1
|
Tsukahara T, Kethireddy S, Bonefas KM, Chen A, Sutton BLM, Bandow K, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 methyltransferases defines distinct facets of homeostatic plasticity. Cell Rep 2025; 44:115746. [PMID: 40402740 DOI: 10.1016/j.celrep.2025.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2024] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating non-redundant yet poorly understood roles of this enzyme family in neurodevelopment. However, the specific cellular role of KMT2 enzymes in the brain remains poorly understood, owing to the clear non-catalytic functions of each family member and the potential for functional redundancy in installing H3K4 methylation (H3K4me). Here, we identify an instructive role for H3K4me in controlling synapse function and a division of labor among the six KMT2 enzymes in regulating homeostatic synaptic scaling. Using RNAi screening, conditional genetics, small-molecule inhibitors, and transcriptional profiling, our data reveal that individual KMT2 enzymes have unique roles and operate in specific phases to control distinct facets of homeostatic scaling. Together, our results suggest that the expansion of this enzyme family in mammals is key to coupling fine-tuned gene expression changes to adaptive modifications of synaptic function.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Meikai University School of Dentistry, Department of Oral Biology and Tissue Engineering, Division of Biochemistry, Sakado, Saitama 350-0283, Japan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendan L M Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kenjiro Bandow
- Meikai University School of Dentistry, Department of Oral Biology and Tissue Engineering, Division of Biochemistry, Sakado, Saitama 350-0283, Japan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael A Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Lin Z, Rong B, Lyu R, Zheng Y, Chen Y, Yan J, Wu M, Gao X, Tang F, Lan F, Tong MH. SETD1B-mediated broad H3K4me3 controls proper temporal patterns of gene expression critical for spermatid development. Cell Res 2025; 35:345-361. [PMID: 40033033 PMCID: PMC12012180 DOI: 10.1038/s41422-025-01080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Epigenetic programming governs cell fate determination during development through intricately controlling sequential gene activation and repression. Although H3K4me3 is widely recognized as a hallmark of gene activation, its role in modulating transcription output and timing within a continuously developing system remains poorly understood. In this study, we provide a detailed characterization of the epigenomic landscapes in developing male germ cells. We identified thousands of spermatid-specific broad H3K4me3 domains regulated by the SETD1B-RFX2 axis, representing a previously underappreciated form of H3K4me3. These domains, overlapping with H3K27ac-marked enhancers and promoters, play critical roles in orchestrating robust transcription and accurate temporal control of gene expression. Mechanistically, these broad H3K4me3 compete effectively with regular H3K4me3 for transcriptional machinery, thereby ensuring robust levels and precise timing of master gene expression in mouse spermiogenesis. Disruption of this mechanism compromises the accuracy of transcription dosage and timing, ultimately impairing spermiogenesis. Additionally, we unveil remarkable changes in the distribution of heterochromatin marks, including H3K27me3 and H3K9me2, during the mitosis-to-meiosis transition and completion of meiotic recombination, which closely correlates with gene silencing. This work underscores the highly orchestrated epigenetic regulation in spermatogenesis, highlighting the previously unrecognized role of Setd1b in the formation of broad H3K4me3 domains and transcriptional control, and provides an invaluable resource for future studies toward the elucidation of spermatogenesis.
Collapse
Affiliation(s)
- Zhen Lin
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruitu Lyu
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yao Chen
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junyi Yan
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Meixia Wu
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaogang Gao
- Department of Organ Transplantation, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ming-Han Tong
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Anyetei-Anum CS, Leatham-Jensen MP, Fox GC, Smith BR, Chirasani VR, Krajewski K, Strahl BD, Dowen JM, Matera AG, Duronio RJ, McKay DJ. Evidence for dual roles of histone H3 lysine 4 in antagonizing Polycomb group function and promoting target gene expression. Genes Dev 2024; 38:1033-1046. [PMID: 39562140 PMCID: PMC11610931 DOI: 10.1101/gad.352181.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Tight control over cell identity gene expression is necessary for proper adult form and function. The opposing activities of Polycomb and trithorax complexes determine the on/off state of cell identity genes such as the Hox factors. Polycomb group complexes repress target genes, whereas trithorax group complexes are required for their expression. Although trithorax and its orthologs function as methyltransferases specific to histone H3 lysine 4 (H3K4), there is no direct evidence that H3K4 regulates Polycomb group target genes in vivo. Using histone gene replacement in Drosophila, we provide evidence of two key roles for replication-dependent histone H3.2K4 in Polycomb target gene control. First, we found that H3.2K4 mutants mimic H3.2K4me3 in antagonizing methyltransferase activity of the PRC2 Polycomb group complex. Second, we found that H3.2K4 is also required for proper activation of Polycomb targets. We conclude that H3.2K4 directly regulates Polycomb target gene expression.
Collapse
Affiliation(s)
- Cyril S Anyetei-Anum
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary P Leatham-Jensen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Geoffrey C Fox
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - B Rutledge Smith
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Venkat R Chirasani
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jill M Dowen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
4
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
5
|
Crain AT, Nevil M, Leatham-Jensen MP, Reeves KB, Matera AG, McKay DJ, Duronio RJ. Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function. Genetics 2024; 228:iyae117. [PMID: 39039029 PMCID: PMC11373521 DOI: 10.1093/genetics/iyae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoans is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms were developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array (HisC), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate the generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.
Collapse
Affiliation(s)
- Aaron T Crain
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
| | - Markus Nevil
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
- Seeding Postdoctoral Innovators in Research & Education, University of North Carolina, Chapel Hill, NC 27599USA
| | - Mary P Leatham-Jensen
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
| | - Katherine B Reeves
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599USA
| |
Collapse
|
6
|
Yu H, Lesch BJ. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Mol Cell Biol 2024; 44:505-515. [PMID: 39155435 PMCID: PMC11529435 DOI: 10.1080/10985549.2024.2388254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me) is a highly evolutionary conserved chromatin modification associated with active transcription, and its three methylation states-mono, di, and trimethylation-mark distinct regulatory elements. However, whether H3K4me plays functional roles in transcriptional regulation or is merely a by-product of histone methyltransferases recruited to actively transcribed loci is still under debate. Here, we outline the studies that have addressed this question in yeast, Drosophila, and mammalian systems. We review evidence from histone residue mutation, histone modifier manipulation, and epigenetic editing, focusing on the relative roles of H3K4me1 and H3K4me3. We conclude that H3K4me1 and H3K4me3 may have convergent functions in establishing open chromatin and promoting transcriptional activation during cell differentiation.
Collapse
Affiliation(s)
- Haoming Yu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Kainth AS, Zhang H, Gross DS. A critical role for Pol II CTD phosphorylation in heterochromatic gene activation. Gene 2024; 918:148473. [PMID: 38615982 DOI: 10.1016/j.gene.2024.148473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
How gene activation works in heterochromatin, and how the mechanism might differ from the one used in euchromatin, has been largely unexplored. Previous work has shown that in SIR-regulated heterochromatin of Saccharomyces cerevisiae, gene activation occurs in the absence of covalent histone modifications and other alterations of chromatin commonly associated with transcription.Here we demonstrate that such activation occurs in a substantial fraction of cells, consistent with frequent transcriptional bursting, and this raises the possibility that an alternative activation pathway might be used. We address one such possibility, Pol II CTD phosphorylation, and explore this idea using a natural telomere-linked gene, YFR057w, as a model. Unlike covalent histone modifications, we find that Ser2, Ser5 and Ser7 CTD phosphorylated Pol II is prevalent at the drug-induced heterochromatic gene. Particularly enriched relative to the euchromatic state is Ser2 phosphorylation. Consistent with a functional role for Ser2P, YFR057w is negligibly activated in cells deficient in the Ser2 CTD kinases Ctk1 and Bur1 even though the gene is strongly stimulated when it is placed in a euchromatic context. Collectively, our results are consistent with a critical role for Ser2 CTD phosphorylation in driving Pol II recruitment and transcription of a natural heterochromatic gene - an activity that may supplant the need for histone epigenetic modifications.
Collapse
Affiliation(s)
- Amoldeep S Kainth
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States
| | - Hesheng Zhang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States
| | - David S Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States.
| |
Collapse
|
8
|
Anyetei-Anum CS, Leatham-Jensen MP, Fox GC, Smith BR, Krajewski K, Strahl BD, Dowen JM, Matera AG, Duronio RJ, McKay DJ. Dual roles of histone H3 lysine-4 in antagonizing Polycomb group function and promoting target gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600669. [PMID: 38979215 PMCID: PMC11230394 DOI: 10.1101/2024.06.25.600669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tight control over cell identity gene expression is necessary for proper adult form and function. The opposing activities of Polycomb and trithorax complexes determine the ON/OFF state of targets like the Hox genes. Trithorax encodes a methyltransferase specific to histone H3 lysine-4 (H3K4). However, there is no direct evidence that H3K4 regulates Polycomb group target genes in vivo . Here, we demonstrate two key roles for replication-dependent histone H3.2K4 in target control. We find that H3.2K4 antagonizes Polycomb group catalytic activity and that it is required for proper target gene activation. We conclude that H3.2K4 directly regulates expression of Polycomb targets.
Collapse
|
9
|
Song Y, Chang Z, Feng Y, Wang T, Liu L. Whole-genome landscape of histone H3K4me3 modification during sperm cell lineage development in tomato. BMC PLANT BIOLOGY 2024; 24:610. [PMID: 38926660 PMCID: PMC11210149 DOI: 10.1186/s12870-024-05318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND During male gametogenesis of flowering plants, sperm cell lineage (microspores, generative cells, and sperm cells) differentiated from somatic cells and acquired different cell fates. Trimethylation of histone H3 on lysine 4 (H3K4me3) epigenetically contributes to this process, however, it remained unclear how H3K4me3 influences the gene expression in each cell type. Here, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) to obtain a genome-wide landscape of H3K4me3 during sperm cell lineage development in tomato (Solanum lycopersicum). RESULTS We show that H3K4me3 peaks were mainly enriched in the promoter regions, and intergenic H3K4me3 peaks expanded as sperm cell lineage differentiated from somatic cells. H3K4me3 was generally positively associated with transcript abundance and served as a better indicator of gene expression in somatic and vegetative cells, compared to sperm cell lineage. H3K4me3 was mutually exclusive with DNA methylation at 3' proximal of the transcription start sites. The microspore maintained the H3K4me3 features of somatic cells, while generative cells and sperm cells shared an almost identical H3K4me3 pattern which differed from that of the vegetative cell. After microspore division, significant loss of H3K4me3 in genes related to brassinosteroid and cytokinin signaling was observed in generative cells and vegetative cells, respectively. CONCLUSIONS Our results suggest the asymmetric division of the microspore significantly reshapes the genome-wide distribution of H3K4me3. Selective loss of H3K4me3 in genes related to hormone signaling may contribute to functional differentiation of sperm cell lineage. This work provides new resource data for the epigenetic studies of gametogenesis in plants.
Collapse
Affiliation(s)
- Yunyun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhikai Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
10
|
Crain AT, Nevil M, Leatham-Jensen MP, Reeves KB, Matera AG, McKay DJ, Duronio RJ. Redesigning the Drosophila histone gene cluster: An improved genetic platform for spatiotemporal manipulation of histone function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591202. [PMID: 38712307 PMCID: PMC11071459 DOI: 10.1101/2024.04.25.591202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mutating replication-dependent (RD) histone genes is an important tool for understanding chromatin-based epigenetic regulation. Deploying this tool in metazoan models is particularly challenging because RD histones in these organisms are typically encoded by many genes, often located at multiple loci. Such RD histone gene arrangements make the ability to generate homogenous histone mutant genotypes by site-specific gene editing quite difficult. Drosophila melanogaster provides a solution to this problem because the RD histone genes are organized into a single large tandem array that can be deleted and replaced with transgenes containing mutant histone genes. In the last ∼15 years several different RD histone gene replacement platforms have been developed using this simple strategy. However, each platform contains weaknesses that preclude full use of the powerful developmental genetic capabilities available to Drosophila researchers. Here we describe the development of a newly engineered platform that rectifies many of these weaknesses. We used CRISPR to precisely delete the RD histone gene array ( HisC ), replacing it with a multifunctional cassette that permits site-specific insertion of either one or two synthetic gene arrays using selectable markers. We designed this cassette with the ability to selectively delete each of the integrated gene arrays in specific tissues using site-specific recombinases. We also present a method for rapidly synthesizing histone gene arrays of any genotype using Golden Gate cloning technologies. These improvements facilitate generation of histone mutant cells in various tissues at different stages of Drosophila development and provide an opportunity to apply forward genetic strategies to interrogate chromatin structure and gene regulation.
Collapse
|
11
|
Wang Z, Ren B. Role of H3K4 monomethylation in gene regulation. Curr Opin Genet Dev 2024; 84:102153. [PMID: 38278054 PMCID: PMC11065453 DOI: 10.1016/j.gde.2024.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Methylation of histone H3 on the lysine-4 residue (H3K4me) is found throughout the eukaryotic domain, and its initial discovery as a conserved epigenetic mark of active transcription from yeast to mammalian cells has contributed to the histone code hypothesis. However, recent studies have raised questions on whether the different forms of H3K4me play a direct role in gene regulation or are simply by-products of the transcription process. Here, we review the often-conflicting experimental evidence, focusing on the monomethylation of lysine 4 on histone H3 that has been linked to the transcriptional state of enhancers in metazoans. We suggest that this epigenetic mark acts in a context-dependent manner to directly facilitate the transcriptional output of the genome and the establishment of cellular identity.
Collapse
Affiliation(s)
- Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. https://twitter.com/@ZhaoningWang
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA; Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA; Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
12
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
13
|
Mulet-Lazaro R, Delwel R. From Genotype to Phenotype: How Enhancers Control Gene Expression and Cell Identity in Hematopoiesis. Hemasphere 2023; 7:e969. [PMID: 37953829 PMCID: PMC10635615 DOI: 10.1097/hs9.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
Blood comprises a wide array of specialized cells, all of which share the same genetic information and ultimately derive from the same precursor, the hematopoietic stem cell (HSC). This diversity of phenotypes is underpinned by unique transcriptional programs gradually acquired in the process known as hematopoiesis. Spatiotemporal regulation of gene expression depends on many factors, but critical among them are enhancers-sequences of DNA that bind transcription factors and increase transcription of genes under their control. Thus, hematopoiesis involves the activation of specific enhancer repertoires in HSCs and their progeny, driving the expression of sets of genes that collectively determine morphology and function. Disruption of this tightly regulated process can have catastrophic consequences: in hematopoietic malignancies, dysregulation of transcriptional control by enhancers leads to misexpression of oncogenes that ultimately drive transformation. This review attempts to provide a basic understanding of enhancers and their role in transcriptional regulation, with a focus on normal and malignant hematopoiesis. We present examples of enhancers controlling master regulators of hematopoiesis and discuss the main mechanisms leading to enhancer dysregulation in leukemia and lymphoma.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
14
|
Tsukahara T, Kethireddy S, Bonefas K, Chen A, Sutton BLM, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 Methyltransferases Defines Distinct Facets of Homeostatic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558734. [PMID: 37790395 PMCID: PMC10542164 DOI: 10.1101/2023.09.20.558734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating nonredundant yet poorly understood roles of this enzyme family in neurodevelopment. Recent evidence suggests that histone methyltransferase activity may not be central to KMT2 functions; however, the enzymatic activity is evolutionarily conserved, implicating the presence of selective pressure to maintain the catalytic activity. Here, we show that H3K4 methylation is dynamically regulated during prolonged alteration of neuronal activity. The perturbation of H3K4me by the H3.3K4M mutant blocks synaptic scaling, a form of homeostatic plasticity that buffers the impact of prolonged reductions or increases in network activity. Unexpectedly, we found that the six individual enzymes are all necessary for synaptic scaling and that the roles of KMT2 enzymes segregate into evolutionary-defined subfamilies: KMT2A and KMT2B (fly-Trx homologs) for synaptic downscaling, KMT2C and KMT2D (Trr homologs) for upscaling, and KMT2F and KMT2G (dSet homologs) for both directions. Selective blocking of KMT2A enzymatic activity by a small molecule and targeted disruption of the enzymatic domain both blocked the synaptic downscaling and interfered with the activity-dependent transcriptional program. Furthermore, our study revealed specific phases of synaptic downscaling, i.e., induction and maintenance, in which KMT2A and KMT2B play distinct roles. These results suggest that mammalian brains have co-opted intricate H3K4me installation to achieve stability of the expanding neuronal circuits.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Katherine Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Brendan LM Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Michael A. Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
McPherson JME, Grossmann LC, Salzler HR, Armstrong RL, Kwon E, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. Genetics 2023; 224:iyad106. [PMID: 37279945 PMCID: PMC10411577 DOI: 10.1093/genetics/iyad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
16
|
Yancoskie MN, Maritz C, van Eijk P, Reed SH, Naegeli H. To incise or not and where: SET-domain methyltransferases know. Trends Biochem Sci 2023; 48:321-330. [PMID: 36357311 DOI: 10.1016/j.tibs.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3-9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability.
Collapse
Affiliation(s)
- Michelle N Yancoskie
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Corina Maritz
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Patrick van Eijk
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Simon H Reed
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
17
|
McPherson JME, Grossmann LC, Armstrong RL, Kwon E, Salzler HR, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534544. [PMID: 37034607 PMCID: PMC10081267 DOI: 10.1101/2023.03.28.534544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is also reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E. McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C. Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L. Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R. Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J. McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
18
|
Vanderkruk B, Maeshima N, Pasula DJ, An M, McDonald CL, Suresh P, Luciani DS, Lynn FC, Hoffman BG. Methylation of histone H3 lysine 4 is required for maintenance of beta cell function in adult mice. Diabetologia 2023; 66:1097-1115. [PMID: 36912927 PMCID: PMC10163146 DOI: 10.1007/s00125-023-05896-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
AIMS/HYPOTHESIS Beta cells control glucose homeostasis via regulated production and secretion of insulin. This function arises from a highly specialised gene expression programme that is established during development and then sustained, with limited flexibility, in terminally differentiated cells. Dysregulation of this programme is seen in type 2 diabetes but mechanisms that preserve gene expression or underlie its dysregulation in mature cells are not well resolved. This study investigated whether methylation of histone H3 lysine 4 (H3K4), a marker of gene promoters with unresolved functional importance, is necessary for the maintenance of mature beta cell function. METHODS Beta cell function, gene expression and chromatin modifications were analysed in conditional Dpy30 knockout mice, in which H3K4 methyltransferase activity is impaired, and in a mouse model of diabetes. RESULTS H3K4 methylation maintains expression of genes that are important for insulin biosynthesis and glucose responsiveness. Deficient methylation of H3K4 leads to a less active and more repressed epigenome profile that locally correlates with gene expression deficits but does not globally reduce gene expression. Instead, developmentally regulated genes and genes in weakly active or suppressed states particularly rely on H3K4 methylation. We further show that H3K4 trimethylation (H3K4me3) is reorganised in islets from the Leprdb/db mouse model of diabetes in favour of weakly active and disallowed genes at the expense of terminal beta cell markers with broad H3K4me3 peaks. CONCLUSIONS/INTERPRETATION Sustained methylation of H3K4 is critical for the maintenance of beta cell function. Redistribution of H3K4me3 is linked to gene expression changes that are implicated in diabetes pathology.
Collapse
Affiliation(s)
- Ben Vanderkruk
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Nina Maeshima
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Pasula
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Meilin An
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Cassandra L McDonald
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Priya Suresh
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Dan S Luciani
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Francis C Lynn
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Brad G Hoffman
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Flores-Díaz A, Escoto-Sandoval C, Cervantes-Hernández F, Ordaz-Ortiz JJ, Hayano-Kanashiro C, Reyes-Valdés H, Garcés-Claver A, Ochoa-Alejo N, Martínez O. Gene Functional Networks from Time Expression Profiles: A Constructive Approach Demonstrated in Chili Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1148. [PMID: 36904008 PMCID: PMC10005043 DOI: 10.3390/plants12051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Gene co-expression networks are powerful tools to understand functional interactions between genes. However, large co-expression networks are difficult to interpret and do not guarantee that the relations found will be true for different genotypes. Statistically verified time expression profiles give information about significant changes in expressions through time, and genes with highly correlated time expression profiles, which are annotated in the same biological process, are likely to be functionally connected. A method to obtain robust networks of functionally related genes will be useful to understand the complexity of the transcriptome, leading to biologically relevant insights. We present an algorithm to construct gene functional networks for genes annotated in a given biological process or other aspects of interest. We assume that there are genome-wide time expression profiles for a set of representative genotypes of the species of interest. The method is based on the correlation of time expression profiles, bound by a set of thresholds that assure both, a given false discovery rate, and the discard of correlation outliers. The novelty of the method consists in that a gene expression relation must be repeatedly found in a given set of independent genotypes to be considered valid. This automatically discards relations particular to specific genotypes, assuring a network robustness, which can be set a priori. Additionally, we present an algorithm to find transcription factors candidates for regulating hub genes within a network. The algorithms are demonstrated with data from a large experiment studying gene expression during the development of the fruit in a diverse set of chili pepper genotypes. The algorithm is implemented and demonstrated in a new version of the publicly available R package "Salsa" (version 1.0).
Collapse
Affiliation(s)
- Alan Flores-Díaz
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Christian Escoto-Sandoval
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Felipe Cervantes-Hernández
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - José J. Ordaz-Ortiz
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Corina Hayano-Kanashiro
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo 83000, Mexico
| | - Humberto Reyes-Valdés
- Department of Plant Breeding, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Ana Garcés-Claver
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| | - Octavio Martínez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico
| |
Collapse
|
20
|
Godbole AA, Gopalan S, Nguyen TK, Munden AL, Lui DS, Fanelli MJ, Vo P, Lewis CA, Spinelli JB, Fazzio TG, Walker AK. S-adenosylmethionine synthases specify distinct H3K4me3 populations and gene expression patterns during heat stress. eLife 2023; 12:e79511. [PMID: 36756948 PMCID: PMC9984191 DOI: 10.7554/elife.79511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Methylation is a widely occurring modification that requires the methyl donor S-adenosylmethionine (SAM) and acts in regulation of gene expression and other processes. SAM is synthesized from methionine, which is imported or generated through the 1-carbon cycle (1 CC). Alterations in 1 CC function have clear effects on lifespan and stress responses, but the wide distribution of this modification has made identification of specific mechanistic links difficult. Exploiting a dynamic stress-induced transcription model, we find that two SAM synthases in Caenorhabditis elegans, SAMS-1 and SAMS-4, contribute differently to modification of H3K4me3, gene expression and survival. We find that sams-4 enhances H3K4me3 in heat shocked animals lacking sams-1, however, sams-1 cannot compensate for sams-4, which is required to survive heat stress. This suggests that the regulatory functions of SAM depend on its enzymatic source and that provisioning of SAM may be an important regulatory step linking 1 CC function to phenotypes in aging and stress.
Collapse
Affiliation(s)
- Adwait A Godbole
- Program in Molecular Medicine, UMASS Chan Medical SchoolWorcesterUnited States
| | - Sneha Gopalan
- Cancer Center, UMASS Chan Medical SchoolWorcesterUnited States
- Department of Molecular, Cell, and Cancer Biology, UMASS Chan Medical SchoolWorcesterUnited States
| | - Thien-Kim Nguyen
- Program in Molecular Medicine, UMASS Chan Medical SchoolWorcesterUnited States
| | - Alexander L Munden
- Program in Molecular Medicine, UMASS Chan Medical SchoolWorcesterUnited States
| | - Dominique S Lui
- Program in Molecular Medicine, UMASS Chan Medical SchoolWorcesterUnited States
| | - Matthew J Fanelli
- Program in Molecular Medicine, UMASS Chan Medical SchoolWorcesterUnited States
| | - Paula Vo
- Program in Molecular Medicine, UMASS Chan Medical SchoolWorcesterUnited States
| | - Caroline A Lewis
- Program in Molecular Medicine, UMASS Chan Medical SchoolWorcesterUnited States
| | - Jessica B Spinelli
- Program in Molecular Medicine, UMASS Chan Medical SchoolWorcesterUnited States
- Cancer Center, UMASS Chan Medical SchoolWorcesterUnited States
| | - Thomas G Fazzio
- Cancer Center, UMASS Chan Medical SchoolWorcesterUnited States
- Department of Molecular, Cell, and Cancer Biology, UMASS Chan Medical SchoolWorcesterUnited States
| | - Amy K Walker
- Program in Molecular Medicine, UMASS Chan Medical SchoolWorcesterUnited States
- Department of Molecular, Cell, and Cancer Biology, UMASS Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
21
|
Mühlen D, Li X, Dovgusha O, Jäckle H, Günesdogan U. Recycling of parental histones preserves the epigenetic landscape during embryonic development. SCIENCE ADVANCES 2023; 9:eadd6440. [PMID: 36724233 PMCID: PMC9891698 DOI: 10.1126/sciadv.add6440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 06/16/2023]
Abstract
Epigenetic inheritance during DNA replication requires an orchestrated assembly of nucleosomes from parental and newly synthesized histones. We analyzed Drosophila HisC mutant embryos harboring a deletion of all canonical histone genes, in which nucleosome assembly relies on parental histones from cell cycle 14 onward. Lack of new histone synthesis leads to more accessible chromatin and reduced nucleosome occupancy, since only parental histones are available. This leads to up-regulated and spurious transcription, whereas the control of the developmental transcriptional program is partially maintained. The genomic positions of modified parental histone H2A, H2B, and H3 are largely restored during DNA replication. However, parental histones with active marks become more dispersed within gene bodies, which is linked to transcription. Together, the results suggest that parental histones are recycled to preserve the epigenetic landscape during DNA replication in vivo.
Collapse
Affiliation(s)
- Dominik Mühlen
- University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Department for Molecular Developmental Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Xiaojuan Li
- University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Oleksandr Dovgusha
- University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Herbert Jäckle
- Max Planck Institute for Multidisciplinary Sciences, Department for Molecular Developmental Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ufuk Günesdogan
- University of Göttingen, Göttingen Center for Molecular Biosciences, Department of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Department for Molecular Developmental Biology, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
22
|
Ikeda S. Current status of genome-wide epigenetic profiling of mammalian preimplantation embryos. Reprod Med Biol 2023; 22:e12521. [PMID: 37351110 PMCID: PMC10283350 DOI: 10.1002/rmb2.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Background Genome-wide information on epigenetic modifications in mammalian preimplantation embryos was an unexplored sanctuary of valuable research insights protected by the difficulty of its analysis. However, that is no longer the case, and many epigenome maps are now available for sightseeing there. Methods This review overviews the current status of genome-wide epigenetic profiling in terms of DNA methylome and histone modifications in mammalian preimplantation embryos. Main findings As the sensitivity of methods for analyzing epigenetic modifications increased, pioneering work began to explore the genome-wide epigenetic landscape in the mid-2010s, first for DNA methylation and then for histone modifications. Since then, a huge amount of data has accumulated, revealing typical epigenetic profiles in preimplantation development and, more recently, changes in response to environmental interventions. Conclusions These accumulating data may be used to improve the quality of preimplantation embryos, both in terms of their short-term developmental competence and their subsequent long-term health implications.
Collapse
Affiliation(s)
- Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
23
|
Corcoran ET, Jacob Y. Direct assessment of histone function using histone replacement. Trends Biochem Sci 2023; 48:53-70. [PMID: 35853806 PMCID: PMC9789166 DOI: 10.1016/j.tibs.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/09/2023]
Abstract
Histones serve many purposes in eukaryotic cells in the regulation of diverse genomic processes, including transcription, replication, DNA repair, and chromatin organization. As such, experimental systems to assess histone function are fundamental resources toward elucidating the regulation of activities occurring on chromatin. One set of important tools for investigating histone function are histone replacement systems, in which endogenous histone expression can be partially or completely replaced with a mutant histone. Histone replacement systems allow systematic screens of histone regulatory functions and the direct assessment of functions for histone residues. In this review, we describe existing histone replacement systems in model organisms, the benefits and limitations of these systems, and opportunities for future research with histone replacement strategies.
Collapse
Affiliation(s)
- Emma Tung Corcoran
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Barsoum M, Stenzel AT, Bochyńska A, Kuo CC, Tsompanidis A, Sayadi-Boroujeni R, Bussmann P, Lüscher-Firzlaff J, Costa IG, Lüscher B. Loss of the Ash2l subunit of histone H3K4 methyltransferase complexes reduces chromatin accessibility at promoters. Sci Rep 2022; 12:21506. [PMID: 36513698 PMCID: PMC9747801 DOI: 10.1038/s41598-022-25881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Changes in gene expression programs are intimately linked to cell fate decisions. Post-translational modifications of core histones contribute to control gene expression. Methylation of lysine 4 of histone H3 (H3K4) correlates with active promoters and gene transcription. This modification is catalyzed by KMT2 methyltransferases, which require interaction with 4 core subunits, WDR5, RBBP5, ASH2L and DPY30, for catalytic activity. Ash2l is necessary for organismal development and for tissue homeostasis. In mouse embryo fibroblasts (MEFs), Ash2l loss results in gene repression, provoking a senescence phenotype. We now find that upon knockout of Ash2l both H3K4 mono- and tri-methylation (H3K4me1 and me3, respectively) were deregulated. In particular, loss of H3K4me3 at promoters correlated with gene repression, especially at CpG island promoters. Ash2l loss resulted in increased loading of histone H3 and reduced chromatin accessibility at promoters, accompanied by an increase of repressing and a decrease of activating histone marks. Moreover, we observed altered binding of CTCF upon Ash2l loss. Lost and gained binding was noticed at promoter-associated and intergenic sites, respectively. Thus, Ash2l loss and reduction of H3K4me3 correlate with altered chromatin accessibility and transcription factor binding. These findings contribute to a more detailed understanding of mechanistic consequences of H3K4me3 loss and associated repression of gene transcription and thus of the observed cellular consequences.
Collapse
Affiliation(s)
- Mirna Barsoum
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander T. Stenzel
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Agnieszka Bochyńska
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInterdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander Tsompanidis
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Roksaneh Sayadi-Boroujeni
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Philip Bussmann
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
25
|
Lu T, Ang CE, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell 2022; 185:4448-4464.e17. [PMID: 36272405 PMCID: PMC9691621 DOI: 10.1016/j.cell.2022.09.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
The recent development of spatial omics methods has enabled single-cell profiling of the transcriptome and 3D genome organization with high spatial resolution. Expanding the repertoire of spatial omics tools, a spatially resolved single-cell epigenomics method will accelerate understanding of the spatial regulation of cell and tissue functions. Here, we report a method for spatially resolved epigenomic profiling of single cells using in situ tagmentation and transcription followed by multiplexed imaging. We demonstrated the ability to profile histone modifications marking active promoters, putative enhancers, and silent promoters in individual cells, and generated high-resolution spatial atlas of hundreds of active promoters and putative enhancers in embryonic and adult mouse brains. Our results suggested putative promoter-enhancer pairs and enhancer hubs regulating developmentally important genes. We envision this approach will be generally applicable to spatial profiling of epigenetic modifications and DNA-binding proteins, advancing our understanding of how gene expression is spatiotemporally regulated by the epigenome.
Collapse
Affiliation(s)
- Tian Lu
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Cheen Euong Ang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
Corcoran ET, LeBlanc C, Huang YC, Arias Tsang M, Sarkiss A, Hu Y, Pedmale UV, Jacob Y. Systematic histone H4 replacement in Arabidopsis thaliana reveals a role for H4R17 in regulating flowering time. THE PLANT CELL 2022; 34:3611-3631. [PMID: 35879829 PMCID: PMC9516085 DOI: 10.1093/plcell/koac211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/15/2022] [Indexed: 06/13/2023]
Abstract
Despite the broad array of roles for epigenetic mechanisms on regulating diverse processes in eukaryotes, no experimental system is currently available in plants for the direct assessment of histone function. In this work, we present the development of a genetic strategy in Arabidopsis (Arabidopsis thaliana) whereby modified histone H4 transgenes can completely replace the expression of endogenous histone H4 genes. Accordingly, we established a collection of plants expressing different H4 point mutants targeting residues that may be post-translationally modified in vivo. To demonstrate its utility, we screened this new H4 mutant collection to uncover substitutions in H4 that alter flowering time. We identified different mutations in the H4 tail (H4R17A) and the H4 globular domain (H4R36A, H4R39K, H4R39A, and H4K44A) that strongly accelerate the floral transition. Furthermore, we identified a conserved regulatory relationship between H4R17 and the ISWI chromatin remodeling complex in plants: As with other biological systems, H4R17 regulates nucleosome spacing via ISWI. Overall, this work provides a large set of H4 mutants to the plant epigenetics community that can be used to systematically assess histone H4 function in Arabidopsis and a roadmap to replicate this strategy for studying other histone proteins in plants.
Collapse
Affiliation(s)
- Emma Tung Corcoran
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Chantal LeBlanc
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yi-Chun Huang
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Mia Arias Tsang
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anthony Sarkiss
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yuzhao Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ullas V Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
27
|
Zhang S, Gong T, Nan Y, Feng R, Liu Z, Chen H. MAFB promotes the malignant phenotypes by IGFBP6 in esophageal squamous cell carcinomas. Exp Cell Res 2022; 416:113158. [PMID: 35430273 DOI: 10.1016/j.yexcr.2022.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant diseases in the world. Although the somatic alterations have been fully identified, there are still no targeted drugs at present. Our previous studies revealed that loss of grand H3K27me3 domains mediated transcriptional activation of a series of genes in ESCC. Among them, we focus on the investigation of MAFB, as its high expression is associated with a poor prognosis in ESCC. Functional assays show that knockdown of MAFB significantly suppresses cell growth, migration and invasion. Mechanistic investigation demonstrates that MAFB exerts its function by upregulating IGFBP6. Our findings suggest that MAFB may play a tumor-promoting role and may act as a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Shaobo Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yabin Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
28
|
Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022; 79:346. [PMID: 35661267 PMCID: PMC9167812 DOI: 10.1007/s00018-022-04352-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease.
Collapse
|
29
|
Hanna CW, Huang J, Belton C, Reinhardt S, Dahl A, Andrews S, Stewart A, Kranz A, Kelsey G. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1993-2004. [PMID: 35137160 PMCID: PMC8887468 DOI: 10.1093/nar/gkac051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Susanne Reinhardt
- Dresden Concept Genome Center, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Germany
| | - Andreas Dahl
- Dresden Concept Genome Center, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Germany
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Germany
- Max-Planck-Institute for Cell Biology and Genetics, Dresden 01307, Germany
| | - Andrea Kranz
- Correspondence may also be addressed to Andrea Kranz.
| | - Gavin Kelsey
- To whom correspondence should be addressed. Tel: +44 1223 496332;
| |
Collapse
|
30
|
Campbell SA, Bégin J, McDonald CL, Vanderkruk B, Stephan TL, Hoffman BG. H3K4 Trimethylation Is Required for Postnatal Pancreatic Endocrine Cell Functional Maturation. Diabetes 2021; 70:2568-2579. [PMID: 34376477 DOI: 10.2337/db20-1214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/03/2021] [Indexed: 11/13/2022]
Abstract
During pancreas development, endocrine progenitors differentiate into the islet cell subtypes, which undergo further functional maturation in postnatal islet development. In islet β-cells, genes involved in glucose-stimulated insulin secretion are activated, and glucose exposure increases the insulin response as β-cells mature. We investigated the role of H3K4 trimethylation in endocrine cell differentiation and functional maturation by disrupting TrxG complex histone methyltransferase activity in mouse endocrine progenitors. In the embryo, genetic inactivation of TrxG component Dpy30 in NEUROG3+ cells did not affect the number of endocrine progenitors or endocrine cell differentiation. H3K4 trimethylation was progressively lost in postnatal islets, and the mice displayed elevated nonfasting and fasting glycemia as well as impaired glucose tolerance by postnatal day 24. Although postnatal endocrine cell proportions were equivalent to controls, islet RNA sequencing revealed a downregulation of genes involved in glucose-stimulated insulin secretion and an upregulation of immature β-cell genes. Comparison of histone modification enrichment profiles in NEUROG3+ endocrine progenitors and mature islets suggested that genes downregulated by loss of H3K4 trimethylation more frequently acquire active histone modifications during maturation. Taken together, these findings suggest that H3K4 trimethylation is required for the activation of genes involved in the functional maturation of pancreatic islet endocrine cells.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Jocelyn Bégin
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Cassandra L McDonald
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ben Vanderkruk
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Tabea L Stephan
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brad G Hoffman
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Gibert JM, Peronnet F. The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization. INSECTS 2021; 12:884. [PMID: 34680653 PMCID: PMC8537509 DOI: 10.3390/insects12100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023]
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Frédérique Peronnet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| |
Collapse
|
32
|
Llorens-Giralt P, Camilleri-Robles C, Corominas M, Climent-Cantó P. Chromatin Organization and Function in Drosophila. Cells 2021; 10:cells10092362. [PMID: 34572010 PMCID: PMC8465611 DOI: 10.3390/cells10092362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic genomes are packaged into high-order chromatin structures organized in discrete territories inside the cell nucleus, which is surrounded by the nuclear envelope acting as a barrier. This chromatin organization is complex and dynamic and, thus, determining the spatial and temporal distribution and folding of chromosomes within the nucleus is critical for understanding the role of chromatin topology in genome function. Primarily focusing on the regulation of gene expression, we review here how the genome of Drosophila melanogaster is organized into the cell nucleus, from small scale histone–DNA interactions to chromosome and lamina interactions in the nuclear space.
Collapse
|
33
|
Deng X, Iwagawa T, Fukushima M, Suzuki Y, Watanabe S. Setd1a Plays Pivotal Roles for the Survival and Proliferation of Retinal Progenitors via Histone Modifications of Uhrf1. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33938913 PMCID: PMC8107498 DOI: 10.1167/iovs.62.6.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose The trimethylation of histone H3 at lysine 4 (H3K4me3) facilitates transcriptional gene activation, and Setd1a is the methyltransferase specific to H3K4. H3K4me3 has been reported to regulate rod photoreceptor differentiation; however, the roles H3K4me3 plays in retinal progenitor cell (RPC) proliferation and differentiation during early retinal development remain unclear. Methods Using an in vitro retinal explant culture system, we suppressed the expression of Setd1a by introducing shSetd1a. We examined the expression level and H3K4me3 level of genes by RNA Sequencing and ChIP assay, respectively. Results We found that Setd1a depletion resulted in increased apoptosis and proliferation failure in late RPCs. Expression of wild-type SETD1A, but not SETD1A that lacked the catalytic SET domain, reversed the shSetd1a-induced phenotype. RNA Sequencing revealed that proliferation-related genes were downregulated upon shSetd1a expression. Based on publicly available H3K4me3-ChIP sequencing data of retinal development, we identified Uhrf1 as a candidate target gene of Setd1a. The expression of shSetd1a led to a decrease in Uhrf1 transcript levels and reduced H3K4me3 levels at the Uhrf1 locus. Increased apoptosis and the suppression of proliferation in late RPCs were observed in retinal explants expressing shUhrf1, similar to the outcomes observed in shSetd1a-expressing retinas. The overexpression of UHRF1 did not rescue shSetd1a-induced apoptosis, but reversed the suppression of proliferation. Conclusions These results indicate that Setd1a contributes to the survival and proliferation of retinal cells by regulating histone methylation, Setd1a regulates Uhrf1 expression, and these two molecules cooperate to regulate RPC survival and proliferation.
Collapse
Affiliation(s)
- Xiaoyue Deng
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaya Fukushima
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Abstract
Nucleosomes wrap DNA and impede access for the machinery of transcription. The core histones that constitute nucleosomes are subject to a diversity of posttranslational modifications, or marks, that impact the transcription of genes. Their functions have sometimes been difficult to infer because the enzymes that write and read them are complex, multifunctional proteins. Here, we examine the evidence for the functions of marks and argue that the major marks perform a fairly small number of roles in either promoting transcription or preventing it. Acetylations and phosphorylations on the histone core disrupt histone-DNA contacts and/or destabilize nucleosomes to promote transcription. Ubiquitylations stimulate methylations that provide a scaffold for either the formation of silencing complexes or resistance to those complexes, and carry a memory of the transcriptional state. Tail phosphorylations deconstruct silencing complexes in particular contexts. We speculate that these fairly simple roles form the basis of transcriptional regulation by histone marks.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
35
|
Regadas I, Dahlberg O, Vaid R, Ho O, Belikov S, Dixit G, Deindl S, Wen J, Mannervik M. A unique histone 3 lysine 14 chromatin signature underlies tissue-specific gene regulation. Mol Cell 2021; 81:1766-1780.e10. [PMID: 33631105 DOI: 10.1016/j.molcel.2021.01.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Organismal development and cell differentiation critically depend on chromatin state transitions. However, certain developmentally regulated genes lack histone 3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac, respectively) and histone 3 lysine 4 (H3K4) methylation, histone modifications common to most active genes. Here we describe a chromatin state featuring unique histone 3 lysine 14 acetylation (H3K14ac) peaks in key tissue-specific genes in Drosophila and human cells. Replacing H3K14 in Drosophila demonstrates that H3K14 is essential for expression of genes devoid of canonical histone modifications in the embryonic gut and larval wing imaginal disc, causing lethality and defective wing patterning. We find that the SWI/SNF protein Brahma (Brm) recognizes H3K14ac, that brm acts in the same genetic pathway as H3K14R, and that chromatin accessibility at H3K14ac-unique genes is decreased in H3K14R mutants. Our results show that acetylation of a single lysine is essential at genes devoid of canonical histone marks and uncover an important requirement for H3K14 in tissue-specific gene regulation.
Collapse
Affiliation(s)
- Isabel Regadas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Olle Dahlberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Roshan Vaid
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Oanh Ho
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden
| | - Sergey Belikov
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Gunjan Dixit
- Department of Genome Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden
| | - Jiayu Wen
- Department of Genome Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia.
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
36
|
Mazina MY, Vorobyeva NE. Chromatin Modifiers in Transcriptional Regulation: New Findings and Prospects. Acta Naturae 2021; 13:16-30. [PMID: 33959384 PMCID: PMC8084290 DOI: 10.32607/actanaturae.11101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023] Open
Abstract
Histone-modifying and remodeling complexes are considered the main coregulators that affect transcription by changing the chromatin structure. Coordinated action by these complexes is essential for the transcriptional activation of any eukaryotic gene. In this review, we discuss current trends in the study of histone modifiers and chromatin remodelers, including the functional impact of transcriptional proteins/ complexes i.e., "pioneers"; remodeling and modification of non-histone proteins by transcriptional complexes; the supplementary functions of the non-catalytic subunits of remodelers, and the participation of histone modifiers in the "pause" of RNA polymerase II. The review also includes a scheme illustrating the mechanisms of recruitment of the main classes of remodelers and chromatin modifiers to various sites in the genome and their functional activities.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| | - N. E. Vorobyeva
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| |
Collapse
|
37
|
Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 2020; 52:1271-1281. [PMID: 33257899 DOI: 10.1038/s41588-020-00736-4] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Histone-modifying enzymes are implicated in the control of diverse DNA-templated processes including gene expression. Here, we outline historical and current thinking regarding the functions of histone modifications and their associated enzymes. One current viewpoint, based largely on correlative evidence, posits that histone modifications are instructive for transcriptional regulation and represent an epigenetic 'code'. Recent studies have challenged this model and suggest that histone marks previously associated with active genes do not directly cause transcriptional activation. Additionally, many histone-modifying proteins possess non-catalytic functions that overshadow their enzymatic activities. Given that much remains unknown regarding the functions of these proteins, the field should be cautious in interpreting loss-of-function phenotypes and must consider both cellular and developmental context. In this Perspective, we focus on recent progress relating to the catalytic and non-catalytic functions of the Trithorax-COMPASS complexes, Polycomb repressive complexes and Clr4/Suv39 histone-modifying machineries.
Collapse
|
38
|
Campbell SA, McDonald CL, Krentz NAJ, Lynn FC, Hoffman BG. TrxG Complex Catalytic and Non-catalytic Activity Play Distinct Roles in Pancreas Progenitor Specification and Differentiation. Cell Rep 2020; 28:1830-1844.e6. [PMID: 31412250 DOI: 10.1016/j.celrep.2019.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/04/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Appropriate regulation of genes that coordinate pancreas progenitor proliferation and differentiation is required for pancreas development. Here, we explore the role of H3K4 methylation and the Trithorax group (TrxG) complexes in mediating gene expression during pancreas development. Disruption of TrxG complex assembly, but not catalytic activity, prevented endocrine cell differentiation in pancreas progenitor spheroids. In vivo loss of TrxG catalytic activity in PDX1+ cells increased apoptosis and the fraction of progenitors in the G1 phase of the cell cycle. Pancreas progenitors were reallocated to the acinar lineage, primarily at the expense of NEUROG3+ endocrine progenitors. Later in development, acinar and endocrine cell numbers were decreased, and increased gene expression variance and reduced terminal marker activation in acinar cells led to their incomplete differentiation. These findings demonstrate that TrxG co-activator activity is required for gene induction, whereas TrxG catalytic activity and H3K4 methylation help maintain transcriptional stability.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Cassandra L McDonald
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| | - Nicole A J Krentz
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Francis C Lynn
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Brad G Hoffman
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
39
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
40
|
Kranz A, Anastassiadis K. The role of SETD1A and SETD1B in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194578. [PMID: 32389824 DOI: 10.1016/j.bbagrm.2020.194578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022]
Abstract
The Trithorax-related Set1 H3K4 methyltransferases are conserved from yeast to human. In yeast loss of Set1 causes pleiotropic effects but is compatible with life. In contrast, both mammalian Set1 orthologs: SETD1A and SETD1B are essential for embryonic development, however they have distinct functions. SETD1A is required shortly after epiblast formation whereas SETD1B becomes indispensible during early organogenesis. In adult mice both SETD1A and SETD1B regulate hematopoiesis differently: SETD1A is required for the establishment of definitive hematopoiesis whereas SETD1B is important for the maintenance of long-term hematopoietic stem cells. Both are implicated in different diseases with accumulating evidence for the association of SETD1A variants in neurological disorders and SETD1B variants with cancer. Why the two paralogs cannot or only partially compensate for the loss of each other is part of the puzzle that we try to sort out in this review.
Collapse
Affiliation(s)
- Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany.
| |
Collapse
|
41
|
Navarro-Costa P, Martinho RG. The emerging role of transcriptional regulation in the oocyte-to-zygote transition. PLoS Genet 2020; 16:e1008602. [PMID: 32134918 PMCID: PMC7058274 DOI: 10.1371/journal.pgen.1008602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Paulo Navarro-Costa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Gonçalo Martinho
- Center for Biomedical Research, Universidade do Algarve, Faro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
- * E-mail:
| |
Collapse
|
42
|
Gehre M, Bunina D, Sidoli S, Lübke MJ, Diaz N, Trovato M, Garcia BA, Zaugg JB, Noh KM. Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy. Nat Genet 2020; 52:273-282. [PMID: 32139906 DOI: 10.1038/s41588-020-0586-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Mutations in enzymes that modify histone H3 at lysine 4 (H3K4) or lysine 36 (H3K36) have been linked to human disease, yet the role of these residues in mammals is unclear. We mutated K4 or K36 to alanine in the histone variant H3.3 and showed that the K4A mutation in mouse embryonic stem cells (ESCs) impaired differentiation and induced widespread gene expression changes. K4A resulted in substantial H3.3 depletion, especially at ESC promoters; it was accompanied by reduced remodeler binding and increased RNA polymerase II (Pol II) activity. Regulatory regions depleted of H3.3K4A showed histone modification alterations and changes in enhancer activity that correlated with gene expression. In contrast, the K36A mutation did not alter H3.3 deposition and affected gene expression at the later stages of differentiation. Thus, H3K4 is required for nucleosome deposition, histone turnover and chromatin remodeler binding at regulatory regions, where tight regulation of Pol II activity is necessary for proper ESC differentiation.
Collapse
Affiliation(s)
- Maja Gehre
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between the European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Daria Bunina
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Marlena J Lübke
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Nichole Diaz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Matteo Trovato
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Collaboration for joint PhD degree between the European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Kyung-Min Noh
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
43
|
Park S, Kim GW, Kwon SH, Lee JS. Broad domains of histone H3 lysine 4 trimethylation in transcriptional regulation and disease. FEBS J 2020; 287:2891-2902. [PMID: 31967712 DOI: 10.1111/febs.15219] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Histone modifications affect transcription by changing the chromatin structure. In particular, histone H3 lysine 4 trimethylation (H3K4me3) is one of the most recognized epigenetic marks of active transcription. While many studies have provided evidence of the correlation between H3K4me3 and active transcription, details regarding the mechanism involved remain unclear. The first study on the broad H3K4me3 domain was reported in 2014; subsequently, the function of this domain has been studied in various cell types. In this review, we summarized the recent studies on the role of the broad H3K4me3 domain in transcription, development, memory formation, and several diseases, including cancer and autoimmune diseases. The broadest H3K4me3 domains are associated with increased transcriptional precision of cell-type-specific genes related to cell identity and other essential functions. The broad H3K4me3 domain regulates maternal zygotic activation in early mammalian development. In systemic autoimmune diseases, high expression of immune-responsive genes requires the presence of the broad H3K4me3 domain in the promoter-proximal regions. Transcriptional repression of tumor-suppressor genes is associated with the shortening of the broad H3K4me3 domains in cancer cells. Additionally, the broad H3K4me3 domain interacts with the super-enhancer to regulate cancer-associated genes. During memory formation, H3K4me3 breadth is regulated in the hippocampus CA1 neurons. Taken together, these findings indicate that H3K4me3 breadth is essential for the regulation of the transcriptional output across multiple cell types.
Collapse
Affiliation(s)
- Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
44
|
Genetic Dissection Reveals the Role of Ash1 Domains in Counteracting Polycomb Repression. G3-GENES GENOMES GENETICS 2019; 9:3801-3812. [PMID: 31540973 PMCID: PMC6829142 DOI: 10.1534/g3.119.400579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antagonistic functions of Polycomb and Trithorax proteins are essential for proper development of all metazoans. While the Polycomb proteins maintain the repressed state of many key developmental genes, the Trithorax proteins ensure that these genes stay active in cells where they have to be expressed. Ash1 is the Trithorax protein that was proposed to counteract Polycomb repression by methylating lysine 36 of histone H3. However, it was recently shown that genetic replacement of Drosophila histone H3 with the variant that carried Arginine instead of Lysine at position 36 did not impair the ability of Ash1 to counteract Polycomb repression. This argues that Ash1 counteracts Polycomb repression by methylating yet unknown substrate(s) and that it is time to look beyond Ash1 methyltransferase SET domain, at other evolutionary conserved parts of the protein that received little attention. Here we used Drosophila genetics to demonstrate that Ash1 requires each of the BAH, PHD and SET domains to counteract Polycomb repression, while AT hooks are dispensable. Our findings argue that, in vivo, Ash1 acts as a multimer. Thereby it can combine the input of the SET domain and PHD-BAH cassette residing in different peptides. Finally, using new loss of function alleles, we show that zygotic Ash1 is required to prevent erroneous repression of homeotic genes of the bithorax complex in the embryo.
Collapse
|
45
|
Chen Z, Song X, Li Q, Xie L, Guo T, Su T, Tang C, Chang X, Liang B, Huang D. Androgen Receptor-Activated Enhancers Simultaneously Regulate Oncogene TMPRSS2 and lncRNA PRCAT38 in Prostate Cancer. Cells 2019; 8:cells8080864. [PMID: 31405024 PMCID: PMC6721761 DOI: 10.3390/cells8080864] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer is a common carcinoma in males, the development of which involves the androgen receptor (AR) as a key regulator. AR transactivation induces the high expression of androgen-regulated genes, including transmembrane protease serine 2 (TMPRSS2) and long noncoding RNA prostate cancer-associated transcript 38 (PRCAT38). PRCAT38 and TMPRSS2 are both located on chromosome 21, separated by a series of enhancers. PRCAT38 is a prostate-specific long noncoding RNA that is highly expressed in cancer tissue as compared to normal tissue. Here, we show chromatin looping by enhancers E1 and E2 with the promoters for PRCAT38 and TMPRSS2, indicating the co-regulation of PRCAT38 and TMPRSS2 by the same enhancers. The knockout of enhancer E1 or E2 simultaneously impaired the transcription of PRCAT38 and TMPRSS2 and inhibited cell growth and migration. Moreover, the loop formation and enhancer activity were mediated by AR/FOXA1 binding and the activity of acetyltransferase p300. Our findings demonstrate the utilization of shared enhancers in the joint regulation of two oncogenes in prostate cancer cells.
Collapse
Affiliation(s)
- Zikai Chen
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qidong Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Lingzhu Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Tangfei Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ting Su
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chang Tang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaolan Chang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
46
|
Talbert PB, Meers MP, Henikoff S. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat Rev Genet 2019; 20:283-297. [PMID: 30886348 DOI: 10.1038/s41576-019-0105-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sophisticated gene-regulatory mechanisms probably evolved in prokaryotes billions of years before the emergence of modern eukaryotes, which inherited the same basic enzymatic machineries. However, the epigenomic landscapes of eukaryotes are dominated by nucleosomes, which have acquired roles in genome packaging, mitotic condensation and silencing parasitic genomic elements. Although the molecular mechanisms by which nucleosomes are displaced and modified have been described, just how transcription factors, histone variants and modifications and chromatin regulators act on nucleosomes to regulate transcription is the subject of considerable ongoing study. We explore the extent to which these transcriptional regulatory components function in the context of the evolutionarily ancient role of chromatin as a barrier to processes acting on DNA and how chromatin proteins have diversified to carry out evolutionarily recent functions that accompanied the emergence of differentiation and development in multicellular eukaryotes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael P Meers
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
47
|
Choudhury R, Singh S, Arumugam S, Roguev A, Stewart AF. The Set1 complex is dimeric and acts with Jhd2 demethylation to convey symmetrical H3K4 trimethylation. Genes Dev 2019; 33:550-564. [PMID: 30842216 PMCID: PMC6499330 DOI: 10.1101/gad.322222.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
In this study, Choudhury et al. report that yeast Set1C/COMPASS is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. This presents a new paradigm for the establishment of epigenetic detail, in which dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. Epigenetic modifications can maintain or alter the inherent symmetry of the nucleosome. However, the mechanisms that deposit and/or propagate symmetry or asymmetry are not understood. Here we report that yeast Set1C/COMPASS (complex of proteins associated with Set1) is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. Mutation of the dimer interface to make Set1C monomeric abolished H3K4me3 on most promoters. The most active promoters, particularly those involved in the oxidative phase of the yeast metabolic cycle, displayed H3K4me2, which is normally excluded from active promoters, and a subset of these also displayed H3K4me3. In wild-type yeast, deletion of the sole H3K4 demethylase, Jhd2, has no effect. However, in monomeric Set1C yeast, Jhd2 deletion increased H3K4me3 levels on the H3K4me2 promoters. Notably, the association of Set1C with the elongating polymerase was not perturbed by monomerization. These results imply that symmetrical H3K4 methylation is an embedded consequence of Set1C dimerism and that Jhd2 demethylates asymmetric H3K4me3. Consequently, rather than methylation and demethylation acting in opposition as logic would suggest, a dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. This presents a new paradigm for the establishment of epigenetic detail.
Collapse
Affiliation(s)
- Rupam Choudhury
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany
| | - Sukhdeep Singh
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany
| | - Senthil Arumugam
- European Molecular Biology Laboratory Australia Node for Single Molecule Science, ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Assen Roguev
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany.,Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94518, USA
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany
| |
Collapse
|
48
|
Dorafshan E, Kahn TG, Glotov A, Savitsky M, Walther M, Reuter G, Schwartz YB. Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation. EMBO Rep 2019; 20:embr.201846762. [PMID: 30833342 DOI: 10.15252/embr.201846762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Polycomb repression is critical for metazoan development. Equally important but less studied is the Trithorax system, which safeguards Polycomb target genes from the repression in cells where they have to remain active. It was proposed that the Trithorax system acts via methylation of histone H3 at lysine 4 and lysine 36 (H3K36), thereby inhibiting histone methyltransferase activity of the Polycomb complexes. Here we test this hypothesis by asking whether the Trithorax group protein Ash1 requires H3K36 methylation to counteract Polycomb repression. We show that Ash1 is the only Drosophila H3K36-specific methyltransferase necessary to prevent excessive Polycomb repression of homeotic genes. Unexpectedly, our experiments reveal no correlation between the extent of H3K36 methylation and the resistance to Polycomb repression. Furthermore, we find that complete substitution of the zygotic histone H3 with a variant in which lysine 36 is replaced by arginine does not cause excessive repression of homeotic genes. Our results suggest that the model, where the Trithorax group proteins methylate histone H3 to inhibit the histone methyltransferase activity of the Polycomb complexes, needs revision.
Collapse
Affiliation(s)
| | - Tatyana G Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Matthias Walther
- Institute of Developmental Genetics, Martin-Luther University of Halle-Wittenberg, Halle, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gunter Reuter
- Institute of Developmental Genetics, Martin-Luther University of Halle-Wittenberg, Halle, Germany
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
49
|
Leatham-Jensen M, Uyehara CM, Strahl BD, Matera AG, Duronio RJ, McKay DJ. Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genet 2019; 15:e1007932. [PMID: 30699116 PMCID: PMC6370247 DOI: 10.1371/journal.pgen.1007932] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/11/2019] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Proper determination of cell fates depends on epigenetic information that is used to preserve memory of decisions made earlier in development. Post-translational modification of histone residues is thought to be a central means by which epigenetic information is propagated. In particular, modifications of histone H3 lysine 27 (H3K27) are strongly correlated with both gene activation and gene repression. H3K27 acetylation is found at sites of active transcription, whereas H3K27 methylation is found at loci silenced by Polycomb group proteins. The histones bearing these modifications are encoded by the replication-dependent H3 genes as well as the replication-independent H3.3 genes. Owing to differential rates of nucleosome turnover, H3K27 acetylation is enriched on replication-independent H3.3 histones at active gene loci, and H3K27 methylation is enriched on replication-dependent H3 histones across silenced gene loci. Previously, we found that modification of replication-dependent H3K27 is required for Polycomb target gene silencing, but it is not required for gene activation. However, the contribution of replication-independent H3.3K27 to these functions is unknown. Here, we used CRISPR/Cas9 to mutate the endogenous replication-independent H3.3K27 to a non-modifiable residue. Surprisingly, we find that H3.3K27 is also required for Polycomb target gene silencing despite the association of H3.3 with active transcription. However, the requirement for H3.3K27 comes at a later stage of development than that found for replication-dependent H3K27, suggesting a greater reliance on replication-independent H3.3K27 in post-mitotic cells. Notably, we find no evidence of global transcriptional defects in H3.3K27 mutants, despite the strong correlation between H3.3K27 acetylation and active transcription. During development, naïve precursor cells acquire distinct identities through differential regulation of gene expression. The process of cell fate specification is progressive and depends on memory of prior developmental decisions. Maintaining cell identities over time is not dependent on changes in genome sequence. Instead, epigenetic mechanisms propagate information on cell identity by maintaining select sets of genes in either the on or off state. Chemical modifications of histone proteins, which package and organize the genome within cells, are thought to play a central role in epigenetic gene regulation. However, identifying which histone modifications are required for gene regulation, and defining the mechanisms through which they function in the maintenance of cell identity, remains a longstanding research challenge. Here, we focus on the role of histone H3 lysine 27 (H3K27). Modifications of H3K27 are associated with both gene activation and gene silencing (i.e. H3K27 acetylation and methylation, respectively). The histones bearing these modifications are encoded by different histone genes. One set of histone genes is only expressed during cell division, whereas the other set of histone genes is expressed in both dividing and non-dividing cells. Because most cells permanently stop dividing by the end of development, these “replication-independent” histone genes are potentially important for long-term maintenance of cell identity. In this study, we demonstrate that replication-independent H3K27 is required for gene silencing by the Polycomb group of epigenetic regulators. However, despite a strong correlation between replication-independent histones and active genes, we find that replication-independent H3K27 is not required for gene activation. As mutations in replication-independent H3K27 have recently been identified in human cancers, this work may help to inform the mechanisms by which histone mutations contribute to human disease.
Collapse
Affiliation(s)
- Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher M. Uyehara
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - A. Gregory Matera
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert J. Duronio
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Daniel J. McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
50
|
Collins BE, Greer CB, Coleman BC, Sweatt JD. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin 2019; 12:7. [PMID: 30616667 PMCID: PMC6322263 DOI: 10.1186/s13072-018-0251-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications such as histone methylation permit change in chromatin structure without accompanying change in the underlying genomic sequence. A number of studies in animal models have shown that dysregulation of various components of the epigenetic machinery causes cognitive deficits at the behavioral level, suggesting that proper epigenetic control is necessary for the fundamental processes of learning and memory. Histone H3 lysine K4 (H3K4) methylation comprises one component of such epigenetic control, and global levels of this mark are increased in the hippocampus during memory formation. Modifiers of H3K4 methylation are needed for memory formation, shown through animal studies, and many of the same modifiers are mutated in human cognitive diseases. Indeed, all of the known H3K4 methyltransferases and four of the known six H3K4 demethylases have been associated with impaired cognition in a neurologic or psychiatric disorder. Cognitive impairment in such patients often manifests as intellectual disability, consistent with a role for H3K4 methylation in learning and memory. As a modification quintessentially, but not exclusively, associated with transcriptional activity, H3K4 methylation provides unique insights into the regulatory complexity of writing, reading, and erasing chromatin marks within an activated neuron. The following review will discuss H3K4 methylation and connect it to transcriptional events required for learning and memory within the developed nervous system. This will include an initial discussion of the most recent advances in the developing methodology to analyze H3K4 methylation, namely mass spectrometry and deep sequencing, as well as how these methods can be applied to more deeply understand the biology of this mark in the brain. We will then introduce the core enzymatic machinery mediating addition and removal of H3K4 methylation marks and the resulting epigenetic signatures of these marks throughout the neuronal genome. We next foray into the brain, discussing changes in H3K4 methylation marks within the hippocampus during memory formation and retrieval, as well as the behavioral correlates of H3K4 methyltransferase deficiency in this region. Finally, we discuss the human cognitive diseases connected to each H3K4 methylation modulator and summarize advances in developing drugs to target them.
Collapse
Affiliation(s)
- Bridget E Collins
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Celeste B Greer
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Benjamin C Coleman
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - J David Sweatt
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|