1
|
Li S, Yang H, Duan Y, Wu L, Hu C, Yu B, Zhao Y. Role of heat shock proteins in response to temperature stress and their effect on apoptosis in Drosophila melanogaster. Int J Biol Macromol 2025; 306:141320. [PMID: 39984102 DOI: 10.1016/j.ijbiomac.2025.141320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Temperature is a key ecological factor influencing insect development and survival. Temperature stress triggers insect cell apoptosis. However, factors surrounding the response of insects to various temperature stresses at different developmental stages remain unclear. The molecular mechanisms by which these factors reduce apoptosis are also not well understood. In this study, transcriptome sequencing and differential expression analysis were conducted on the W1118 strain of Drosophila melanogaster at various developmental stages under different temperature treatments (6 °C, 26 °C, 35 °C/37 °C). The analysis revealed that DmenHSP68 is a differentially expressed gene for different developmental stages and under different temperature stresses. The RNA interference (RNAi) suppression of DmenDNAJA1 (HSP40 family), DmenHSP68 (HSP70 family), and DmenHSP83 (HSP90 family) significantly decreased adult survival rates under temperature stress. RT-PCR results showed a significant upregulation of apoptosis-related genes. The levels of apoptosis markers, such as reactive oxygen species (ROS), cytochrome c (Cytc) levels, and Caspase-3 activity significantly increased, while adenosine triphosphate (ATP) levels significantly decreased. This study provides a theoretical foundation for further elucidation of the molecular mechanisms underlying apoptosis in Drosophila under different temperature stresses.
Collapse
Affiliation(s)
- Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Hao Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yong Duan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Liang Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Chunyu Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Bo Yu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Yang Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Hu S, Chen S, Zhu H, Wang Y, Zhou Y, Cao J, Zhang H, Zhou J. Transcriptome reveals the roles and potential mechanisms of CeRNA in the regulation of salivary gland development in the tick Rhipicephalus haemaphysaloides. Front Cell Infect Microbiol 2025; 15:1573239. [PMID: 40370407 PMCID: PMC12075121 DOI: 10.3389/fcimb.2025.1573239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction The salivary glands of female ticks rapidly degenerate after feeding. The mechanism involves programmed cell death mediated by an ecdysteroid receptor. A competing endogenous RNA (ceRNA) network has been established using miRNA and the competitive binding of three types of RNA (lncRNA, circRNA, and mRNA), that were demonstrated to be involved in the regulation of biological processes. However, the comprehensive expression profile and competing endogenous RNA (ceRNA) regulatory network between mRNAs and ncRNAs involved in salivary gland development remain unclear. Methods In the current study, we employed whole-transcriptome sequencing (RNA sequencing) at various stages of feeding to identify differentially expressed lncRNAs, circRNAs, miRNAs, and mRNAs. The ceRNA networks combining lncRNAs, circRNAs, miRNAs, and mRNAs were predicted and constructed based on the miRanda and TargetScan databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for target mRNAs with significantly different expression levels. Results We identified several pathways related to organ growth and development: Insulin secretion, the Hippo signaling pathway, the Pl3K-Akt signaling pathway, the FoxO signaling pathway, and the Ferroptosis pathway in the lncRNA-miRNA-mRNA network, and Steroid biosynthesis, Cholesterol metabolism, the FoxO signaling pathway, and the Ferroptosis pathway in the circRNA-miRNA-mRNA network, each of which involved insulin and ecdysteroid regulation. Discussion Our findings have advanced our understanding of the underlying mechanisms of salivary gland development and degeneration.
Collapse
Affiliation(s)
- Shanming Hu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Songqin Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haotian Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Fasteen TD, Hernandez MR, Policastro RA, Sterrett MC, Zenter GE, Tennessen JM. The Drosophila Estrogen-Related Receptor promotes triglyceride storage within the larval fat body. J Lipid Res 2025:100815. [PMID: 40288680 DOI: 10.1016/j.jlr.2025.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
The Estrogen-Related Receptor (ERR) family of nuclear receptors (NRs) serve key roles in coordinating triglyceride (TAG) accumulation with juvenile growth and development. In both insects and mammals, ERR activity promotes TAG storage during the post-embryonic growth phase, with loss-of-function mutations in mouse Esrra and Drosophila melanogaster dERR inducing a lean phenotype. However, the role of insect ERRs in controlling TAG accumulation within adipose tissue remains poorly understood, as nearly all transcriptomic and metabolomic studies have relied on whole animal analyses. Here we address this shortcoming by using tissue-specific approaches to examine the role of dERR in regulating lipid metabolism within the Drosophila larval fat body. We find that dERR autonomously promotes TAG accumulation within fat body cells and regulates expression of genes involved in glycolysis, β-oxidation, and isoprenoid metabolism. As an extension of these results, we not only discovered that dERR mutant fat bodies exhibit decreased expression of known dHNF4 target genes but also found that dHNF4 activity is decreased in dERR mutants. Overall, our findings indicate that dERR plays a multifaceted role in the larval fat body to coordinate lipid storage with carbohydrate metabolism and developmental growth.
Collapse
Affiliation(s)
- Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zenter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Kong JD, Ritchie MW, Vadboncoeur É, MacMillan HA, Bertram SM. Growth, development, and life history of a mass-reared edible insect, Gryllodes sigillatus (Orthoptera: Gryllidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf073. [PMID: 40251933 DOI: 10.1093/jee/toaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 04/21/2025]
Abstract
Edible insects offer a viable alternative protein source to help meet the protein demands of a growing population. Optimizing insect mass-rearing for food and feed production depends on an understanding of insect life history. However, supporting data on growth, development, and reproduction from hatch to adulthood is often not available for many farmed insects, such as the decorated cricket (Gryllodes sigillatus Walk.). Here, we describe the life history of G. sigillatus from hatch to adulthood at 30 °C for traits relevant for mass-rearing and colony management. Female crickets first reached adulthood after 29 d and weighed 292.0 mg ± 74.09 mg, and male crickets first reached adulthood after 35 d and weighed 200.96 mg ± 34.51 mg. Crickets had 7 nymphal instars most characterizable by head width. Sex was identified by the development of ovipositors in females, and wings in both sexes. Crickets oviposited 56.74 ± 31.77 eggs every 48 h over 30 d and eggs hatched after 10.6 ± 0.5 d. This information provides the foundation to start and manage a cricket colony, to conduct research on life history and performance, and to facilitate practitioners to make informed decisions about rearing practices or identify arising issues. We highlight ways that a fundamental understanding of cricket biology can be informative for optimizing cricket growth, reducing variability in yield, and informing future precision farming practices.
Collapse
Affiliation(s)
- Jacinta D Kong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | | | - Susan M Bertram
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Matos YB, Velichkova N, Kirchknopf Riera M, da Luz MGE, Berni J. Characterizing stage-dependent neuromotor patterns in Drosophila melanogaster larvae through a graph construction approach. Front Neurosci 2025; 19:1557624. [PMID: 40182146 PMCID: PMC11965661 DOI: 10.3389/fnins.2025.1557624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
We investigated developmental changes in neuromotor activity patterns in Drosophila melanogaster larvae by combining calcium imaging with a novel graph-based mathematical framework. This allows to perform relevant quantitative comparisons between first (L1) and early third (L3) instar larvae. We found that L1 larvae exhibit higher frequencies of spontaneous neural activity that fail to propagate, indicating a less mature neuromotor system. In contrast, L3 larvae show efficient initiation and propagation of neural activity along the entire ventral nerve cord (VNC), resulting in longer activity chains. The time of chain propagation along the entire VNC is shorter in L1 than in L3, probably reflecting the increased length of the VNC. On the other hand, the time of peristaltic waves through the whole body during locomotion is much faster in L3 than in L1, so correlating with higher velocities and greater dispersal rates. Hence, the VNC-body interaction determines the characteristics of peristaltic waves propagation in crawling larvae. Further, asymmetrical neuronal activity, predominantly in anterior segments of L3 larvae, was associated with turning behaviors and enhanced navigation. These findings illustrate that the proposed quantitative model provides a systematic method to analyze neuromotor patterns across developmental stages, for instance, helping to uncover the maturation stages of neural circuits and their role in locomotion.
Collapse
Affiliation(s)
- Yuri Bilk Matos
- Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil
| | - Nadezhda Velichkova
- Brighton and Sussex Medical School, University of Brighton and University of Sussex, Brighton, United Kingdom
| | - Mateo Kirchknopf Riera
- Brighton and Sussex Medical School, University of Brighton and University of Sussex, Brighton, United Kingdom
| | | | - Jimena Berni
- Brighton and Sussex Medical School, University of Brighton and University of Sussex, Brighton, United Kingdom
| |
Collapse
|
6
|
Zhang M, Wen H, Sun Q, Zhang D, Li Y, Xi A, Zheng X, Wu Y, Cao J, Bouyer J, Xi Z. Early attainment of 20-hydroxyecdysone threshold shapes mosquito sexual dimorphism in developmental timing. Nat Commun 2025; 16:821. [PMID: 39827175 PMCID: PMC11743200 DOI: 10.1038/s41467-025-56224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
In holometabolous insects, critical weight (CW) attainment triggers pupation and metamorphosis, but its mechanism remains unclear in non-model organisms like mosquitoes. Here, we investigate the role of 20-hydroxyecdysone (20E) in CW assessment and pupation timing in Aedes albopictus and Ae. aegypti, vectors of arboviruses including dengue and Zika. Our results show that the attainment of CW is contingent upon surpassing a critical 20E threshold, which results in entrance into a constant 22 h interval and the subsequent 20E pulse responsible for larval-pupal ecdysis. Sexual dimorphism in pupation time arises from higher basal 20E levels in males, enabling earlier CW attainment. Administering 20E at 50% of L3/L4 molt, when most of males but not females pass the pulse, results in female-specific lethality. These findings highlight the pivotal role of 20E thresholds in CW, pupation timing, and sexual dimorphism, suggesting that manipulating 20E levels can skew populations male, offering a potential mosquito sex separation strategy.
Collapse
Affiliation(s)
- Meichun Zhang
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Han Wen
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Qiang Sun
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Dongjing Zhang
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Andrew Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Xiaoying Zheng
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yu Wu
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jeremy Bouyer
- Insect Pest Control Sub-programme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- ASTRE, CIRAD, F34398, Montpellier, France
- ASTRE, Cirad, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Zhiyong Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Galagovsky D, Depetris-Chauvin A, Kunert G, Knaden M, Hansson BS. Shaping the environment - Drosophila suzukii larvae construct their own niche. iScience 2024; 27:111341. [PMID: 39687005 PMCID: PMC11647167 DOI: 10.1016/j.isci.2024.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024] Open
Abstract
In holometabolous insects, the choice of oviposition substrate by the adult needs to be coordinated with the developmental needs of the larva. Drosophila suzukii female flies possess an enlarged serrated ovipositor, which has enabled them to conquer the ripening fruit as an oviposition niche. They insert their eggs through the skin of priced small fruits. However, this specialization seems to clash with the nutritional needs for larval development since ripening fruits have a low protein content and are high in sugars. In this work, we studied how D. suzukii larvae develop in and interact with the blueberry. We show that despite its hardness and composition, D. suzukii's first instar larvae are able to use the ripening fruit by engaging in niche construction. They display unique physical and behavioral characteristics that allow them to process the hard-ripening fruit and provoke an improvement in its composition that better suits larval nutritional needs.
Collapse
Affiliation(s)
- Diego Galagovsky
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Ana Depetris-Chauvin
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Grit Kunert
- Max Planck Institute for Chemical Ecology, Department for Biochemistry, Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| |
Collapse
|
8
|
He Q, Chen S, Hou T, Chen J. Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:792-805. [PMID: 39005109 DOI: 10.1111/imb.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with Drosophila genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
9
|
Putri TZAD, Wahyudin E, Pratama MR, Fatiah D, Hardiyanti W, Chaeratunnisa R, Latada NP, Fatmawati F, Mudjahid M, Nainu F. Undernutrition-induced stunting-like phenotype in Drosophila melanogaster. NARRA J 2024; 4:e999. [PMID: 39816060 PMCID: PMC11731816 DOI: 10.52225/narra.v4i3.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Stunting resulting from undernutrition is a significant global health challenge, particularly in developing countries, yet its underlying mechanisms and consequences remain inadequately understood. This study utilizes Drosophila melanogaster as an in vivo model to investigate the molecular basis of stunting. Due to the conserved nature of signaling pathways between Drosophila and vertebrates, this organism serves as an effective model for studying growth disorders. The aim of this study was to establish a Drosophila model exhibiting a stunting-like phenotype and to elucidate the molecular mechanisms underlying this condition. The stunting phenotype was induced through dietary manipulation, involving a standard nutrient-rich diet (100%) and treatment diets with reduced concentrations of sucrose, glucose, yeast, and cornmeal at 50%, 25%, and 12.5%. Phenotypic assessments included measurements of larval body size, fecundity, survival rates, and locomotor activity, alongside molecular analyses of gene expression related to metabolism, cell proliferation, and survival, using RT-qPCR. Results demonstrated that undernutrition profoundly affected D. melanogaster, causing growth retardation, reduced larval body size, diminished fecundity, and lower survival rates, though locomotor function remained unaffected. Molecular analysis revealed a significant decrease in the expression of the totA gene and notable increases in the expression of dilp5, srl, and indy genes, with no significant changes observed in the expression of the pepck gene. These findings indicate that undernutrition induces a stunting-like phenotype, likely driven by alterations in the expression of genes associated with metabolism, cell proliferation, and survival. Overall, this study establishes D. melanogaster as a valuable in vivo model for studying stunting-like phenotypes resulting from nutritional deficiencies and provides insights into the molecular pathways involved in growth impairment.
Collapse
Affiliation(s)
- Tenri ZAD. Putri
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Muhammad R. Pratama
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Dewita Fatiah
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Widya Hardiyanti
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | | | - Nadila P. Latada
- Unhas Fly Research Group, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | | | - Mukarram Mudjahid
- Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
- Unhas Fly Research Group, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| |
Collapse
|
10
|
Brunßen D, Suter B. Effects of unstable β-PheRS on food avoidance, growth, and development are suppressed by the appetite hormone CCHa2. Fly (Austin) 2024; 18:2308737. [PMID: 38374657 PMCID: PMC10880493 DOI: 10.1080/19336934.2024.2308737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Amino acyl-tRNA synthetases perform diverse non-canonical functions aside from their essential role in charging tRNAs with their cognate amino acid. The phenylalanyl-tRNA synthetase (PheRS/FARS) is an α2β2 tetramer that is needed for charging the tRNAPhe for its translation activity. Fragments of the α-subunit have been shown to display an additional, translation-independent, function that activates growth and proliferation and counteracts Notch signalling. Here we show in Drosophila that overexpressing the β-subunit in the context of the complete PheRS leads to larval roaming, food avoidance, slow growth, and a developmental delay that can last several days and even prevents pupation. These behavioural and developmental phenotypes are induced by PheRS expression in CCHa2+ and Pros+ cells. Simultaneous expression of β-PheRS, α-PheRS, and the appetite-inducing CCHa2 peptide rescued these phenotypes, linking this β-PheRS activity to the appetite-controlling pathway. The fragmentation dynamic of the excessive β-PheRS points to β-PheRS fragments as possible candidate inducers of these phenotypes. Because fragmentation of human FARS has also been observed in human cells and mutations in human β-PheRS (FARSB) can lead to problems in gaining weight, Drosophila β-PheRS can also serve as a model for the human phenotype and possibly also for obesity.
Collapse
Affiliation(s)
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Huang Y, Jay KL, Yen-Wen Huang A, Wan J, Jangam SV, Chorin O, Rothschild A, Barel O, Mariani M, Iascone M, Xue H, Huang J, Mignot C, Keren B, Saillour V, Mah-Som AY, Sacharow S, Rajabi F, Costin C, Yamamoto S, Kanca O, Bellen HJ, Rosenfeld JA, Palmer CGS, Nelson SF, Wangler MF, Martinez-Agosto JA. Loss-of-function in RBBP5 results in a syndromic neurodevelopmental disorder associated with microcephaly. Genet Med 2024; 26:101218. [PMID: 39036895 PMCID: PMC11648989 DOI: 10.1016/j.gim.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
PURPOSE Epigenetic dysregulation has been associated with many inherited disorders. RBBP5 (HGNC:9888) encodes a core member of the protein complex that methylates histone 3 lysine-4 and has not been implicated in human disease. METHODS We identify 5 unrelated individuals with de novo heterozygous variants in RBBP5. Three nonsense/frameshift and 2 missense variants were identified in probands with neurodevelopmental symptoms, including global developmental delay, intellectual disability, microcephaly, and short stature. Here, we investigate the pathogenicity of the variants through protein structural analysis and transgenic Drosophila models. RESULTS Both missense p.(T232I) and p.(E296D) variants affect evolutionarily conserved amino acids located at the interface between RBBP5 and the nucleosome. In Drosophila, overexpression analysis identifies partial loss-of-function mechanisms when the variants are expressed using the fly Rbbp5 or human RBBP5 cDNA. Loss of Rbbp5 leads to a reduction in brain size. The human reference or variant transgenes fail to rescue this loss and expression of either missense variant in an Rbbp5 null background results in a less severe microcephaly phenotype than the human reference, indicating both missense variants are partial loss-of-function alleles. CONCLUSION Haploinsufficiency of RBBP5 observed through de novo null and hypomorphic loss-of-function variants is associated with a syndromic neurodevelopmental disorder.
Collapse
Affiliation(s)
- Yue Huang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kristy L Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Alden Yen-Wen Huang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jijun Wan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Odelia Chorin
- Institute for Rare Diseases, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| | - Annick Rothschild
- Institute for Rare Diseases, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| | - Ortal Barel
- Genomics Unit, The Center for Cancer Research, Sheba Medical Center, Tel HaShomer, Israel; Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Milena Mariani
- Pediatric Department, ASST Lariana, Santa Anna General Hospital, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Han Xue
- Shanghai Institute of Precision Medicine at Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine at Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cyril Mignot
- AP-HP Sorbonne Université, Département de Génétique, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, France
| | - Boris Keren
- Genetic Department, GCS SeqOIA, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Virginie Saillour
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | | | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Farrah Rajabi
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Carrie Costin
- Division of Medical Genetics, Akron Children's Hospital, Akron, OH
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Christina G S Palmer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX.
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| |
Collapse
|
12
|
Henne WM, Ugrankar-Banerjee R, Tran S, Bowerman J, Paul B, Zacharias L, Mathews T, DeBerardinis R. Metabolic rewiring in fat-depleted Drosophila reveals triglyceride:glycogen crosstalk and identifies cDIP as a new regulator of energy metabolism. RESEARCH SQUARE 2024:rs.3.rs-4505077. [PMID: 39483909 PMCID: PMC11527204 DOI: 10.21203/rs.3.rs-4505077/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tissues store excess nutrients as triglyceride or glycogen, but how these reserves are sensed and communicate remains poorly understood. Here we identify molecular players orchestrating this metabolic balance during fat depletion. We show fat body (FB)-specific depletion of fatty acyl-CoA synthase FASN1 in Drosophila causes near-complete fat loss and metabolic remodeling that dramatically elevates glycogen storage and carbohydrate metabolism. Proteomics and metabolomics identify key factors necessary for rewiring including glycolysis enzymes and target-of-brain-insulin (tobi). FASN1-deficient flies are viable but starvation sensitive, oxidatively stressed, and infertile. We also identify CG10824/cDIP as upregulated in FASN1-depleted Drosophila. cDIP is a leucine-rich-repeat protein with homology to secreted adipokines that fine-tune energy signaling, and is required for fly development in the absence of FASN1. Collectively, we show fat-depleted Drosophila rewire their metabolism to complete development, and identify cDIP as a putative new cytokine that signals fat insufficiency and may regulate energy homeostasis.
Collapse
|
13
|
Fasteen TD, Hernandez MR, Policastro RA, Sterrett MC, Zenter GE, Tennessen JM. The Drosophila Estrogen-Related Receptor promotes triglyceride storage within the larval fat body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612925. [PMID: 39314431 PMCID: PMC11419140 DOI: 10.1101/2024.09.13.612925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The Estrogen-Related Receptor (ERR) family of nuclear receptors (NRs) serve key roles in coordinating triglyceride (TAG) accumulation with juvenile growth and development. In both insects and mammals, ERR activity promotes TAG storage during the post-embryonic growth phase, with loss-of-function mutations in mouse Esrra and Drosophila melanogaster dERR inducing a lean phenotype. However, the role of insect ERRs in controlling TAG accumulation within adipose tissue remains poorly understood, as previous transcriptomic and metabolomic studies relied on whole animal analyses. Here we address this shortcoming by using tissue-specific approaches to examine the role of dERR in regulating lipid metabolism within the Drosophila larval fat body. We find that dERR autonomously promotes TAG accumulation within fat body cells and regulates expression of genes involved in glycolysis, β-oxidation, and mevalonate metabolism. As an extension of these results, we not only discovered that dERR mutant fat bodies exhibit decreased expression of known dHNF4 target genes but also found that dHNF4 activity is decreased in dERR mutants. Overall, our findings indicate that dERR plays a multifaceted role in the larval fat body to coordinate lipid storage with developmental growth and hint at a conserved mechanism by which ERR and HNF4 homologs coordinately regulate metabolic gene expression.
Collapse
Affiliation(s)
- Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zenter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
14
|
Metzger BM, Özpolat BD. Developmental stage dependent effects of posterior and germline regeneration on sexual maturation in Platynereis dumerilii. Dev Biol 2024; 513:33-49. [PMID: 38797257 PMCID: PMC11211637 DOI: 10.1016/j.ydbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Regeneration, regrowing lost and injured body parts, is an ability that generally declines with age or developmental transitions (i.e. metamorphosis, sexual maturation). Regeneration is also an energetically costly process, and trade-offs occur between regeneration and other costly processes such as growth, or sexual reproduction. Here we investigate the interplay of regeneration, reproduction, and developmental stage in the segmented worm Platynereis dumerilii. P. dumerilii can regenerate its whole posterior body axis, along with its reproductive cells, thereby having to carry out the two costly processes (somatic and germ cell regeneration) after injury. We specifically examine how developmental stage affects the success of germ cell regeneration and sexual maturation in developmentally young versus developmentally old organisms. We hypothesized that developmentally younger individuals (i.e. with gametes in early mitotic stages) will have higher regeneration success than the individuals at developmentally older stages (i.e. with gametes undergoing meiosis and maturation). Surprisingly, older amputated worms grew faster and matured earlier than younger amputees. To analyze germ cell regeneration during and after posterior regeneration, we used Hybridization Chain Reaction for the germline marker vasa. We found that regenerated worms start repopulating new segments with germ cell clusters as early as 14 days post amputation. In addition, vasa expression is observed in a wide region of newly-regenerated segments, which appears different from expression patterns during normal growth or regeneration in worms before gonial cluster expansion.
Collapse
Affiliation(s)
- Bria M Metzger
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA; Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - B Duygu Özpolat
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA; Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
15
|
Garfinkel AM, Ilker E, Miyazawa H, Schmeisser K, Tennessen JM. Historic obstacles and emerging opportunities in the field of developmental metabolism - lessons from Heidelberg. Development 2024; 151:dev202937. [PMID: 38912552 PMCID: PMC11299503 DOI: 10.1242/dev.202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.
Collapse
Affiliation(s)
- Alexandra M. Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | |
Collapse
|
16
|
Yip C, Wyler SC, Liang K, Yamazaki S, Cobb T, Safdar M, Metai A, Merchant W, Wessells R, Rothenfluh A, Lee S, Elmquist J, You YJ. Neuronal E93 is required for adaptation to adult metabolism and behavior. Mol Metab 2024; 84:101939. [PMID: 38621602 PMCID: PMC11053319 DOI: 10.1016/j.molmet.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE Metamorphosis is a transition from growth to reproduction, through which an animal adopts adult behavior and metabolism. Yet the neural mechanisms underlying the switch are unclear. Here we report that neuronal E93, a transcription factor essential for metamorphosis, regulates the adult metabolism, physiology, and behavior in Drosophila melanogaster. METHODS To find new neuronal regulators of metabolism, we performed a targeted RNAi-based screen of 70 Drosophila orthologs of the mammalian genes enriched in ventromedial hypothalamus (VMH). Once E93 was identified from the screen, we characterized changes in physiology and behavior when neuronal expression of E93 is knocked down. To identify the neurons where E93 acts, we performed an additional screen targeting subsets of neurons or endocrine cells. RESULTS E93 is required to control appetite, metabolism, exercise endurance, and circadian rhythms. The diverse phenotypes caused by pan-neuronal knockdown of E93, including obesity, exercise intolerance and circadian disruption, can all be phenocopied by knockdown of E93 specifically in either GABA or MIP neurons, suggesting these neurons are key sites of E93 action. Knockdown of the Ecdysone Receptor specifically in MIP neurons partially phenocopies the MIP neuron-specific knockdown of E93, suggesting the steroid signal coordinates adult metabolism via E93 and a neuropeptidergic signal. Finally, E93 expression in GABA and MIP neurons also serves as a key switch for the adaptation to adult behavior, as animals with reduced expression of E93 in the two subsets of neurons exhibit reduced reproductive activity. CONCLUSIONS Our study reveals that E93 is a new monogenic factor essential for metabolic, physiological, and behavioral adaptation from larval behavior to adult behavior.
Collapse
Affiliation(s)
- Cecilia Yip
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven C Wyler
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katrina Liang
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shin Yamazaki
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maryam Safdar
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aarav Metai
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Warda Merchant
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adrian Rothenfluh
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Syann Lee
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel Elmquist
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Young-Jai You
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
Lindsey AR, Tennessen JM, Gelaw MA, Jones MW, Parish AJ, Newton IL, Nemkov T, D'Alessandro A, Rai M, Stark N. The intracellular symbiont Wolbachia alters Drosophila development and metabolism to buffer against nutritional stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.20.524972. [PMID: 36711506 PMCID: PMC9882369 DOI: 10.1101/2023.01.20.524972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The intracellular bacterium Wolbachia is a common symbiont of many arthropods and nematodes, well studied for its impacts on host reproductive biology. However, its broad success as a vertically transmitted infection cannot be attributed to manipulations of host reproduction alone. Using the Drosophila melanogaster model and their natively associated Wolbachia strain " w Mel", we show that Wolbachia infection supports fly development and buffers against nutritional stress. Wolbachia infection across several fly genotypes and a range of nutrient conditions resulted in reduced pupal mortality, increased adult emergence, and larger size. We determined that the exogenous supplementation of pyrimidines partially rescued developmental phenotypes in the Wolbachia -free flies, and that Wolbachia titers were responsive to reduced gene expression of the fly's de novo pyrimidine synthesis pathway. In parallel, transcriptomic and metabolomic analyses indicated that Wolbachia impacts larval biology far beyond pyrimidine metabolism. Wolbachia -infected larvae had strong signatures of shifts in glutathione and mitochondrial metabolism, plus significant changes in the expression of key developmental regulators including Notch , the insulin receptor ( lnR ), and the juvenile hormone receptor Methoprene-tolerant ( Met ). We propose that Wolbachia acts as a beneficial symbiont to support fly development and enhance host fitness, especially during periods of nutrient stress. SIGNIFICANCE Wolbachia is a bacterial symbiont of arthropods and nematodes, well described for its manipulations of arthropod reproduction. However, many have theorized there must be more to this symbiosis, even in well-studied Wolbachia- host relationships such as with Drosophila . Reproductive impacts alone cannot explain the success and ubiquity of this bacterium. Here, we use Drosophila melanogaster and their native Wolbachia infections to show that Wolbachia supports fly development and significantly buffers flies against nutritional stress. These developmental advantages might help explain the ubiquity of Wolbachia infections.
Collapse
|
18
|
Parasram K, Zuccato A, Shin M, Willms R, DeVeale B, Foley E, Karpowicz P. The emergence of circadian timekeeping in the intestine. Nat Commun 2024; 15:1788. [PMID: 38413599 PMCID: PMC10899604 DOI: 10.1038/s41467-024-45942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The circadian clock is a molecular timekeeper, present from cyanobacteria to mammals, that coordinates internal physiology with the external environment. The clock has a 24-h period however development proceeds with its own timing, raising the question of how these interact. Using the intestine of Drosophila melanogaster as a model for organ development, we track how and when the circadian clock emerges in specific cell types. We find that the circadian clock begins abruptly in the adult intestine and gradually synchronizes to the environment after intestinal development is complete. This delayed start occurs because individual cells at earlier stages lack the complete circadian clock gene network. As the intestine develops, the circadian clock is first consolidated in intestinal stem cells with changes in Ecdysone and Hnf4 signalling influencing the transcriptional activity of Clk/cyc to drive the expression of tim, Pdp1, and vri. In the mature intestine, stem cell lineage commitment transiently disrupts clock activity in differentiating progeny, mirroring early developmental clock-less transitions. Our data show that clock function and differentiation are incompatible and provide a paradigm for studying circadian clocks in development and stem cell lineages.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Amy Zuccato
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Reegan Willms
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Brian DeVeale
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
19
|
Yun HM, Hyun B, Song X, Hyun S. Piwi expressed in Drosophila adipose tissues regulates systemic IGF signaling and growth via IGF-binding protein. Biochem Biophys Res Commun 2024; 695:149495. [PMID: 38211532 DOI: 10.1016/j.bbrc.2024.149495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Piwi and its partner, Piwi-interacting RNA (piRNA), are pivotal in suppressing the harmful effects of transposable elements (TEs) linked to genomic insertional mutagenesis. While primarily active in Drosophila's adult gonadal tissues, causing sterility in its absence, Piwi's role in post-embryonic development remains unclear. Our study reveals Piwi's functional presence in the larval fat body, where it governs developmental growth through systemic insulin/insulin-like growth factor (IGF) signaling (IIS). Piwi knockdown in the fat body resulted in dysregulated TE expression, reduced developmental rate and body growth, and diminished systemic IIS activity. Notably, Piwi knockdown increased Imaginal Morphogenic Protein Late 2 (Imp-L2) expression, akin to insulin-like growth factor-binding protein 7 (IGFBP7), reducing systemic IIS and inhibiting body growth. This unveils a novel role for Piwi in larval adipose tissues, emphasizing its importance in regulating systemic IIS and overall organismal growth.
Collapse
Affiliation(s)
- Hyun Myoung Yun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Bom Hyun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Xinge Song
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
20
|
Metzger B, Özpolat BD. The cost and payout of age on germline regeneration and sexual maturation in Platynereis dumerilii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576726. [PMID: 38328233 PMCID: PMC10849560 DOI: 10.1101/2024.01.22.576726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Regeneration, regrowing lost and injured body parts, is an ability that generally declines with age or developmental transitions (i.e. metamorphosis, sexual maturation) in many organisms. Regeneration is also energetically a costly process, and trade-offs occur between regeneration and other costly processes such as somatic growth, or sexual reproduction. Here we investigate the interplay of regeneration, reproduction, and age in the segmented worm Platynereis dumerilii. P. dumerilii can regenerate its whole posterior body axis, along with its reproductive cells, thereby having to carry out the two costly processes (somatic and germ cell regeneration) after injury. We specifically examine how age affects the success of germ cell regeneration and sexual maturation in developmentally young versus old organisms. We hypothesized that developmentally younger individuals (i.e. lower investment state, with gametes in early mitotic stages) will have higher regeneration success and reach sexual maturation faster than the individuals at developmentally older stages (i.e. higher investment state, with gametes in the process of maturation). Surprisingly, older amputated worms grew faster and matured earlier than younger amputees, even though they had to regenerate more segments and recuperate the more costly germ cells which were already starting to undergo gametogenesis. To analyze germ cell regeneration across stages, we used Hybridization Chain Reaction for the germline marker vasa. We found that regenerated worms start repopulating new segments with germ cell clusters as early as 14 days post amputation. In addition, vasa expression is observed in a wide region of newly-regenerated segments, which appears different from expression patterns during normal growth or regeneration in worms before gonial cluster expansion. Future studies will focus on determining the exact sources of gonial clusters in regeneration.
Collapse
Affiliation(s)
- Bria Metzger
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA USA
- Department of Biology, Washington University in Saint Louis, MO, USA
- Currently at University of Washington, Seattle, WA, USA
| | - B Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA USA
- Department of Biology, Washington University in Saint Louis, MO, USA
| |
Collapse
|
21
|
Kim JY, Yang JE, Mitchell JW, English LA, Yang SZ, Tenpas T, Dent EW, Wildonger J, Wright ER. Handling Difficult Cryo-ET Samples: A Study with Primary Neurons from Drosophila melanogaster. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2127-2148. [PMID: 37966978 PMCID: PMC11168236 DOI: 10.1093/micmic/ozad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons having been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.
Collapse
Affiliation(s)
- Joseph Y. Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Josephine W. Mitchell
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, MI 49006, USA
| | - Lauren A. English
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sihui Z. Yang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanner Tenpas
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jill Wildonger
- Departments of Pediatrics and Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
22
|
Collet JM, Nidelet S, Fellous S. Genetic independence between traits separated by metamorphosis is widespread but varies with biological function. Proc Biol Sci 2023; 290:20231784. [PMID: 37935368 PMCID: PMC10645066 DOI: 10.1098/rspb.2023.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Why is metamorphosis so pervasive? Does it facilitate the independent (micro)evolution of quantitative traits in distinct life stages, similarly to how it enables some limbs and organs to develop at specific life stages? We tested this hypothesis by measuring the expression of 6400 genes in 41 Drosophila melanogaster inbred lines at larval and adult stages. Only 30% of the genes showed significant genetic correlations between larval and adult expression. By contrast, 46% of the traits showed some level of genetic independence between stages. Gene ontology terms enrichment revealed that across stages correlated traits were often involved in proteins synthesis, insecticide resistance and innate immunity, while a vast number of genes expression traits associated with energy metabolism were independent between life stages. We compared our results to a similar case: genetic constraints between males and females in gonochoric species (i.e. sexual antagonism). We expected selection for the separation between males and females to be higher than between juvenile and adult functions, as gonochorism is a more common strategy in the animal kingdom than metamorphosis. Surprisingly, we found that inter-stage constraints were lower than inter-sexual genetic constraints. Overall, our results show that metamorphosis enables a large part of the transcriptome to evolve independently at different life stages.
Collapse
Affiliation(s)
- Julie M. Collet
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sabine Nidelet
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Simon Fellous
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
23
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
24
|
Patel AK, Vilela P, Shaik TB, McEwen A, Hazemann I, Brillet K, Ennifar E, Hamiche A, Markov G, Laudet V, Moras D, Klaholz B, Billas IL. Asymmetric dimerization in a transcription factor superfamily is promoted by allosteric interactions with DNA. Nucleic Acids Res 2023; 51:8864-8879. [PMID: 37503845 PMCID: PMC10484738 DOI: 10.1093/nar/gkad632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.
Collapse
Affiliation(s)
- Abdul Kareem Mohideen Patel
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Pierre Vilela
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Tajith Baba Shaik
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Alastair G McEwen
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle Hazemann
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Karl Brillet
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Eric Ennifar
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Ali Hamiche
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit. Okinawa Institute of Science and Technology. 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan
| | - Dino Moras
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Bruno P Klaholz
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M L Billas
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
25
|
Kim JY, Yang JE, Mitchell JW, English LA, Yang SZ, Tenpas T, Dent EW, Wildonger J, Wright ER. Handling difficult cryo-ET samples: A study with primary neurons from Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548468. [PMID: 37502991 PMCID: PMC10369871 DOI: 10.1101/2023.07.10.548468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.
Collapse
Affiliation(s)
- Joseph Y. Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Josephine W. Mitchell
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, MI, 49006, USA
| | - Lauren A. English
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Sihui Z. Yang
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Tanner Tenpas
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jill Wildonger
- Departments of Pediatrics and Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cryo-Electron Microscopy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53715, USA
| |
Collapse
|
26
|
Kasturacharya N, Dhall JK, Hasan G. A STIM dependent dopamine-neuropeptide axis maintains the larval drive to feed and grow in Drosophila. PLoS Genet 2023; 19:e1010435. [PMID: 37363909 DOI: 10.1371/journal.pgen.1010435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Appropriate nutritional intake is essential for organismal survival. In holometabolous insects such as Drosophila melanogaster, the quality and quantity of food ingested as larvae determines adult size and fecundity. Here we have identified a subset of dopaminergic neurons (THD') that maintain the larval motivation to feed. Dopamine release from these neurons requires the ER Ca2+ sensor STIM. Larvae with loss of STIM stop feeding and growing, whereas expression of STIM in THD' neurons rescues feeding, growth and viability of STIM null mutants to a significant extent. Moreover STIM is essential for maintaining excitability and release of dopamine from THD' neurons. Optogenetic stimulation of THD' neurons activated neuropeptidergic cells, including median neuro secretory cells that secrete insulin-like peptides. Loss of STIM in THD' cells alters the developmental profile of specific insulin-like peptides including ilp3. Loss of ilp3 partially rescues STIM null mutants and inappropriate expression of ilp3 in larvae affects development and growth. In summary we have identified a novel STIM-dependent function of dopamine neurons that modulates developmental changes in larval feeding behaviour and growth.
Collapse
Affiliation(s)
- Nandashree Kasturacharya
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Jasmine Kaur Dhall
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| |
Collapse
|
27
|
Ugrankar-Banerjee R, Tran S, Bowerman J, Kovalenko A, Paul B, Henne WM. The fat body cortical actin network regulates Drosophila inter-organ nutrient trafficking, signaling, and adipose cell size. eLife 2023; 12:e81170. [PMID: 37144872 PMCID: PMC10202455 DOI: 10.7554/elife.81170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Defective nutrient storage and adipocyte enlargement (hypertrophy) are emerging features of metabolic syndrome and type 2 diabetes. Within adipose tissues, how the cytoskeletal network contributes to adipose cell size, nutrient uptake, fat storage, and signaling remain poorly understood. Utilizing the Drosophila larval fat body (FB) as a model adipose tissue, we show that a specific actin isoform-Act5C-forms the cortical actin network necessary to expand adipocyte cell size for biomass storage in development. Additionally, we uncover a non-canonical role for the cortical actin cytoskeleton in inter-organ lipid trafficking. We find Act5C localizes to the FB cell surface and cell-cell boundaries, where it intimately contacts peripheral LDs (pLDs), forming a cortical actin network for cell architectural support. FB-specific loss of Act5C perturbs FB triglyceride (TG) storage and LD morphology, resulting in developmentally delayed larvae that fail to develop into flies. Utilizing temporal RNAi-depletion approaches, we reveal that Act5C is indispensable post-embryogenesis during larval feeding as FB cells expand and store fat. Act5C-deficient FBs fail to grow, leading to lipodystrophic larvae unable to accrue sufficient biomass for complete metamorphosis. In line with this, Act5C-deficient larvae display blunted insulin signaling and reduced feeding. Mechanistically, we also show this diminished signaling correlates with decreased lipophorin (Lpp) lipoprotein-mediated lipid trafficking, and find Act5C is required for Lpp secretion from the FB for lipid transport. Collectively, we propose that the Act5C-dependent cortical actin network of Drosophila adipose tissue is required for adipose tissue size-expansion and organismal energy homeostasis in development, and plays an essential role in inter-organ nutrient transport and signaling.
Collapse
Affiliation(s)
| | - Son Tran
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| | - Jade Bowerman
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| | | | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| |
Collapse
|
28
|
Towarnicki SG, Youngson NA, Corley SM, St. John JC, Melvin RG, Turner N, Morris MJ, Ballard JWO. Ancestral dietary change alters the development of Drosophila larvae through MAPK signalling. Fly (Austin) 2022; 16:299-311. [PMID: 35765944 PMCID: PMC9354765 DOI: 10.1080/19336934.2022.2088032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies in a broad range of animal species have revealed phenotypes that are caused by ancestral life experiences, including stress and diet. Ancestral dietary macronutrient composition and quantity (over- and under-nutrition) have been shown to alter descendent growth, metabolism and behaviour. Molecules have been identified in gametes that are changed by ancestral diet and are required for transgenerational effects. However, there is less understanding of the developmental pathways altered by inherited molecules during the period between fertilization and adulthood. To investigate this non-genetic inheritance, we exposed great grand-parental and grand-parental generations to defined protein to carbohydrate (P:C) dietary ratios. Descendent developmental timing was consistently faster in the period between the embryonic and pupal stages when ancestors had a higher P:C ratio diet. Transcriptional analysis revealed extensive and long-lasting changes to the MAPK signalling pathway, which controls growth rate through the regulation of ribosomal RNA transcription. Pharmacological inhibition of both MAPK and rRNA pathways recapitulated the ancestral diet-induced developmental changes. This work provides insight into non-genetic inheritance between fertilization and adulthood.
Collapse
Affiliation(s)
- Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia,The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - Susan M. Corley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Jus C. St. John
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Richard G. Melvin
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia
| | - Nigel Turner
- The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - Margaret J. Morris
- The Institute of Hepatology, The Foundation for Liver Research, London, UK
| | - J. William O. Ballard
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia,Department of Ecology, Environment and Evolution, School of Life Sciences, Victoria 3086, La Trobe University, Melbourne, VIC, Australia,CONTACT J. William O. Ballard Department of Environment and Genetics, SABE, La Trobe University, Bundoora, VIC3086, Australia
| |
Collapse
|
29
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
30
|
Ohhara Y, Yamanaka N. Internal sensory neurons regulate stage-specific growth in Drosophila. Development 2022; 149:dev200440. [PMID: 36227580 PMCID: PMC10496149 DOI: 10.1242/dev.200440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/22/2022] [Indexed: 09/15/2023]
Abstract
Animals control their developmental schedule in accordance with internal states and external environments. In Drosophila larvae, it is well established that nutrient status is sensed by different internal organs, which in turn regulate production of insulin-like peptides and thereby control growth. In contrast, the impact of the chemosensory system on larval development remains largely unclear. Here, we performed a genetic screen to identify gustatory receptor (Gr) neurons regulating growth and development, and found that Gr28a-expressing neurons are required for proper progression of larval growth. Gr28a is expressed in a subset of peripheral internal sensory neurons, which directly extend their axons to insulin-producing cells (IPCs) in the central nervous system. Silencing of Gr28a-expressing neurons blocked insulin-like peptide release from IPCs and suppressed larval growth during the mid-larval period. These results indicate that Gr28a-expressing neurons promote larval development by directly regulating growth-promoting endocrine signaling in a stage-specific manner.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
31
|
Fernandez-Acosta M, Romero JI, Bernabó G, Velázquez-Campos GM, Gonzalez N, Mares ML, Werbajh S, Avendaño-Vázquez LA, Rechberger GN, Kühnlein RP, Marino-Buslje C, Cantera R, Rezaval C, Ceriani MF. orsai, the Drosophila homolog of human ETFRF1, links lipid catabolism to growth control. BMC Biol 2022; 20:233. [PMID: 36266680 PMCID: PMC9585818 DOI: 10.1186/s12915-022-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lipid homeostasis is an evolutionarily conserved process that is crucial for energy production, storage and consumption. Drosophila larvae feed continuously to achieve the roughly 200-fold increase in size and accumulate sufficient reserves to provide all energy and nutrients necessary for the development of the adult fly. The mechanisms controlling this metabolic program are poorly understood. Results Herein we identified a highly conserved gene, orsai (osi), as a key player in lipid metabolism in Drosophila. Lack of osi function in the larval fat body, the regulatory hub of lipid homeostasis, reduces lipid reserves and energy output, evidenced by decreased ATP production and increased ROS levels. Metabolic defects due to reduced Orsai (Osi) in time trigger defective food-seeking behavior and lethality. Further, we demonstrate that downregulation of Lipase 3, a fat body-specific lipase involved in lipid catabolism in response to starvation, rescues the reduced lipid droplet size associated with defective orsai. Finally, we show that osi-related phenotypes are rescued through the expression of its human ortholog ETFRF1/LYRm5, known to modulate the entry of β-oxidation products into the electron transport chain; moreover, knocking down electron transport flavoproteins EtfQ0 and walrus/ETFA rescues osi-related phenotypes, further supporting this mode of action. Conclusions These findings suggest that Osi may act in concert with the ETF complex to coordinate lipid homeostasis in the fat body in response to stage-specific demands, supporting cellular functions that in turn result in an adaptive behavioral response. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01417-w.
Collapse
Affiliation(s)
- Magdalena Fernandez-Acosta
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Juan I Romero
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Guillermo Bernabó
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.,Present Address: Innovid, Buenos Aires, Argentina
| | - Giovanna M Velázquez-Campos
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Nerina Gonzalez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - M Lucía Mares
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Santiago Werbajh
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.,Present Address: Fundación Cassará, Buenos Aires, Argentina
| | - L Amaranta Avendaño-Vázquez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.,Present Address: IFIBYNE-CONICET, Buenos Aires, Argentina
| | - Gerald N Rechberger
- Institute for Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Ronald P Kühnlein
- Institute for Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria.,Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Cristina Marino-Buslje
- Laboratorio de Bioinformática Estructural, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Rafael Cantera
- Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Zoology Department, Stockholm University, Stockholm, Sweden
| | - Carolina Rezaval
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.,Present Address: School of Biosciences, University of Birmingham, Birmingham, UK
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina.
| |
Collapse
|
32
|
Aiello G, Sabino C, Pernici D, Audano M, Antonica F, Gianesello M, Ballabio C, Quattrone A, Mitro N, Romanel A, Soldano A, Tiberi L. Transient rapamycin treatment during developmental stage extends lifespan in Mus musculus and Drosophila melanogaster. EMBO Rep 2022; 23:e55299. [PMID: 35796299 PMCID: PMC9442325 DOI: 10.15252/embr.202255299] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Lifespan is determined by complex and tangled mechanisms that are largely unknown. The early postnatal stage has been proposed to play a role in lifespan, but its contribution is still controversial. Here, we show that a short rapamycin treatment during early life can prolong lifespan in Mus musculus and Drosophila melanogaster. Notably, the same treatment at later time points has no effect on lifespan, suggesting that a specific time window is involved in lifespan regulation. We also find that sulfotransferases are upregulated during early rapamycin treatment both in newborn mice and in Drosophila larvae, and transient dST1 overexpression in Drosophila larvae extends lifespan. Our findings unveil a novel link between early-life treatments and long-term effects on lifespan.
Collapse
Affiliation(s)
- Giuseppe Aiello
- Armenise‐Harvard Laboratory of Brain Disorders and Cancer, Department CIBIOUniversity of TrentoTrentoItaly
| | - Cosimo Sabino
- Armenise‐Harvard Laboratory of Brain Disorders and Cancer, Department CIBIOUniversity of TrentoTrentoItaly
| | - Davide Pernici
- Armenise‐Harvard Laboratory of Brain Disorders and Cancer, Department CIBIOUniversity of TrentoTrentoItaly
| | - Matteo Audano
- DiSFeB, Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanItaly
| | - Francesco Antonica
- Armenise‐Harvard Laboratory of Brain Disorders and Cancer, Department CIBIOUniversity of TrentoTrentoItaly
| | - Matteo Gianesello
- Armenise‐Harvard Laboratory of Brain Disorders and Cancer, Department CIBIOUniversity of TrentoTrentoItaly
| | - Claudio Ballabio
- Armenise‐Harvard Laboratory of Brain Disorders and Cancer, Department CIBIOUniversity of TrentoTrentoItaly
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department CIBIOUniversity of TrentoTrentoItaly
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanItaly
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Genomics, Department CIBIOUniversity of TrentoTrentoItaly
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department CIBIOUniversity of TrentoTrentoItaly
| | - Luca Tiberi
- Armenise‐Harvard Laboratory of Brain Disorders and Cancer, Department CIBIOUniversity of TrentoTrentoItaly
| |
Collapse
|
33
|
Hamledari H, Asghari P, Jayousi F, Aguirre A, Maaref Y, Barszczewski T, Ser T, Moore E, Wasserman W, Klein Geltink R, Teves S, Tibbits GF. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Front Cardiovasc Med 2022; 9:967659. [PMID: 36061558 PMCID: PMC9429949 DOI: 10.3389/fcvm.2022.967659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and reduced quality of life globally. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a personalized platform to study inherited heart diseases, drug-induced cardiac toxicity, and cardiac regenerative therapy. However, the immaturity of CMs obtained by current strategies is a major hurdle in utilizing hiPSC-CMs at their fullest potential. Here, the major findings and limitations of current maturation methodologies to enhance the utility of hiPSC-CMs in the battle against a major source of morbidity and mortality are reviewed. The most recent knowledge of the potential signaling pathways involved in the transition of fetal to adult CMs are assimilated. In particular, we take a deeper look on role of nutrient sensing signaling pathways and the potential role of cap-independent translation mediated by the modulation of mTOR pathway in the regulation of cardiac gap junctions and other yet to be identified aspects of CM maturation. Moreover, a relatively unexplored perspective on how our knowledge on the effects of preterm birth on cardiovascular development can be actually utilized to enhance the current understanding of CM maturation is examined. Furthermore, the interaction between the evolving neonatal human heart and brown adipose tissue as the major source of neonatal thermogenesis and its endocrine function on CM development is another discussed topic which is worthy of future investigation. Finally, the current knowledge regarding transcriptional mediators of CM maturation is still limited. The recent studies have produced the groundwork to better understand CM maturation in terms of providing some of the key factors involved in maturation and development of metrics for assessment of maturation which proves essential for future studies on in vitro PSC-CMs maturation.
Collapse
Affiliation(s)
- Homa Hamledari
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Farah Jayousi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Alejandro Aguirre
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Yasaman Maaref
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tiffany Barszczewski
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Terri Ser
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Edwin Moore
- Department of Cellular and Physiological Sciences, University of British Colombia, Vancouver, BC, Canada
| | - Wyeth Wasserman
- Department of Medical Genetics, University of British Colombia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ramon Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Sheila Teves
- Department of Biochemistry and Molecular Biology, University of British Colombia, Vancouver, BC, Canada
| | - Glen F. Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
35
|
Nanda KP, Firdaus H. Dietary cadmium induced declined locomotory and reproductive fitness with altered homeostasis of essential elements in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2022; 255:109289. [PMID: 35114395 DOI: 10.1016/j.cbpc.2022.109289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
Cadmium (Cd) exerts detrimental effects on multiple biological processes of the living organisms along with epigenetic transgenerational effect. Drosophila melanogaster offers unique opportunity to evaluate Cd toxicity when studying important life traits in short duration of time by designing distinct behavioural assays. Present study utilized this model organism to assess Cd induced lethality, retarded growth, decreased life span and altered behaviour of the animals either at larval or adult stage. Our investigations revealed reduced locomotion and reproductive fitness of the animals upon Cd exposure. Transgenerational effect on locomotion was found to be behaviour specific as larval crawling was affected, but adult fly negative geotaxis was comparable to the control. Mechanistically, decreased antioxidant enzymes activity, superoxide dismutase (SOD) and catalase (CAT) together with altered homeostasis of essential elements (Fe, Zn and Mg) may be responsible for the observed effects. Altogether our work showed extensive range of Cd altered Drosophila behaviour which warrants need to control environmental Cd toxicity.
Collapse
Affiliation(s)
- Kumari Pragati Nanda
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
36
|
Gáliková M, Klepsatel P. Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Semin Cell Dev Biol 2022; 138:104-116. [PMID: 35393234 DOI: 10.1016/j.semcdb.2022.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, the combination of genetics, transcriptomic and proteomic approaches yielded substantial insights into the mechanisms behind the synthesis and breakdown of energy stores in the model organisms. The fruit fly Drosophila melanogaster has been particularly useful to unravel genetic regulations of energy metabolism. Despite the considerable evolutionary distance between humans and flies, the energy storage organs, main metabolic pathways, and even their genetic regulations remained relatively conserved. Glycogen and fat are universal energy reserves used in all animal phyla and several of their endocrine regulators, such as the insulin pathway, are highly evolutionarily conserved. Nevertheless, some of the factors inducing catabolism of energy stores have diverged significantly during evolution. Moreover, even within a single insect species, D. melanogaster, there are substantial developmental and context-dependent variances in the regulation of energy stores. These differences include, among others, the endocrine pathways that govern the catabolic events or the predominant fuel which is utilized for the given process. For example, many catabolic regulators that control energy reserves in adulthood seem to be largely dispensable for energy mobilization during development. In this review, we focus on a selection of the most important catabolic regulators from the group of peptide hormones (Adipokinetic hormone, Corazonin), catecholamines (octopamine), steroid hormones (20-hydroxyecdysone), and other factors (extracellular adenosine, regulators of lipase Brummer). We discuss their roles in the mobilization of energy reserves for processes such as development through non-feeding stages, flight or starvation survival. Finally, we conclude with future perspectives on the energy balance research in the fly model.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
37
|
Hao S, Gestrich JY, Zhang X, Xu M, Wang X, Liu L, Wei H. Neurotransmitters Affect Larval Development by Regulating the Activity of Prothoracicotropic Hormone-Releasing Neurons in Drosophila melanogaster. Front Neurosci 2021; 15:653858. [PMID: 34975366 PMCID: PMC8718639 DOI: 10.3389/fnins.2021.653858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ecdysone, an essential insect steroid hormone, promotes larval metamorphosis by coordinating growth and maturation. In Drosophila melanogaster, prothoracicotropic hormone (PTTH)-releasing neurons are considered to be the primary promoting factor in ecdysone biosynthesis. Recently, studies have reported that the regulatory mechanisms of PTTH release in Drosophila larvae are controlled by different neuropeptides, including allatostatin A and corazonin. However, it remains unclear whether neurotransmitters provide input to PTTH neurons and control the metamorphosis in Drosophila larvae. Here, we report that the neurotransmitters acetylcholine (ACh) affect larval development by modulating the activity of PTTH neurons. By downregulating the expression of different subunits of nicotinic ACh receptors in PTTH neurons, pupal volume was significantly increased, whereas pupariation timing was relatively unchanged. We also identified that PTTH neurons were excited by ACh application ex vivo in a dose-dependent manner via ionotropic nicotinic ACh receptors. Moreover, in our Ca2+ imaging experiments, relatively low doses of OA caused increased Ca2+ levels in PTTH neurons, whereas higher doses led to decreased Ca2+ levels. We also demonstrated that a low dose of OA was conveyed through OA β-type receptors. Additionally, our electrophysiological experiments revealed that PTTH neurons produced spontaneous activity in vivo, which provides the possibility of the bidirectional regulation, coming from neurons upstream of PTTH cells in Drosophila larvae. In summary, our findings indicate that several different neurotransmitters are involved in the regulation of larval metamorphosis by altering the activity of PTTH neurons in Drosophila.
Collapse
Affiliation(s)
- Shun Hao
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Julia Yvonne Gestrich
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Mengbo Xu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Xinwei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Huang DY, Xia XL, Huang R, Li S, Yuan DW, Liu SN. The steroid-induced microRNA let-7 regulates developmental growth by targeting cdc7 in the Drosophila fat body. INSECT SCIENCE 2021; 28:1621-1632. [PMID: 33089948 DOI: 10.1111/1744-7917.12878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In insects, 20-hydroxyecdysone (20E) limits systemic growth by triggering developmental transitions. Previous studies have shown that 20E-induced let-7 exhibits crosstalk with the cell cycle. Here, we examined the underlying molecular mechanisms and physiological functions of 20E-induced let-7 in the fat body, an organ for energy storage and nutrient mobilization which plays a critical role in the larval growth. First, the overexpression of let-7 decreased the body size and led to the reduction of both nucleolus and cell sizes in the larval fat body. In contrast, the overexpression of let-7-Sponge increased the nucleolus and cell sizes. Moreover, we found that cdc7, encoding a conserved protein kinase that controls the endocycle, is a target of let-7. Notably, the mutation of cdc7 in the fat body resulted in growth defects. Overall, our findings revealed a novel role of let-7 in the control of endoreduplication-related growth during larval-prepupal transition in Drosophila.
Collapse
Affiliation(s)
- Dan-Yan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiao-Ling Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Run Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Su-Ning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
39
|
Cao X, Rojas M, Pastor-Pareja JC. Intrinsic and damage-induced JAK/STAT signaling regulate developmental timing by the Drosophila prothoracic gland. Dis Model Mech 2021; 15:273570. [PMID: 34842272 PMCID: PMC8807578 DOI: 10.1242/dmm.049160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Development involves tightly paced, reproducible sequences of events, yet it must adjust to conditions external to it, such as resource availability and organismal damage. A major mediator of damage-induced immune responses in vertebrates and insects is JAK/STAT signaling. At the same time, JAK/STAT activation by the Drosophila Upd cytokines is pleiotropically involved in normal development of multiple organs. Whether inflammatory and developmental JAK/STAT roles intersect is unknown. Here, we show that JAK/STAT is active during development of the prothoracic gland (PG), which controls metamorphosis onset through ecdysone production. Reducing JAK/STAT signaling decreased PG size and advanced metamorphosis. Conversely, JAK/STAT hyperactivation by overexpression of pathway components or SUMOylation loss caused PG hypertrophy and metamorphosis delay. Tissue damage and tumors, known to secrete Upd cytokines, also activated JAK/STAT in the PG and delayed metamorphosis, at least in part by inducing expression of the JAK/STAT target Apontic. JAK/STAT damage signaling, therefore, regulates metamorphosis onset by co-opting its developmental role in the PG. Our findings in Drosophila provide insights on how systemic effects of damage and cancer can interfere with hormonally controlled development and developmental transitions. Summary: Damage signaling from tumors mediated by JAK/STAT-activating Upd cytokines delays the Drosophila larva–pupa transition through co-option of a JAK/STAT developmental role in the prothoracic gland.
Collapse
Affiliation(s)
- Xueya Cao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Marta Rojas
- School of Medicine, Tsinghua University, Beijing, China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
40
|
Kuehn E, Clausen DS, Null RW, Metzger BM, Willis AD, Özpolat BD. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:225-240. [PMID: 34793615 PMCID: PMC9114164 DOI: 10.1002/jez.b.23100] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 02/03/2023]
Abstract
Development of sexual characters and generation of gametes are tightly coupled with growth. Platynereis dumerilii is a marine annelid that has been used to study germline development and gametogenesis. P. dumerilii has germ cell clusters found across the body in the juvenile worms, and the clusters eventually form the gametes. Like other segmented worms, P. dumerilii grows by adding new segments at its posterior end. The number of segments reflect the growth state of the worms and therefore is a useful and measurable growth state metric to study the growth‐reproduction crosstalk. To understand how growth correlates with progression of gametogenesis, we investigated germline development across several developmental stages. We discovered a distinct transition period when worms increase the number of germline clusters at a particular segment number threshold. Additionally, we found that keeping worms short in segment number, by manipulating environmental conditions or via amputations, supported a segment number threshold requirement for germline development. Finally, we asked if these clusters in P. dumerilii play a role in regeneration (as similar free‐roaming cells are observed in Hydra and planarian regeneration) and found that the clusters were not required for regeneration in P. dumerilii, suggesting a strictly germline nature. Overall, these molecular analyses suggest a previously unidentified developmental transition dependent on the growth state of juvenile P. dumerilii leading to substantially increased germline expansion. Total segment number predicts the state of germline development and the abundance of germline clusters in Platynereis dumerilii. Changing environmental conditions or amputating worms do not alter the segment number threshold requirement for germline development. The vasa‐expressing germ clusters are not required for regeneration in Platynereis dumerilii.
Collapse
Affiliation(s)
- Emily Kuehn
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - David S Clausen
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Ryan W Null
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Bria M Metzger
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - B Duygu Özpolat
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
41
|
Methods to Assay the Behavior of Drosophila melanogaster for Toxicity Study. Methods Mol Biol 2021. [PMID: 34097260 DOI: 10.1007/978-1-0716-1514-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Drosophila melanogaster, the fruit fly, has been widely used in biological investigation as an invertebrate alternative to mammals for its various advantages compared to other model organisms, which include short life cycle, easy handling, high prolificacy, and great availability of substantial genetic information. The behavior of Drosophila melanogaster is closely related to its growth, which can reflect the physiological conditions of Drosophila. We have optimized simple and robust behavioral assays for determining the larvae survival, adult climbing ability (mobility assay), reproductive behavior, and lifespan of Drosophila. In this chapter, we present the step-by-step detailed method for studying Drosophila behavior.
Collapse
|
42
|
Poe AR, Mace KD, Kayser MS. Getting into rhythm: developmental emergence of circadian clocks and behaviors. FEBS J 2021; 289:6576-6588. [PMID: 34375504 DOI: 10.1111/febs.16157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Circadian clocks keep time to coordinate diverse behaviors and physiological functions. While molecular circadian rhythms are evident during early development, most behavioral rhythms, such as sleep-wake, do not emerge until far later. Here, we examine the development of circadian clocks, outputs, and behaviors across phylogeny, with a particular focus on Drosophila. We explore potential mechanisms for how central clocks and circadian output loci establish communication, and discuss why from an evolutionary perspective sleep-wake and other behavioral rhythms emerge long after central clocks begin keeping time.
Collapse
Affiliation(s)
- Amy R Poe
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kyla D Mace
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Thind AS, Vitali V, Guarracino MR, Catania F. What's Genetic Variation Got to Do with It? Starvation-Induced Self-Fertilization Enhances Survival in Paramecium. Genome Biol Evol 2021; 12:626-638. [PMID: 32163147 PMCID: PMC7239694 DOI: 10.1093/gbe/evaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The pervasiveness of sex despite its well-known costs is a long-standing puzzle in evolutionary biology. Current explanations for the success of sex in nature largely rely on the adaptive significance of the new or rare genotypes that sex may generate. Less explored is the possibility that sex-underlying molecular mechanisms can enhance fitness and convey benefits to the individuals that bear the immediate costs of sex. Here, we show that the molecular environment associated with self-fertilization can increase stress resistance in the ciliate Paramecium tetraurelia. This advantage is independent of new genetic variation, coupled with a reduced nutritional input, and offers fresh insights into the mechanistic origin of sex. In addition to providing evidence that the molecular underpinnings of sexual reproduction and the stress response are linked in P. tetraurelia, these findings supply an integrative explanation for the persistence of self-fertilization in this ciliate.
Collapse
Affiliation(s)
- Amarinder Singh Thind
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Naples, Italy
| | - Valerio Vitali
- Institute for Evolution and Biodiversity, Department of Biology, University of Münster, Germany
| | - Mario Rosario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Naples, Italy
| | - Francesco Catania
- Institute for Evolution and Biodiversity, Department of Biology, University of Münster, Germany
| |
Collapse
|
44
|
Kim SK, Tsao DD, Suh GSB, Miguel-Aliaga I. Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metab 2021; 33:1279-1292. [PMID: 34139200 PMCID: PMC8612010 DOI: 10.1016/j.cmet.2021.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
There has been rapid growth in the use of Drosophila and other invertebrate systems to dissect mechanisms governing metabolism. New assays and approaches to physiology have aligned with superlative genetic tools in fruit flies to provide a powerful platform for posing new questions, or dissecting classical problems in metabolism and disease genetics. In multiple examples, these discoveries exploit experimental advantages as-yet unavailable in mammalian systems. Here, we illustrate how fly studies have addressed long-standing questions in three broad areas-inter-organ signaling through hormonal or neural mechanisms governing metabolism, intestinal interoception and feeding, and the cellular and signaling basis of sexually dimorphic metabolism and physiology-and how these findings relate to human (patho)physiology. The imaginative application of integrative physiology and related approaches in flies to questions in metabolism is expanding, and will be an engine of discovery, revealing paradigmatic features of metabolism underlying human diseases and physiological equipoise in health.
Collapse
Affiliation(s)
- Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Deborah D Tsao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
45
|
Gillette CM, Tennessen JM, Reis T. Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development. Dev Biol 2021; 475:234-244. [DOI: 10.1016/j.ydbio.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
|
46
|
Ohhara Y, Hoshino G, Imahori K, Matsuyuki T, Yamakawa-Kobayashi K. The Nutrient-Responsive Molecular Chaperone Hsp90 Supports Growth and Development in Drosophila. Front Physiol 2021; 12:690564. [PMID: 34239451 PMCID: PMC8258382 DOI: 10.3389/fphys.2021.690564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Animals can sense internal nutrients, such as amino acids/proteins, and are able to modify their developmental programs in accordance with their nutrient status. In the fruit fly, Drosophila melanogaster, amino acid/protein is sensed by the fat body, an insect adipose tissue, through a nutrient sensor, target of rapamycin (TOR) complex 1 (TORC1). TORC1 promotes the secretion of various peptide hormones from the fat body in an amino acid/protein-dependent manner. Fat-body-derived peptide hormones stimulate the release of insulin-like peptides, which are essential growth-promoting anabolic hormones, from neuroendocrine cells called insulin-producing cells (IPCs). Although the importance of TORC1 and the fat body-IPC axis has been elucidated, the mechanism by which TORC1 regulates the expression of insulinotropic signal peptides remains unclear. Here, we show that an evolutionarily conserved molecular chaperone, heat shock protein 90 (Hsp90), promotes the expression of insulinotropic signal peptides. Fat-body-selective Hsp90 knockdown caused the transcriptional downregulation of insulinotropic signal peptides. IPC activity and systemic growth were also impaired in fat-body-selective Hsp90 knockdown animals. Furthermore, Hsp90 expression depended on protein/amino acid availability and TORC1 signaling. These results strongly suggest that Hsp90 serves as a nutrient-responsive gene that upregulates the fat body-IPC axis and systemic growth. We propose that Hsp90 is induced in a nutrient-dependent manner to support anabolic metabolism during the juvenile growth period.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Genki Hoshino
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kyosuke Imahori
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomoya Matsuyuki
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
47
|
Muñiz-González AB, Novo M, Martínez-Guitarte JL. Persistent pesticides: effects of endosulfan at the molecular level on the aquatic invertebrate Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31431-31446. [PMID: 33608783 DOI: 10.1007/s11356-021-12669-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Although banned in multiple areas, due to its persistence in the environment, endosulfan constitutes a significant environmental concern. In this work, fourth instar Chironomus riparius larvae were exposed at environmentally relevant endosulfan concentrations of 0.1, 1, and 10 μg/L for 24 h to analyze the possible effects of this acaricide on gene expression and enzymatic activity. Transcriptional changes were studied through the implementation of a real-time polymerase chain reaction array with 42 genes related to several metabolic pathways (endocrine system, detoxification response, stress response, DNA reparation, and immune system). Moreover, glutathione-S-transferase (GST), phenoloxidase (PO), and acetylcholinesterase (AChE) activities were assessed. The five pathways were differentially altered by endosulfan exposure with significant changes in the E93, Dis, MAPR, Met, InR, GSTd3, GSTt3, MRP1, hsp70, hsp40, hsp24, ATM, PARP, Proph, and Def genes. Besides, all of the measured enzymatic activities were modified, with increased activity of GST, followed by PO and AChE. In summary, the results reflected the effects provoked in C. riparius at molecular level despite the absence of lethality. These data raise concerns about the strong alteration on different metabolic routes despite the low concentrations used. Therefore, new risk assessment strategies should consider include the effects at the sub-organismal level as endpoints in addition to the classical ecologically relevant parameters (such as survival). This endeavor will facilitate a comprehensive evaluation of toxicants in the environment.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain.
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain
| |
Collapse
|
48
|
Yi Y, Xu W, Fan Y, Wang HX. Drosophila as an emerging model organism for studies of food-derived antioxidants. Food Res Int 2021; 143:110307. [PMID: 33992327 DOI: 10.1016/j.foodres.2021.110307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 01/18/2023]
Abstract
Dietary supplementation with antioxidants provides health benefits by preventing diseases caused by oxidative stress and damage. Consequently, there has been growing interest in the study of antioxidative foods and their active ingredients. Oxidative stress and antioxidative responses are mechanistically conserved from Drosophila to mammals. Therefore, as a well-established model organism with a short life cycle and advantages of genetic manipulation, the fruit fly has been increasingly employed to assess functions of antioxidants in vivo. In this review, the antioxidative defense mechanisms, methods used and assays developed in Drosophila to evaluate antioxidant supplementation, are highlighted. The main manifestations of antioxidation include reduction of reactive species, up-regulation of endogenous antioxidants, inhibition on oxidative damage to biomacromolecules, enhanced resistance against oxidative stress and extension of lifespan, which are related to the activations of nuclear factor erythroid 2-related factor 2-antioxidant response element pathway and other adaptive responses. Moreover, the key considerations and future perspectives for the application of Drosophila models in the studies of food-derived antioxidants are discussed.
Collapse
Affiliation(s)
- Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Hong-Xun Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
49
|
Romão D, Muzzopappa M, Barrio L, Milán M. The Upd3 cytokine couples inflammation to maturation defects in Drosophila. Curr Biol 2021; 31:1780-1787.e6. [PMID: 33609452 DOI: 10.1016/j.cub.2021.01.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/05/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Developmental transitions, such as puberty or metamorphosis, are tightly controlled by steroid hormones and can be delayed by the appearance of growth abnormalities, developmental tumors, or inflammatory disorders such as inflammatory bowel disease or cystic fibrosis.1-4 Here, we used a highly inflammatory epithelial model of malignant transformation in Drosophila5,6 to unravel the role of Upd3-a cytokine with homology to interleukin-6-and the JAK/STAT signaling pathway in coupling inflammation to a delay in metamorphosis. We present evidence that Upd3 produced by malignant and nearby cell populations signals to the prothoracic gland-an endocrine tissue primarily dedicated to the production of the steroid hormone ecdysone-to activate JAK/STAT and bantam microRNA (miRNA) and to delay metamorphosis. Upd cytokines produced by the tumor site contribute to increasing the systemic levels of Upd3 by amplifying its expression levels in a cell-autonomous manner and by inducing Upd3 expression in neighboring tissues in a non-autonomous manner, culminating in a major systemic response to prevent larvae from initiating pupa transition. Our results identify a new regulatory network impacting on ecdysone biosynthesis and provide new insights into the potential role of inflammatory cytokines and the JAK/STAT signaling pathway in coupling inflammation to delays in puberty.
Collapse
Affiliation(s)
- Daniela Romão
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Mariana Muzzopappa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
50
|
The Drosophila melanogaster Neprilysin Nepl15 is involved in lipid and carbohydrate storage. Sci Rep 2021; 11:2099. [PMID: 33483521 PMCID: PMC7822871 DOI: 10.1038/s41598-021-81165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
The prototypical M13 peptidase, human Neprilysin, functions as a transmembrane "ectoenzyme" that cleaves neuropeptides that regulate e.g. glucose metabolism, and has been linked to type 2 diabetes. The M13 family has undergone a remarkable, and conserved, expansion in the Drosophila genus. Here, we describe the function of Drosophila melanogaster Neprilysin-like 15 (Nepl15). Nepl15 is likely to be a secreted protein, rather than a transmembrane protein. Nepl15 has changes in critical catalytic residues that are conserved across the Drosophila genus and likely renders the Nepl15 protein catalytically inactive. Nevertheless, a knockout of the Nepl15 gene reveals a reduction in triglyceride and glycogen storage, with the effects likely occurring during the larval feeding period. Conversely, flies overexpressing Nepl15 store more triglycerides and glycogen. Protein modeling suggests that Nepl15 is able to bind and sequester peptide targets of catalytically active Drosophila M13 family members, peptides that are conserved in humans and Drosophila, potentially providing a novel mechanism for regulating the activity of neuropeptides in the context of lipid and carbohydrate homeostasis.
Collapse
|