1
|
Keagy J, Hofmann HA, Boughman JW. Mate choice in the brain: species differ in how male traits 'turn on' gene expression in female brains. Proc Biol Sci 2024; 291:20240121. [PMID: 39079663 PMCID: PMC11288669 DOI: 10.1098/rspb.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
Mate choice plays a fundamental role in speciation, yet we know little about the molecular mechanisms that underpin this crucial decision-making process. Stickleback fish differentially adapted to limnetic and benthic habitats are reproductively isolated and females of each species use different male traits to evaluate prospective partners and reject heterospecific males. Here, we integrate behavioural data from a mate choice experiment with gene expression profiles from the brains of females actively deciding whether to mate. We find substantial gene expression variation between limnetic and benthic females, regardless of behavioural context, suggesting general divergence in constitutive gene expression patterns, corresponding to their genetic differentiation. Intriguingly, female gene co-expression modules covary with male display traits but in opposing directions for sympatric populations of the two species, suggesting male displays elicit a dynamic neurogenomic response that reflects known differences in female preferences. Furthermore, we confirm the role of numerous candidate genes previously implicated in female mate choice in other species, suggesting evolutionary tinkering with these conserved molecular processes to generate divergent mate preferences. Taken together, our study adds important new insights to our understanding of the molecular processes underlying female decision-making critical for generating sexual isolation and speciation.
Collapse
Affiliation(s)
- Jason Keagy
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hans A. Hofmann
- Department of Integrative Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janette W. Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Dean LL, Whiting JR, Jones FC, MacColl ADC. Reproductive isolation in a three-way contact zone. Mol Ecol 2024; 33:e17275. [PMID: 38235507 DOI: 10.1111/mec.17275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Contact zones between divergent forms within a species provide insight into the role of gene flow in adaptation and speciation. Previous work has focused on contact zones involving only two divergent forms, but in nature, many more than two populations may overlap simultaneously and experience gene flow. Patterns of introgression in wild populations are, therefore, likely much more complicated than is often assumed. We begin to address this gap in current knowledge by investigating patterns of divergence and introgression across a complex natural contact zone. We use phenotypic and genomic data to confirm the existence of a three-way contact zone among divergent freshwater resident, saltwater resident and saltwater migratory three-spined stickleback (Gasterosteus aculeatus) on the island of North Uist, Scottish Western Isles. We find evidence for hybridization, mostly between saltwater resident and saltwater migratory forms. Despite hybridization, genomic analyses reveal pairwise islands of divergence between all forms that are maintained across the contact zone. Genomic cline analyses also provide evidence for selection and/or hybrid incompatibilities in divergent regions. Divergent genomic regions occur across multiple chromosomes and involve many known adaptive loci and several chromosomal inversions. We also identify distinct immune gene expression profiles between forms, but no evidence for transgressive expression in hybrids. Our results suggest that reproductive isolation is maintained in this three-way contact zone, despite some hybridization, and that reduced recombination in chromosomal inversions may play an important role in maintaining this isolation.
Collapse
Affiliation(s)
- Laura L Dean
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - James R Whiting
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
3
|
de Jong M, van Rensburg AJ, Whiteford S, Yung CJ, Beaumont M, Jiggins C, Bridle J. Rapid evolution of novel biotic interactions in the UK Brown Argus butterfly uses genomic variation from across its geographical range. Mol Ecol 2023; 32:5742-5756. [PMID: 37800849 DOI: 10.1111/mec.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Understanding the rate and extent to which populations can adapt to novel environments at their ecological margins is fundamental to predicting the persistence of biological communities during ongoing and rapid global change. Recent range expansion in response to climate change in the UK butterfly Aricia agestis is associated with the evolution of novel interactions with a larval food plant, and the loss of its ability to use an ancestral host species. Using ddRAD analysis of 61,210 variable SNPs from 261 females from throughout the UK range of this species, we identify genomic regions at multiple chromosomes that are associated with evolutionary responses, and their association with demographic history and ecological variation. Gene flow appears widespread throughout the range, despite the apparently fragmented nature of the habitats used by this species. Patterns of haplotype variation between selected and neutral genomic regions suggest that evolution associated with climate adaptation is polygenic, resulting from the independent spread of alleles throughout the established range of this species, rather than the colonization of pre-adapted genotypes from coastal populations. These data suggest that rapid responses to climate change do not depend on the availability of pre-adapted genotypes. Instead, the evolution of novel forms of biotic interaction in A. agestis has occurred during range expansion, through the assembly of novel genotypes from alleles from multiple localities.
Collapse
Affiliation(s)
- Maaike de Jong
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Alexandra Jansen van Rensburg
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Samuel Whiteford
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Carl J Yung
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Chris Jiggins
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
4
|
Dean LL, Magalhaes IS, D’Agostino D, Hohenlohe P, MacColl ADC. On the Origins of Phenotypic Parallelism in Benthic and Limnetic Stickleback. Mol Biol Evol 2023; 40:msad191. [PMID: 37652053 PMCID: PMC10490448 DOI: 10.1093/molbev/msad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Rapid evolution of similar phenotypes in similar environments, giving rise to in situ parallel adaptation, is an important hallmark of ecological speciation. However, what appears to be in situ adaptation can also arise by dispersal of divergent lineages from elsewhere. We test whether two contrasting phenotypes repeatedly evolved in parallel, or have a single origin, in an archetypal example of ecological adaptive radiation: benthic-limnetic three-spined stickleback (Gasterosteus aculeatus) across species pair and solitary lakes in British Columbia. We identify two genomic clusters across freshwater populations, which differ in benthic-limnetic divergent phenotypic traits and separate benthic from limnetic individuals in species pair lakes. Phylogenetic reconstruction and niche evolution modeling both suggest a single evolutionary origin for each of these clusters. We detected strong phylogenetic signal in benthic-limnetic divergent traits, suggesting that they are ancestrally retained. Accounting for ancestral state retention, we identify local adaptation of body armor due to the presence of an intraguild predator, the sculpin (Cottus asper), and environmental effects of lake depth and pH on body size. Taken together, our results imply a predominant role for retention of ancestral characteristics in driving trait distribution, with further selection imposed on some traits by environmental factors.
Collapse
Affiliation(s)
- Laura L Dean
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
| | - Isabel Santos Magalhaes
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
- Department of Life Sciences, School of Health and Life Sciences, Whitelands College, University of Roehampton, London, UK
| | - Daniele D’Agostino
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
- Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Paul Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Andrew D C MacColl
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
5
|
Campagna L, Toews DP. The genomics of adaptation in birds. Curr Biol 2022; 32:R1173-R1186. [DOI: 10.1016/j.cub.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
González-Castro M, Cardoso YP, Hughes LC, Ortí G. Hybridization is strongly constrained by salinity during secondary contact between silverside fishes (Odontesthes, Atheriniformes). Heredity (Edinb) 2022; 129:233-243. [PMID: 35821279 PMCID: PMC9519950 DOI: 10.1038/s41437-022-00555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
This study investigates a contact zone between two silverside fish species (marine Odontesthes argentinensis and freshwater O. bonariensis) in the estuarine Mar Chiquita lagoon along the Atlantic coast in Argentina (MChL), in which intermediate morphs had been reported. It has been suggested that admixture and introgression occur in MChL between these two species, but direct genetic evidence is lacking. Leveraging samples collected over several years (n = 676), we document the spatial distribution of both species and intermediate morphs within this habitat and collect landmark-based morphometric and multilocus genetic data (9876 loci for n = 110 individuals) to test the hypothesis of hybridization. Our analysis unambiguously characterizes intermediate morphs as F1 or F2 hybrids. We show that the low frequency of hybrid individuals in MChL may be explained by uneven abundance of parental species, which in turn are strongly affected by water salinity, limiting the size of the contact zone. Although hybrids seem to be fertile, their fitness may be reduced by external and intrinsic factors that may limit their success and suggest that this is an unstable hybrid zone. Genetic distinctiveness of both parental species is strongly supported by genome-wide data, explaining a known pattern of mitonuclear discordance as a consequence of hybridization followed by mitochondrial introgression. A clear signature of population genetic structure was detected in O. argentinensis, distinguishing MChL residents from marine populations of this species, that also was supported by distinctive morphometric features among these groups. Previous hypotheses of speciation in these fishes are discussed in the light of the new findings.
Collapse
Affiliation(s)
- Mariano González-Castro
- Grupo de Biotaxonomía Morfológica y molecular de peces, IIMyC-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yamila P Cardoso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Laboratorio de Sistemática y Biología Evolutiva, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| | - Lily C Hughes
- Department of Biological Sciences, George Washington University, Washington, DC, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Guillermo Ortí
- Department of Biological Sciences, George Washington University, Washington, DC, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
7
|
Taugbøl A, Solbakken MH, Jakobsen KS, Vøllestad LA. Salinity-induced transcriptome profiles in marine and freshwater threespine stickleback after an abrupt 6-hour exposure. Ecol Evol 2022; 12:e9395. [PMID: 36311407 PMCID: PMC9596333 DOI: 10.1002/ece3.9395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Saltwater and freshwater environments have opposing physiological challenges, yet, there are fish species that are able to enter both habitats during short time spans, and as individuals they must therefore adjust quickly to osmoregulatory contrasts. In this study, we conducted an experiment to test for plastic responses to abrupt salinity changes in two populations of threespine stickleback, Gasterosteus aculeatus, representing two ecotypes (freshwater and ancestral saltwater). We exposed both ecotypes to abrupt native (control treatment) and non-native salinities (0‰ and 30‰) and sampled gill tissue for transcriptomic analyses after 6 h of exposure. To investigate genomic responses to salinity, we analyzed four different comparisons; one for each ecotype (in their control and exposure salinity; (1) and (2), one between ecotypes in their control salinity (3), and the fourth comparison included all transcripts identified in (3) that did not show any expressional changes within ecotype in either the control or the exposed salinity (4)). Abrupt salinity transfer affected the expression of 10 and 1530 transcripts for the saltwater and freshwater ecotype, respectively, and 1314 were differentially expressed between the controls, including 502 that were not affected by salinity within ecotype (fixed expression). In total, these results indicate that factors other than genomic expressional plasticity are important for osmoregulation in stickleback, due to the need for opposite physiological pathways to survive the abrupt change in salinity.
Collapse
Affiliation(s)
- Annette Taugbøl
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
- Norwegian Institute for Nature Research (NINA)LillehammerNorway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Kjetill S. Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Leif Asbjørn Vøllestad
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| |
Collapse
|
8
|
Wucherpfennig JI, Howes TR, Au JN, Au EH, Roberts Kingman GA, Brady SD, Herbert AL, Reimchen TE, Bell MA, Lowe CB, Dalziel AC, Kingsley DM. Evolution of stickleback spines through independent cis-regulatory changes at HOXDB. Nat Ecol Evol 2022; 6:1537-1552. [PMID: 36050398 PMCID: PMC9525239 DOI: 10.1038/s41559-022-01855-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Understanding the mechanisms leading to new traits or additional features in organisms is a fundamental goal of evolutionary biology. We show that HOXDB regulatory changes have been used repeatedly in different fish genera to alter the length and number of the prominent dorsal spines used to classify stickleback species. In Gasterosteus aculeatus (typically 'three-spine sticklebacks'), a variant HOXDB allele is genetically linked to shortening an existing spine and adding an additional spine. In Apeltes quadracus (typically 'four-spine sticklebacks'), a variant HOXDB allele is associated with lengthening a spine and adding an additional spine in natural populations. The variant alleles alter the same non-coding enhancer region in the HOXDB locus but do so by diverse mechanisms, including single-nucleotide polymorphisms, deletions and transposable element insertions. The independent regulatory changes are linked to anterior expansion or contraction of HOXDB expression. We propose that associated changes in spine lengths and numbers are partial identity transformations in a repeating skeletal series that forms major defensive structures in fish. Our findings support the long-standing hypothesis that natural Hox gene variation underlies key patterning changes in wild populations and illustrate how different mutational mechanisms affecting the same region may produce opposite gene expression changes with similar phenotypic outcomes.
Collapse
Affiliation(s)
- Julia I Wucherpfennig
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy R Howes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica N Au
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric H Au
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Shannon D Brady
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy L Herbert
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E Reimchen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Anne C Dalziel
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Piñeros VJ, Del R Pedraza-Marrón C, Betancourt-Resendes I, Calderón-Cortés N, Betancur-R R, Domínguez-Domínguez O. Genome-wide species delimitation analyses of a silverside fish species complex in central Mexico indicate taxonomic over-splitting. BMC Ecol Evol 2022; 22:108. [PMID: 36104671 PMCID: PMC9472351 DOI: 10.1186/s12862-022-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Delimiting species across a speciation continuum is a complex task, as the process of species origin is not generally instantaneous. The use of genome-wide data provides unprecedented resolution to address convoluted species delimitation cases, often unraveling cryptic diversity. However, because genome-wide approaches based on the multispecies coalescent model are known to confound population structure with species boundaries, often resulting in taxonomic over-splitting, it has become increasingly evident that species delimitation research must consider multiple lines of evidence. In this study, we used phylogenomic, population genomic, and coalescent-based species delimitation approaches, and examined those in light of morphological and ecological information, to investigate species numbers and boundaries comprising the Chirostoma "humboltianum group" (family Atherinidae). The humboltianum group is a taxonomically controversial species complex where previous morphological and mitochondrial studies produced conflicting species delimitation outcomes. We generated ddRADseq data for 77 individuals representing the nine nominal species in the group, spanning their distribution range in the central Mexican plateau. RESULTS Our results conflict with the morphospecies and ecological delimitation hypotheses, identifying four independently evolving lineages organized in three geographically cohesive clades: (i) chapalae and sphyraena groups in Lake Chapala, (ii) estor group in Lakes Pátzcuaro and Zirahuén, and (iii) humboltianum sensu stricto group in Lake Zacapu and Lerma river system. CONCLUSIONS Overall, our study provides an atypical example where genome-wide analyses delineate fewer species than previously recognized on the basis of morphology. It also highlights the influence of the geological history of the Chapala-Lerma hydrological system in driving allopatric speciation in the humboltianum group.
Collapse
Affiliation(s)
- Victor Julio Piñeros
- Laboratorio de Ecología Molecular, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacán, Mexico
| | | | - Isaí Betancourt-Resendes
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de Las Ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, Mexico
| | - Nancy Calderón-Cortés
- Laboratorio de Ecología Molecular, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacán, Mexico.
| | - Ricardo Betancur-R
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" Planta Baja, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
- Laboratorio Nacional de Análisis y Síntesis Ecológica Para la Conservación de Recursos Genéticos de México, Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Apartado Postal 27-3 (Xangari), 58089, Michoacán, Morelia, Mexico.
| |
Collapse
|
10
|
Cortés AJ, López-Hernández F, Blair MW. Genome-Environment Associations, an Innovative Tool for Studying Heritable Evolutionary Adaptation in Orphan Crops and Wild Relatives. Front Genet 2022; 13:910386. [PMID: 35991553 PMCID: PMC9389289 DOI: 10.3389/fgene.2022.910386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Leveraging innovative tools to speed up prebreeding and discovery of genotypic sources of adaptation from landraces, crop wild relatives, and orphan crops is a key prerequisite to accelerate genetic gain of abiotic stress tolerance in annual crops such as legumes and cereals, many of which are still orphan species despite advances in major row crops. Here, we review a novel, interdisciplinary approach to combine ecological climate data with evolutionary genomics under the paradigm of a new field of study: genome-environment associations (GEAs). We first exemplify how GEA utilizes in situ georeferencing from genotypically characterized, gene bank accessions to pinpoint genomic signatures of natural selection. We later discuss the necessity to update the current GEA models to predict both regional- and local- or micro-habitat-based adaptation with mechanistic ecophysiological climate indices and cutting-edge GWAS-type genetic association models. Furthermore, to account for polygenic evolutionary adaptation, we encourage the community to start gathering genomic estimated adaptive values (GEAVs) for genomic prediction (GP) and multi-dimensional machine learning (ML) models. The latter two should ideally be weighted by de novo GWAS-based GEA estimates and optimized for a scalable marker subset. We end the review by envisioning avenues to make adaptation inferences more robust through the merging of high-resolution data sources, such as environmental remote sensing and summary statistics of the genomic site frequency spectrum, with the epigenetic molecular functionality responsible for plastic inheritance in the wild. Ultimately, we believe that coupling evolutionary adaptive predictions with innovations in ecological genomics such as GEA will help capture hidden genetic adaptations to abiotic stresses based on crop germplasm resources to assist responses to climate change. "I shall endeavor to find out how nature's forces act upon one another, and in what manner the geographic environment exerts its influence on animals and plants. In short, I must find out about the harmony in nature" Alexander von Humboldt-Letter to Karl Freiesleben, June 1799.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporacion Colombiana de Investigacion Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Felipe López-Hernández
- Corporacion Colombiana de Investigacion Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Matthew W. Blair
- Department of Agricultural & Environmental Sciences, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
11
|
Ishikawa A, Yamanouchi S, Iwasaki W, Kitano J. Convergent copy number increase of genes associated with freshwater colonization in fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200509. [PMID: 35634928 PMCID: PMC9149799 DOI: 10.1098/rstb.2020.0509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/14/2022] [Indexed: 07/20/2023] Open
Abstract
Copy number variation (CNV) can cause phenotypic changes. However, in contrast to amino acid substitutions and cis-regulatory changes, little is known about the functional categories of genes in which CNV is important for adaptation to novel environments. It is also unclear whether the same genes repeatedly change the copy numbers for adapting to similar environments. Here, we investigate CNV associated with freshwater colonization in fishes, which was observed multiple times across different lineages. Using 48 ray-finned fishes across diverse orders, we identified 23 genes whose copy number increases were associated with freshwater colonization. These genes showed enrichment for peptide receptor activity, hexosyltransferase activity and unsaturated fatty acid metabolism. We further revealed that three of the genes showed copy number increases in freshwater populations compared to marine ancestral populations of the stickleback genus Gasterosteus. These results indicate that copy number increases of genes involved in fatty acid metabolism (FADS2), immune function (PSMB8a) and thyroid hormone metabolism (UGT2) may be important for freshwater colonization at both the inter-order macroevolutionary scale and at the intra-genus microevolutionary scale. Further analysis across diverse taxa will help to understand the role of CNV in the adaptation to novel environments. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shun Yamanouchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
12
|
Velotta JP, McCormick SD, Whitehead A, Durso CS, Schultz ET. Repeated Genetic Targets of Natural Selection Underlying Adaptation of Fishes to Changing Salinity. Integr Comp Biol 2022; 62:357-375. [PMID: 35661215 DOI: 10.1093/icb/icac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Ecological transitions across salinity boundaries have led to some of the most important diversification events in the animal kingdom, especially among fishes. Adaptations accompanying such transitions include changes in morphology, diet, whole-organism performance, and osmoregulatory function, which may be particularly prominent since divergent salinity regimes make opposing demands on systems that maintain ion and water balance. Research in the last decade has focused on the genetic targets underlying such adaptations, most notably by comparing populations of species that are distributed across salinity boundaries. Here, we synthesize research on the targets of natural selection using whole-genome approaches, with a particular emphasis on the osmoregulatory system. Given the complex, integrated and polygenic nature of this system, we expected that signatures of natural selection would span numerous genes across functional levels of osmoregulation, especially salinity sensing, hormonal control, and cellular ion exchange mechanisms. We find support for this prediction: genes coding for V-type, Ca2+, and Na+/K+-ATPases, which are key cellular ion exchange enzymes, are especially common targets of selection in species from six orders of fishes. This indicates that while polygenic selection contributes to adaptation across salinity boundaries, changes in ATPase enzymes may be of particular importance in supporting such transitions.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Stephen D McCormick
- USGS, Eastern Ecological Science Center, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA, 01003USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA
| | - Catherine S Durso
- Department of Computer Science, University of Denver, Denver, CO 80210, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
13
|
Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. Genomic changes underlying repeated niche shifts in an adaptive radiation. Evolution 2022; 76:1301-1319. [PMID: 35398888 PMCID: PMC9320971 DOI: 10.1111/evo.14490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
In adaptive radiations, single lineages rapidly diversify by adapting to many new niches. Little is known yet about the genomic mechanisms involved, that is, the source of genetic variation or genomic architecture facilitating or constraining adaptive radiation. Here, we investigate genomic changes associated with repeated invasion of many different freshwater niches by threespine stickleback in the Haida Gwaii archipelago, Canada, by resequencing single genomes from one marine and 28 freshwater populations. We find 89 likely targets of parallel selection in the genome that are enriched for old standing genetic variation. In contrast to theoretical expectations, their genomic architecture is highly dispersed with little clustering. Candidate genes and genotype-environment correlations match the three major environmental axes predation regime, light environment, and ecosystem size. In a niche space with these three dimensions, we find that the more divergent a new niche from the ancestral marine habitat, the more loci show signatures of parallel selection. Our findings suggest that the genomic architecture of parallel adaptation in adaptive radiation depends on the steepness of ecological gradients and the dimensionality of the niche space.
Collapse
Affiliation(s)
- David A. Marques
- Department of BiologyUniversity of VictoriaVictoriaBCV8W 3N5Canada
- Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernCH‐3012Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and BiogeochemistrySwiss Federal Institute of Aquatic Science and Technology (EAWAG), Eawag ‐ Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumCH‐6047Switzerland
- Natural History Museum BaselBaselCH‐4051Switzerland
| | - Felicity C. Jones
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordCalifornia94305USA
- Department of Developmental BiologyStanford University School of MedicineStanfordCalifornia94305USA
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingen72076Germany
| | - Federica Di Palma
- Earlham InstituteNorwichNR4 7UZUnited Kingdom
- Department of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - David M. Kingsley
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordCalifornia94305USA
- Department of Developmental BiologyStanford University School of MedicineStanfordCalifornia94305USA
| | | |
Collapse
|
14
|
Thompson KA, Schluter D. Heterosis counteracts hybrid breakdown to forestall speciation by parallel natural selection. Proc Biol Sci 2022; 289:20220422. [PMID: 35506223 PMCID: PMC9065978 DOI: 10.1098/rspb.2022.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/04/2023] Open
Abstract
In contrast to ecological speciation, where reproductive isolation evolves as a consequence of divergent natural selection, speciation by parallel natural selection has been less thoroughly studied. To test whether parallel evolution drives speciation, we leveraged the repeated evolution of benthic and limnetic ecotypes of threespine stickleback fish and estimated fitness for pure crosses and within-ecotype hybrids in semi-natural ponds and in laboratory aquaria. In ponds, we detected hybrid breakdown in both ecotypes but this was counterbalanced by heterosis and the strength of post-zygotic isolation was nil. In aquaria, we detected heterosis in limnetic crosses and breakdown in benthic crosses, which is suggestive of process- and ecotype-specific environment-dependence. In ponds, heterosis and breakdown were three times greater in limnetic crosses than in benthic crosses, contrasting the prediction that the fitness consequences of hybridization should be greater in crosses among more derived ecotypes. Consistent with a primary role for stochastic processes, patterns differed among crosses between populations from different lakes. Yet, the observation of qualitatively similar patterns of heterosis and hybrid breakdown for both ecotypes when averaging the lake pairs indicates that the outcome of hybridization is repeatable in a general sense.
Collapse
Affiliation(s)
- Ken A. Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dolph Schluter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Wuitchik SJ, Mogensen S, Barry TN, Paccard A, Jamniczky HA, Barrett RD, Rogers SM. Evolution of thermal physiology alters the projected range of threespine stickleback under climate change. Mol Ecol 2022; 31:2312-2326. [PMID: 35152483 DOI: 10.1111/mec.16396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Species distribution models (SDMs) are widely used to predict range shifts but could be unreliable under climate change scenarios because they do not account for evolution. The thermal physiology of a species is a key determinant of its range and thus incorporating thermal trait evolution into SDMs might be expected to alter projected ranges. We identified a genetic basis for physiological and behavioural traits that evolve in response to temperature change in natural populations of threespine stickleback (Gasterosteus aculeatus). Using these data, we created geographical range projections using a mechanistic niche area approach under two climate change scenarios. Under both scenarios, trait data were either static ("no evolution" models), allowed to evolve at observed evolutionary rates ("evolution" models) or allowed to evolve at a rate of evolution scaled by the trait variance that is explained by quantitative trait loci (QTL; "scaled evolution" models). We show that incorporating these traits and their evolution substantially altered the projected ranges for a widespread panmictic marine population, with over 7-fold increases in area under climate change projections when traits are allowed to evolve. Evolution-informed SDMs should improve the precision of forecasting range dynamics under climate change, and aid in their application to management and the protection of biodiversity.
Collapse
Affiliation(s)
- Sara J.S. Wuitchik
- Department of Biological Sciences University of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
- Informatics Group Harvard University 52 Oxford St Cambridge MA 02138 USA
- Department of Biology Boston University 5 Cummington Mall Boston MA 02215 USA
- Department of Biology University of Victoria 3800 Finnerty Rd Victoria BC V8P 5C2 Canada
- School of Environmental Science Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Stephanie Mogensen
- Department of Biological Sciences University of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
| | - Tegan N. Barry
- Department of Biological Sciences University of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
| | - Antoine Paccard
- Redpath Museum Department of Biology McGill University 845 Sherbrooke St W Montreal QC H3A 0G4 Canada
- McGill University Genome Center 740 Dr Penfield Avenue Montreal QC H3A 1A5 Canada
| | - Heather A. Jamniczky
- Department of Cell Biology & Anatomy Cumming School of Medicine University of Calgary 3330 Hospital Dr NW Calgary T2N 4N1 Canada
| | - Rowan D.H. Barrett
- Redpath Museum Department of Biology McGill University 845 Sherbrooke St W Montreal QC H3A 0G4 Canada
| | - Sean M. Rogers
- Department of Biological Sciences University of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
- Bamfield Marine Sciences Centre 100 Pachena Rd Bamfield BC V0R 1B0 Canada
| |
Collapse
|
16
|
Rennison DJ, Peichel CL. Pleiotropy facilitates parallel adaptation in sticklebacks. Mol Ecol 2022; 31:1476-1486. [PMID: 34997980 PMCID: PMC9306781 DOI: 10.1111/mec.16335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022]
Abstract
Highly pleiotropic genes are predicted to be used less often during adaptation, as mutations in these loci are more likely to have negative fitness consequences. Following this logic, we tested whether pleiotropy impacts the probability that a locus will be used repeatedly in adaptation. We used two proxies to estimate pleiotropy: number of phenotypic traits affected by a given genomic region and gene connectivity. We first surveyed 16 independent stream‐lake and three independent benthic‐limnetic ecotype pairs of threespine stickleback to estimate genome‐wide patterns in parallel genomic differentiation. Our analysis revealed parallel divergence across the genome; 30%–37% of outlier regions were shared between at least two independent pairs in either the stream‐lake or benthic‐limnetic comparisons. We then tested whether parallel genomic regions are less pleiotropic than nonparallel regions. Counter to our a priori prediction, parallel genomic regions contained genes with significantly more pleiotropy; that is, influencing a greater number of traits and more highly connected. The increased pleiotropy of parallel regions could not be explained by other genomic factors, as there was no significant difference in mean gene count, mutation or recombination rates between parallel and nonparallel regions. Interestingly, although nonparallel regions contained genes that were less connected and influenced fewer mapped traits on average than parallel regions, they also tended to contain the genes that were predicted to be the most pleiotropic. Taken together, our findings are consistent with the idea that pleiotropy only becomes constraining at high levels and that low or intermediate levels of pleiotropy may be beneficial for adaptation.
Collapse
Affiliation(s)
- Diana J Rennison
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| |
Collapse
|
17
|
Thompson KA, Peichel CL, Rennison DJ, McGee MD, Albert AYK, Vines TH, Greenwood AK, Wark AR, Brandvain Y, Schumer M, Schluter D. Analysis of ancestry heterozygosity suggests that hybrid incompatibilities in threespine stickleback are environment dependent. PLoS Biol 2022; 20:e3001469. [PMID: 35007278 PMCID: PMC8746713 DOI: 10.1371/journal.pbio.3001469] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Hybrid incompatibilities occur when interactions between opposite ancestry alleles at different loci reduce the fitness of hybrids. Most work on incompatibilities has focused on those that are "intrinsic," meaning they affect viability and sterility in the laboratory. Theory predicts that ecological selection can also underlie hybrid incompatibilities, but tests of this hypothesis using sequence data are scarce. In this article, we compiled genetic data for F2 hybrid crosses between divergent populations of threespine stickleback fish (Gasterosteus aculeatus L.) that were born and raised in either the field (seminatural experimental ponds) or the laboratory (aquaria). Because selection against incompatibilities results in elevated ancestry heterozygosity, we tested the prediction that ancestry heterozygosity will be higher in pond-raised fish compared to those raised in aquaria. We found that ancestry heterozygosity was elevated by approximately 3% in crosses raised in ponds compared to those raised in aquaria. Additional analyses support a phenotypic basis for incompatibility and suggest that environment-specific single-locus heterozygote advantage is not the cause of selection on ancestry heterozygosity. Our study provides evidence that, in stickleback, a coarse-albeit indirect-signal of environment-dependent hybrid incompatibility is reliably detectable and suggests that extrinsic incompatibilities can evolve before intrinsic incompatibilities.
Collapse
Affiliation(s)
- Ken A. Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| | - Catherine L. Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Diana J. Rennison
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Matthew D. McGee
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Timothy H. Vines
- DataSeer Research Data Services, Vancouver, British Columbia, Canada
| | | | - Abigail R. Wark
- Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Maryland, United States of America
| | - Dolph Schluter
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| |
Collapse
|
18
|
Samad-Zada F, Nakayama K, Russello MA. Genome-Wide Investigation of the Multiple Origins Hypothesis for Deep-Spawning Kokanee Salmon (Oncorhynchus nerka) across its Pan-Pacific Distribution. J Hered 2021; 112:602-613. [PMID: 34618898 DOI: 10.1093/jhered/esab060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/01/2021] [Indexed: 11/14/2022] Open
Abstract
Salmonids have emerged as important study systems for investigating molecular processes underlying parallel evolution given their tremendous life history variation. Kokanee, the resident form of anadromous sockeye salmon (Oncorhynchus nerka), have evolved multiple times across the species' pan-Pacific distribution, exhibiting multiple reproductive ecotypes including those that spawn in streams, on lake-shores, and at lake depths >50 m. The latter has only been detected in 5 locations in Japan and British Columbia, Canada. Here, we investigated the multiple origins hypothesis for deep-spawning kokanee, using 9721 single nucleotide polymorphisms distributed across the genome analyzed for the vast majority of known populations in Japan (Saiko Lake) and Canada (Anderson, Seton, East Barrière Lakes) relative to stream-spawning populations in both regions. We detected 397 outlier loci, none of which were robustly identified in paired-ecotype comparisons in Japan and Canada independently. Bayesian clustering and principal components analyses based on neutral loci revealed 6 distinct clusters, largely associated with geography or translocation history, rather than ecotype. Moreover, a high level of divergence between Canadian and Japanese populations, and between deep- and stream-spawning populations regionally, suggests the deep-spawning ecotype independently evolved on the 2 continents. On a finer level, Japanese kokanee populations exhibited low estimates of heterozygosity, significant levels of inbreeding, and reduced effective population sizes relative to Canadian populations, likely associated with transplantation history. Along with preliminary evidence for hybridization between deep- and stream-spawning ecotypes in Saiko Lake, these findings should be considered within the context of on-going kokanee fisheries management in Japan.
Collapse
Affiliation(s)
- Farida Samad-Zada
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Kouji Nakayama
- Division of Applied Biosciences, Kyoto University, Kyoto, Japan
| | - Michael A Russello
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
19
|
Haenel Q, Guerard L, MacColl ADC, Berner D. The maintenance of standing genetic variation: Gene flow vs. selective neutrality in Atlantic stickleback fish. Mol Ecol 2021; 31:811-821. [PMID: 34753205 PMCID: PMC9299253 DOI: 10.1111/mec.16269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
Adaptation to derived habitats often occurs from standing genetic variation. The maintenance within ancestral populations of genetic variants favourable in derived habitats is commonly ascribed to long‐term antagonism between purifying selection and gene flow resulting from hybridization across habitats. A largely unexplored alternative idea based on quantitative genetic models of polygenic adaptation is that variants favoured in derived habitats are neutral in ancestral populations when their frequency is relatively low. To explore the latter, we first identify genetic variants important to the adaptation of threespine stickleback fish (Gasterosteus aculeatus) to a rare derived habitat—nutrient‐depleted acidic lakes—based on whole‐genome sequence data. Sequencing marine stickleback from six locations across the Atlantic Ocean then allows us to infer that the frequency of these derived variants in the ancestral habitat is unrelated to the likely opportunity for gene flow of these variants from acidic‐adapted populations. This result is consistent with the selective neutrality of derived variants within the ancestor. Our study thus supports an underappreciated explanation for the maintenance of standing genetic variation, and calls for a better understanding of the fitness consequences of adaptive variation across habitats and genomic backgrounds.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Laurent Guerard
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Daniel Berner
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Yanos CL, Haanstra EP, Colgan Carey F, Passmore SA, Eklöf JS, Bergström U, Hansen JP, Fontaine MC, Maan ME, Eriksson BK. Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes. Ecol Evol 2021; 11:12485-12496. [PMID: 34594514 PMCID: PMC8462182 DOI: 10.1002/ece3.7993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Intraspecific niche differentiation can contribute to population persistence in changing environments. Following declines in large predatory fish, eutrophication, and climate change, there has been a major increase in the abundance of threespine stickleback (Gasterosteus aculeatus) in the Baltic Sea. Two morphotype groups with different levels of body armor-completely plated and incompletely plated-are common in coastal Baltic Sea habitats. The morphotypes are similar in shape, size, and other morphological characteristics and live as one apparently intermixed population. Variation in resource use between the groups could indicate a degree of niche segregation that could aid population persistence in the face of further environmental change. To assess whether morphotypes exhibit niche segregation associated with resource and/or habitat exploitation and predator avoidance, we conducted a field survey of stickleback morphotypes, and biotic and abiotic ecosystem structure, in two habitat types within shallow coastal bays in the Baltic Sea: deeper central waters and shallow near-shore waters. In the deeper waters, the proportion of completely plated stickleback was greater in habitats with greater biomass of two piscivorous fish: perch (Perca fluviatilis) and pike (Esox lucius). In the shallow waters, the proportion of completely plated stickleback was greater in habitats with greater coverage of habitat-forming vegetation. Our results suggest niche segregation between morphotypes, which may contribute to the continued success of stickleback in coastal Baltic Sea habitats.
Collapse
Affiliation(s)
- Casey L. Yanos
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Eeke P. Haanstra
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Fiona Colgan Carey
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Sorsha A. Passmore
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Ulf Bergström
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesUppsalaSweden
| | | | - Michael C. Fontaine
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
- Unité Mixe de Recherche MIVEGEC et Centre de Recherche en Ecologie et Evolution de la SantéCentre IRD de MontpellierCNRSIRD 229Université de MontpellierMontpellierFrance
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| | - Britas Klemens Eriksson
- Groningen Institute for Evolutionary Life‐SciencesGELIFESUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
21
|
Abstract
The repeated adaptation of oceanic threespine sticklebacks to fresh water has made it a premier organism to study parallel evolution. These small fish have multiple distinct ecotypes that display a wide range of diverse phenotypic traits. Ecotypes are easily crossed in the laboratory, and families are large and develop quickly enough for quantitative trait locus analyses, positioning the threespine stickleback as a versatile model organism to address a wide range of biological questions. Extensive genomic resources, including linkage maps, a high-quality reference genome, and developmental genetics tools have led to insights into the genomic basis of adaptation and the identification of genomic changes controlling traits in vertebrates. Recently, threespine sticklebacks have been used as a model system to identify the genomic basis of highly complex traits, such as behavior and host-microbiome and host-parasite interactions. We review the latest findings and new avenues of research that have led the threespine stickleback to be considered a supermodel of evolutionary genomics.
Collapse
Affiliation(s)
- Kerry Reid
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Michael A Bell
- University of California Museum of Paleontology, Berkeley, California 94720, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
22
|
Suzuki T, Yano K, Ohba SY, Kawano K, Sekiné K, Bae YJ, Tojo K. Genome-wide molecular phylogenetic analyses and mating experiments which reveal the evolutionary history and an intermediate stage of speciation of a giant water bug. Mol Ecol 2021; 30:5179-5195. [PMID: 34390528 DOI: 10.1111/mec.16120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
The intermediate stages of speciation are important for understanding the processes involved in the creation of biodiversity, and also comprise a number of interesting phenomena. However, difficulties are associated with dividing clear speciation stages because speciation is a continuous process. Therefore, the elucidation of speciation is an interesting and important task in evolutionary biology. We herein present an example of a species in an intermediate stage of speciation using the giant water bug Appasus japonicus (Heteroptera, Belostomatidae) that was investigated using mating experiments and phylogenetic analyses of the mtDNA COI (658 bp) and 16S rRNA (435 bp) regions, and nDNA SSR (13 loci) and its genome-wide SNPs (11,241 SNPs). The results of our phylogenetic analyses based on their mtDNA dataset and the genome-wide SNPs dataset strongly supported the paraphyly of the Japanese populations. Therefore, it is suggested that their ancestral lineage which being distributed in the Japanese Archipelago subsequently migrated to the Eurasian Continent (i.e., "back-dispersal" occurred). Furthermore, the results of the mating experiments suggested that among A. japonicus, even between closely related lineages, pre-mating reproductive isolation has been established by the differentiation of copulatory organ morphologies. In contrast, pre-mating reproductive isolation is not established in the absence of the differentiation of copulatory organ morphologies, even if genetic differentiation is prominent. These results suggested that their phylogenetic distance does not predict pre-mating reproductive isolation. Furthermore, in the present study, we present a clear example of pre-mating reproductive isolation driving speciation between closely related lineages.
Collapse
Affiliation(s)
- Tomoya Suzuki
- Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.,Present Address: Graduate School of Global Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Koki Yano
- Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Shin-Ya Ohba
- Biological Laboratory, Faculty of Education, Nagasaki University, Bunkyo 1-14, Nagasaki, 852-8521, Japan
| | - Keisuke Kawano
- The Firefly Museum of Toyota Town, Nakamura 50-3, Shimonoseki, Yamaguchi, 750-0441, Japan
| | - Kazuki Sekiné
- Faculty of Geo-environmental Science, Rissho University, Magechi 1700, Kumagaya, 360-0194, Japan.,Korean Entomological Institute, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Yeon Jae Bae
- Korean Entomological Institute, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Koji Tojo
- Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.,Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
23
|
Naftaly AS, Pau S, White MA. Long-read RNA sequencing reveals widespread sex-specific alternative splicing in threespine stickleback fish. Genome Res 2021; 31:1486-1497. [PMID: 34131005 PMCID: PMC8327910 DOI: 10.1101/gr.274282.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Alternate isoforms are important contributors to phenotypic diversity across eukaryotes. Although short-read RNA-sequencing has increased our understanding of isoform diversity, it is challenging to accurately detect full-length transcripts, preventing the identification of many alternate isoforms. Long-read sequencing technologies have made it possible to sequence full-length alternative transcripts, accurately characterizing alternative splicing events, alternate transcription start and end sites, and differences in UTR regions. Here, we use Pacific Biosciences (PacBio) long-read RNA-sequencing (Iso-Seq) to examine the transcriptomes of five organs in threespine stickleback fish (Gasterosteus aculeatus), a widely used genetic model species. The threespine stickleback fish has a refined genome assembly in which gene annotations are based on short-read RNA sequencing and predictions from coding sequence of other species. This suggests some of the existing annotations may be inaccurate or alternative transcripts may not be fully characterized. Using Iso-Seq we detected thousands of novel isoforms, indicating many isoforms are absent in the current Ensembl gene annotations. In addition, we refined many of the existing annotations within the genome. We noted many improperly positioned transcription start sites that were refined with long-read sequencing. The Iso-Seq-predicted transcription start sites were more accurate and verified through ATAC-seq. We also detected many alternative splicing events between sexes and across organs. We found a substantial number of genes in both somatic and gonadal samples that had sex-specific isoforms. Our study highlights the power of long-read sequencing to study the complexity of transcriptomes, greatly improving genomic resources for the threespine stickleback fish.
Collapse
Affiliation(s)
- Alice S Naftaly
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Shana Pau
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Biology, University of Texas Arlington, Arlington, Texas 76019, USA
| | - Michael A White
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
24
|
DeRaad DA, Cobos ME, Alkishe A, Ashraf U, Ahadji-Dabla KM, Nuñez-Penichet C, Peterson AT. Genome-environment association methods comparison supports omnigenic adaptation to ecological niche in malaria vector mosquitoes. Mol Ecol 2021; 30:6468-6485. [PMID: 34309095 DOI: 10.1111/mec.16094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
The concept of a fundamental ecological niche is central to questions of geographic distribution, population demography, species conservation, and evolutionary potential. However, robust inference of genomic regions associated with evolutionary adaptation to particular environmental conditions remains difficult due to the myriad of potential confounding processes that can generate heterogeneous patterns of variation across the genome. Here, we interrogate the potential role of genome environment association (GEA) testing as an initial step in building an understanding of the genetic basis of ecological niche. We leverage publicly available genomic data from the Anopheles gambiae 1000 Genomes (Ag1000g) Consortium to test the ability of multiple analytically unique GEA methods to handle confounding patterns of genetic variation, control false positive rates, and discern associations with broadly relevant climate variables from random allele frequency patterns throughout the genome. We found evidence supporting the ability of commonly implemented GEA methods to account for confounding patterns of spatial and genetic variation, and control false positive rates. However, we fail to find evidence supporting the ability of GEA tests to reject signals of adaptation to randomly simulated environmental variables, indicating that discerning between true signals of genome environment adaptation and genome environment correlations resulting from alternative evolutionary processes, remains challenging. Because signals of environmental adaptation are so diffuse and confounded throughout the genome, we argue that genomic adaptation to ecological niche is likely best understood under an omnigenic model wherein highly interconnected, genome-wide gene regulatory networks shape genomic adaptation to key environmental conditions.
Collapse
Affiliation(s)
- Devon A DeRaad
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - Marlon E Cobos
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - Abdelghafar Alkishe
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - Uzma Ashraf
- Department of Environmental Sciences and Policy, Lahore School of Economics, Lahore, Pakistan
| | | | - Claudia Nuñez-Penichet
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - A Townsend Peterson
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
25
|
Schmidt TL, Jasper M, Weeks AR, Hoffmann AA. Unbiased population heterozygosity estimates from genome‐wide sequence data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Thomas L. Schmidt
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| | - Moshe‐Elijah Jasper
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| | - Andrew R Weeks
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
- cesar Pty Ltd Parkville VIC Australia
| | - Ary A Hoffmann
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| |
Collapse
|
26
|
Roberts Kingman GA, Vyas DN, Jones FC, Brady SD, Chen HI, Reid K, Milhaven M, Bertino TS, Aguirre WE, Heins DC, von Hippel FA, Park PJ, Kirch M, Absher DM, Myers RM, Di Palma F, Bell MA, Kingsley DM, Veeramah KR. Predicting future from past: The genomic basis of recurrent and rapid stickleback evolution. SCIENCE ADVANCES 2021; 7:7/25/eabg5285. [PMID: 34144992 PMCID: PMC8213234 DOI: 10.1126/sciadv.abg5285] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/05/2021] [Indexed: 05/30/2023]
Abstract
Similar forms often evolve repeatedly in nature, raising long-standing questions about the underlying mechanisms. Here, we use repeated evolution in stickleback to identify a large set of genomic loci that change recurrently during colonization of freshwater habitats by marine fish. The same loci used repeatedly in extant populations also show rapid allele frequency changes when new freshwater populations are experimentally established from marine ancestors. Marked genotypic and phenotypic changes arise within 5 years, facilitated by standing genetic variation and linkage between adaptive regions. Both the speed and location of changes can be predicted using empirical observations of recurrence in natural populations or fundamental genomic features like allelic age, recombination rates, density of divergent loci, and overlap with mapped traits. A composite model trained on these stickleback features can also predict the location of key evolutionary loci in Darwin's finches, suggesting that similar features are important for evolution across diverse taxa.
Collapse
Affiliation(s)
- Garrett A Roberts Kingman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Deven N Vyas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring, Tübingen, Germany
| | - Shannon D Brady
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Kerry Reid
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - Mark Milhaven
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Thomas S Bertino
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - Windsor E Aguirre
- Department of Biological Sciences, DePaul University, Chicago, IL 60614-3207, USA
| | - David C Heins
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA
| | - Peter J Park
- Department of Biology, Farmingdale State College, Farmingdale, NY 11735-1021, USA
| | - Melanie Kirch
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring, Tübingen, Germany
| | - Devin M Absher
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Federica Di Palma
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA.
| |
Collapse
|
27
|
Hartigan A, Jaimes-Becerra A, Okamura B, Doonan LB, Ward M, Marques AC, Long PF. Recruitment of toxin-like proteins with ancestral venom function supports endoparasitic lifestyles of Myxozoa. PeerJ 2021; 9:e11208. [PMID: 33981497 PMCID: PMC8083181 DOI: 10.7717/peerj.11208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cnidarians are the oldest lineage of venomous animals and use nematocysts to discharge toxins. Whether venom toxins have been recruited to support parasitic lifestyles in the Endocnidozoa (Myxozoa + Polypodium) is, however, unknown. To examine this issue we variously employed transcriptomic, proteomic, associated molecular phylogenies, and localisation studies on representative primitive and derived myxozoans (Malacosporea and Myxosporea, respectively), Polypodium hydriforme, and the free-living staurozoan Calvadosia cruxmelitensis. Our transcriptomics and proteomics analyses provide evidence for expression and translation of venom toxin homologs in myxozoans. Phylogenetic placement of Kunitz type serine protease inhibitors and phospholipase A2 enzymes reveals modification of toxins inherited from ancestral free-living cnidarian toxins, and that venom diversity is reduced in myxozoans concordant with their reduced genome sizes. Various phylogenetic analyses of the Kunitz-type toxin family in Endocnidozoa suggested lineage-specific gene duplications, which offers a possible mechanism for enhancing toxin diversification. Toxin localisation in the malacosporean Buddenbrockia plumatellae substantiates toxin translation and thus illustrates a repurposing of toxin function for endoparasite development and interactions with hosts, rather than for prey capture or defence. Whether myxozoan venom candidates are expressed in transmission stages (e.g. in nematocysts or secretory vesicles) requires further investigation.
Collapse
Affiliation(s)
- Ashlie Hartigan
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Faculty of Life Sciences & Medicine, King's College London, University of London, London, United Kingdom
| | - Adrian Jaimes-Becerra
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Liam B Doonan
- Faculty of Life Sciences & Medicine, King's College London, University of London, London, United Kingdom
| | - Malcolm Ward
- Aulesa Biosciences Ltd, Shefford, Bedfordshire, United Kingdom
| | - Antonio C Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Paul F Long
- Faculty of Life Sciences & Medicine, King's College London, University of London, London, United Kingdom.,Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Garcia-Elfring A, Paccard A, Thurman TJ, Wasserman BA, Palkovacs EP, Hendry AP, Barrett RDH. Using seasonal genomic changes to understand historical adaptation to new environments: Parallel selection on stickleback in highly-variable estuaries. Mol Ecol 2021; 30:2054-2064. [PMID: 33713378 DOI: 10.1111/mec.15879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Parallel evolution is considered strong evidence for natural selection. However, few studies have investigated the process of parallel selection as it plays out in real time. The common approach is to study historical signatures of selection in populations already well adapted to different environments. Here, to document selection under natural conditions, we study six populations of threespine stickleback (Gasterosteus aculeatus) inhabiting bar-built estuaries that undergo seasonal cycles of environmental changes. Estuaries are periodically isolated from the ocean due to sandbar formation during dry summer months, with concurrent environmental shifts that resemble the long-term changes associated with postglacial colonization of freshwater habitats by marine populations. We used pooled whole-genome sequencing to track seasonal allele frequency changes in six of these populations and search for signatures of natural selection. We found consistent changes in allele frequency across estuaries, suggesting a potential role for parallel selection. Functional enrichment among candidate genes included transmembrane ion transport and calcium binding, which are important for osmoregulation and ion balance. The genomic changes that occur in threespine stickleback from bar-built estuaries could provide a glimpse into the early stages of adaptation that have occurred in many historical marine to freshwater transitions.
Collapse
Affiliation(s)
- Alan Garcia-Elfring
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Antoine Paccard
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada.,McGill University Genome Center, McGill University, Montreal, QC, Canada
| | - Timothy J Thurman
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Ben A Wasserman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| | - Rowan D H Barrett
- Department of Biology, Redpath Museum, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Magalhaes IS, Whiting JR, D'Agostino D, Hohenlohe PA, Mahmud M, Bell MA, Skúlason S, MacColl ADC. Intercontinental genomic parallelism in multiple three-spined stickleback adaptive radiations. Nat Ecol Evol 2021; 5:251-261. [PMID: 33257817 PMCID: PMC7858233 DOI: 10.1038/s41559-020-01341-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Parallelism, the evolution of similar traits in populations diversifying in similar conditions, provides strong evidence of adaptation by natural selection. Many studies of parallelism focus on comparisons of different ecotypes or contrasting environments, defined a priori, which could upwardly bias the apparent prevalence of parallelism. Here, we estimated genomic parallelism associated with components of environmental and phenotypic variation at an intercontinental scale across four freshwater adaptive radiations (Alaska, British Columbia, Iceland and Scotland) of the three-spined stickleback (Gasterosteus aculeatus). We combined large-scale biological sampling and phenotyping with restriction site associated DNA sequencing (RAD-Seq) data from 73 freshwater lake populations and four marine ones (1,380 fish) to associate genome-wide allele frequencies with continuous distributions of environmental and phenotypic variation. Our three main findings demonstrate that (1) quantitative variation in phenotypes and environments can predict genomic parallelism; (2) genomic parallelism at the early stages of adaptive radiations, even at large geographic scales, is founded on standing variation; and (3) similar environments are a better predictor of genome-wide parallelism than similar phenotypes. Overall, this study validates the importance and predictive power of major phenotypic and environmental factors likely to influence the emergence of common patterns of genomic divergence, providing a clearer picture than analyses of dichotomous phenotypes and environments.
Collapse
Affiliation(s)
- Isabel S Magalhaes
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.
- Department of Life Sciences, Whitelands College, University of Roehampton, London, UK.
| | - James R Whiting
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, London, UK.
| | - Daniele D'Agostino
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Muayad Mahmud
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
- Erbil Polytechnic University, Kurdistan Region, Iraq
| | - Michael A Bell
- Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
- Icelandic Museum of Natural History, Suðurlandsbraut, Reykjavík, Iceland
| | - Andrew D C MacColl
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
30
|
Dean LL, Dunstan HR, Reddish A, MacColl ADC. Courtship behavior, nesting microhabitat, and assortative mating in sympatric stickleback species pairs. Ecol Evol 2021; 11:1741-1755. [PMID: 33614001 PMCID: PMC7882950 DOI: 10.1002/ece3.7164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/28/2022] Open
Abstract
The maintenance of reproductive isolation in the face of gene flow is a particularly contentious topic, but differences in reproductive behavior may provide the key to explaining this phenomenon. However, we do not yet fully understand how behavior contributes to maintaining species boundaries. How important are behavioral differences during reproduction? To what extent does assortative mating maintain reproductive isolation in recently diverged populations and how important are "magic traits"? Assortative mating can arise as a by-product of accumulated differences between divergent populations as well as an adaptive response to contact between those populations, but this is often overlooked. Here we address these questions using recently described species pairs of three-spined stickleback (Gasterosteus aculeatus), from two separate locations and a phenotypically intermediate allopatric population on the island of North Uist, Scottish Western Isles. We identified stark differences in the preferred nesting substrate and courtship behavior of species pair males. We showed that all males selectively court females of their own ecotype and all females prefer males of the same ecotype, regardless of whether they are from species pairs or allopatric populations. We also showed that mate choice does not appear to be driven by body size differences (a potential "magic trait"). By explicitly comparing the strength of these mating preferences between species pairs and single-ecotype locations, we were able to show that present levels of assortative mating due to direct mate choice are likely a by-product of other adaptations between ecotypes, and not subject to obvious selection in species pairs. Our results suggest that ecological divergence in mating characteristics, particularly nesting microhabitat may be more important than direct mate choice in maintaining reproductive isolation in stickleback species pairs.
Collapse
Affiliation(s)
- Laura L. Dean
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | | - Amelia Reddish
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
31
|
Hudson CM, Lucek K, Marques DA, Alexander TJ, Moosmann M, Spaak P, Seehausen O, Matthews B. Threespine Stickleback in Lake Constance: The Ecology and Genomic Substrate of a Recent Invasion. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.611672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invasive species can be powerful models for studying contemporary evolution in natural environments. As invading organisms often encounter new habitats during colonization, they will experience novel selection pressures. Threespine stickleback (Gasterosteus aculeatus complex) have recently colonized large parts of Switzerland and are invasive in Lake Constance. Introduced to several watersheds roughly 150 years ago, they spread across the Swiss Plateau (400–800 m a.s.l.), bringing three divergent hitherto allopatric lineages into secondary contact. As stickleback have colonized a variety of different habitat types during this recent range expansion, the Swiss system is a useful model for studying contemporary evolution with and without secondary contact. For example, in the Lake Constance region there has been rapid phenotypic and genetic divergence between a lake population and some stream populations. There is considerable phenotypic variation within the lake population, with individuals foraging in and occupying littoral, offshore pelagic, and profundal waters, the latter of which is a very unusual habitat for stickleback. Furthermore, adults from the lake population can reach up to three times the size of adults from the surrounding stream populations, and are large by comparison to populations globally. Here, we review the historical origins of the threespine stickleback in Switzerland, and the ecomorphological variation and genomic basis of its invasion in Lake Constance. We also outline the potential ecological impacts of this invasion, and highlight the interest for contemporary evolution studies.
Collapse
|
32
|
Schluter D, Marchinko KB, Arnegard ME, Zhang H, Brady SD, Jones FC, Bell MA, Kingsley DM. Fitness maps to a large-effect locus in introduced stickleback populations. Proc Natl Acad Sci U S A 2021; 118:e1914889118. [PMID: 33414274 PMCID: PMC7826376 DOI: 10.1073/pnas.1914889118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations of small effect underlie most adaptation to new environments, but beneficial variants with large fitness effects are expected to contribute under certain conditions. Genes and genomic regions having large effects on phenotypic differences between populations are known from numerous taxa, but fitness effect sizes have rarely been estimated. We mapped fitness over a generation in an F2 intercross between a marine and a lake stickleback population introduced to a freshwater pond. A quantitative trait locus map of the number of surviving offspring per F2 female detected a single, large-effect locus near Ectodysplasin (Eda), a gene having an ancient freshwater allele causing reduced bony armor and other changes. F2 females homozygous for the freshwater allele had twice the number of surviving offspring as homozygotes for the marine allele, producing a large selection coefficient, s = 0.50 ± 0.09 SE. Correspondingly, the frequency of the freshwater allele increased from 0.50 in F2 mothers to 0.58 in surviving offspring. We compare these results to allele frequency changes at the Eda gene in an Alaskan lake population colonized by marine stickleback in the 1980s. The frequency of the freshwater Eda allele rose steadily over multiple generations and reached 95% within 20 y, yielding a similar estimate of selection, s = 0.49 ± 0.05, but a different degree of dominance. These findings are consistent with other studies suggesting strong selection on this gene (and/or linked genes) in fresh water. Selection on ancient genetic variants carried by colonizing ancestors is likely to increase the prevalence of large-effect fitness variants in adaptive evolution.
Collapse
Affiliation(s)
- Dolph Schluter
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4;
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Kerry B Marchinko
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Matthew E Arnegard
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Haili Zhang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Shannon D Brady
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Felicity C Jones
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael A Bell
- University of California Museum of Paleontology, Berkeley, CA 94720
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
33
|
Härer A, Bolnick DI, Rennison DJ. The genomic signature of ecological divergence along the benthic-limnetic axis in allopatric and sympatric threespine stickleback. Mol Ecol 2020; 30:451-463. [PMID: 33222348 DOI: 10.1111/mec.15746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
The repeated occurrence of similar phenotypes in independent lineages (i.e., parallel evolution) in response to similar ecological conditions can provide compelling insights into the process of adaptive evolution. An intriguing question is to what extent repeated phenotypic changes are underlain by repeated changes at the genomic level and whether patterns of genomic divergence differ with the geographic context in which populations evolve. Here, we combined genomic, morphological and ecological data sets to investigate the genomic signatures of divergence across populations of threespine stickleback (Gasterosteus aculeatus) that adapted to contrasting ecological niches (benthic or limnetic) in either sympatry or allopatry. We found that genome-wide differentiation (FST ) was an order of magnitude higher and substantially more repeatable for sympatric benthic and limnetic specialists compared to allopatric populations with similar levels of ecological divergence. We identified genomic regions consistently differentiated between sympatric ecotypes that were also differentiated between or associated with benthic vs. limnetic niche in allopatric populations. These candidate regions were enriched on three chromosomes known to be involved in the benthic-limnetic divergence of threespine stickleback. Some candidate regions overlapped with QTL for body shape and trophic traits such as gill raker number, traits that strongly differ between benthic and limnetic ecotypes. In summary, our study shows that magnitude and repeatability of genomic signatures of ecological divergence in threespine stickleback highly depend on the geographic context. The identified candidate regions provide starting points to identify functionally important genes for the adaptation to benthic and limnetic niches.
Collapse
Affiliation(s)
- Andreas Härer
- Division of Biological Sciences, Section of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, CA, USA
| | - Daniel I Bolnick
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Diana J Rennison
- Division of Biological Sciences, Section of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Barghi N, Hermisson J, Schlötterer C. Polygenic adaptation: a unifying framework to understand positive selection. Nat Rev Genet 2020; 21:769-781. [PMID: 32601318 DOI: 10.1038/s41576-020-0250-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Most adaption processes have a polygenic genetic basis, but even with the recent explosive growth of genomic data we are still lacking a unified framework describing the dynamics of selected alleles. Building on recent theoretical and empirical work we introduce the concept of adaptive architecture, which extends the genetic architecture of an adaptive trait by factors influencing its adaptive potential and population genetic principles. Because adaptation can be typically achieved by many different combinations of adaptive alleles (redundancy), we describe how two characteristics - heterogeneity among loci and non-parallelism between replicated populations - are hallmarks for the characterization of polygenic adaptation in evolving populations. We discuss how this unified framework can be applied to natural and experimental populations.
Collapse
Affiliation(s)
- Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Joachim Hermisson
- Mathematics and BioSciences Group, Faculty of Mathematics and Max Perutz Labs, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
35
|
Rajkov J, El Taher A, Böhne A, Salzburger W, Egger B. Gene expression remodelling and immune response during adaptive divergence in an African cichlid fish. Mol Ecol 2020; 30:274-296. [PMID: 33107988 DOI: 10.1111/mec.15709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Variation in gene expression contributes to ecological speciation by facilitating population persistence in novel environments. Likewise, immune responses can be of relevance in speciation driven by adaptation to different environments. Previous studies examining gene expression differences between recently diverged ecotypes have often relied on only one pair of populations, targeted the expression of only a subset of genes or used wild-caught individuals. Here, we investigated the contribution of habitat-specific parasites and symbionts and the underlying immunological abilities of ecotype hosts to adaptive divergence in lake-river population pairs of the cichlid fish Astatotilapia burtoni. To shed light on the role of phenotypic plasticity in adaptive divergence, we compared parasite and microbiota communities, immune response, and gene expression patterns of fish from natural habitats and a lake-like pond set-up. In all investigated population pairs, lake fish were more heavily parasitized than river fish, in terms of both parasite taxon composition and infection abundance. The innate immune response in the wild was higher in lake than in river populations and was elevated in a river population exposed to lake parasites in the pond set-up. Environmental differences between lake and river habitat and their distinct parasite communities have shaped differential gene expression, involving genes functioning in osmoregulation and immune response. Most changes in gene expression between lake and river samples in the wild and in the pond set-up were based on a plastic response. Finally, gene expression and bacterial communities of wild-caught individuals and individuals acclimatized to lake-like pond conditions showed shifts underlying adaptive phenotypic plasticity.
Collapse
Affiliation(s)
- Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Athimed El Taher
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Kakioka R, Mori S, Kokita T, Hosoki TK, Nagano AJ, Ishikawa A, Kume M, Toyoda A, Kitano J. Multiple waves of freshwater colonization of the three-spined stickleback in the Japanese Archipelago. BMC Evol Biol 2020; 20:143. [PMID: 33143638 PMCID: PMC7641863 DOI: 10.1186/s12862-020-01713-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 12/03/2022] Open
Abstract
Background The three-spined stickleback (Gasterosteus aculeatus) is a remarkable system to study the genetic mechanisms underlying parallel evolution during the transition from marine to freshwater habitats. Although the majority of previous studies on the parallel evolution of sticklebacks have mainly focused on postglacial freshwater populations in the Pacific Northwest of North America and northern Europe, we recently use Japanese stickleback populations for investigating shared and unique features of adaptation and speciation between geographically distant populations. However, we currently lack a comprehensive phylogeny of the Japanese three-spined sticklebacks, despite the fact that a good phylogeny is essential for any evolutionary and ecological studies. Here, we conducted a phylogenomic analysis of the three-spined stickleback in the Japanese Archipelago. Results We found that freshwater colonization occurred in multiple waves, each of which may reflect different interglacial isolations. Some of the oldest freshwater populations from the central regions of the mainland of Japan (hariyo populations) were estimated to colonize freshwater approximately 170,000 years ago. The next wave of colonization likely occurred approximately 100,000 years ago. The inferred origins of several human-introduced populations showed that introduction occurred mainly from nearby habitats. We also found a new habitat of the three-spined stickleback sympatric with the Japan Sea stickleback (Gasterosteus nipponicus). Conclusions These Japanese stickleback systems differ from those in the Pacific Northwest of North America and northern Europe in terms of divergence time and history. Stickleback populations in the Japanese Archipelago offer valuable opportunities to study diverse evolutionary processes in historical and contemporary timescales.
Collapse
Affiliation(s)
- Ryo Kakioka
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Nakagami-gun, Okinawa, 903-0213, Japan
| | - Seiichi Mori
- Biological Laboratory, Gifu Kyoritsu University, Ogaki, Gifu, 503-8550, Japan
| | - Tomoyuki Kokita
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Takuya K Hosoki
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan
| | - Manabu Kume
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
37
|
Archambeault SL, Durston DJ, Wan A, El-Sabaawi RW, Matthews B, Peichel CL. Phosphorus limitation does not drive loss of bony lateral plates in freshwater stickleback (Gasterosteus aculeatus). Evolution 2020; 74:2088-2104. [PMID: 32537747 PMCID: PMC7773418 DOI: 10.1111/evo.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Connecting the selective forces that drive the evolution of phenotypes to their underlying genotypes is key to understanding adaptation, but such connections are rarely tested experimentally. Threespine stickleback (Gasterosteus aculeatus) are a powerful model for such tests because genotypes that underlie putatively adaptive traits have been identified. For example, a regulatory mutation in the Ectodysplasin (Eda) gene causes a reduction in the number of bony armor plates, which occurs rapidly and repeatedly when marine sticklebacks invade freshwater. However, the source of selection on plate loss in freshwater is unknown. Here, we tested whether dietary reduction of phosphorus can account for selection on plate loss due to a growth advantage of low-plated fish in freshwater. We crossed marine fish heterozygous for the 16 kilobase freshwater Eda haplotype and compared the growth of offspring with different genotypes under contrasting levels of dietary phosphorus in both saltwater and freshwater. Eda genotype was not associated with growth differences in any treatment, or with mechanisms that could mitigate the impacts of phosphorus limitation, such as differential phosphorus deposition, phosphorus excretion, or intestine length. This study highlights the importance of experimentally testing the putative selective forces acting on phenotypes and their underlying genotypes in the wild.
Collapse
Affiliation(s)
- Sophie L. Archambeault
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Alex Wan
- Aquaculture Nutrition and Aquafeed Research Unit (ANARU), Carna Research Station, Ryan Institute, NUI Galway, Ireland
| | | | - Blake Matthews
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Catherine L. Peichel
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
38
|
Cayuela H, Rougemont Q, Laporte M, Mérot C, Normandeau E, Dorant Y, Tørresen OK, Hoff SNK, Jentoft S, Sirois P, Castonguay M, Jansen T, Praebel K, Clément M, Bernatchez L. Shared ancestral polymorphisms and chromosomal rearrangements as potential drivers of local adaptation in a marine fish. Mol Ecol 2020; 29:2379-2398. [DOI: 10.1111/mec.15499] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Quebec City QC Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Quebec City QC Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Quebec City QC Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Quebec City QC Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Quebec City QC Canada
| | - Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Quebec City QC Canada
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES) Department of Biosciences University of Oslo Oslo Norway
| | - Siv Nam Khang Hoff
- Centre for Ecological and Evolutionary Synthesis (CEES) Department of Biosciences University of Oslo Oslo Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES) Department of Biosciences University of Oslo Oslo Norway
| | - Pascal Sirois
- Département des sciences fondamentales Université du Québec à Chicoutimi Chicoutimi QC Canada
| | - Martin Castonguay
- Fisheries and Oceans Canada Institut Maurice‐Lamontagne Mont‐Joli QC Canada
| | - Teunis Jansen
- GINR‐Greenland Institute of Natural Resources Nuuk Greenland
- DTU Aqua‐National Institute of Aquatic Resources Technical University of Denmark Charlottenlund Castle, Charlottenlund Denmark
| | - Kim Praebel
- Norwegian College of Fishery Science Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
| | - Marie Clément
- Center for Fisheries Ecosystems Research Fisheries and Marine Institute of Memorial University of Newfoundland St. John's NL Canada
- Labrador Institute of Memorial University of Newfoundland Happy Valley‐Goose Bay NL Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Quebec City QC Canada
| |
Collapse
|
39
|
Barghi N, Schlötterer C. Distinct Patterns of Selective Sweep and Polygenic Adaptation in Evolve and Resequence Studies. Genome Biol Evol 2020; 12:890-904. [PMID: 32282913 PMCID: PMC7313669 DOI: 10.1093/gbe/evaa073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
In molecular population genetics, adaptation is typically thought to occur via selective sweeps, where targets of selection have independent effects on the phenotype and rise to fixation, whereas in quantitative genetics, many loci contribute to the phenotype and subtle frequency changes occur at many loci during polygenic adaptation. The sweep model makes specific predictions about frequency changes of beneficial alleles and many test statistics have been developed to detect such selection signatures. Despite polygenic adaptation is probably the prevalent mode of adaptation, because of the traditional focus on the phenotype, we are lacking a solid understanding of the similarities and differences of selection signatures under the two models. Recent theoretical and empirical studies have shown that both selective sweep and polygenic adaptation models could result in a sweep-like genomic signature; therefore, additional criteria are needed to distinguish the two models. With replicated populations and time series data, experimental evolution studies have the potential to identify the underlying model of adaptation. Using the framework of experimental evolution, we performed computer simulations to study the pattern of selected alleles for two models: 1) adaptation of a trait via independent beneficial mutations that are conditioned for fixation, that is, selective sweep model and 2) trait optimum model (polygenic adaptation), that is adaptation of a quantitative trait under stabilizing selection after a sudden shift in trait optimum. We identify several distinct patterns of selective sweep and trait optimum models in populations of different sizes. These features could provide the foundation for development of quantitative approaches to differentiate the two models.
Collapse
Affiliation(s)
- Neda Barghi
- Institut für Populationsgenetik, Vetmeduni, Vienna, Austria
| | | |
Collapse
|
40
|
Wang Y, Zhao Y, Wang Y, Li Z, Guo B, Merilä J. Population transcriptomics reveals weak parallel genetic basis in repeated marine and freshwater divergence in nine‐spined sticklebacks. Mol Ecol 2020; 29:1642-1656. [DOI: 10.1111/mec.15435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yingnan Wang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yongxin Zhao
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Yu Wang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Zitong Li
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| |
Collapse
|
41
|
Yoshida K, Ravinet M, Makino T, Toyoda A, Kokita T, Mori S, Kitano J. Accumulation of Deleterious Mutations in Landlocked Threespine Stickleback Populations. Genome Biol Evol 2020; 12:479-492. [PMID: 32232440 PMCID: PMC7197494 DOI: 10.1093/gbe/evaa065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Colonization of new habitats often reduces population sizes and may result in the accumulation of deleterious mutations by genetic drift. Compared with the genomic basis for adaptation to new environments, genome-wide analysis of deleterious mutations in isolated populations remains limited. In the present study, we investigated the accumulation of deleterious mutations in five endangered freshwater populations of threespine stickleback (Gasterosteus aculeatus) in the central part of the mainland of Japan. Using whole-genome resequencing data, we first conducted phylogenomic analysis and confirmed at least two independent freshwater colonization events in the central mainland from ancestral marine ecotypes. Next, analyses of single nucleotide polymorphisms showed a substantial reduction of heterozygosity in freshwater populations compared with marine populations. Reduction in heterozygosity was more apparent at the center of each chromosome than the peripheries and on X chromosomes compared with autosomes. Third, bioinformatic analysis of deleterious mutations showed increased accumulation of putatively deleterious mutations in the landlocked freshwater populations compared with marine populations. For the majority of populations examined, the frequencies of putatively deleterious mutations were higher on X chromosomes than on autosomes. The interpopulation comparison indicated that the majority of putatively deleterious mutations may have accumulated independently. Thus, whole-genome resequencing of endangered populations can help to estimate the accumulation of deleterious mutations and inform us of which populations are the most severely endangered. Furthermore, analysis of variation among chromosomes can give insights into whether any particular chromosomes are likely to accumulate deleterious mutations.
Collapse
Affiliation(s)
- Kohta Yoshida
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Mark Ravinet
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway.,School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomoyuki Kokita
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, Japan
| | - Seiichi Mori
- Biological Laboratories, Gifu-kyoritsu University, Ogaki, Gifu, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
42
|
Jenck CS, Lehto WR, Ketterman BT, Sloan LF, Sexton AN, Tinghitella RM. Phenotypic divergence among threespine stickleback that differ in nuptial coloration. Ecol Evol 2020; 10:2900-2916. [PMID: 32211164 PMCID: PMC7083661 DOI: 10.1002/ece3.6105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
By studying systems in their earliest stages of differentiation, we can learn about the evolutionary forces acting within and among populations and how those forces could contribute to reproductive isolation. Such an understanding would help us to better discern and predict how selection leads to the maintenance of multiple morphs within a species, rather than speciation. The postglacial adaptive radiation of the threespine stickleback (Gasterosteus aculeatus) is one of the best-studied cases of evolutionary diversification and rapid, repeated speciation. Following deglaciation, marine stickleback have continually invaded freshwater habitats across the northern hemisphere and established resident populations that diverged innumerable times from their oceanic ancestors. Independent freshwater colonization events have yielded broadly parallel patterns of morphological differences in freshwater and marine stickleback. However, there is also much phenotypic diversity within and among freshwater populations. We studied a lesser-known freshwater "species pair" found in southwest Washington, where male stickleback in numerous locations have lost the ancestral red sexual signal and instead develop black nuptial coloration. We measured phenotypic variation in a suite of traits across sites where red and black stickleback do not overlap in distribution and at one site where they historically co-occurred. We found substantial phenotypic divergence between red and black morphs in noncolor traits including shape and lateral plating, and additionally find evidence that supports the hypothesis of sensory drive as the mechanism responsible for the evolutionary switch in color from red to black. A newly described third "mixed" morph in Connor Creek, Washington, differs in head shape and size from the red and black morphs, and we suggest that their characteristics are most consistent with hybridization between anadromous and freshwater stickleback. These results lay the foundation for future investigation of the underlying genetic basis of this phenotypic divergence as well as the evolutionary processes that may drive, maintain, or limit divergence among morphs.
Collapse
Affiliation(s)
- Clara S Jenck
- Department of Biological Sciences University of Denver Denver CO USA
| | - Whitley R Lehto
- Department of Integrative Biology Michigan State University East Lansing MI USA
| | | | - Lukas F Sloan
- Department of Biological Sciences University of Denver Denver CO USA
| | - Aaron N Sexton
- Department of Biology University of Louisville Louisville KY USA
| | | |
Collapse
|
43
|
Ishikawa A, Kitano J. Diversity in reproductive seasonality in the three-spined stickleback, Gasterosteus aculeatus. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb208975. [PMID: 32034046 DOI: 10.1242/jeb.208975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The annual timing of reproduction is a key life history trait with a large effect on fitness. Populations often vary in the timing and duration of reproduction to adapt to different seasonality of ecological and environmental variables between habitats. However, little is known about the molecular genetic mechanisms underlying interpopulation variation in reproductive seasonality. Here, we demonstrate that the three-spined stickleback (Gasterosteus aculeatus) is a good model for molecular genetic analysis of variations in reproductive seasonality. We first compiled data on reproductive seasons of diverse ecotypes, covering marine-anadromous, lake and stream ecotypes, of three-spined stickleback inhabiting a wide range of latitudes. Our analysis showed that both ecotype and latitude significantly contribute to variation in reproductive seasons. Stream ecotypes tend to start breeding earlier and end later than other ecotypes. Populations from lower latitudes tend to start breeding earlier than those from higher latitudes in all three ecotypes. Additionally, stream ecotypes tend to have extended breeding seasons at lower latitudes than at higher latitudes, leading to nearly year-round reproduction in the most southern stream populations. A review of recent progress in our understanding of the physiological mechanisms underlying seasonal reproduction in the three-spined stickleback indicates that photoperiod is an important external cue that stimulates and/or suppresses reproduction in this species. Taking advantage of genomic tools available for this species, the three-spined stickleback will be a good model to investigate what kinds of genes and mutations underlie variations in the physiological signalling pathways that regulate reproduction in response to photoperiod.
Collapse
Affiliation(s)
- Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan .,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
44
|
Whiting JR, Fraser BA. Contingent Convergence: The Ability To Detect Convergent Genomic Evolution Is Dependent on Population Size and Migration. G3 (BETHESDA, MD.) 2020; 10:677-693. [PMID: 31871215 PMCID: PMC7003088 DOI: 10.1534/g3.119.400970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022]
Abstract
Outlier scans, in which the genome is scanned for signatures of selection, have become a prominent tool in studies of local adaptation, and more recently studies of genetic convergence in natural populations. However, such methods have the potential to be confounded by features of demographic history, such as population size and migration, which are considerably varied across natural populations. In this study, we use forward-simulations to investigate and illustrate how several measures of genetic differentiation commonly used in outlier scans (FST, DXY and Δπ) are influenced by demographic variation across multiple sampling generations. In a factorial design with 16 treatments, we manipulate the presence/absence of founding bottlenecks (N of founding individuals), prolonged bottlenecks (proportional size of diverging population) and migration rate between two populations with ancestral and diverged phenotypic optima. Our results illustrate known constraints of individual measures associated with reduced population size and a lack of migration; but notably we demonstrate how relationships between measures are similarly dependent on these features of demography. We find that false-positive signals of convergent evolution (the same simulated outliers detected in independent treatments) are attainable as a product of similar population size and migration treatments (particularly for DXY), and that outliers across different measures (for e.g., FST and DXY) can occur with little influence of selection. Taken together, we show how underappreciated, yet quantifiable measures of demographic history can influence commonly employed methods for detecting selection.
Collapse
Affiliation(s)
- James R Whiting
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD
| | - Bonnie A Fraser
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD
| |
Collapse
|
45
|
Ríos N, Casanova A, Hermida M, Pardo BG, Martínez P, Bouza C, García G. Population Genomics in Rhamdia quelen (Heptapteridae, Siluriformes) Reveals Deep Divergence and Adaptation in the Neotropical Region. Genes (Basel) 2020; 11:genes11010109. [PMID: 31963477 PMCID: PMC7017130 DOI: 10.3390/genes11010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Rhamdia quelen, a Neotropical fish with hybridization between highly divergent mitochondrial DNA (mtDNA) lineages, represents an interesting evolutionary model. Previous studies suggested that there might be demographic differences between coastal lagoons and riverine environments, as well as divergent populations that could be reproductively isolated. Here, we investigated the genetic diversity pattern of this taxon in the Southern Neotropical Basin system that includes the La Plata Basin, Patos-Merin lagoon basin and the coastal lagoons draining to the SW Atlantic Ocean, through a population genomics approach using 2b-RAD-sequencing-derived single nucleotide polymorphisms (SNPs). The genomic scan identified selection footprints associated with divergence and suggested local adaptation environmental drivers. Two major genomic clusters latitudinally distributed in the Northern and Southern basins were identified, along with consistent signatures of divergent selection between them. Population structure based on the whole set of loci and on the presumptive neutral vs. adaptive loci showed deep genomic divergence between the two major clusters. Annotation of the most consistent SNPs under divergent selection revealed some interesting candidate genes for further functional studies. Moreover, signals of adaptation to a coastal lagoon environment mediated by purifying selection were found. These new insights provide a better understanding of the complex evolutionary history of R. quelen in the southernmost basin of the Neotropical region.
Collapse
Affiliation(s)
- Néstor Ríos
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay;
- Correspondence: ; Tel.: +598-25258618 (ext. 140)
| | - Adrián Casanova
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
| | - Miguel Hermida
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
| | - Belén G. Pardo
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Carmen Bouza
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus de Lugo, Universidade de Santiago de Compostela, Avenida Carballo Calero s/n, E-27002 Lugo, Spain; (A.C.); (M.H.); (B.G.P.); (P.M.); (C.B.)
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Graciela García
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay;
| |
Collapse
|
46
|
Rennison DJ, Rudman SM, Schluter D. Parallel changes in gut microbiome composition and function during colonization, local adaptation and ecological speciation. Proc Biol Sci 2019; 286:20191911. [PMID: 31795865 DOI: 10.1098/rspb.2019.1911] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The processes of local adaptation and ecological speciation are often strongly shaped by biotic interactions such as competition and predation. One of the strongest lines of evidence that biotic interactions drive evolution comes from the repeated divergence of lineages in association with repeated changes in the community of interacting species. Yet relatively little is known about the repeatability of changes in gut microbial communities and their role in adaptation and divergence of host populations in nature. Here we use three cases of rapid, parallel adaptation and speciation in freshwater threespine stickleback to test for parallel changes in associated gut microbiomes. We find that features of the gut microbial communities have shifted repeatedly in the same direction in association with parallel divergence and speciation of stickleback hosts. These results suggest that changes to gut microbiomes can occur rapidly and predictably in conjunction with host evolution, and that host-microbe interactions might play an important role in host adaptation and diversification.
Collapse
Affiliation(s)
- Diana J Rennison
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth M Rudman
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dolph Schluter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Walsh J, Clucas GV, MacManes MD, Thomas WK, Kovach AI. Divergent selection and drift shape the genomes of two avian sister species spanning a saline-freshwater ecotone. Ecol Evol 2019; 9:13477-13494. [PMID: 31871659 PMCID: PMC6912898 DOI: 10.1002/ece3.5804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
The role of species divergence due to ecologically based divergent selection-or ecological speciation-in generating and maintaining biodiversity is a central question in evolutionary biology. Comparison of the genomes of phylogenetically related taxa spanning a selective habitat gradient enables discovery of divergent signatures of selection and thereby provides valuable insight into the role of divergent ecological selection in speciation. Tidal marsh ecosystems provide tractable opportunities for studying organisms' adaptations to selective pressures that underlie ecological divergence. Sharp environmental gradients across the saline-freshwater ecotone within tidal marshes present extreme adaptive challenges to terrestrial vertebrates. Here, we sequence 20 whole genomes of two avian sister species endemic to tidal marshes-the saltmarsh sparrow (Ammospiza caudacutus) and Nelson's sparrow (A. nelsoni)-to evaluate the influence of selective and demographic processes in shaping genome-wide patterns of divergence. Genome-wide divergence between these two recently diverged sister species was notably high (genome-wide F ST = 0.32). Against a background of high genome-wide divergence, regions of elevated divergence were widespread throughout the genome, as opposed to focused within islands of differentiation. These patterns may be the result of genetic drift resulting from past tidal march colonization events in conjunction with divergent selection to different environments. We identified several candidate genes that exhibited elevated divergence between saltmarsh and Nelson's sparrows, including genes linked to osmotic regulation, circadian rhythm, and plumage melanism-all putative candidates linked to adaptation to tidal marsh environments. These findings provide new insights into the roles of divergent selection and genetic drift in generating and maintaining biodiversity.
Collapse
Affiliation(s)
- Jennifer Walsh
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Fuller Evolutionary Biology ProgramCornell Laboratory of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Gemma V. Clucas
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Present address:
Cornell Lab of OrnithologyIthacaNYUSA
| | - Matthew D. MacManes
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - W. Kelley Thomas
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
48
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biol Evol 2019; 11:1552-1572. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
49
|
Homola JJ, Loftin CS, Cammen KM, Helbing CC, Birol I, Schultz TF, Kinnison MT. Replicated Landscape Genomics Identifies Evidence of Local Adaptation to Urbanization in Wood Frogs. J Hered 2019; 110:707-719. [PMID: 31278891 PMCID: PMC6785938 DOI: 10.1093/jhered/esz041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Native species that persist in urban environments may benefit from local adaptation to novel selection factors. We used double-digest restriction-side associated DNA (RAD) sequencing to evaluate shifts in genome-wide genetic diversity and investigate the presence of parallel evolution associated with urban-specific selection factors in wood frogs (Lithobates sylvaticus). Our replicated paired study design involved 12 individuals from each of 4 rural and urban populations to improve our confidence that detected signals of selection are indeed associated with urbanization. Genetic diversity measures were less for urban populations; however, the effect size was small, suggesting little biological consequence. Using an FST outlier approach, we identified 37 of 8344 genotyped single nucleotide polymorphisms with consistent evidence of directional selection across replicates. A genome-wide association study analysis detected modest support for an association between environment type and 12 of the 37 FST outlier loci. Discriminant analysis of principal components using the 37 FST outlier loci produced correct reassignment for 87.5% of rural samples and 93.8% of urban samples. Eighteen of the 37 FST outlier loci mapped to the American bullfrog (Rana [Lithobates] catesbeiana) genome, although none were in coding regions. This evidence of parallel evolution to urban environments provides a powerful example of the ability of urban landscapes to direct evolutionary processes.
Collapse
Affiliation(s)
- Jared J Homola
- School of Biology and Ecology, University of Maine, Orono, ME
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI
| | - Cynthia S Loftin
- the US Geological Survey, Maine Cooperative Fish and Wildlife Research Unit, Orono, ME
| | | | - Caren C Helbing
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Inanc Birol
- the Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Thomas F Schultz
- the Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC
| | | |
Collapse
|
50
|
Guðbrandsson J, Kapralova KH, Franzdóttir SR, Bergsveinsdóttir ÞM, Hafstað V, Jónsson ZO, Snorrason SS, Pálsson A. Extensive genetic differentiation between recently evolved sympatric Arctic charr morphs. Ecol Evol 2019; 9:10964-10983. [PMID: 31641448 PMCID: PMC6802010 DOI: 10.1002/ece3.5516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022] Open
Abstract
The availability of diverse ecological niches can promote adaptation of trophic specializations and related traits, as has been repeatedly observed in evolutionary radiations of freshwater fish. The role of genetics, environment, and history in ecologically driven divergence and adaptation, can be studied on adaptive radiations or populations showing ecological polymorphism. Salmonids, especially the Salvelinus genus, are renowned for both phenotypic diversity and polymorphism. Arctic charr (Salvelinus alpinus) invaded Icelandic streams during the glacial retreat (about 10,000 years ago) and exhibits many instances of sympatric polymorphism. Particularly, well studied are the four morphs in Lake Þingvallavatn in Iceland. The small benthic (SB), large benthic (LB), planktivorous (PL), and piscivorous (PI) charr differ in many regards, including size, form, and life history traits. To investigate relatedness and genomic differentiation between morphs, we identified variable sites from RNA-sequencing data from three of those morphs and verified 22 variants in population samples. The data reveal genetic differences between the morphs, with the two benthic morphs being more similar and the PL-charr more genetically different. The markers with high differentiation map to all linkage groups, suggesting ancient and pervasive genetic separation of these three morphs. Furthermore, GO analyses suggest differences in collagen metabolism, odontogenesis, and sensory systems between PL-charr and the benthic morphs. Genotyping in population samples from all four morphs confirms the genetic separation and indicates that the PI-charr are less genetically distinct than the other three morphs. The genetic separation of the other three morphs indicates certain degree of reproductive isolation. The extent of gene flow between the morphs and the nature of reproductive barriers between them remain to be elucidated.
Collapse
Affiliation(s)
- Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Marine and Freshwater Research InstituteReykjavikIceland
| | - Kalina H. Kapralova
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
| | - Sigríður R. Franzdóttir
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Biomedical CenterUniversity of IcelandReykjavikIceland
| | | | - Völundur Hafstað
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
| | - Zophonías O. Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Biomedical CenterUniversity of IcelandReykjavikIceland
| | | | - Arnar Pálsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
- Biomedical CenterUniversity of IcelandReykjavikIceland
| |
Collapse
|