes, as well as obese and diabetic mice, to determine miR-548ab-related downstream signalling pathways. The effects of miR-548ab on glucose metabolism are validated using the glucose tolerance test and insulin tolerance test. Collectively, these results indicate that miR-548ab is significantly associated with FPG levels and obesity-related T2DM in both Kazakh and Uyghur populations. The miR-548ab-GULP1/SLC25A21-GLUT4 network exerts regulatory effects on glucose metabolism, obesity, and T2DM, positioning it as a candidate risk factor, potential diagnostic marker, and therapeutic target for obesity-induced T2DM. Additionally, through evolutionary analysis, the authentic variants or haplotypes of GULP1 and SLC25A21 are categorized according to their genetic susceptibility to T2DM. The miR-548ab inhibitor shows beneficial effects in obese and diabetic mice.
Collapse
Affiliation(s)
- Chongge Pan
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yali Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanting Hou
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ruizhen Wang
- China National Center for Bioinformation, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyu Qian
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xue Bai
- China National Center for Bioinformation, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Maodi Liang
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jingzhou Wang
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jie Liu
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qianqian Wei
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ziyan Pan
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ting Wang
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Chenyu Hu
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Kun Xiang
- The First People's Hospital of Yunnan Province, Kunming, Yunnan 650223, China
| | - Chun Yang
- China National Center for Bioinformation, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuizhe Wang
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Hua Chen
- China National Center for Bioinformation, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Jun Zhang
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
2
|
Wee Y, Wang J, Wilson EC, Rich CP, Rogers A, Tong Z, DeGroot E, Gopal YNV, Davies MA, Ekiz HA, Tay JKH, Stubben C, Boucher KM, Oviedo JM, Fairfax KC, Williams MA, Holmen SL, Wolff RK, Grossmann AH. Tumour-intrinsic endomembrane trafficking by ARF6 shapes an immunosuppressive microenvironment that drives melanomagenesis and response to checkpoint blockade therapy. Nat Commun 2024; 15:6613. [PMID: 39098861 PMCID: PMC11298541 DOI: 10.1038/s41467-024-50881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Tumour-host immune interactions lead to complex changes in the tumour microenvironment (TME), impacting progression, metastasis and response to therapy. While it is clear that cancer cells can have the capacity to alter immune landscapes, our understanding of this process is incomplete. Herein we show that endocytic trafficking at the plasma membrane, mediated by the small GTPase ARF6, enables melanoma cells to impose an immunosuppressive TME that accelerates tumour development. This ARF6-dependent TME is vulnerable to immune checkpoint blockade therapy (ICB) but in murine melanoma, loss of Arf6 causes resistance to ICB. Likewise, downregulation of ARF6 in patient tumours correlates with inferior overall survival after ICB. Mechanistically, these phenotypes are at least partially explained by ARF6-dependent recycling, which controls plasma membrane density of the interferon-gamma receptor. Collectively, our findings reveal the importance of endomembrane trafficking in outfitting tumour cells with the ability to shape their immune microenvironment and respond to immunotherapy.
Collapse
Affiliation(s)
- Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Junhua Wang
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Oncologic Sciences, University of Utah, Salt Lake City, UT, USA
| | - Emily C Wilson
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Coulson P Rich
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Aaron Rogers
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Zongzhong Tong
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Evelyn DeGroot
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y N Vashisht Gopal
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, Urla, Izmir, Turkey
| | - Joshua K H Tay
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Kenneth M Boucher
- Cancer Biostatistics Shared Resource, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Juan M Oviedo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Keke C Fairfax
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Matthew A Williams
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Oncologic Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Roger K Wolff
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, Salt Lake City, UT, USA.
- Department of Oncologic Sciences, University of Utah, Salt Lake City, UT, USA.
- Providence Cancer Institute of Oregon, Earle A. Chiles Research Institute, Portland, OR, USA.
| |
Collapse
|
3
|
Zhao L, Liu J, Li K, Zhang C, Chen T, Liu Z, Tang Y, Hu X, Shi A, Shu L, Huang S, Lian S, Zhang M, Li H, Sun J, Yu X, Zhang Z, Zhang Z, Xu Y. PTPN9 dephosphorylates FGFR2 pY656/657 through interaction with ACAP1 and ameliorates pemigatinib effect in cholangiocarcinoma. Hepatology 2024; 79:798-812. [PMID: 37505213 DOI: 10.1097/hep.0000000000000552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
ABSTRACT AND AIM Cholangiocarcinoma (CCA) is a highly aggressive and lethal cancer that originates from the biliary epithelium. Systemic treatment options for CCA are currently limited, and the first targeted drug of CCA, pemigatinib, emerged in 2020 for CCA treatment by inhibiting FGFR2 phosphorylation. However, the regulatory mechanism of FGFR2 phosphorylation is not fully elucidated. APPROACH AND RESULTS Here we screened the FGFR2-interacting proteins and showed that protein tyrosine phosphatase (PTP) N9 interacts with FGFR2 and negatively regulates FGFR2 pY656/657 . Using phosphatase activity assays and modeling the FGFR2-PTPN9 complex structure, we identified FGFR2 pY656/657 as a substrate of PTPN9, and found that sec. 14p domain of PTPN9 interacts with FGFR2 through ACAP1 mediation. Coexpression of PTPN9 and ACAP1 indicates a favorable prognosis for CCA. In addition, we identified key amino acids and motifs involved in the sec. 14p-APCP1-FGFR2 interaction, including the "YRETRRKE" motif of sec. 14p, Y471 of PTPN9, as well as the PH and Arf-GAP domain of ACAP1. Moreover, we discovered that the FGFR2 I654V substitution can decrease PTPN9-FGFR2 interaction and thereby reduce the effectiveness of pemigatinib treatment. Using a series of in vitro and in vivo experiments including patient-derived xenografts (PDX), we showed that PTPN9 synergistically enhances pemigatinib effectiveness and suppresses CCA proliferation, migration, and invasion by inhibiting FGFR2 pY656/657 . CONCLUSIONS Our study identifies PTPN9 as a negative regulator of FGFR2 phosphorylation and a synergistic factor for pemigatinib treatment. The molecular mechanism, oncogenic function, and clinical significance of the PTPN9-ACAP1-FGFR2 complex are revealed, providing more evidence for CCA precision treatment.
Collapse
Affiliation(s)
- Liming Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Tianli Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoqiang Hu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuo Lian
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minghui Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital Affiliated to Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhongyin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Zhai Y, Chan WWR, Li W, Lau KF. ARNO is recruited by the neuronal adaptor FE65 to potentiate ARF6-mediated neurite outgrowth. Open Biol 2022; 12:220071. [PMID: 36168805 PMCID: PMC9516341 DOI: 10.1098/rsob.220071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation factor 6 (ARF6) is a small GTPase that has a variety of neuronal functions including stimulating neurite outgrowth, a crucial process for the establishment and maintenance of neural connectivity. As impaired and atrophic neurites are often observed in various brain injuries and neurological diseases, understanding the intrinsic pathways that stimulate neurite outgrowth may provide insights into developing strategies to trigger the reconnection of injured neurons. The neuronal adaptor FE65 has been shown to interact with ARF6 and potentiate ARF6-mediated neurite outgrowth. However, the precise mechanism that FE65 activates ARF6 remains unclear, as FE65 does not possess a guanine nucleotide exchange factor (GEF) domain/function. Here, we show that FE65 interacts with the ARF6 GEF, namely the ARF nucleotide-binding site opener (ARNO). Moreover, a complex consisting of ARNO, ARF6 and FE65 is detected. Notably, FE65 potentiates the stimulatory effect of ARNO on ARF6-mediated neurite outgrowth, and the effect of FE65 is abrogated by an FE65 mutation that disrupts FE65–ARNO interaction. Additionally, the intramolecular interaction for mediating the autoinhibited conformation of ARNO is attenuated by FE65. Moreover, FE65 potentiates the effects of wild-type ARNO, but not the monomeric mutant, suggesting an association between FE65 and ARNO dimerization. Collectively, we demonstrate that FE65 binds to and activates ARNO and, consequently, potentiates ARF6-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Yuqi Zhai
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Wen Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China.,Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| |
Collapse
|
5
|
Szondy Z, Al‐Zaeed N, Tarban N, Fige É, Garabuczi É, Sarang Z. Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: therapeutic implications. J Cachexia Sarcopenia Muscle 2022; 13:1961-1973. [PMID: 35666022 PMCID: PMC9397555 DOI: 10.1002/jcsm.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a progressive loss of muscle mass and strength with a risk of adverse outcomes such as disability, poor quality of life, and death. Increasing evidence indicates that diminished ability of the muscle to activate satellite cell-dependent regeneration is one of the factors that might contribute to its development. Skeletal muscle regeneration following myogenic cell death results from the proliferation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibres. Satellite cell differentiation is not a satellite cell-autonomous process but depends on signals provided by the surrounding cells. Infiltrating macrophages play a key role in the process partly by clearing the necrotic cell debris, partly by producing cytokines and growth factors that guide myogenesis. At the beginning of the muscle regeneration process, macrophages are pro-inflammatory, and the cytokines produced by them trigger the proliferation and differentiation of satellite cells. Following the uptake of dead cells, however, a transcriptionally regulated phenotypic change (macrophage polarization) is induced in them resulting in their transformation into healing macrophages that guide resolution of inflammation, completion of myoblast differentiation, myoblast fusion and growth, and return to homeostasis. Impaired efferocytosis results in delayed cell death clearance, delayed macrophage polarization, prolonged inflammation, and impaired muscle regeneration. Thus, proper efferocytosis by macrophages is a determining factor during muscle repair. Here we review that both efferocytosis and myogenesis are dependent on the cell surface phosphatidylserine (PS), and surprisingly, these two processes share a number of common PS receptors and signalling pathways. Based on these findings, we propose that stimulating the function of PS receptors for facilitating muscle repair following injury could be a successful approach, as it would enhance efferocytosis and myogenesis simultaneously. Because increasing evidence indicates a pathophysiological role of impaired efferocytosis in the development of chronic inflammatory conditions, as well as in impaired muscle regeneration both contributing to the development of sarcopenia, improving efferocytosis should be considered also in its management. Again applying or combining those treatments that target PS receptors would be expected to be the most effective, because they would also promote myogenesis. A potential PS receptor-triggering candidate molecule is milk fat globule-EGF-factor 8 (MFG-E8), which not only stimulates PS-dependent efferocytosis and myoblast fusion but also promotes extracellular signal-regulated kinase (ERK) and Akt activation-mediated cell proliferation and cell cycle progression in myoblasts.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nour Al‐Zaeed
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nastaran Tarban
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Éva Fige
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
| | - Éva Garabuczi
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
6
|
Borghesan E, Smith EP, Myeni S, Binder K, Knodler LA, Celli J. A Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J 2021; 40:e107664. [PMID: 34423453 PMCID: PMC8488576 DOI: 10.15252/embj.2021107664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum‐derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system‐mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans‐Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase‐activating Protein (GAP) ACAP1 to dysregulate Arf6‐/Rab8a‐dependent transport within the recycling endosome, which resulted in accretion of TGN‐associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.
Collapse
Affiliation(s)
- Elizabeth Borghesan
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Erin P Smith
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Sebenzile Myeni
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kelsey Binder
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Jean Celli
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA.,Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
7
|
Zhang J, Zhang Q, Zhang J, Wang Q. Expression of ACAP1 Is Associated with Tumor Immune Infiltration and Clinical Outcome of Ovarian Cancer. DNA Cell Biol 2020; 39:1545-1557. [PMID: 32456571 DOI: 10.1089/dna.2020.5596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ADP-ribosylation factor (Arf) GTPase-activating protein (GAP) with coiled-coil, ankyrin repeat and PH domains 1 (ACAP1) is an Arf6 GAP that regulates membrane trafficking and is critical for the migratory potential of cells. However, the roles of ACAP1 have not been fully explored and its association with clinicopathological features in ovarian cancer is still unknown. In this study, we systematically analyzed multiple databases, including TISIDB, Tumor Immune Estimation Resource (TIMER2.0), Gene Expression Omnibus (GEO), CORTECON, Kaplan-Meier Plotter and LinkedOmics platforms to reveal the clinical significance and function of ACAP1 in ovarian cancer. We found that the expression of ACAP1 was upregulated in ovarian cancer and high ACAP1 expression predicted poor prognosis. Our data demonstrated that the expression and methylation status of ACAP1 were strongly correlated with immune infiltration levels, immunomodulators, and chemokines. Gene set enrichment analysis (GSEA) analysis also showed that the mechanism of ACAP1 in regulating ovarian cancer was related to a variety of immune-related pathways. In addition, we also revealed that the expression of ACAP1 was altered during cell differentiation and associated with cancer cell stemness markers. Our study highlights the clinical significance of ACAP1 in ovarian cancer and provides insight into the novel function of ACAP1 in regulation of tumor immune microenvironment and cancer cell stemness.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinyi Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Integrated transcriptomic and epigenomic analysis of ovarian cancer reveals epigenetically silenced GULP1. Cancer Lett 2018; 433:242-251. [PMID: 29964205 DOI: 10.1016/j.canlet.2018.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
Many epigenetically inactivated genes involved in ovarian cancer (OC) development and progression remain to be identified. In this study we undertook an integrated approach that consisted of identification of genome-wide expression patterns of primary OC samples and normal ovarian surface epithelium along with a pharmacologic unmasking strategy using 3 OC and 3 immortalized normal ovarian epithelial cell lines. Our filtering scheme identified 43 OC specific methylated genes and among the 5 top candidates (GULP1, CLIP4, BAMBI, NT5E, TGFβ2), we performed extended studies of GULP1. In a training set, we identified GULP1 methylation in 21/61 (34%) of cases with 100% specificity. In an independent cohort, the observed methylation was 40% (146/365) in OC, 12.5% (2/16) in borderline tumors, 11% (2/18) in cystadenoma and 0% (0/13) in normal ovarian epithelium samples. GULP1 methylation was associated with clinicopathological parameters such as stage III/IV (p = 0.001), poorly differentiated grade (p = 0.033), residual disease (p < 0.0003), worse overall (p = 0.02) and disease specific survival (p = 0.01). Depletion of GULP1 in OC cells led to increased pro-survival signaling, inducing survival and colony formation, whereas reconstitution of GULP1 negated these effects, suggesting that GULP1 is required for maintaining cellular growth control.
Collapse
|
9
|
GULP1/CED-6 ameliorates amyloid-β toxicity in a Drosophila model of Alzheimer's disease. Oncotarget 2017; 8:99274-99283. [PMID: 29245900 PMCID: PMC5725091 DOI: 10.18632/oncotarget.20062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/30/2017] [Indexed: 01/24/2023] Open
Abstract
Amyloidogenic processing of APP by β- and γ-secretases leads to the generation of amyloid-β peptide (Aβ), and the accumulation of Aβ in senile plaques is a hallmark of Alzheimer’s disease (AD). Understanding the mechanisms of APP processing is therefore paramount. Increasing evidence suggests that APP intracellular domain (AICD) interacting proteins influence APP processing. In this study, we characterized the overexpression of AICD interactor GULP1 in a Drosophila AD model expressing human BACE and APP695. Transgenic GULP1 significantly lowered the levels of both Aβ1-40 and Aβ1-42 without decreasing the BACE and APP695 levels. Overexpression of GULP1 also reduced APP/BACE-mediated retinal degeneration, rescued motor dysfunction and extended longevity of the flies. Our results indicate that GULP1 regulate APP processing and reduce neurotoxicity in a Drosophila AD model.
Collapse
|
10
|
Guénette S, Strecker P, Kins S. APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins. Front Mol Neurosci 2017; 10:87. [PMID: 28424586 PMCID: PMC5371672 DOI: 10.3389/fnmol.2017.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
Understanding the molecular mechanisms underlying amyloid precursor protein family (APP/APP-like proteins, APLP) function in the nervous system can be achieved by studying the APP/APLP interactome. In this review article, we focused on intracellular APP interacting proteins that bind the YENPTY internalization motif located in the last 15 amino acids of the C-terminal region. These proteins, which include X11/Munc-18-interacting proteins (Mints) and FE65/FE65Ls, represent APP cytosolic binding partners exhibiting different neuronal functions. A comparison of FE65 and APP family member mutant mice revealed a shared function for APP/FE65 protein family members in neurogenesis and neuronal positioning. Accumulating evidence also supports a role for membrane-associated APP/APLP proteins in synapse formation and function. Therefore, it is tempting to speculate that APP/APLP C-terminal interacting proteins transmit APP/APLP-dependent signals at the synapse. Herein, we compare our current knowledge of the synaptic phenotypes of APP/APLP mutant mice with those of mice lacking different APP/APLP interaction partners and discuss the possible downstream effects of APP-dependent FE65/FE65L or X11/Mint signaling on synaptic vesicle release, synaptic morphology and function. Given that the role of X11/Mint proteins at the synapse is well-established, we propose a model highlighting the role of FE65 protein family members for transduction of APP/APLP physiological function at the synapse.
Collapse
Affiliation(s)
| | - Paul Strecker
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| | - Stefan Kins
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| |
Collapse
|
11
|
Banerjee H, Bazemore B, Barfield A, Crummity D, Krauss C, Payne G, Rousch J, Manglik V. A Study to Investigate the Role of GULP/ CED 6 Gene in "Eat Me" Signaling in Cellular Efferocytosis and Immunosurveillance. IMMUNOLOGICAL DISORDERS & IMMUNOTHERAPY 2016; 1:109. [PMID: 28286882 PMCID: PMC5345489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this report, investigations were done to study human GULP/ CED 6 genes role in presenting cancer cells to scavenger cells. CED 6 SiRNA was used to knock out the gene in Astrocytoma (HTB-12) cell lines to study its effects on expression of various "eat me" signals on these cells including Phosphatidyl serine (PtdSer) expression, nitric oxide (NO) signaling and Leukotrine B4 (LTB4) expression and Caspase 3 activation. Investigations were done by fluorescence microscopy techniques, ELISA assay and colorimetric assays using a standard microplate reader and spectrophotometer. Initial results showed all the above mentioned "eat me" signals were significantly decreased in CED 6 knock out cell lines. Therefore CED 6 gene must have a role in cancer cell clearance, pathway involved in the cross talk between CED 6 and other genes in this process is a matter of farther investigation.
Collapse
Affiliation(s)
- H Banerjee
- Corresponding author: Banerjee H, Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus, University of North Carolina, Elizabeth City, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sullivan CS, Scheib JL, Ma Z, Dang RP, Schafer JM, Hickman FE, Brodsky FM, Ravichandran KS, Carter BD. The adaptor protein GULP promotes Jedi-1-mediated phagocytosis through a clathrin-dependent mechanism. Mol Biol Cell 2014; 25:1925-36. [PMID: 24743597 PMCID: PMC4055271 DOI: 10.1091/mbc.e13-11-0658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
During the development of the peripheral nervous system, the large number of apoptotic neurons generated are phagocytosed by glial precursor cells. This clearance is mediated, in part, through the mammalian engulfment receptor Jedi-1. However, the mechanisms by which Jedi-1 mediates phagocytosis are poorly understood. Here we demonstrate that Jedi-1 associates with GULP, the mammalian homologue of CED-6, an adaptor protein required for phagocytosis mediated by the nematode engulfment receptor CED-1. Silencing GULP or mutating the NPXY motif in Jedi-1, which is required for GULP binding, prevents Jedi-1-mediated phagocytosis. How GULP promotes engulfment is not known. Of interest, we find that Jedi-1-induced phagocytosis requires GULP binding to clathrin heavy chain (CHC). During engulfment, CHC is tyrosine phosphorylated, which is required for Jedi-mediated engulfment. Both phosphoclathrin and actin accumulate around engulfed microspheres. Furthermore, knockdown of CHC in HeLa cells prevents Jedi-1-mediated engulfment of microspheres, and knockdown in glial precursors prevents the engulfment of apoptotic neurons. Taken together, these results reveal that Jedi-1 signals through recruitment of GULP, which promotes phagocytosis through a noncanonical phosphoclathrin-dependent mechanism.
Collapse
Affiliation(s)
- Chelsea S Sullivan
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jami L Scheib
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Zhong Ma
- Center for Cell Clearance and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Rajan P Dang
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Johanna M Schafer
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Francis E Hickman
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, Department of Microbiology and Immunology, and Department of Pharmaceutical Chemistry, G. W. Hooper Foundation, University of California, San Francisco, San Francisco, CA 94143
| | - Kodi S Ravichandran
- Center for Cell Clearance and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
13
|
Subramanian M, Hayes CD, Thome JJ, Thorp E, Matsushima GK, Herz J, Farber DL, Liu K, Lakshmana M, Tabas I. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J Clin Invest 2014; 124:1296-308. [PMID: 24509082 DOI: 10.1172/jci72051] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/21/2013] [Indexed: 01/02/2023] Open
Abstract
The phagocytosis of apoptotic cells (ACs), or efferocytosis, by DCs is critical for self-tolerance and host defense. Although many efferocytosis-associated receptors have been described in vitro, the functionality of these receptors in vivo has not been explored in depth. Using a spleen efferocytosis assay and targeted genetic deletion in mice, we identified a multiprotein complex--composed of the receptor tyrosine kinase AXL, LDL receptor-related protein-1 (LRP-1), and RAN-binding protein 9 (RANBP9)--that mediates DC efferocytosis and antigen cross-presentation. We found that AXL bound ACs, but required LRP-1 to trigger internalization, in murine CD8α+ DCs and human-derived DCs. AXL and LRP-1 did not interact directly, but relied on RANBP9, which bound both AXL and LRP-1, to form the complex. In a coculture model of antigen presentation, the AXL/LRP-1/RANBP9 complex was used by DCs to cross-present AC-associated antigens to T cells. Furthermore, in a murine model of herpes simplex virus-1 infection, mice lacking DC-specific LRP-1, AXL, or RANBP9 had increased AC accumulation, defective viral antigen-specific CD8+ T cell activation, enhanced viral load, and decreased survival. The discovery of this multiprotein complex that mediates functionally important DC efferocytosis in vivo may have implications for future studies related to host defense and DC-based vaccines.
Collapse
|
14
|
Cheung HNM, Dunbar C, Mórotz GM, Cheng WH, Chan HYE, Miller CCJ, Lau KF. FE65 interacts with ADP-ribosylation factor 6 to promote neurite outgrowth. FASEB J 2013; 28:337-49. [PMID: 24056087 DOI: 10.1096/fj.13-232694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.
Collapse
Affiliation(s)
- Hei Nga Maggie Cheung
- 1School of Life Sciences, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Moravec R, Conger KK, D'Souza R, Allison AB, Casanova JE. BRAG2/GEP100/IQSec1 interacts with clathrin and regulates α5β1 integrin endocytosis through activation of ADP ribosylation factor 5 (Arf5). J Biol Chem 2012; 287:31138-47. [PMID: 22815487 DOI: 10.1074/jbc.m112.383117] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP ribosylation factors (Arfs) are small GTP-binding proteins known for their role in vesicular transport, where they nucleate the assembly of coat protein complexes at sites of carrier vesicle formation. Similar to other GTPases, Arfs require guanine nucleotide exchange factors to catalyze GTP loading and activation. One subfamily of ArfGEFs, the BRAGs, has been shown to activate Arf6, which acts in the endocytic pathway to control the trafficking of a subset of cargo proteins including integrins. We have previously shown that BRAG2 modulates cell adhesion by regulating integrin surface expression. Here, we show that, in addition to Arf6, endogenous BRAG2 also activates the class II Arfs, Arf4 and Arf5, and that surprisingly, it is Arf5 that mediates integrin internalization. We observed that cell spreading on fibronectin is enhanced upon inhibition of BRAG2 or Arf5 but not Arf6. Similarly, spreading in BRAG2-depleted cells is reverted by expression of a rapid cycling Arf5 mutant (T161A) but not by a corresponding Arf6 construct (T157A). We also show that BRAG2 binds clathrin and the AP-2 adaptor complex and that both BRAG2 and Arf5 localize to clathrin-coated pits at the plasma membrane. Consistent with these observations, depletion of Arf5, but not Arf6 or Arf4, slows internalization of β1 integrins without affecting transferrin receptor uptake. Together, these findings indicate that BRAG2 acts at clathrin-coated pits to promote integrin internalization by activating Arf5 and suggest a previously unrecognized role for Arf5 in clathrin-mediated endocytosis of specific cargoes.
Collapse
Affiliation(s)
- Radim Moravec
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
FE65 is reported to act as an adaptor protein with several protein-interaction domains, including one WW domain and two phosphotyrosine interaction/binding domains. Through these binding domains, FE65 was considered to recruit various binding partners together to form functional complexes in a certain cellular compartment. In this study, we demonstrated that Rac1, a member of the Rho family GTPases, bound with FE65. We also elucidated that Rac1 inhibitor significantly suppressed FE65 expression, and Rac1 small interfering RNA transduction significantly decreased FE65 expression. FE65 small interfering RNA, however, did not influence Rac1 expression and its activity. Taken together, our results reveal that Rac1 interacts with FE65, and Rac1 activity regulates FE65 expression.
Collapse
|
17
|
Ma CIJ, Martin C, Ma Z, Hafiane A, Dai M, Lebrun JJ, Kiss RS. Engulfment protein GULP is regulator of transforming growth factor-β response in ovarian cells. J Biol Chem 2012; 287:20636-51. [PMID: 22451657 DOI: 10.1074/jbc.m111.314997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor β (TGF-β) is a key regulatory molecule with pleiotropic effects on cell growth, migration, and invasion. As a result, impairment of proper TGF-β signaling is central to tumorigenesis and metastasis. The TGF-β receptor V (TGFBRV or LRP1) has been shown to be responsible for TGF-β-mediated cell growth inhibition in Chinese hamster ovary (CHO) cells. The LRP1 adapter protein GULP mediates internalization of the various LRP1-specific ligands, and we hypothesize that GULP acts as a novel regulator of TGF-β signaling in ovarian cells. CHO cells that overexpress exogenous GULP (FL) demonstrate enhancement in growth inhibition, migration, and invasion from TGF-β treatment, whereas cells that lack GULP (AS) show impairment of growth inhibition and decreased migration and invasion. The enhanced TGF-β response in FL cells was confirmed by a prolonged TGF-β-induced SMAD3 phosphorylation, whereas a shortening of the phosphorylation event is observed in AS cells. Mechanistically, the presence of GULP retains the TGF-β in a signaling-competent early endosome for enhanced signaling. To address this mechanism in a physiological setting, TGF-β insensitive ovarian adenocarcinoma cells (HEY) have a very low GULP expression level, similar to the observation made in a wide selection of human ovarian adenocarcinomas. Transfection of GULP into the HEY cells restored the TGF-β responsiveness, as measured by SMAD3 phosphorylation and impairment of cell growth. Because GULP expression positively regulates TGF-β signaling leading to growth inhibition, this may represent an attractive target to achieve TGF-β responsiveness in ovarian cells.
Collapse
Affiliation(s)
- Cheng-I J Ma
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Jha A, Watkins SC, Traub LM. The apoptotic engulfment protein Ced-6 participates in clathrin-mediated yolk uptake in Drosophila egg chambers. Mol Biol Cell 2012; 23:1742-64. [PMID: 22398720 PMCID: PMC3338440 DOI: 10.1091/mbc.e11-11-0939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During oogenesis in Drosophila, the phagocytic engulfment protein Ced-6 recognizes the atypical endocytic sorting signal within the vitellogenin receptor Yolkless. Because Ced-6 displays all of the features of an authentic clathrin adaptor, an unrecognized clathrin dependence for Ced-6/Gulp operation during phagocytosis is possible. Clathrin-mediated endocytosis and phagocytosis are both selective surface internalization processes but have little known mechanistic similarity or interdependence. Here we show that the phosphotyrosine-binding (PTB) domain protein Ced-6, a well-established phagocytosis component that operates as a transducer of so-called “eat-me” signals during engulfment of apoptotic cells and microorganisms, is expressed in the female Drosophila germline and that Ced-6 expression correlates with ovarian follicle development. Ced-6 exhibits all the known biochemical properties of a clathrin-associated sorting protein, yet ced-6–null flies are semifertile despite massive accumulation of soluble yolk precursors in the hemolymph. This is because redundant sorting signals within the cytosolic domain of the Drosophila vitellogenin receptor Yolkless, a low density lipoprotein receptor superfamily member, occur; a functional atypical dileucine signal binds to the endocytic AP-2 clathrin adaptor directly. Nonetheless, the Ced-6 PTB domain specifically recognizes the noncanonical Yolkless FXNPXA sorting sequence and in HeLa cells promotes the rapid, clathrin-dependent uptake of a Yolkless chimera lacking the distal dileucine signal. Ced-6 thus operates in vivo as a clathrin adaptor. Because the human Ced-6 orthologue GULP similarly binds to clathrin machinery, localizes to cell surface clathrin-coated structures, and is enriched in placental clathrin-coated vesicles, new possibilities for Ced-6/Gulp operation during phagocytosis must be considered.
Collapse
Affiliation(s)
- Anupma Jha
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
19
|
Weighted change-point method for detecting differential gene expression in breast cancer microarray data. PLoS One 2012; 7:e29860. [PMID: 22276133 PMCID: PMC3262809 DOI: 10.1371/journal.pone.0029860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/05/2011] [Indexed: 12/23/2022] Open
Abstract
In previous work, we proposed a method for detecting differential gene expression based on change-point of expression profile. This non-parametric change-point method gave promising result in both simulation study and public dataset experiment. However, the performance is still limited by the less sensitiveness to the right bound and the statistical significance of the statistics has not been fully explored. To overcome the insensitiveness to the right bound we modified the original method by adding a weight function to the Dn statistic. Simulation study showed that the weighted change-point statistics method is significantly better than the original NPCPS in terms of ROC, false positive rate, as well as change-point estimate. The mean absolute error of the estimated change-point by weighted change-point method was 0.03, reduced by more than 50% comparing with the original 0.06, and the mean FPR was reduced by more than 55%. Experiment on microarray Dataset I resulted in 3974 differentially expressed genes out of total 5293 genes; experiment on microarray Dataset II resulted in 9983 differentially expressed genes among total 12576 genes. In summary, the method proposed here is an effective modification to the previous method especially when only a small subset of cancer samples has DGE.
Collapse
|
20
|
Dias M, Blanc C, Thazar-Poulot N, Ben Larbi S, Cosson P, Letourneur F. Dictyostelium ACAP-A is an ArfGAP involved in cytokinesis, cell migration and actin cytoskeleton dynamics. J Cell Sci 2012; 126:756-66. [DOI: 10.1242/jcs.113951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ACAPs and ASAPs are Arf-GTPase-activating proteins with BAR, PH, GAP and ankyrin repeat domains and are known to regulate vesicular traffic and actin cytoskeleton dynamics in mammalian cells. The amoeba Dictyostelium has only two proteins with this domain organization instead of six in human, enabling a more precise functional analysis. Genetic invalidation of acapA, resulted in multinucleated cells with cytokinesis defects. Mutant acapA− cells were hardly motile and their multicellular development was significantly delayed. In addition, formation of filopodial protrusions was deficient in these cells. Conversely, re-expression of ACAP-A-GFP resulted in numerous and long filopodia-like protrusions. Mutagenesis studies showed that ACAP-A actin remodeling function was dependent on its ability to activate its substrate, the small GTPase ArfA. Likewise, the expression of a constitutively active ArfA•GTP mutant in wild-type cells led to a significant reduction of filopodia length. Together our data support a role for ACAP-A in the control of the actin cytoskeleton organization and dynamics through an ArfA-dependent mechanism.
Collapse
|
21
|
Rueckert C, Haucke V. The oncogenic TBC domain protein USP6/TRE17 regulates cell migration and cytokinesis. Biol Cell 2011; 104:22-33. [PMID: 22188517 DOI: 10.1111/boc.201100108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/27/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND INFORMATION Cancer cells are characterized by their intrinsic ability to rapidly divide and migrate and to invade other tissues. How these processes are regulated at a molecular level is largely unknown. RESULTS Here, we identify the oncogenic TBC (Tre-2/Bub2/Cdc16) domain protein USP6 (also termed TRE17) as a regulator of both cell migration and division. We show that manipulating USP6 expression levels alters the ability of cells to migrate and to divide. Furthermore, we observe that cell proliferation and progression through cytokinesis depend on USP6 expression via a pathway that involves the small GTPase Arf6 and its GTPase-activating protein ACAP1. CONCLUSIONS Our data suggest a model whereby the oncogenic potential of USP6 is linked to its ability to integrate cell migration and cytokinesis by regulating Arf6/ACAP1.
Collapse
Affiliation(s)
- Christine Rueckert
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
| | | |
Collapse
|
22
|
Hao Y, Hao CY, Perkinton MS, Chan WWL, Chan HYE, Miller CCJ, Lau KF. GULP1 is a novel APP-interacting protein that alters APP processing. Biochem J 2011; 436:631-9. [PMID: 21486224 DOI: 10.1042/bj20110145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
Altered production of Aβ (amyloid-β peptide), derived from the proteolytic cleavage of APP (amyloid precursor protein), is believed to be central to the pathogenesis of AD (Alzheimer's disease). Accumulating evidence reveals that APPc (APP C-terminal domain)-interacting proteins can influence APP processing. There is also evidence to suggest that APPc-interacting proteins work co-operatively and competitively to maintain normal APP functions and processing. Hence, identification of the full complement of APPc-interacting proteins is an important step for improving our understanding of APP processing. Using the yeast two-hybrid system, in the present study we identified GULP1 (engulfment adaptor protein 1) as a novel APPc-interacting protein. We found that the GULP1-APP interaction is mediated by the NPTY motif of APP and the GULP1 PTB (phosphotyrosine-binding) domain. Confocal microscopy revealed that a proportion of APP and GULP1 co-localized in neurons. In an APP-GAL4 reporter assay, we demonstrated that GULP1 altered the processing of APP. Moreover, overexpression of GULP1 enhanced the generation of APP CTFs (C-terminal fragments) and Aβ, whereas knockdown of GULP1 suppressed APP CTFs and Aβ production. The results of the present study reveal that GULP1 is a novel APP/APPc-interacting protein that influences APP processing and Aβ production.
Collapse
Affiliation(s)
- Yan Hao
- Biochemistry Programme, School of Life Sciences, the Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | | | | | | | | | | | | |
Collapse
|
23
|
Park D, Hochreiter-Hufford A, Ravichandran KS. The Phosphatidylserine Receptor TIM-4 Does Not Mediate Direct Signaling. Curr Biol 2009; 19:346-51. [DOI: 10.1016/j.cub.2009.01.042] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 12/23/2008] [Accepted: 01/09/2009] [Indexed: 12/01/2022]
|
24
|
Abstract
Phagosome maturation is the process by which internalized particles (such as bacteria and apoptotic cells) are trafficked into a series of increasingly acidified membrane-bound structures, leading to particle degradation. The characterization of the phagosomal proteome and studies in model organisms and mammals have led to the identification of numerous candidate proteins that cooperate to control the maturation of phagosomes containing different particles. A subset of these candidate proteins makes up the first pathway to be identified for the maturation of apoptotic cell-containing phagosomes. This suggests that a machinery that is distinct from receptor-mediated endocytosis is used in phagosome maturation.
Collapse
Affiliation(s)
- Jason M Kinchen
- Beirne B. Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22902, USA.
| | | |
Collapse
|
25
|
Park SY, Kang KB, Thapa N, Kim SY, Lee SJ, Kim IS. Requirement of adaptor protein GULP during stabilin-2-mediated cell corpse engulfment. J Biol Chem 2008; 283:10593-600. [PMID: 18230608 DOI: 10.1074/jbc.m709105200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prompt clearance of cells undergoing apoptosis is critical during embryonic development and normal tissue turnover, as well as during inflammation and autoimmune responses. We recently demonstrated that stabilin-2 is a phosphatidylserine receptor that mediates the clearance of apoptotic cells, thereby releasing the anti-inflammatory cytokine, transforming growth factor-beta. However, the downstream signaling components of stabilin-2-mediated phagocytosis are not known. Here, we provide evidence that the adaptor protein, GULP, physically and functionally interacts with the stabilin-2 cytoplasmic tail. Using fluorescent resonance energy transfer analysis and biochemical approaches, we show that GULP directly binds to the cytoplasmic tail of stabilin-2. Knockdown of endogenous GULP expression significantly decreased stabilin-2-mediated phagocytosis. Conversely, overexpression of GULP caused an increase in aged cell engulfment. The phosphotyrosine binding (PTB) domain of GULP was sufficient for the interaction with stabilin-2; therefore, transduction of TAT fusion PTB domain acts as a dominant negative, resulting in impaired engulfment of aged red blood cells in stabilin-2 expressing cells. In addition, the PTB domain of GULP was able to specifically interact with the NPXY motif of the stabilin-2 cytoplasmic tail. Taken together, these results indicate that GULP is a likely downstream molecule in the stabilin-2-mediated signaling pathway and plays an important role in stabilin-2-mediated phagocytosis.
Collapse
Affiliation(s)
- Seung-Yoon Park
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 700-422, Korea
| | | | | | | | | | | |
Collapse
|