1
|
Yulo PRJ, Desprat N, Gerth ML, Ritzl-Rinkenberger B, Farr AD, Liu Y, Zhang XX, Miller M, Cava F, Rainey PB, Hendrickson HL. Evolutionary rescue of spherical mreB deletion mutants of the rod-shape bacterium Pseudomonas fluorescens SBW25. eLife 2025; 13:RP98218. [PMID: 40163529 PMCID: PMC11957537 DOI: 10.7554/elife.98218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.
Collapse
Affiliation(s)
- Paul Richard J Yulo
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
| | - Nicolas Desprat
- Laboratoire de Physique de l'ENS, Université Paris Cité, Ecole normale supérieure, UniversitéPSL, Sorbonne Université, CNRS, 75005 ParisParisFrance
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research UniversityParisFrance
- Université Paris CitéParisFrance
| | - Monica L Gerth
- New Zealand Institute for Advanced Study, Massey UniversityAucklandNew Zealand
| | - Barbara Ritzl-Rinkenberger
- Department of Molecular Biology, Umeå UniversityUmeåSweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå Centre for Microbial Research, Umeå UniversityUmeåSweden
| | - Andrew D Farr
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Yunhao Liu
- New Zealand Institute for Advanced Study, Massey UniversityAucklandNew Zealand
| | - Xue-Xian Zhang
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
| | - Michael Miller
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
| | - Felipe Cava
- Department of Molecular Biology, Umeå UniversityUmeåSweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå Centre for Microbial Research, Umeå UniversityUmeåSweden
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey UniversityAucklandNew Zealand
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSLParisFrance
| | - Heather L Hendrickson
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
- School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| |
Collapse
|
2
|
Aliashkevich A, Guest T, Alvarez L, Gilmore MC, Rea D, Amstutz J, Mateus A, Schiffthaler B, Ruiz I, Typas A, Savitski MM, Brown PJB, Cava F. LD-transpeptidation is crucial for fitness and polar growth in Agrobacterium tumefaciens. PLoS Genet 2024; 20:e1011449. [PMID: 39432536 PMCID: PMC11527210 DOI: 10.1371/journal.pgen.1011449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/31/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Peptidoglycan (PG), a mesh-like structure which is the primary component of the bacterial cell wall, is crucial to maintain cell integrity and shape. While most bacteria rely on penicillin binding proteins (PBPs) for crosslinking, some species also employ LD-transpeptidases (LDTs). Unlike PBPs, the essentiality and biological functions of LDTs remain largely unclear. The Hyphomicrobiales order of the Alphaproteobacteria, known for their polar growth, have PG which is unusually rich in LD-crosslinks, suggesting that LDTs may play a more significant role in PG synthesis in these bacteria. Here, we investigated LDTs in the plant pathogen Agrobacterium tumefaciens and found that LD-transpeptidation, resulting from at least one of 14 putative LDTs present in this bacterium, is essential for its survival. Notably, a mutant lacking a distinctive group of 7 LDTs which are broadly conserved among the Hyphomicrobiales exhibited reduced LD-crosslinking and tethering of PG to outer membrane β-barrel proteins. Consequently, this mutant suffered severe fitness loss and cell shape rounding, underscoring the critical role played by these Hyphomicrobiales-specific LDTs in maintaining cell wall integrity and promoting elongation. Tn-sequencing screens further revealed non-redundant functions for A. tumefaciens LDTs. Specifically, Hyphomicrobiales-specific LDTs exhibited synthetic genetic interactions with division and cell cycle proteins, and a single LDT from another group. Additionally, our findings demonstrate that strains lacking all LDTs except one displayed distinctive phenotypic profiles and genetic interactions. Collectively, our work emphasizes the critical role of LD-crosslinking in A. tumefaciens cell wall integrity and growth and provides insights into the functional specialization of these crosslinking activities.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Thomas Guest
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Michael C. Gilmore
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Daniel Rea
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Jennifer Amstutz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bastian Schiffthaler
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Iñigo Ruiz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mikhail M. Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Pöhl S, Giacomelli G, Meyer FM, Kleeberg V, Cohen EJ, Biboy J, Rosum J, Glatter T, Vollmer W, van Teeseling MCF, Heider J, Bramkamp M, Thanbichler M. An outer membrane porin-lipoprotein complex modulates elongasome movement to establish cell curvature in Rhodospirillum rubrum. Nat Commun 2024; 15:7616. [PMID: 39223154 PMCID: PMC11369160 DOI: 10.1038/s41467-024-51790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Curved cell shapes are widespread among bacteria and important for cellular motility, virulence and fitness. However, the underlying morphogenetic mechanisms are still incompletely understood. Here, we identify an outer-membrane protein complex that promotes cell curvature in the photosynthetic species Rhodospirillum rubrum. We show that the R. rubrum porins Por39 and Por41 form a helical ribbon-like structure at the outer curve of the cell that recruits the peptidoglycan-binding lipoprotein PapS, with PapS inactivation, porin delocalization or disruption of the porin-PapS interface resulting in cell straightening. We further demonstrate that porin-PapS assemblies act as molecular cages that entrap the cell elongation machinery, thus biasing cell growth towards the outer curve. These findings reveal a mechanistically distinct morphogenetic module mediating bacterial cell shape. Moreover, they uncover an unprecedented role of outer-membrane protein patterning in the spatial control of intracellular processes, adding an important facet to the repertoire of regulatory mechanisms in bacterial cell biology.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, Germany
| | | | - Fabian M Meyer
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Volker Kleeberg
- Institut für Biologie II, University of Freiburg, Freiburg, Germany
- Pädagogische Forschungsstelle Kassel, Kassel, Germany
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Rosum
- Department of Biology, University of Marburg, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany
| | - Johann Heider
- Department of Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Marc Bramkamp
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
4
|
David A, Louis M, Tahrioui A, Rodrigues S, Labbé C, Maillot O, Barreau M, Lesouhaitier O, Cornelis P, Chevalier S, Bouffartigues E. cmpX overexpression in Pseudomonas aeruginosa affects biofilm formation and cell morphology in response to shear stress. Biofilm 2024; 7:100191. [PMID: 38544741 PMCID: PMC10965496 DOI: 10.1016/j.bioflm.2024.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of Escherichia coli. The cmpX gene is part of a transcriptional cfrX-cmpX unit that is under the control of the cell envelope stress response ECF sigma factor SigX. CmpX was shown to regulate the activity of the hybrid sensor kinase PA1611 involved in the regulation of transition from a planktonic to a biofilm lifestyle. The deletion of cmpX leads to increased biofilm formation under static conditions. Herein, the effect of cmpX overexpression was investigated by confocal laser scanning microscopy in terms of biofilm formation and architecture, and matrix components production, in dynamic conditions. We show that overexpression of cmpX in P. aeruginosa leads to enhanced and altered biofilm architecture that seems to be associated to increased matrix components and the emergence of filamentous cells. These phenotypic alterations might occur potentially through a shear stress induced by the medium flow rate. Importance CmpX is involved in biofilm formation and cell filamentation with regards to the medium flow.
Collapse
Affiliation(s)
- Audrey David
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Mélissande Louis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100, Lorient, France
| | - Clarisse Labbé
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Maillot
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Magalie Barreau
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sylvie Chevalier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| |
Collapse
|
5
|
Pöhl S, Osorio-Valeriano M, Cserti E, Harberding J, Hernandez-Tamayo R, Biboy J, Sobetzko P, Vollmer W, Graumann PL, Thanbichler M. A dynamic bactofilin cytoskeleton cooperates with an M23 endopeptidase to control bacterial morphogenesis. eLife 2024; 12:RP86577. [PMID: 38294932 PMCID: PMC10945521 DOI: 10.7554/elife.86577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Bactofilins have emerged as a widespread family of cytoskeletal proteins with important roles in bacterial morphogenesis, but their precise mode of action is still incompletely understood. In this study, we identify the bactofilin cytoskeleton as a key regulator of cell growth in the stalked budding alphaproteobacterium Hyphomonas neptunium. We show that, in this species, bactofilin polymers localize dynamically to the stalk base and the bud neck, with their absence leading to unconstrained growth of the stalk and bud compartments, indicating a central role in the spatial regulation of cell wall biosynthesis. Database searches reveal that bactofilin genes are often clustered with genes for cell wall hydrolases of the M23 peptidase family, suggesting a functional connection between these two types of proteins. In support of this notion, we find that the H. neptunium M23 peptidase homolog LmdC interacts directly with bactofilin in vitro and is required for proper cell shape in vivo. Complementary studies in the spiral-shaped alphaproteobacterium Rhodospirillum rubrum again reveal a close association of its bactofilin and LmdC homologs, which co-localize at the inner curve of the cell, modulating the degree of cell curvature. Collectively, these findings demonstrate that bactofilins and M23 peptidases form a conserved functional module that promotes local changes in the mode of cell wall biosynthesis, thereby driving cell shape determination in morphologically complex bacteria.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Emöke Cserti
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Jannik Harberding
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Rogelio Hernandez-Tamayo
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Department of Chemistry, University of MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | | | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Peter L Graumann
- Department of Chemistry, University of MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| |
Collapse
|
6
|
Müller FD, Schüler D, Weig A. Complete genome sequencing and annotation of Rhodomicrobium vannielii strain DSM166 suggest affiliation to Rhodomicrobium lacus. Microbiol Resour Announc 2023; 12:e0069023. [PMID: 37909726 PMCID: PMC10720471 DOI: 10.1128/mra.00690-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Rhodomicrobium vannielii is a multicellular and differentiating member of the order Hyphomicrobiales in the class Alphaproteobacteria. Here, we report the complete genome of strain DSM166 obtained by PacBio SMRT sequencing. The results suggest that this strain is closely related to Rhodomicrobium lacus.
Collapse
Affiliation(s)
- Frank D. Müller
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Alfons Weig
- Genomics and Bioinformatics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
7
|
Hisada A, Matsumoto E, Hirano R, Konomi M, Bou Khalil JY, Raoult D, Ominami Y. Detection of antimicrobial impact on gram-negative bacterial cell envelope based on single-cell imaging by scanning electron microscopy. Sci Rep 2023; 13:11258. [PMID: 37438469 DOI: 10.1038/s41598-023-38198-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Rapid determination of drug efficacy against bacterial pathogens is needed to detect potentially resistant bacteria and allow for more rational use of antimicrobials. As an indicator of the antimicrobial effect for rapid detection, we found changes in image brightness in antimicrobial-affected bacteria by scanning electron microscopy (SEM). The cell envelopes of unaffected bacteria were stained with phosphotungstic acid (PTA), whereas the entire cells of affected bacteria were stained. Since tungsten density increases backscattered electron intensity, brighter bacterial images indicate lethal damage. We propose a simplified method for determining antimicrobial efficacy by detecting damage that occurs immediately after drug administration using tabletop SEM. This method enabled the visualization of microscopic deformations while distinguishing bacterial-cell-envelope damage on gram-negative bacteria due to image-brightness change. Escherichia coli, Acinetobacter baumannii, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa were exposed to imipenem and colistin, which affect the cell envelope through different mechanisms. Classification of single-cell images based on brightness was quantified for approximately 500 bacteria per sample, and the bright images predominated within 5 to 60 min of antimicrobial treatment, depending on the species. Using intracellular PTA staining and characteristic deformations as indicators, it was possible to determine the efficacy of antimicrobials in causing bacterial-cell-envelope damage.
Collapse
Affiliation(s)
- Akiko Hisada
- Healthcare Innovation Center, Research and Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo, 185-8601, Japan.
| | - Erino Matsumoto
- Healthcare Innovation Center, Research and Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo, 185-8601, Japan
| | - Ryo Hirano
- Core Technology and Solutions Group, Hitachi High-Tech Corporation, Tokyo, 105-6409, Japan
| | - Mami Konomi
- Core Technology and Solutions Group, Hitachi High-Tech Corporation, Tokyo, 105-6409, Japan
| | | | - Didier Raoult
- Consulting Infection Marseille, 13008, Marseille, France
| | - Yusuke Ominami
- Core Technology and Solutions Group, Hitachi High-Tech Corporation, Tokyo, 105-6409, Japan
| |
Collapse
|
8
|
Figueroa-Cuilan WM, Irazoki O, Feeley M, Smith E, Nguyen T, Cava F, Goley ED. Quantitative analysis of morphogenesis and growth dynamics in an obligate intracellular bacterium. Mol Biol Cell 2023; 34:ar69. [PMID: 37017481 PMCID: PMC10295487 DOI: 10.1091/mbc.e23-01-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Obligate intracellular bacteria of the order Rickettsiales include important human pathogens. However, our understanding of the biology of Rickettsia species is limited by challenges imposed by their obligate intracellular lifestyle. To overcome this roadblock, we developed methods to assess cell wall composition, growth, and morphology of Rickettsia parkeri, a human pathogen in the spotted fever group of the Rickettsia genus. Analysis of the cell wall of R. parkeri revealed unique features that distinguish it from free-living alphaproteobacteria. Using a novel fluorescence microscopy approach, we quantified R. parkeri morphology in live host cells and found that the fraction of the population undergoing cell division decreased over the course of infection. We further demonstrated the feasibility of localizing fluorescence fusions, for example, to the cell division protein ZapA, in live R. parkeri for the first time. To evaluate population growth kinetics, we developed an imaging-based assay that improves on the throughput and resolution of other methods. Finally, we applied these tools to quantitatively demonstrate that the actin homologue MreB is required for R. parkeri growth and rod shape. Collectively, a toolkit was developed of high-throughput, quantitative tools to understand growth and morphogenesis of R. parkeri that is translatable to other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Wanda M. Figueroa-Cuilan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine, Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Marissa Feeley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Erika Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Trung Nguyen
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine, Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
9
|
Richter P, Melzer B, Müller FD. Interacting bactofilins impact cell shape of the MreB-less multicellular Rhodomicrobium vannielii. PLoS Genet 2023; 19:e1010788. [PMID: 37256900 DOI: 10.1371/journal.pgen.1010788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Most non-spherical bacteria rely on the actin-like MreB cytoskeleton to control synthesis of a cell-shaping and primarily rod-like cell wall. Diverging from simple rod shape generally requires accessory cytoskeletal elements, which locally interfere with the MreB-guided cell wall synthesis. Conserved and widespread representatives of this accessory cytoskeleton are bactofilins that polymerize into static, non-polar bundles of filaments. Intriguingly, many species of the Actinobacteria and Rhizobiales manage to grow rod-like without MreB by tip extension, yet some of them still possess bactofilin genes, whose function in cell morphogenesis is unknown. An intricate representative of these tip-growing bacteria is Rhodomicrobium vannielii; a member of the hitherto genetically not tractable and poorly studied Hyphomicrobiaceae within the MreB-less Rhizobiales order. R. vannielii displays complex asymmetric cell shapes and differentiation patterns including filamentous hyphae to produce offspring and to build dendritic multicellular arrays. Here, we introduce techniques to genetically access R. vannielii, and we elucidate the role of bactofilins in its sophisticated morphogenesis. By targeted mutagenesis and fluorescence microscopy, protein interaction studies and peptidoglycan incorporation analysis we show that the R. vannielii bactofilins are associated with the hyphal growth zones and that one of them is essential to form proper hyphae. Another paralog is suggested to represent a novel hybrid and co-polymerizing bactofilin. Notably, we present R. vannielii as a powerful new model to understand prokaryotic cell development and control of multipolar cell growth in the absence of the conserved cytoskeletal element, MreB.
Collapse
Affiliation(s)
- Pia Richter
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
- Faculty of Biology, University of Marburg, Marburg, Germany
| | - Brigitte Melzer
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
| | - Frank D Müller
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
10
|
Brown PJB, Chang JH, Fuqua C. Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. J Bacteriol 2023; 205:e0000523. [PMID: 36892285 PMCID: PMC10127608 DOI: 10.1128/jb.00005-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.
Collapse
Affiliation(s)
- Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
11
|
Tang T, Liu X, Yuan Y, Zhang T, Kiya R, Yang Y, Yamazaki Y, Kamikubo H, Tanaka Y, Li M, Hosokawa Y, Yalikun Y. Parallel Impedance Cytometry for Real-Time Screening of Bacterial Single Cells from Nano- to Microscale. ACS Sens 2022; 7:3700-3709. [PMID: 36203240 DOI: 10.1021/acssensors.2c01351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The benefits of impedance cytometry include high-throughput and label-free detection, while long-term calibration is required to remove the effects of the detection circuits. This study presents a novel impedance cytometry system, called parallel impedance cytometry, to simplify the calibration and analysis of the impedance signals. Furthermore, target objects can be detected even when benchmarked against similar objects. Parallel dual microchannels allow the simultaneous detection of reference and target particles in two separate microchannels, without the premixing of reference and target suspensions. The impedance pulses of both can appear separately on the opposite sides of the same time series, which have been verified via simulation and experimental results. Raw impedance signals can easily distinguish target particles from reference ones. Polystyrene beads with different sizes ranging from nano- to microscale (e.g., 500, 750 nm, 1, 2, 3, and 4.5 μm) confirm the nanosensitivity of the system. In addition, the detection of antibiotic-treated Escherichia coli cells demonstrates that our system can be used for the quantitative assessment of the dielectric properties of individual cells, as well as for the proportion of susceptible cells. Through benchmarking against untreated E. coli cells in the other channel, our method enables the discrimination of susceptible cells from others and the comparison of susceptible and insusceptible cells in the target suspension. Those findings indicate that the parallel impedance cytometry can greatly facilitate the measurement and calibration of the impedances of various particles or cells and provide a means to compare their dielectric properties.
Collapse
Affiliation(s)
- Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Xun Liu
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Yapeng Yuan
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tianlong Zhang
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan.,School of Engineering, Macquarie University, Sydney 2109, Australia
| | - Ryota Kiya
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, P. R. China
| | - Yoichi Yamazaki
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hironari Kamikubo
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2109, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan.,Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Williams MA, Bouchier JM, Mason AK, Brown PJB. Activation of ChvG-ChvI regulon by cell wall stress confers resistance to β-lactam antibiotics and initiates surface spreading in Agrobacterium tumefaciens. PLoS Genet 2022; 18:e1010274. [PMID: 36480495 PMCID: PMC9731437 DOI: 10.1371/journal.pgen.1010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/28/2022] [Indexed: 12/13/2022] Open
Abstract
A core component of nearly all bacteria, the cell wall is an ideal target for broad spectrum antibiotics. Many bacteria have evolved strategies to sense and respond to antibiotics targeting cell wall synthesis, especially in the soil where antibiotic-producing bacteria compete with one another. Here we show that cell wall stress caused by both chemical and genetic inhibition of the essential, bifunctional penicillin-binding protein PBP1a prevents microcolony formation and activates the canonical host-invasion two-component system ChvG-ChvI in Agrobacterium tumefaciens. Using RNA-seq, we show that depletion of PBP1a for 6 hours results in a downregulation in transcription of flagellum-dependent motility genes and an upregulation in transcription of type VI secretion and succinoglycan biosynthesis genes, a hallmark of the ChvG-ChvI regulon. Depletion of PBP1a for 16 hours, results in differential expression of many additional genes and may promote a stress response, resembling those of sigma factors in other bacteria. Remarkably, the overproduction of succinoglycan causes cell spreading and deletion of the succinoglycan biosynthesis gene exoA restores microcolony formation. Treatment with cefsulodin phenocopies depletion of PBP1a and we correspondingly find that chvG and chvI mutants are hypersensitive to cefsulodin. This hypersensitivity only occurs in response to treatment with β-lactam antibiotics, suggesting that the ChvG-ChvI pathway may play a key role in resistance to antibiotics targeting cell wall synthesis. Finally, we provide evidence that ChvG-ChvI likely has a conserved role in conferring resistance to cell wall stress within the Alphaproteobacteria that is independent of the ChvG-ChvI repressor ExoR.
Collapse
Affiliation(s)
- Michelle A. Williams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Jacob M. Bouchier
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Amara K. Mason
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
13
|
Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens. Appl Environ Microbiol 2022; 88:e0033322. [PMID: 35638841 PMCID: PMC9238390 DOI: 10.1128/aem.00333-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased β-lactamase production, a response dependent on the broad-spectrum β-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent β-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent β-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 ΔmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in β-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit β-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security.
Collapse
|
14
|
Pandur Ž, Dular M, Kostanjšek R, Stopar D. Bacterial cell wall material properties determine E. coli resistance to sonolysis. ULTRASONICS SONOCHEMISTRY 2022; 83:105919. [PMID: 35077964 PMCID: PMC8789596 DOI: 10.1016/j.ultsonch.2022.105919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 05/02/2023]
Abstract
The applications of bacterial sonolysis in industrial settings are plagued by the lack of the knowledge of the exact mechanism of action of sonication on bacterial cells, variable effectiveness of cavitation on bacteria, and inconsistent data of its efficiency. In this study we have systematically changed material properties of E. coli cells to probe the effect of different cell wall layers on bacterial resistance to ultrasonic irradiation (20 kHz, output power 6,73 W, horn type, 3 mm probe tip diameter, 1 ml sample volume). We have determined the rates of sonolysis decay for bacteria with compromised major capsular polymers, disrupted outer membrane, compromised peptidoglycan layer, spheroplasts, giant spheroplasts, and in bacteria with different cell physiology. The non-growing bacteria were 5-fold more resistant to sonolysis than growing bacteria. The most important bacterial cell wall structure that determined the outcome during sonication was peptidoglycan. If peptidoglycan was remodelled, weakened, or absent the cavitation was very efficient. Cells with removed peptidoglycan had sonolysis resistance equal to lipid vesicles and were extremely sensitive to sonolysis. The results suggest that bacterial physiological state as well as cell wall architecture are major determinants that influence the outcome of bacterial sonolysis.
Collapse
Affiliation(s)
- Žiga Pandur
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia; University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, SI-Slovenia
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, SI-Slovenia
| | - Rok Kostanjšek
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia
| | - David Stopar
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, SI-Slovenia.
| |
Collapse
|
15
|
Zhao W, Zhu H, Wei F, Zhou D, Li Y, Zhang XX. Investigating the Involvement of Cytoskeletal Proteins MreB and FtsZ in the Origin of Legume-Rhizobial Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:547-559. [PMID: 33596109 DOI: 10.1094/mpmi-10-20-0299-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rhizobia are rod-shaped bacteria that form nitrogen-fixing root nodules on leguminous plants; however, they don't carry MreB, a key determinant of rod-like cell shape. Here, we introduced an actin-like mreB homolog from a pseudomonad into Mesorhizobium huakuii 7653R (a microsymbiont of Astragalus sinicus L.) and examined the molecular, cellular, and symbiotic phenotypes of the resultant mutant. Exogenous mreB caused an enlarged cell size and slower growth in laboratory medium. However, the mutant formed small, ineffective nodules on A. sinicus (Nod+ Fix-), and rhizobial cells in the infection zone were unable to differentiate into bacteroids. RNA sequencing analysis also revealed minor effects of mreB on global gene expression in free-living cells but larger effects for cells grown in planta. Differentially expressed nodule-specific genes include cell cycle regulators such as the tubulin-like ftsZ1 and ftsZ2. Unlike the ubiquitous FtsZ1, an FtsZ2 homolog was commonly found in Rhizobium, Sinorhizobium, and Mesorhizobium spp. but not in closely related nonsymbiotic species. Bacterial two-hybrid analysis revealed that MreB interacts with FtsZ1 and FtsZ2, which are targeted by the host-derived nodule-specific cysteine-rich peptides. Significantly, MreB mutation D283A disrupted the protein-protein interactions and restored the aforementioned phenotypic defects caused by MreB in M. huakuii. Together, our data indicate that MreB is detrimental for modern rhizobia and its interaction with FtsZ1 and FtsZ2 causes the symbiotic process to cease at the late stage of bacteroid differentiation. These findings led to a hypothesis that loss of mreB in the common ancestor of members of Rhizobiales and subsequent acquisition of ftsZ2 are critical evolutionary steps leading to legume-rhizobial symbiosis.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wenlong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Huixia Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Feng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Donglai Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| |
Collapse
|
16
|
Probing bacterial cell wall growth by tracing wall-anchored protein complexes. Nat Commun 2021; 12:2160. [PMID: 33846341 PMCID: PMC8042023 DOI: 10.1038/s41467-021-22483-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/12/2021] [Indexed: 11/09/2022] Open
Abstract
The dynamic assembly of the cell wall is key to the maintenance of cell shape during bacterial growth. Here, we present a method for the analysis of Escherichia coli cell wall growth at high spatial and temporal resolution, which is achieved by tracing the movement of fluorescently labeled cell wall-anchored flagellar motors. Using this method, we clearly identify the active and inert zones of cell wall growth during bacterial elongation. Within the active zone, the insertion of newly synthesized peptidoglycan occurs homogeneously in the axial direction without twisting of the cell body. Based on the measured parameters, we formulate a Bernoulli shift map model to predict the partitioning of cell wall-anchored proteins following cell division.
Collapse
|
17
|
Schwarzer S, Rodriguez-Franco M, Oksanen HM, Quax TEF. Growth Phase Dependent Cell Shape of Haloarcula. Microorganisms 2021; 9:231. [PMID: 33499340 PMCID: PMC7911496 DOI: 10.3390/microorganisms9020231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Several haloarchaea are reported to be pleomorphic, while others exhibit remarkable shapes, such as squares. Recently, Haloferax volcanii was found to alter its morphology during growth. Cells are motile rods in early exponential phase, and immotile plates in stationary phase. It is unknown if this growth phase dependent cell shape alteration is a specific feature of Hfx. volcanii, or conserved amongst haloarchaea. Here, we studied the cell shape and motility of two haloarchaea species Haloarcula hispanica and Haloarcula californiae. With a combination of light and electron microscopy, we observed that both strains undergo a growth phase dependent morphological development, albeit in a slightly different fashion as Hfx. volcanii. For both Haloarcula strains, the cell size is changing throughout growth. Cell shape seems to be related with motility, as highly motile cells on semi-solid agar plates are predominantly rod-shaped. We conclude that the growth phase dependent cell morphology alteration might be a common feature amongst haloarchaea, and that cell shape is generally linked with a motile life style. The conservation of this phenomenon underscores the importance of studies of the molecular mechanisms regulating cell shape in archaea.
Collapse
Affiliation(s)
- Sabine Schwarzer
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany;
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany;
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland;
| | - Tessa E. F. Quax
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany;
| |
Collapse
|
18
|
Lin CSH, Chan ACK, Vermeulen J, Brockerman J, Soni AS, Tanner ME, Gaynor EC, McIntosh LP, Simorre JP, Murphy MEP. Peptidoglycan binding by a pocket on the accessory NTF2-domain of Pgp2 directs helical cell shape of Campylobacter jejuni. J Biol Chem 2021; 296:100528. [PMID: 33711341 PMCID: PMC8038945 DOI: 10.1016/j.jbc.2021.100528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023] Open
Abstract
The helical morphology of Campylobacter jejuni, a bacterium involved in host gut colonization and pathogenesis in humans, is determined by the structure of the peptidoglycan (PG) layer. This structure is dictated by trimming of peptide stems by the LD-carboxypeptidase Pgp2 within the periplasm. The interaction interface between Pgp2 and PG to select sites for peptide trimming is unknown. We determined a 1.6 Å resolution crystal structure of Pgp2, which contains a conserved LD-carboxypeptidase domain and a previously uncharacterized domain with an NTF2-like fold (NTF2). We identified a pocket in the NTF2 domain formed by conserved residues and located ∼40 Å from the LD-carboxypeptidase active site. Expression of pgp2 in trans with substitutions of charged (Lys257, Lys307, Glu324) and hydrophobic residues (Phe242 and Tyr233) within the pocket did not restore helical morphology to a pgp2 deletion strain. Muropeptide analysis indicated a decrease of murotripeptides in the deletion strain expressing these mutants, suggesting reduced Pgp2 catalytic activity. Pgp2 but not the K307A mutant was pulled down by C. jejuni Δpgp2 PG sacculi, supporting a role for the pocket in PG binding. NMR spectroscopy was used to define the interaction interfaces of Pgp2 with several PG fragments, which bound to the active site within the LD-carboxypeptidase domain and the pocket of the NTF2 domain. We propose a model for Pgp2 binding to PG strands involving both the LD-carboxypeptidase domain and the accessory NTF2 domain to induce a helical cell shape.
Collapse
Affiliation(s)
- Chang Sheng-Huei Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny Vermeulen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacob Brockerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arvind S Soni
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
19
|
Schwechheimer C, Hebert K, Tripathi S, Singh PK, Floyd KA, Brown ER, Porcella ME, Osorio J, Kiblen JTM, Pagliai FA, Drescher K, Rubin SM, Yildiz FH. A tyrosine phosphoregulatory system controls exopolysaccharide biosynthesis and biofilm formation in Vibrio cholerae. PLoS Pathog 2020; 16:e1008745. [PMID: 32841296 PMCID: PMC7485978 DOI: 10.1371/journal.ppat.1008745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/11/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
Production of an extracellular matrix is essential for biofilm formation, as this matrix both secures and protects the cells it encases. Mechanisms underlying production and assembly of matrices are poorly understood. Vibrio cholerae, relies heavily on biofilm formation for survival, infectivity, and transmission. Biofilm formation requires Vibrio polysaccharide (VPS), which is produced by vps gene-products, yet the function of these products remains unknown. Here, we demonstrate that the vps gene-products vpsO and vpsU encode respectively for a tyrosine kinase and a cognate tyrosine phosphatase. Collectively, VpsO and VpsU act as a tyrosine phosphoregulatory system to modulate VPS production. We present structures of VpsU and the kinase domain of VpsO, and we report observed autocatalytic tyrosine phosphorylation of the VpsO C-terminal tail. The position and amount of tyrosine phosphorylation in the VpsO C-terminal tail represses VPS production and biofilm formation through a mechanism involving the modulation of VpsO oligomerization. We found that tyrosine phosphorylation enhances stability of VpsO. Regulation of VpsO phosphorylation by the phosphatase VpsU is vital for maintaining native VPS levels. This study provides new insights into the mechanism and regulation of VPS production and establishes general principles of biofilm matrix production and its inhibition. The biofilm life style protects microbes from a plethora of harm, to increase their survival and pathogenicity. Exopolysaccharides are the essential glue of the microbial biofilm matrix, and loss of this glue negates biofilm formation and renders cells more sensitive to antimicrobial agents. Here, we show that a tyrosine phosphoregulatory system controls the biosynthesis and abundance of Vibrio exopolysaccharide (VPS), an essential biofilm component of the pathogen Vibrio cholerae. The phosphorylation state of the tyrosine autokinase VpsO, mediated by the tyrosine phosphatase VpsU, directly modulates VPS production and also affects the kinase’s own degradation, to regulate VPS production. This study provides new insights into the mechanisms of V. cholerae biofilm formation and consequently ways to combat pathogens more broadly, due to conservation of tyrosine phosphoregulatory systems among exopolysaccharide producing bacteria.
Collapse
Affiliation(s)
- Carmen Schwechheimer
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Kassidy Hebert
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kyle A. Floyd
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Elise R. Brown
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Monique E. Porcella
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Jacqueline Osorio
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Joseph T. M. Kiblen
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Fernando A. Pagliai
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Seth M. Rubin
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (SMR), (FHY)
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (SMR), (FHY)
| |
Collapse
|
20
|
Ultee E, van der Aart LT, Zhang L, van Dissel D, Diebolder CA, van Wezel GP, Claessen D, Briegel A. Teichoic acids anchor distinct cell wall lamellae in an apically growing bacterium. Commun Biol 2020; 3:314. [PMID: 32555532 PMCID: PMC7300013 DOI: 10.1038/s42003-020-1038-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/28/2020] [Indexed: 11/17/2022] Open
Abstract
The bacterial cell wall is a multicomponent structure that provides structural support and protection. In monoderm species, the cell wall is made up predominantly of peptidoglycan, teichoic acids and capsular glycans. Filamentous monoderm Actinobacteria incorporate new cell-wall material at their tips. Here we use cryo-electron tomography to reveal the architecture of the actinobacterial cell wall of Streptomyces coelicolor. Our data shows a density difference between the apex and subapical regions. Removal of teichoic acids results in a patchy cell wall and distinct lamellae. Knock-down of tagO expression using CRISPR-dCas9 interference leads to growth retardation, presumably because build-in of teichoic acids had become rate-limiting. Absence of extracellular glycans produced by MatAB and CslA proteins results in a thinner wall lacking lamellae and patches. We propose that the Streptomyces cell wall is composed of layers of peptidoglycan and extracellular polymers that are structurally supported by teichoic acids.
Collapse
Affiliation(s)
- Eveline Ultee
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Lizah T van der Aart
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Le Zhang
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dino van Dissel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Christoph A Diebolder
- Netherlands Centre for Electron Nanoscopy (NeCEN), Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
21
|
Moore JH, Honrado C, Stagnaro V, Kolling G, Warren CA, Swami NS. Rapid in Vitro Assessment of Clostridioides difficile Inhibition by Probiotics Using Dielectrophoresis to Quantify Cell Structure Alterations. ACS Infect Dis 2020; 6:1000-1007. [PMID: 32239920 PMCID: PMC9806841 DOI: 10.1021/acsinfecdis.9b00415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is the primary cause of nosocomial antibiotic-associated diarrhea, with high recurrence rates following initial antibiotic treatment regimens. Restoration of the host gut microbiome through probiotic therapy is under investigation to reduce recurrence. Current in vitro methods to assess C. difficile deactivation by probiotic microorganisms are based on C. difficile growth inhibition, but the cumbersome and time-consuming nature of the assay limits the number of assessed permutations. Phenotypic alterations to the C. difficile cellular structure upon interaction with probiotics can potentially enable rapid assessment of the inhibition without the need for extended culture. Because supernatants from cultures of commensal microbiota reflect the complex metabolite milieu that deactivates C. difficile, we explore coculture of C. difficile with an optimal dose of supernatants from probiotic culture to speed growth inhibition assays and enable correlation with alterations to its prolate ellipsoidal structure. Based on sensitivity of electrical polarizability to C. difficile cell shape and subcellular structure, we show that the inhibitory effect of Lactobacillus spp. supernatants on C. difficile can be determined based on the positive dielectrophoresis level within just 1 h of culture using a highly toxigenic strain and a clinical isolate, whereas optical and growth inhibition measurements require far greater culture time. We envision application of this in vitro coculture model, in conjunction with dielectrophoresis, to rapidly screen for potential probiotic combinations for the treatment of recurrent CDI.
Collapse
Affiliation(s)
- John H. Moore
- Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Carlos Honrado
- Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | | | - Glynis Kolling
- Biomedical Engineering, University of Virginia, Charlottesville
| | - Cirle A. Warren
- Infectious Diseases, School of Medicine, University of Virginia, Virginia-22904, USA
| | - Nathan S. Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia-22904, USA,Chemistry, University of Virginia, Charlottesville, Virginia-22904, USA,Corresponding Author. Fax: +1-434-924-8818.
| |
Collapse
|
22
|
Awuni E. Status of Targeting MreB for the Development of Antibiotics. Front Chem 2020; 7:884. [PMID: 31998684 PMCID: PMC6965359 DOI: 10.3389/fchem.2019.00884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Although many prospective antibiotic targets are known, bacterial infections and resistance to antibiotics remain a threat to public health partly because the druggable potentials of most of these targets have yet to be fully tapped for the development of a new generation of therapeutics. The prokaryotic actin homolog MreB is one of the important antibiotic targets that are yet to be significantly exploited. MreB is a bacterial cytoskeleton protein that has been widely studied and is associated with the determination of rod shape as well as important subcellular processes including cell division, chromosome segregation, cell wall morphogenesis, and cell polarity. Notwithstanding that MreB is vital and conserved in most rod-shaped bacteria, no approved antibiotics targeting it are presently available. Here, the status of targeting MreB for the development of antibiotics is concisely summarized. Expressly, the known therapeutic targets and inhibitors of MreB are presented, and the way forward in the search for a new generation of potent inhibitors of MreB briefly discussed.
Collapse
Affiliation(s)
- Elvis Awuni
- Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
23
|
Rivas-Marin E, Peeters SH, Claret Fernández L, Jogler C, van Niftrik L, Wiegand S, Devos DP. Non-essentiality of canonical cell division genes in the planctomycete Planctopirus limnophila. Sci Rep 2020; 10:66. [PMID: 31919386 PMCID: PMC6952346 DOI: 10.1038/s41598-019-56978-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Most bacteria divide by binary fission using an FtsZ-based mechanism that relies on a multi-protein complex, the divisome. In the majority of non-spherical bacteria another multi-protein complex, the elongasome, is also required for the maintenance of cell shape. Components of these multi-protein assemblies are conserved and essential in most bacteria. Here, we provide evidence that at least three proteins of these two complexes are not essential in the FtsZ-less ovoid planctomycete bacterium Planctopirus limnophila which divides by budding. We attempted to construct P. limnophila knock-out mutants of the genes coding for the divisome proteins FtsI, FtsK, FtsW and the elongasome protein MreB. Surprisingly, ftsI, ftsW and mreB could be deleted without affecting the growth rate. On the other hand, the conserved ftsK appeared to be essential in this bacterium. In conclusion, the canonical bacterial cell division machinery is not essential in P. limnophila and this bacterium divides via budding using an unknown mechanism.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Stijn H Peeters
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Laura Claret Fernández
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain.,Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Christian Jogler
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands.,Institute of Microbiology, Department of Microbial Interactions, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Laura van Niftrik
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain.
| |
Collapse
|
24
|
Rojas ER. The Mechanical Properties of Bacteria and Why they Matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:1-14. [PMID: 32894474 DOI: 10.1007/978-3-030-46886-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
I review recent techniques to measure the mechanical properties of bacterial cells and their subcellular components, and then discuss what these techniques have revealed about the constitutive mechanical properties of whole bacterial cells and subcellular material, as well as the molecular basis for these properties.
Collapse
Affiliation(s)
- Enrique R Rojas
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
25
|
Abstract
Reproduction in the bacterial kingdom predominantly occurs through binary fission-a process in which one parental cell is divided into two similarly sized daughter cells. How cell division, in conjunction with cell elongation and chromosome segregation, is orchestrated by a multitude of proteins has been an active area of research spanning the past few decades. Together, the monumental endeavors of multiple laboratories have identified several cell division and cell shape regulators as well as their underlying regulatory mechanisms in rod-shaped Escherichia coli and Bacillus subtilis, which serve as model organisms for Gram-negative and Gram-positive bacteria, respectively. Yet our understanding of bacterial cell division and morphology regulation is far from complete, especially in noncanonical and non-rod-shaped organisms. In this review, we focus on two proteins that are highly conserved in Gram-positive organisms, DivIVA and its homolog GpsB, and attempt to summarize the recent advances in this area of research and discuss their various roles in cell division, cell growth, and chromosome segregation in addition to their interactome and posttranslational regulation.
Collapse
|
26
|
Swain J, El Khoury M, Flament A, Dezanet C, Briée F, Van Der Smissen P, Décout JL, Mingeot-Leclercq MP. Antimicrobial activity of amphiphilic neamine derivatives: Understanding the mechanism of action on Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182998. [DOI: 10.1016/j.bbamem.2019.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023]
|
27
|
Fanalista F, Birnie A, Maan R, Burla F, Charles K, Pawlik G, Deshpande S, Koenderink GH, Dogterom M, Dekker C. Shape and Size Control of Artificial Cells for Bottom-Up Biology. ACS NANO 2019; 13:5439-5450. [PMID: 31074603 PMCID: PMC6543616 DOI: 10.1021/acsnano.9b00220] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/10/2019] [Indexed: 05/27/2023]
Abstract
Bottom-up biology is an expanding research field that aims to understand the mechanisms underlying biological processes via in vitro assembly of their essential components in synthetic cells. As encapsulation and controlled manipulation of these elements is a crucial step in the recreation of such cell-like objects, microfluidics is increasingly used for the production of minimal artificial containers such as single-emulsion droplets, double-emulsion droplets, and liposomes. Despite the importance of cell morphology on cellular dynamics, current synthetic-cell studies mainly use spherical containers, and methods to actively shape manipulate these have been lacking. In this paper, we describe a microfluidic platform to deform the shape of artificial cells into a variety of shapes (rods and discs) with adjustable cell-like dimensions below 5 μm, thereby mimicking realistic cell morphologies. To illustrate the potential of our method, we reconstitute three biologically relevant protein systems (FtsZ, microtubules, collagen) inside rod-shaped containers and study the arrangement of the protein networks inside these synthetic containers with physiologically relevant morphologies resembling those found in living cells.
Collapse
Affiliation(s)
- Federico Fanalista
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Anthony Birnie
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Renu Maan
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Federica Burla
- Department
of Living Matter, Biological Soft Matter Group, AMOLF, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Kevin Charles
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Grzegorz Pawlik
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Siddharth Deshpande
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Living Matter, Biological Soft Matter Group, AMOLF, Science Park
104, 1098 XG Amsterdam, The Netherlands
| | - Marileen Dogterom
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
28
|
Lanciotti R, Braschi G, Patrignani F, Gobbetti M, De Angelis M. How Listeria monocytogenes Shapes Its Proteome in Response to Natural Antimicrobial Compounds. Front Microbiol 2019; 10:437. [PMID: 30930865 PMCID: PMC6423498 DOI: 10.3389/fmicb.2019.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
The goal of this study was to investigate the adaptation of L. monocytogenes Scott A cells to treatments with sublethal doses of antimicrobials (ethanol, citral, carvacrol, E-2-hexenal and thyme essential oil). The survival of L. monocytogenes cells was not affected by the antimicrobials at the concentrations assayed, with the exception of ethanol (1% v/v) and thyme essential oil (100 mg/L), which decreased cell viability from 8.53 ± 0.36 to 7.20 ± 0.22 log CFU/mL (P = 0.04). We subsequently evaluated how L. monocytogenes regulates and shapes its proteome in response to antimicrobial compounds. Compared to the control cells grown under optimal conditions, L. monocytogenes treated for 1 h with the antimicrobial compounds showed increased or decreased (≥ or ≤2-fold, respectively, P < 0.05) levels of protein synthesis for 223 protein spots. As shown multivariate clustering analysis, the proteome profiles differed between treatments. Adaptation and shaping of proteomes mainly concerned cell cycle control, cell division, chromosome, motility and regulatory related proteins, carbohydrate, pyruvate, nucleotide and nitrogen metabolism, cofactors and vitamins and stress response with contrasting responses for different stresses. Ethanol, citral (85 mg/l) or (E)-2-hexenal (150 mg/L) adapted cells increased survival during acid stress imposed under model (BHI) and food-like systems.
Collapse
Affiliation(s)
- Rosalba Lanciotti
- Dipartmento di Scienze e Tecnologie Agro-Alimentari, Università degli Studi di Bologna, Bologna, Italy
| | - Giacomo Braschi
- Dipartmento di Scienze e Tecnologie Agro-Alimentari, Università degli Studi di Bologna, Bologna, Italy
| | - Francesca Patrignani
- Dipartmento di Scienze e Tecnologie Agro-Alimentari, Università degli Studi di Bologna, Bologna, Italy
| | | | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
29
|
Rohani A, Moore JH, Su YH, Stagnaro V, Warren C, Swami NS. Single-cell electro-phenotyping for rapid assessment of Clostridium difficile heterogeneity under vancomycin treatment at sub-MIC (minimum inhibitory concentration) levels. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 276:472-480. [PMID: 30369719 PMCID: PMC6201234 DOI: 10.1016/j.snb.2018.08.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Current methods for measurement of antibiotic susceptibility of pathogenic bacteria are highly reliant on microbial culture, which is time consuming (requires > 16 hours), especially at near minimum inhibitory concentration (MIC) levels of the antibiotic. We present the use of single-cell electrophysiology-based microbiological analysis for rapid phenotypic identification of antibiotic susceptibility at near-MIC levels, without the need for microbial culture. Clostridium difficile (C. difficile) is the single most common cause of antibiotic-induced enteric infection and disease recurrence is common after antibiotic treatments to suppress the pathogen. Herein, we show that de-activation of C. difficile after MIC-level vancomycin treatment, as validated by microbiological growth assays, can be ascertained rapidly by measuring alterations to the microbial cytoplasmic conductivity that is gauged by the level of positive dielectrophoresis (pDEP) and the frequency spectra for co-field electro-rotation (ROT). Furthermore, this single-cell electrophysiology technique can rapidly identify and quantify the live C. difficile subpopulation after vancomycin treatment at sub-MIC levels, whereas methods based on measurement of the secreted metabolite toxin or the microbiological growth rate can identify this persistent C. difficile subpopulation only after 24 hours of microbial culture, without any ability to quantify the subpopulation. The application of multiplexed versions of this technique is envisioned for antibiotic susceptibility screening.
Collapse
Affiliation(s)
- Ali Rohani
- Electrical & Computer Engineering, University of Virginia
| | - John H. Moore
- Electrical & Computer Engineering, University of Virginia
| | - Yi-Hsuan Su
- Electrical & Computer Engineering, University of Virginia
| | | | - Cirle Warren
- Infectious Diseases, School of Medicine, University of Virginia
| | - Nathan S. Swami
- Electrical & Computer Engineering, University of Virginia
- Corresponding author: 351 McCormick Road, Charlottesville, VA 22904-1000;
| |
Collapse
|
30
|
Melzer ES, Sein CE, Chambers JJ, Siegrist MS. DivIVA concentrates mycobacterial cell envelope assembly for initiation and stabilization of polar growth. Cytoskeleton (Hoboken) 2018; 75:498-507. [PMID: 30160378 PMCID: PMC6644302 DOI: 10.1002/cm.21490] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
In many model organisms, diffuse patterning of cell wall peptidoglycan synthesis by the actin homolog MreB enables the bacteria to maintain their characteristic rod shape. In Caulobacter crescentus and Escherichia coli, MreB is also required to sculpt this morphology de novo. Mycobacteria are rod-shaped but expand their cell wall from discrete polar or subpolar zones. In this genus, the tropomyosin-like protein DivIVA is required for the maintenance of cell morphology. DivIVA has also been proposed to direct peptidoglycan synthesis to the tips of the mycobacterial cell. The precise nature of this regulation is unclear, as is its role in creating rod shape from scratch. We find that DivIVA localizes nascent cell wall and covalently associated mycomembrane but is dispensable for the assembly process itself. Mycobacterium smegmatis rendered spherical by peptidoglycan digestion or by DivIVA depletion are able to regain rod shape at the population level in the presence of DivIVA. At the single cell level, there is a close spatiotemporal correlation between DivIVA foci, rod extrusion and concentrated cell wall synthesis. Thus, although the precise mechanistic details differ from other organisms, M. smegmatis also establish and propagate rod shape by cytoskeleton-controlled patterning of peptidoglycan. Our data further support the emerging notion that morphology is a hardwired trait of bacterial cells.
Collapse
Affiliation(s)
- Emily S Melzer
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Caralyn E Sein
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts.,Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
31
|
Schäper S, Yau HCL, Krol E, Skotnicka D, Heimerl T, Gray J, Kaever V, Søgaard-Andersen L, Vollmer W, Becker A. Seven-transmembrane receptor protein RgsP and cell wall-binding protein RgsM promote unipolar growth in Rhizobiales. PLoS Genet 2018; 14:e1007594. [PMID: 30102748 PMCID: PMC6107284 DOI: 10.1371/journal.pgen.1007594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/23/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Members of the Rhizobiales (class of α-proteobacteria) display zonal peptidoglycan cell wall growth at one cell pole, contrasting with the dispersed mode of cell wall growth along the sidewalls of many other rod-shaped bacteria. Here we show that the seven-transmembrane receptor (7TMR) protein RgsP (SMc00074), together with the putative membrane-anchored peptidoglycan metallopeptidase RgsM (SMc02432), have key roles in unipolar peptidoglycan formation during growth and at mid-cell during cell division in Sinorhizobium meliloti. RgsP is composed of a periplasmic globular 7TMR-DISMED2 domain, a membrane-spanning region, and cytoplasmic PAS, GGDEF and EAL domains. The EAL domain confers phosphodiesterase activity towards the second messenger cyclic di-GMP, a key regulatory player in the transition between bacterial lifestyles. RgsP and RgsM localize to sites of zonal cell wall synthesis at the new cell pole and cell divison site, suggesting a role in cell wall biogenesis. The two proteins are essential for cell wall biogenesis and cell growth. Cells depleted of RgsP or RgsM had an altered muropeptide composition and RgsM binds to peptidoglycan. RgsP and RgsM orthologs are functional when interchanged between α-rhizobial species pointing to a conserved mechanism for cell wall biogenesis/remodeling within the Rhizobiales. Overall, our findings suggest that RgsP and RgsM contribute to the regulation of unipolar cell wall biogenesis in α-rhizobia.
Collapse
Affiliation(s)
- Simon Schäper
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Hamish C. L. Yau
- Center for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizaveta Krol
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Dorota Skotnicka
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Joe Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Center for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
32
|
Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2416-2427. [PMID: 29894683 DOI: 10.1016/j.bbamem.2018.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Three amphipathic cationic antimicrobial peptides (AMPs) were characterized by determining their effect on Gram-positive bacteria using Bacillus subtilis strain 168 as a model organism. These peptides were TC19 and TC84, derivatives of thrombocidin-1 (TC-1), the major AMPs of human blood platelets, and Bactericidal Peptide 2 (BP2), a synthetic designer peptide based on human bactericidal permeability increasing protein (BPI). METHODS To elucidate the possible mode of action of the AMPs we performed a transcriptomic analysis using microarrays. Physiological analyses were performed using transmission electron microscopy (TEM), fluorescence microscopy and various B. subtilis mutants that produce essential membrane bound proteins fused to green fluorescent protein (GFP). RESULTS The transcriptome analysis showed that the AMPs induced a cell envelope stress response (cell membrane and cell wall). The cell membrane stress response was confirmed with the physiological observations that TC19, TC84 and BP2 perturb the membrane of B. subtilis. Using B. subtilis mutants, we established that the cell wall stress response is due to the delocalization of essential membrane bound proteins involved in cell wall synthesis. Other essential membrane proteins, involved in cell membrane synthesis and metabolism, were also delocalized due to alterations caused by the AMPs. CONCLUSIONS We showed that peptides TC19, TC84 and BP2 perturb the membrane causing essential proteins to delocalize, thus preventing the possible repair of the cell envelope after the initial interference with the membrane. GENERAL SIGNIFICANCE These AMPs show potential for eventual clinical application against Gram-positive bacterial cells and merit further application-oriented investigation.
Collapse
|
33
|
Pende N, Wang J, Weber PM, Verheul J, Kuru E, Rittmann SKMR, Leisch N, VanNieuwenhze MS, Brun YV, den Blaauwen T, Bulgheresi S. Host-Polarized Cell Growth in Animal Symbionts. Curr Biol 2018; 28:1039-1051.e5. [PMID: 29576473 PMCID: PMC6611161 DOI: 10.1016/j.cub.2018.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/13/2017] [Accepted: 02/15/2018] [Indexed: 01/16/2023]
Abstract
To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog.
Collapse
Affiliation(s)
- Nika Pende
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Jinglan Wang
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Philipp M Weber
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Jolanda Verheul
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School NRB, 77 Avenue Louis Pasteur, Boston, MA, USA
| | - Simon K-M R Rittmann
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Nikolaus Leisch
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Silvia Bulgheresi
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
34
|
Cryo-EM structure of the bacterial actin AlfA reveals unique assembly and ATP-binding interactions and the absence of a conserved subdomain. Proc Natl Acad Sci U S A 2018; 115:3356-3361. [PMID: 29440491 DOI: 10.1073/pnas.1715836115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial actins are an evolutionarily diverse family of ATP-dependent filaments built from protomers with a conserved structural fold. Actin-based segregation systems are encoded on many bacterial plasmids and function to partition plasmids into daughter cells. The bacterial actin AlfA segregates plasmids by a mechanism distinct from other partition systems, dependent on its unique dynamic properties. Here, we report the near-atomic resolution electron cryo-microscopy structure of the AlfA filament, which reveals a strikingly divergent filament architecture resulting from the loss of a subdomain conserved in all other actins and a mode of ATP binding. Its unusual assembly interfaces and nucleotide interactions provide insight into AlfA dynamics, and expand the range of evolutionary variation accessible to actin quaternary structure.
Collapse
|
35
|
Figueroa-Cuilan WM, Brown PJB. Cell Wall Biogenesis During Elongation and Division in the Plant Pathogen Agrobacterium tumefaciens. Curr Top Microbiol Immunol 2018; 418:87-110. [PMID: 29808336 DOI: 10.1007/82_2018_92] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A great diversity of bacterial cell shapes can be found in nature, suggesting that cell wall biogenesis is regulated both spatially and temporally. Although Agrobacterium tumefaciens has a rod-shaped morphology, the mechanisms underlying cell growth are strikingly different than other well-studied rod-shaped bacteria including Escherichia coli. Technological advances, such as the ability to deplete essential genes and the development of fluorescent D-amino acids, have enabled recent advances in our understanding of cell wall biogenesis during cell elongation and division of A. tumefaciens. In this review, we address how the field has evolved over the years by providing a historical overview of cell elongation and division in rod-shaped bacteria. Next, we summarize the current understanding of cell growth and cell division processes in A. tumefaciens. Finally, we highlight the need for further research to answer key questions related to the regulation of cell wall biogenesis in A. tumefaciens.
Collapse
Affiliation(s)
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
36
|
Loss of PopZ At activity in Agrobacterium tumefaciens by Deletion or Depletion Leads to Multiple Growth Poles, Minicells, and Growth Defects. mBio 2017; 8:mBio.01881-17. [PMID: 29138309 PMCID: PMC5686542 DOI: 10.1128/mbio.01881-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens grows by addition of peptidoglycan (PG) at one pole of the bacterium. During the cell cycle, the cell needs to maintain two different developmental programs, one at the growth pole and another at the inert old pole. Proteins involved in this process are not yet well characterized. To further characterize the role of pole-organizing protein A. tumefaciens PopZ (PopZAt), we created deletions of the five PopZAt domains and assayed their localization. In addition, we created a popZAt deletion strain (ΔpopZAt) that exhibited growth and cell division defects with ectopic growth poles and minicells, but the strain is unstable. To overcome the genetic instability, we created an inducible PopZAt strain by replacing the native ribosome binding site with a riboswitch. Cultivated in a medium without the inducer theophylline, the cells look like ΔpopZAt cells, with a branching and minicell phenotype. Adding theophylline restores the wild-type (WT) cell shape. Localization experiments in the depleted strain showed that the domain enriched in proline, aspartate, and glutamate likely functions in growth pole targeting. Helical domains H3 and H4 together also mediate polar localization, but only in the presence of the WT protein, suggesting that the H3 and H4 domains multimerize with WT PopZAt, to stabilize growth pole accumulation of PopZAt. Agrobacterium tumefaciens is a rod-shaped bacterium that grows by addition of PG at only one pole. The factors involved in maintaining cell asymmetry during the cell cycle with an inert old pole and a growing new pole are not well understood. Here we investigate the role of PopZAt, a homologue of Caulobacter crescentus PopZ (PopZCc), a protein essential in many aspects of pole identity in C. crescentus. We report that the loss of PopZAt leads to the appearance of branching cells, minicells, and overall growth defects. As many plant and animal pathogens also employ polar growth, understanding this process in A. tumefaciens may lead to the development of new strategies to prevent the proliferation of these pathogens. In addition, studies of A. tumefaciens will provide new insights into the evolution of the genetic networks that regulate bacterial polar growth and cell division.
Collapse
|
37
|
Caccamo PD, Brun YV. The Molecular Basis of Noncanonical Bacterial Morphology. Trends Microbiol 2017; 26:191-208. [PMID: 29056293 DOI: 10.1016/j.tim.2017.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 01/04/2023]
Abstract
Bacteria come in a wide variety of shapes and sizes. The true picture of bacterial morphological diversity is likely skewed due to an experimental focus on pathogens and industrially relevant organisms. Indeed, most of the work elucidating the genes and molecular processes involved in maintaining bacterial morphology has been limited to rod- or coccal-shaped model systems. The mechanisms of shape evolution, the molecular processes underlying diverse shapes and growth modes, and how individual cells can dynamically modulate their shape are just beginning to be revealed. Here we discuss recent work aimed at advancing our knowledge of shape diversity and uncovering the molecular basis for shape generation in noncanonical and morphologically complex bacteria.
Collapse
Affiliation(s)
- Paul D Caccamo
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA
| | - Yves V Brun
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA.
| |
Collapse
|
38
|
CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PLoS Genet 2017; 13:e1007007. [PMID: 28931012 PMCID: PMC5624674 DOI: 10.1371/journal.pgen.1007007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/02/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB. Bacterially encoded toxin-antitoxin systems, which consist of a small toxin protein that is co-produced with a neutralizing antitoxin, are a potential avenue for the identification of novel antibiotic targets. These toxins typically target essential cellular processes, causing growth arrest or cell death when unchecked by the antitoxin. Our study is focused on the CbtA toxin of E. coli, which was known to inhibit both bacterial cell division and also bacterial cell elongation (the process by which rod-shaped bacteria grow prior to cell division). We report that the effects of CbtA on cell division and cell elongation are genetically separable, and that they are due to direct and independent interactions with its targets FtsZ and MreB, essential cytoskeletal proteins that direct cell division and cell elongation, respectively. Our genetic analysis defines the functionally relevant target surfaces on FtsZ and MreB; in the case of FtsZ this surface represents a novel inhibitory target. As a dual-function toxin that independently targets two essential cytoskeletal elements, CbtA could guide the design of dual-function antibiotics whose ability to independently target more than one essential cellular process might impede the development of drug resistance, which is a growing public health threat.
Collapse
|
39
|
Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis. mBio 2017; 8:mBio.01183-17. [PMID: 28900018 PMCID: PMC5596344 DOI: 10.1128/mbio.01183-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan (PG), a polymer cross-linked by d-amino acid-containing peptides, is an essential component of the bacterial cell wall. We found that a fluorescent d-alanine analog (FDAA) incorporates chiefly at one of the two poles in Mycobacterium smegmatis but that polar dominance varies as a function of the cell cycle in Mycobacterium tuberculosis: immediately after cytokinesis, FDAAs are incorporated chiefly at one of the two poles, but just before cytokinesis, FDAAs are incorporated comparably at both. These observations suggest that mycobacterial PG-synthesizing enzymes are localized in functional compartments at the poles and septum and that the capacity for PG synthesis matures at the new pole in M. tuberculosis Deeper knowledge of the biology of mycobacterial PG synthesis may help in discovering drugs that disable previously unappreciated steps in the process.IMPORTANCE People are dying all over the world because of the rise of antimicrobial resistance to medicines that could previously treat bacterial infections, including tuberculosis. Here, we used fluorescent d-alanine analogs (FDAAs) that incorporate into peptidoglycan (PG)-the synthesis of which is an attractive drug target-combined with high- and super-resolution microscopy to investigate the spatiotemporal dynamics of PG synthesis in M. smegmatis and M. tuberculosis FDAA incorporation predominates at one of the two poles in M. smegmatis In contrast, while FDAA incorporation into M. tuberculosis is also polar, there are striking variations in polar dominance as a function of the cell cycle. This suggests that enzymes involved in PG synthesis are localized in functional compartments in mycobacteria and that M. tuberculosis possesses a mechanism for maturation of the capacity for PG synthesis at the new pole. This may help in discovering drugs that cripple previously unappreciated steps in the process.
Collapse
|
40
|
|
41
|
Absence of the Polar Organizing Protein PopZ Results in Reduced and Asymmetric Cell Division in Agrobacterium tumefaciens. J Bacteriol 2017. [PMID: 28630123 DOI: 10.1128/jb.00101-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Agrobacterium tumefaciens is a rod-shaped bacterium that grows by polar insertion of new peptidoglycan during cell elongation. As the cell cycle progresses, peptidoglycan synthesis at the pole ceases prior to insertion of new peptidoglycan at midcell to enable cell division. The A. tumefaciens homolog of the Caulobacter crescentus polar organelle development protein PopZ has been identified as a growth pole marker and a candidate polar growth-promoting factor. Here, we characterize the function of PopZ in cell growth and division of A. tumefaciens Consistent with previous observations, we observe that PopZ localizes specifically to the growth pole in wild-type cells. Despite the striking localization pattern of PopZ, we find the absence of the protein does not impair polar elongation or cause major changes in the peptidoglycan composition. Instead, we observe an atypical cell length distribution, including minicells, elongated cells, and cells with ectopic poles. Most minicells lack DNA, suggesting a defect in chromosome segregation. Furthermore, the canonical cell division proteins FtsZ and FtsA are misplaced, leading to asymmetric sites of cell constriction. Together, these data suggest that PopZ plays an important role in the regulation of chromosome segregation and cell division.IMPORTANCEA. tumefaciens is a bacterial plant pathogen and a natural genetic engineer. However, very little is known about the spatial and temporal regulation of cell wall biogenesis that leads to polar growth in this bacterium. Understanding the molecular basis of A. tumefaciens growth may allow for the development of innovations to prevent disease or to promote growth during biotechnology applications. Finally, since many closely related plant and animal pathogens exhibit polar growth, discoveries in A. tumefaciens may be broadly applicable for devising antimicrobial strategies.
Collapse
|
42
|
Wang D, Wang Y, Liu Y, Ngo HH, Lian Y, Zhao J, Chen F, Yang Q, Zeng G, Li X. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? BIORESOURCE TECHNOLOGY 2017; 234:456-465. [PMID: 28363395 DOI: 10.1016/j.biortech.2017.02.059] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
With the world's increasing energy crisis, society is growingly considered that the operation of wastewater treatment plants (WWTPs) should be shifted in sustainable paradigms with low energy input, or energy-neutral, or even energy output. There is a lack of critical thinking on whether and how new paradigms can be implemented in WWTPs based on the conventional process. The denitrifying anaerobic methane oxidation (DAMO) process, which uses methane and nitrate (or nitrite) as electron donor and acceptor, respectively, has recently been discovered. Based on critical analyses of this process, DAMO-centered technologies can be considered as a solution for sustainable operation of WWTPs. In this review, a possible strategy with DAMO-centered technologies was outlined and illustrated how this applies for the existing WWTPs energy-saving and newly designed WWTPs energy-neutral (or even energy-producing) towards sustainable operations.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yali Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Yu Lian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
43
|
The Variable Internal Structure of the Mycoplasma penetrans Attachment Organelle Revealed by Biochemical and Microscopic Analyses: Implications for Attachment Organelle Mechanism and Evolution. J Bacteriol 2017; 199:JB.00069-17. [PMID: 28373274 DOI: 10.1128/jb.00069-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/27/2017] [Indexed: 01/13/2023] Open
Abstract
Although mycoplasmas have small genomes, many of them, including the HIV-associated opportunist Mycoplasma penetrans, construct a polar attachment organelle (AO) that is used for both adherence to host cells and gliding motility. However, the irregular phylogenetic distribution of similar structures within the mycoplasmas, as well as compositional and ultrastructural differences among these AOs, suggests that AOs have arisen several times through convergent evolution. We investigated the ultrastructure and protein composition of the cytoskeleton-like material of the M. penetrans AO with several forms of microscopy and biochemical analysis, to determine whether the M. penetrans AO was constructed at the molecular level on principles similar to those of other mycoplasmas, such as Mycoplasma pneumoniae and Mycoplasma mobile We found that the M. penetrans AO interior was generally dissimilar from that of other mycoplasmas, in that it exhibited considerable heterogeneity in size and shape, suggesting a gel-like nature. In contrast, several of the 12 potential protein components identified by mass spectrometry of M. penetrans detergent-insoluble proteins shared certain distinctive biochemical characteristics with M. pneumoniae AO proteins, although not with M. mobile proteins. We conclude that convergence between M. penetrans and M. pneumoniae AOs extends to the molecular level, leading to the possibility that the less organized material in both M. pneumoniae and M. penetrans is the substance principally responsible for the organization and function of the AO.IMPORTANCEMycoplasma penetrans is a bacterium that infects HIV-positive patients and may contribute to the progression of AIDS. It attaches to host cells through a structure called an AO, but it is not clear how it builds this structure. Our research is significant not only because it identifies the novel protein components that make up the material within the AO that give it its structure but also because we find that the M. penetrans AO is organized unlike AOs from other mycoplasmas, suggesting that similar structures have evolved multiple times. From this work, we derive some basic principles by which mycoplasmas, and potentially all organisms, build structures at the subcellular level.
Collapse
|
44
|
Caufield JH, Wimble C, Shary S, Wuchty S, Uetz P. Bacterial protein meta-interactomes predict cross-species interactions and protein function. BMC Bioinformatics 2017; 18:171. [PMID: 28298180 PMCID: PMC5353844 DOI: 10.1186/s12859-017-1585-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/04/2017] [Indexed: 11/24/2022] Open
Abstract
Background Protein-protein interactions (PPIs) can offer compelling evidence for protein function, especially when viewed in the context of proteome-wide interactomes. Bacteria have been popular subjects of interactome studies: more than six different bacterial species have been the subjects of comprehensive interactome studies while several more have had substantial segments of their proteomes screened for interactions. The protein interactomes of several bacterial species have been completed, including several from prominent human pathogens. The availability of interactome data has brought challenges, as these large data sets are difficult to compare across species, limiting their usefulness for broad studies of microbial genetics and evolution. Results In this study, we use more than 52,000 unique protein-protein interactions (PPIs) across 349 different bacterial species and strains to determine their conservation across data sets and taxonomic groups. When proteins are collapsed into orthologous groups (OGs) the resulting meta-interactome still includes more than 43,000 interactions, about 14,000 of which involve proteins of unknown function. While conserved interactions provide support for protein function in their respective species data, we found only 429 PPIs (~1% of the available data) conserved in two or more species, rendering any cross-species interactome comparison immediately useful. The meta-interactome serves as a model for predicting interactions, protein functions, and even full interactome sizes for species with limited to no experimentally observed PPI, including Bacillus subtilis and Salmonella enterica which are predicted to have up to 18,000 and 31,000 PPIs, respectively. Conclusions In the course of this work, we have assembled cross-species interactome comparisons that will allow interactomics researchers to anticipate the structures of yet-unexplored microbial interactomes and to focus on well-conserved yet uncharacterized interactors for further study. Such conserved interactions should provide evidence for important but yet-uncharacterized aspects of bacterial physiology and may provide targets for anti-microbial therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1585-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Harry Caufield
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Christopher Wimble
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Semarjit Shary
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, Florida, USA.,Center for Computational Science, University of Miami, Coral Gables, Florida, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
45
|
PBP1B Glycosyltransferase and Transpeptidase Activities Play Different Essential Roles during the De Novo Regeneration of Rod Morphology in Escherichia coli. J Bacteriol 2017; 199:JB.00612-16. [PMID: 28096447 DOI: 10.1128/jb.00612-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan is a vital component of nearly all cell wall-bearing bacteria and is a valuable target for antibacterial therapy. However, despite decades of work, there remain important gaps in understanding how this macromolecule is synthesized and molded into a three-dimensional structure that imparts specific morphologies to individual cells. Here, we investigated the particularly enigmatic area of how peptidoglycan is synthesized and shaped during the first stages of creating cell shape de novo, that is, in the absence of a preexisting template. We found that when lysozyme-induced (LI) spheroplasts of Escherichia coli were allowed to resynthesize peptidoglycan, the cells divided first and then elongated to recreate a normal rod-shaped morphology. Penicillin binding protein 1B (PBP1B) was critical for the first stage of this recovery process. PBP1B synthesized peptidoglycan de novo, and this synthesis required that PBP1B interact with the outer membrane lipoprotein LpoB. Surprisingly, when LpoB was localized improperly to the inner membrane, recovering spheroplasts synthesized peptidoglycan and divided but then propagated as amorphous spheroidal cells, suggesting that the regeneration of a normal rod shape depends on a particular spatial interaction. Similarly, spheroplasts carrying a PBP1B variant lacking transpeptidase activity or those in which PBP1A was overproduced could synthesize new peptidoglycan and divide but then grew as oddly shaped spheroids. We conclude that de novo cell wall synthesis requires the glycosyltransferase activity of PBP1B but that PBP1B transpeptidase activity is needed to assemble cell walls with wild-type morphology.IMPORTANCE Bacterial cell wall peptidoglycan is synthesized and modified by penicillin binding proteins (PBPs), which are targeted by about half of all currently prescribed antibiotics, including penicillin and its derivatives. Because antibiotic resistance is rising, it has become increasingly urgent that we fill the gaps in our knowledge about how PBPs create and assemble this protective wall. We report here that PBP1B plays an essential role in synthesizing peptidoglycan in the absence of a preexisting template: its glycosyltransferase activity is responsible for de novo synthesis, while its transpeptidase activity is required to construct cell walls of a specific shape. These results highlight the importance of this enzyme and distinguish its biological roles from those of other PBPs and peptidoglycan synthases.
Collapse
|
46
|
Cserti E, Rosskopf S, Chang YW, Eisheuer S, Selter L, Shi J, Regh C, Koert U, Jensen GJ, Thanbichler M. Dynamics of the peptidoglycan biosynthetic machinery in the stalked budding bacteriumHyphomonas neptunium. Mol Microbiol 2017; 103:875-895. [DOI: 10.1111/mmi.13593] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Emöke Cserti
- Faculty of Biology; Philipps-Universität; Marburg 35043 Germany
- Max Planck Institute for Terrestrial Microbiology; Marburg 35043 Germany
| | - Sabine Rosskopf
- Faculty of Biology; Philipps-Universität; Marburg 35043 Germany
| | - Yi-Wei Chang
- Division of Biology and Bioengineering; California Institute of Technology; Pasadena CA 91125 USA
| | - Sabrina Eisheuer
- Faculty of Biology; Philipps-Universität; Marburg 35043 Germany
- Max Planck Institute for Terrestrial Microbiology; Marburg 35043 Germany
| | - Lars Selter
- Faculty of Chemistry; Philipps-Universität; Marburg Germany
| | - Jian Shi
- Division of Biology and Bioengineering; California Institute of Technology; Pasadena CA 91125 USA
| | - Christina Regh
- Faculty of Biology; Philipps-Universität; Marburg 35043 Germany
| | - Ulrich Koert
- Faculty of Chemistry; Philipps-Universität; Marburg Germany
| | - Grant J. Jensen
- Division of Biology and Bioengineering; California Institute of Technology; Pasadena CA 91125 USA
- Howard Hughes Medical Institute, California Institute of Technology; Pasadena CA 91125 USA
| | - Martin Thanbichler
- Faculty of Biology; Philipps-Universität; Marburg 35043 Germany
- Max Planck Institute for Terrestrial Microbiology; Marburg 35043 Germany
- LOEWE Center for Synthetic Microbiology; Marburg 35043 Germany
| |
Collapse
|
47
|
Three-Dimensional Structure of the Ultraoligotrophic Marine Bacterium "Candidatus Pelagibacter ubique". Appl Environ Microbiol 2017; 83:AEM.02807-16. [PMID: 27836840 DOI: 10.1128/aem.02807-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022] Open
Abstract
SAR11 bacteria are small, heterotrophic, marine alphaproteobacteria found throughout the oceans. They thrive at the low nutrient concentrations typical of open ocean conditions, although the adaptations required for life under those conditions are not well understood. To illuminate this issue, we used cryo-electron tomography to study "Candidatus Pelagibacter ubique" strain HTCC1062, a member of the SAR11 clade. Our results revealed its cellular dimensions and details of its intracellular organization. Frozen-hydrated cells, which were preserved in a life-like state, had an average cell volume (enclosed by the outer membrane) of 0.037 ± 0.011 μm3 Strikingly, the periplasmic space occupied ∼20% to 50% of the total cell volume in log-phase cells and ∼50% to 70% in stationary-phase cells. The nucleoid occupied the convex side of the crescent-shaped cells and the ribosomes predominantly occupied the concave side, at a relatively high concentration of 10,000 to 12,000 ribosomes/μm3 Outer membrane pore complexes, likely composed of PilQ, were frequently observed in both log-phase and stationary-phase cells. Long filaments, most likely type IV pili, were found on dividing cells. The physical dimensions, intracellular organization, and morphological changes throughout the life cycle of "Ca. Pelagibacter ubique" provide structural insights into the functional adaptions of these oligotrophic ultramicrobacteria to their habitat. IMPORTANCE Bacterioplankton of the SAR11 clade (Pelagibacterales) are of interest because of their global biogeochemical significance and because they appear to have been molded by unusual evolutionary circumstances that favor simplicity and efficiency. They have adapted to an ecosystem in which nutrient concentrations are near the extreme limits at which transport systems can function adequately, and they have evolved streamlined genomes to execute only functions essential for life. However, little is known about the actual size limitations and cellular features of living oligotrophic ultramicrobacteria. In this study, we have used cryo-electron tomography to obtain accurate physical information about the cellular architecture of "Candidatus Pelagibacter ubique," the first cultivated member of the SAR11 clade. These results provide foundational information for answering questions about the cell architecture and functions of these ultrasmall oligotrophic bacteria.
Collapse
|
48
|
Vélez M. Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:121-141. [DOI: 10.1007/978-3-319-39196-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Schaub RE, Chan YA, Lee M, Hesek D, Mobashery S, Dillard JP. Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling and releasing peptidoglycan in Neisseria gonorrhoeae. Mol Microbiol 2016; 102:865-881. [PMID: 27608412 DOI: 10.1111/mmi.13496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
Neisseria gonorrhoeae releases peptidoglycan (PG) fragments during infection that provoke a large inflammatory response and, in pelvic inflammatory disease, this response leads to the death and sloughing of ciliated cells of the Fallopian tube. We characterized the biochemical functions and localization of two enzymes responsible for the release of proinflammatory PG fragments. The putative lytic transglycosylases LtgA and LtgD were shown to create the 1,6-anhydromuramyl moieties, and both enzymes were able to digest a small, synthetic tetrasaccharide dipeptide PG fragment into the cognate 1,6-anhydromuramyl-containing reaction products. Degradation of tetrasaccharide PG fragments by LtgA is the first demonstration of a family 1 lytic transglycosylase exhibiting this activity. Pulse-chase experiments in gonococci demonstrated that LtgA produces a larger amount of PG fragments than LtgD, and a vast majority of these fragments are recycled. In contrast, LtgD was necessary for wild-type levels of PG precursor incorporation and produced fragments predominantly released from the cell. Additionally, super-resolution microscopy established that LtgA localizes to the septum, whereas LtgD is localized around the cell. This investigation suggests a model where LtgD produces PG monomers in such a way that these fragments are released, whereas LtgA creates fragments that are mostly taken into the cytoplasm for recycling.
Collapse
Affiliation(s)
- Ryan E Schaub
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yolande A Chan
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mijoon Lee
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Dusan Hesek
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Joseph P Dillard
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
50
|
Affiliation(s)
- Gregory M. Grason
- Department of Polymer Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|