1
|
Allen AE, Hahn J, Richardson R, Pantiru A, Mouland J, Babu A, Baño-Otalora B, Monavarfeshani A, Yan W, Williams C, Wynne J, Rodgers J, Milosavljevic N, Orlowska-Feuer P, Storchi R, Sanes JR, Shekhar K, Lucas RJ. Altered proportions of retinal cell types and distinct visual codes in rodents occupying divergent ecological niches. Curr Biol 2025; 35:1446-1458.e5. [PMID: 40043699 DOI: 10.1016/j.cub.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 02/07/2025] [Indexed: 04/10/2025]
Abstract
Vertebrate retinas share a basic blueprint comprising 5 neuronal classes arranged according to a common wiring diagram. Yet, vision is aligned with species differences in behavior and ecology, raising the question of how evolution acts on this circuit to adjust its computational characteristics. We address that problem by comparing the thalamic visual code and retinal cell composition in closely related species occupying different niches: Rhabdomys pumilio, which are day-active murid rodents, and nocturnal laboratory mice (Mus musculus). Using high-density electrophysiological recordings, we compare visual responses at both single-unit and population levels in the thalamus of these two species. We find that Rhabdomys achieves a higher spatiotemporal resolution visual code through the selective expansion of information channels characterized by non-linear spatiotemporal summation. Comparative analysis of single-cell transcriptomic atlases reveals that this difference originates with the increased relative abundance of retinal bipolar and ganglion cell types supporting OFF and ON-OFF responses. These findings demonstrate that evolution may drive changes in neural computation by adjusting the proportions of shared cell types rather than inventing new types and show the power of matching high-density physiological recordings with transcriptomic cell atlases to study evolution in the brain.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rose Richardson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andreea Pantiru
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Josh Mouland
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Aadhithyan Babu
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Beatriz Baño-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Williams
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Wynne
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Patrycja Orlowska-Feuer
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert J Lucas
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Haddad HK, Mercado-Reyes JI, Mustafá ER, D’Souza SP, Chung CS, Nestor RRM, Olinski LE, Martinez Damonte V, Saskin J, Vemaraju S, Raingo J, Kauer JA, Lang RA, Oancea E. Hypothalamic opsin 3 suppresses MC4R signaling and potentiates Kir7.1 to promote food consumption. Proc Natl Acad Sci U S A 2025; 122:e2403891122. [PMID: 39951488 PMCID: PMC11874419 DOI: 10.1073/pnas.2403891122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/02/2024] [Indexed: 02/16/2025] Open
Abstract
Mammalian opsin 3 (OPN3) is a member of the opsin family of G-protein-coupled receptors with ambiguous light sensitivity. OPN3 was first identified in the brain (and named encephalopsin) and subsequently found to be expressed in other tissues. In adipocytes, OPN3 is necessary for light responses that modulate lipolysis and glucose uptake, while OPN3 in human skin melanocytes regulates pigmentation in a light-independent manner. Despite its initial discovery in the brain, OPN3 functional mechanisms in the brain remain elusive. Here, we investigated the molecular mechanism of OPN3 function in the paraventricular nucleus (PVN) of the hypothalamus. We show that Opn3 is coexpressed with the melanocortin 4 receptor (Mc4r) in a population of PVN neurons, where it negatively regulates MC4R-mediated cAMP signaling in a specific and Gαi/o-dependent manner. Under baseline conditions, OPN3 via Gαi/o potentiates the activity of the inward rectifying Kir7.1 channel, previously shown to be closed in response to agonist-mediated activation of MC4R in a Gαs-independent manner. In mice, we found that Opn3 in Mc4r-expressing neurons regulates food consumption. Our results reveal the first mechanistic insight into OPN3 function in the hypothalamus, uncovering a unique mechanism by which OPN3 functions to potentiate Kir7.1 activity and negatively regulate MC4R-mediated cAMP signaling, thereby promoting food intake.
Collapse
Affiliation(s)
- Hala K. Haddad
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Jonathan I. Mercado-Reyes
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - E. Román Mustafá
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Shane P. D’Souza
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - C. Sean Chung
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Ramses R. M. Nestor
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Lauren E. Olinski
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Joshua Saskin
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Shruti Vemaraju
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Jesica Raingo
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH45229
| | - Elena Oancea
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| |
Collapse
|
3
|
Shi Y, Zhang J, Li X, Han Y, Guan J, Li Y, Shen J, Tzvetanov T, Yang D, Luo X, Yao Y, Chu Z, Wu T, Chen Z, Miao Y, Li Y, Wang Q, Hu J, Meng J, Liao X, Zhou Y, Tao L, Ma Y, Chen J, Zhang M, Liu R, Mi Y, Bao J, Li Z, Chen X, Xue T. Non-image-forming photoreceptors improve visual orientation selectivity and image perception. Neuron 2025; 113:486-500.e13. [PMID: 39694031 DOI: 10.1016/j.neuron.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
It has long been a decades-old dogma that image perception is mediated solely by rods and cones, while intrinsically photosensitive retinal ganglion cells (ipRGCs) are responsible only for non-image-forming vision, such as circadian photoentrainment and pupillary light reflexes. Surprisingly, we discovered that ipRGC activation enhances the orientation selectivity of layer 2/3 neurons in the primary visual cortex (V1) of mice by both increasing preferred-orientation responses and narrowing tuning bandwidth. Mechanistically, we found that the tuning properties of V1 excitatory and inhibitory neurons are differentially influenced by ipRGC activation, leading to a reshaping of the excitatory/inhibitory balance that enhances visual cortical orientation selectivity. Furthermore, light activation of ipRGCs improves behavioral orientation discrimination in mice. Importantly, we found that specific activation of ipRGCs in human participants through visual spectrum manipulation significantly enhances visual orientation discriminability. Our study reveals a visual channel originating from "non-image-forming photoreceptors" that facilitates visual orientation feature perception.
Collapse
Affiliation(s)
- Yiming Shi
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiaming Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xingyi Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yuchong Han
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiangheng Guan
- Brain Research Center, Third Military Medical University, and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400038, China
| | - Yilin Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Jiawei Shen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tzvetomir Tzvetanov
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Dongyu Yang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xinyi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yichuan Yao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhikun Chu
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Tianyi Wu
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhiping Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Ying Miao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yufei Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qian Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiaxi Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jianjun Meng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400038, China
| | - Yifeng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Louis Tao
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuqian Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jutao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Rong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Yuanyuan Mi
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
| | - Jin Bao
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, the Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhong Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400038, China.
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Adhikari P, Uprety S, Feigl B, Zele AJ. Melanopsin-mediated amplification of cone signals in the human visual cortex. Proc Biol Sci 2024; 291:20232708. [PMID: 38808443 PMCID: PMC11285915 DOI: 10.1098/rspb.2023.2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
The ambient daylight variation is coded by melanopsin photoreceptors and their luxotonic activity increases towards midday when colour temperatures are cooler, and irradiances are higher. Although melanopsin and cone photoresponses can be mediated via separate pathways, the connectivity of melanopsin cells across all levels of the retina enables them to modify cone signals. The downstream effects of melanopsin-cone interactions on human vision are however, incompletely understood. Here, we determined how the change in daytime melanopsin activation affects the human cone pathway signals in the visual cortex. A 5-primary silent-substitution method was developed to evaluate the dependence of cone-mediated signals on melanopsin activation by spectrally tuning the lights and stabilizing the rhodopsin activation under a constant cone photometric luminance. The retinal (white noise electroretinogram) and cortical responses (visual evoked potential) were simultaneously recorded with the photoreceptor-directed lights in 10 observers. By increasing the melanopsin activation, a reverse response pattern was observed with cone signals being supressed in the retina by 27% (p = 0.03) and subsequently amplified by 16% (p = 0.01) as they reach the cortex. We infer that melanopsin activity can amplify cone signals at sites distal to retinal bipolar cells to cause a decrease in the psychophysical Weber fraction for cone vision.
Collapse
Affiliation(s)
- Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Samir Uprety
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- Queensland Eye Institute, Brisbane, Queensland 4101, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| |
Collapse
|
5
|
Barrionuevo PA, Sandoval Salinas ML, Fanchini JM. Are ipRGCs involved in human color vision? Hints from physiology, psychophysics, and natural image statistics. Vision Res 2024; 217:108378. [PMID: 38458004 DOI: 10.1016/j.visres.2024.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Human photoreceptors consist of cones, rods, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). First studied in circadian regulation and pupillary control, ipRGCs project to a variety of brain centers suggesting a broader involvement beyond non-visual functions. IpRGC responses are stable, long-lasting, and with a particular codification of photoreceptor signals. In comparison with the transient and adaptive nature of cone and rod signals, ipRGCs' signaling might provide an ecological advantage to different attributes of color vision. Previous studies have indicated melanopsin's influence on visual responses yet its contribution to color perception in humans remains debated. We summarized evidence and hypotheses (from physiology, psychophysics, and natural image statistics) about direct and indirect involvement of ipRGCs in human color vision, by first briefly assessing the current knowledge about the role of melanopsin and ipRGCs in vision and codification of spectral signals. We then approached the question about melanopsin activation eliciting a color percept, discussing studies using the silent substitution method. Finally, we explore various avenues through which ipRGCs might impact color perception indirectly, such as through involvement in peripheral color matching, post-receptoral pathways, color constancy, long-term chromatic adaptation, and chromatic induction. While there is consensus about the role of ipRGCs in brightness perception, confirming its direct contribution to human color perception requires further investigation. We proposed potential approaches for future research, emphasizing the need for empirical validation and methodological thoroughness to elucidate the exact role of ipRGCs in human color vision.
Collapse
Affiliation(s)
- Pablo A Barrionuevo
- Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Germany; Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina.
| | - María L Sandoval Salinas
- Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina; Instituto de Investigaciones de Biodiversidad Argentina (PIDBA), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Argentina
| | - José M Fanchini
- Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina; Departamento de Luminotecnia, Luz y Visión, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Argentina
| |
Collapse
|
6
|
Tamayo E, Mouland JW, Lucas RJ, Brown TM. Regulation of mouse exploratory behaviour by irradiance and cone-opponent signals. BMC Biol 2023; 21:178. [PMID: 37605163 PMCID: PMC10441731 DOI: 10.1186/s12915-023-01663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Animal survival depends on the ability to adjust behaviour according to environmental conditions. The circadian system plays a key role in this capability, with diel changes in the quantity (irradiance) and spectral content ('colour') of ambient illumination providing signals of time-of-day that regulate the timing of rest and activity. Light also exerts much more immediate effects on behaviour, however, that are equally important in shaping daily activity patterns. Hence, nocturnal mammals will actively avoid light and dramatically reduce their activity when light cannot be avoided. The sensory mechanisms underlying these acute effects of light are incompletely understood, particularly the importance of colour. RESULTS To define sensory mechanisms controlling mouse behaviour, we used photoreceptor-isolating stimuli and mice with altered cone spectral sensitivity (Opn1mwR), lacking melanopsin (Opn1mwR; Opn4-/-) or cone phototransduction (Cnga3-/-) in assays of light-avoidance and activity suppression. In addition to roles for melanopsin-dependent irradiance signals, we find a major influence of spectral content in both cases. Hence, remarkably, selective increases in S-cone irradiance (producing a blue-shift in spectrum replicating twilight) drive light-seeking behaviour and promote activity. These effects are opposed by signals from longer-wavelength sensitive cones, indicating a true spectrally-opponent mechanism. Using c-Fos-mapping and multielectrode electrophysiology, we further show these effects are associated with a selective cone-opponent modulation of neural activity in the key brain site implicated in acute effects of light on behaviour, the subparaventricular zone. CONCLUSIONS Collectively, these data reveal a mechanism whereby blue-shifts in the spectrum of environmental illumination, such as during twilight, promote mouse exploratory behaviour.
Collapse
Affiliation(s)
- E Tamayo
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - T M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Chien SE, Yeh SL, Yamashita W, Tsujimura SI. Enhanced human contrast sensitivity with increased stimulation of melanopsin in intrinsically photosensitive retinal ganglion cells. Vision Res 2023; 209:108271. [PMID: 37331304 DOI: 10.1016/j.visres.2023.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
The intrinsically photosensitive retinal ganglion cells (ipRGCs) are known to serve non-image-forming functions, such as photoentrainment of the circadian rhythm and pupillary light reflex. However, how they affect human spatial vision is largely unknown. The spatial contrast sensitivity function (CSF), which measures contrast sensitivity as a function of spatial frequency, was used in the current study to investigate the function of ipRGCs in pattern vision. To compare the effects of different background lights on the CSF, we utilized the silent substitution technique. We manipulated the stimulation level of melanopsin (i.e., the visual pigment of ipRGCs) from the background light while keeping the cone stimulations constant, or vice versa. We conducted four experiments to measure the CSFs at various spatial frequencies, eccentricities, and levels of background luminance. Results showed that melanopsin stimulation from the background light enhances spatial contrast sensitivity across different eccentricities and luminance levels. Our finding that melanopsin contributes to CSF, combined with the receptive field analysis, suggests a role for the magnocellular pathway and challenges the conventional view that ipRGCs are primarily responsible for non-visual functions.
Collapse
Affiliation(s)
- Sung-En Chien
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; Ganzin Technology Inc., New Taipei City 23141, Taiwan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10617, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan; Center for Advanced Studies in the Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| | - Wakayo Yamashita
- Faculty of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | - Sei-Ichi Tsujimura
- Faculty of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan; Faculty of Design and Architecture, Nagoya City University, Nagoya 467-8501, Japan.
| |
Collapse
|
8
|
Martin JT, Boynton GM, Baker DH, Wade AR, Spitschan M. PySilSub: An open-source Python toolbox for implementing the method of silent substitution in vision and nonvisual photoreception research. J Vis 2023; 23:10. [PMID: 37450287 PMCID: PMC10353748 DOI: 10.1167/jov.23.7.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023] Open
Abstract
The normal human retina contains several classes of photosensitive cell-rods for low-light vision, three cone classes for daylight vision, and intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin for non-image-forming functions, including pupil control, melatonin suppression, and circadian photoentrainment. The spectral sensitivities of the photoreceptors overlap significantly, which means that most lights will stimulate all photoreceptors to varying degrees. The method of silent substitution is a powerful tool for stimulating individual photoreceptor classes selectively and has found much use in research and clinical settings. The main hardware requirement for silent substitution is a spectrally calibrated light stimulation system with at least as many primaries as there are photoreceptors under consideration. Device settings that will produce lights to selectively stimulate the photoreceptor(s) of interest can be found using a variety of analytic and algorithmic approaches. Here we present PySilSub (https://github.com/PySilentSubstitution/pysilsub), a novel Python package for silent substitution featuring flexible support for individual colorimetric observer models (including human and mouse observers), multiprimary stimulation devices, and solving silent substitution problems with linear algebra and constrained numerical optimization. The toolbox is registered with the Python Package Index and includes example data sets from various multiprimary systems. We hope that PySilSub will facilitate the application of silent substitution in research and clinical settings.
Collapse
Affiliation(s)
- Joel T Martin
- Department of Psychology, University of York, York, UK
| | | | - Daniel H Baker
- Department of Psychology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Alex R Wade
- Department of Psychology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| |
Collapse
|
9
|
Schilling T, Soltanlou M, Nuerk HC, Bahmani H. Blue-light stimulation of the blind-spot constricts the pupil and enhances contrast sensitivity. PLoS One 2023; 18:e0286503. [PMID: 37256905 DOI: 10.1371/journal.pone.0286503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Short- and long-wavelength light can alter pupillary responses differently, allowing inferences to be made about the contribution of different photoreceptors on pupillary constriction. In addition to classical retinal photoreceptors, the pupillary light response is formed by the activity of melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGC). It has been shown in rodents that melanopsin is expressed in the axons of ipRGCs that bundle at the optic nerve head, which forms the perceptual blind-spot. Hence, the first aim of this study was to investigate if blind-spot stimulation induces a pupillary response. The second aim was to investigate the effect of blind-spot stimulation by using the contrast sensitivity tests. Fifteen individuals participated in the pupil response experiment and thirty-two individuals in the contrast sensitivity experiment. The pupillary change was quantified using the post-illumination pupil response (PIPR) amplitudes after blue-light (experimental condition) and red-light (control condition) pulses in the time window between 2 s and 6 s post-illumination. The contrast sensitivity was assessed using two different tests: the Freiburg Visual Acuity Test and Contrast Test and the Tuebingen Contrast Sensitivity Test, respectively. Contrast sensitivity was measured before and 20 minutes after binocular blue-light stimulation of the blind-spot at spatial frequencies higher than or equal to 3 cycles per degree (cpd) and at spatial frequencies lower than 3 cpd (control condition). Blue-light blind-spot stimulation induced a significantly larger PIPR compared to red-light, confirming a melanopsin-mediated pupil-response in the blind-spot. Furthermore, contrast sensitivity was increased after blind-spot stimulation, confirmed by both contrast sensitivity tests. Only spatial frequencies of at least 3 cpd were enhanced. This study demonstrates that stimulating the blind-spot with blue-light constricts the pupil and increases the contrast sensitivity at higher spatial frequencies.
Collapse
Affiliation(s)
| | - Mojtaba Soltanlou
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| | - Hamed Bahmani
- Dopavision GmbH, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Tuebingen, Germany
| |
Collapse
|
10
|
Mouland JW, Watson AJ, Martial FP, Lucas RJ, Brown TM. Colour and melanopsin mediated responses in the murine retina. Front Cell Neurosci 2023; 17:1114634. [PMID: 36993934 PMCID: PMC10040579 DOI: 10.3389/fncel.2023.1114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction: Intrinsically photosensitive retinal ganglion cells (ipRGCs) integrate melanopsin and rod/cone-mediated inputs to signal to the brain. Whilst originally identified as a cell type specialised for encoding ambient illumination, several lines of evidence indicate a strong association between colour discrimination and ipRGC-driven responses. Thus, cone-mediated colour opponent responses have been widely found across ipRGC target regions in the mouse brain and influence a key ipRGC-dependent function, circadian photoentrainment. Although ipRGCs exhibiting spectrally opponent responses have also been identified, the prevalence of such properties have not been systematically evaluated across the mouse retina or yet been found in ipRGC subtypes known to influence the circadian system. Indeed, there is still uncertainty around the overall prevalence of cone-dependent colour opponency across the mouse retina, given the strong retinal gradient in S and M-cone opsin (co)-expression and overlapping spectral sensitivities of most mouse opsins.Methods: To address this, we use photoreceptor isolating stimuli in multielectrode recordings from human red cone opsin knock-in mouse (Opn1mwR) retinas to systematically survey cone mediated responses and the occurrence of colour opponency across ganglion cell layer (GCL) neurons and identify ipRGCs based on spectral comparisons and/or the persistence of light responses under synaptic blockade.Results: Despite detecting robust cone-mediated responses across the retina, we find cone opponency is rare, especially outside of the central retina (overall ~3% of GCL neurons). In keeping with previous suggestions we also see some evidence of rod-cone opponency (albeit even more rare under our experimental conditions), but find no evidence for any enrichment of cone (or rod) opponent responses among functionally identified ipRGCs.Conclusion: In summary, these data suggest the widespread appearance of cone-opponency across the mouse early visual system and ipRGC-related responses may be an emergent feature of central visual processing mechanisms.
Collapse
Affiliation(s)
- Joshua W. Mouland
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Joshua W. Mouland
| | - Alex J. Watson
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Timothy M. Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Raja S, Milosavljevic N, Allen AE, Cameron MA. Burning the candle at both ends: Intraretinal signaling of intrinsically photosensitive retinal ganglion cells. Front Cell Neurosci 2023; 16:1095787. [PMID: 36687522 PMCID: PMC9853061 DOI: 10.3389/fncel.2022.1095787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are photoreceptors located in the ganglion cell layer. They project to brain regions involved in predominately non-image-forming functions including entrainment of circadian rhythms, control of the pupil light reflex, and modulation of mood and behavior. In addition to possessing intrinsic photosensitivity via the photopigment melanopsin, these cells receive inputs originating in rods and cones. While most research in the last two decades has focused on the downstream influence of ipRGC signaling, recent studies have shown that ipRGCs also act retrogradely within the retina itself as intraretinal signaling neurons. In this article, we review studies examining intraretinal and, in addition, intraocular signaling pathways of ipRGCs. Through these pathways, ipRGCs regulate inner and outer retinal circuitry through both chemical and electrical synapses, modulate the outputs of ganglion cells (both ipRGCs and non-ipRGCs), and influence arrangement of the correct retinal circuitry and vasculature during development. These data suggest that ipRGC function plays a significant role in the processing of image-forming vision at its earliest stage, positioning these photoreceptors to exert a vital role in perceptual vision. This research will have important implications for lighting design to optimize the best chromatic lighting environments for humans, both in adults and potentially even during fetal and postnatal development. Further studies into these unique ipRGC signaling pathways could also lead to a better understanding of the development of ocular dysfunctions such as myopia.
Collapse
Affiliation(s)
- Sushmitha Raja
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Nina Milosavljevic
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Morven A. Cameron
- School of Medicine, Western Sydney University, Sydney, NSW, Australia,*Correspondence: Morven A. Cameron,
| |
Collapse
|
12
|
Flood MD, Veloz HLB, Hattar S, Carvalho-de-Souza JL. Robust visual cortex evoked potentials (VEP) in Gnat1 and Gnat2 knockout mice. Front Cell Neurosci 2022; 16:1090037. [PMID: 36605613 PMCID: PMC9807669 DOI: 10.3389/fncel.2022.1090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin, imparting to themselves the ability to respond to light in the absence of input from rod or cone photoreceptors. Since their discovery ipRGCs have been found to play a significant role in non-image-forming aspects of vision, including circadian photoentrainment, neuroendocrine regulation, and pupillary control. In the past decade it has become increasingly clear that some ipRGCs also contribute directly to pattern-forming vision, the ability to discriminate shapes and objects. However, the degree to which melanopsin-mediated phototransduction, versus that of rods and cones, contributes to this function is still largely unknown. Earlier attempts to quantify this contribution have relied on genetic knockout models that target key phototransductive proteins in rod and cone photoreceptors, ideally to isolate melanopsin-mediated responses. In this study we used the Gnat1-/-; Gnat2cpfl3/cpfl3 mouse model, which have global knockouts for the rod and cone α-transducin proteins. These genetic modifications completely abolish rod and cone photoresponses under light-adapted conditions, locking these cells into a "dark" state. We recorded visually evoked potentials in these animals and found that they still showed robust light responses, albeit with reduced light sensitivity, with similar magnitudes to control mice. These responses had characteristics that were in line with a melanopsin-mediated signal, including delayed kinetics and increased saturability. Additionally, we recorded electroretinograms in a sub-sample of these mice and were unable to find any characteristic waveform related the activation of photoreceptors or second-order retinal neurons, suggesting ipRGCs as the origin of light responses. Our results show a profound ability for melanopsin phototransduction to directly contribute to the primary pattern-forming visual pathway.
Collapse
Affiliation(s)
- Michael D. Flood
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Hannah L. B. Veloz
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, MD, United States
| | - Joao L. Carvalho-de-Souza
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States,Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, United States,Department of Ophthalmology and Vision Science, College of Medicine, The University of Arizona, Tucson, AZ, United States,BIO5 Institute, The University of Arizona, Tucson, AZ, United States,*Correspondence: Joao L. Carvalho-de-Souza,
| |
Collapse
|
13
|
Optimizing Light Flash Sequence Duration to Shift Human Circadian Phase. BIOLOGY 2022; 11:biology11121807. [PMID: 36552316 PMCID: PMC9775356 DOI: 10.3390/biology11121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Unlike light input for forming images, non-image-forming retinal pathways are optimized to convey information about the total light environment, integrating this information over time and space. In a variety of species, discontinuous light sequences (flashes) can be effective stimuli, notably impacting circadian entrainment. In this study, we examined the extent to which this temporal integration can occur. A group of healthy, young (n = 20) individuals took part in a series of 16-day protocols in which we examined the impact of different lengths of light flash sequences on circadian timing. We find a significant phase change of -0.70 h in response to flashes that did not differ by duration; a 15-min sequence could engender as much change in circadian timing as 3.5-h sequences. Acute suppression of melatonin was also observed during short (15-min) exposures, but not in exposures over one hour in length. Our data are consistent with the theory that responses to light flashes are mediated by the extrinsic, rod/cone pathway, and saturate the response of this pathway within 15 min. Further excitation leads to no greater change in circadian timing and an inability to acutely suppress melatonin, indicating that this pathway may be in a refractory state following this brief light stimulation.
Collapse
|
14
|
Allen AE. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice. J Neurosci 2022; 42:8795-8806. [PMID: 36216501 PMCID: PMC9698662 DOI: 10.1523/jneurosci.0486-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At intermediate (mesopic) light levels, rods and cones are both active and can contribute to vision. This presents a challenge to the retina because the visual responses originating with rods and cones are distinct, yet their visual responses must be seamlessly combined. The current study aimed to establish how the circadian clock regulates rod and/or cone vision in these conditions, given the strong time-of-day change in the reliance on each photoreceptor. Visual responses were recorded in the retina and visual thalamus of anaesthetized male mice at distinct circadian time points, and the method of receptor silent substitution was used to selectively stimulate different photoreceptor types. With stimuli designed to only activate rods, responses in the mesopic range were highly rhythmic and peaked in amplitude in the subjective night. This rhythm was abolished following intravitreal injection of the gap junction blocker meclofenamic acid, consistent with a circadian variation in the strength of electrical coupling of photoreceptors. In contrast, responses to stimuli designed to only activate cones were arrhythmic within the mesopic to photopic range when adapted to the background irradiance. The outcome was that combined rod-plus-cone responses showed a stable contrast-response relationship across mesopic-photopic backgrounds in the circadian day, whereas at night, responses were significantly amplified at lower light levels. These data support the idea that the circadian clock is a key regulator of vision, in this case defining the relative amplitude of rod/cone vision across the mesopic transition according to time of day.SIGNIFICANCE STATEMENT Although the importance of circadian clocks in regulating vision has been long recognized, less is known about how the clock shapes vision in conditions where both rods and cones are active (mesopic conditions). Here, the novel approach of receptor silent substitution has been applied to trace rod and cone visual responses in mice across the circadian cycle and has identified pronounced rhythms in rod, but not cone, vision. This has the effect of boosting responses in dimmer backgrounds at night at the cost of impaired contrast-response stability across the mesopic to photopic range. Thus, the circadian clock drives anticipatory changes in the relative contribution of rods versus cones to vision, which match the prevailing visual environment.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
15
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
16
|
Eleftheriou CG, Corona C, Khattak S, Alam NM, Ivanova E, Bianchimano P, Liu Y, Sun D, Singh R, Batoki JC, Prusky GT, McAnany JJ, Peachey NS, Romano C, Sagdullaev BT. Retinoschisin Deficiency Induces Persistent Aberrant Waves of Activity Affecting Neuroglial Signaling in the Retina. J Neurosci 2022; 42:6983-7000. [PMID: 35906066 PMCID: PMC9464019 DOI: 10.1523/jneurosci.2128-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Genetic disorders that present during development make treatment strategies particularly challenging because there is a need to disentangle primary pathophysiology from downstream dysfunction caused at key developmental stages. To provide a deeper insight into this question, we studied a mouse model of X-linked juvenile retinoschisis, an early-onset inherited condition caused by mutations in the Rs1 gene encoding retinoschisin (RS1) and characterized by cystic retinal lesions and early visual deficits. Using an unbiased approach in expressing the fast intracellular calcium indicator GCaMP6f in neuronal, glial, and vascular cells of the retina of RS1-deficient male mice, we found that initial cyst formation is paralleled by the appearance of aberrant spontaneous neuroglial signals as early as postnatal day 15, when eyes normally open. These presented as glutamate-driven wavelets of neuronal activity and sporadic radial bursts of activity by Müller glia, spanning all retinal layers and disrupting light-induced signaling. This study confers a role to RS1 beyond its function as an adhesion molecule, identifies an early onset for dysfunction in the course of disease, establishing a potential window for disease diagnosis and therapeutic intervention.SIGNIFICANCE STATEMENT Developmental disorders make it difficult to distinguish pathophysiology due to ongoing disease from pathophysiology due to disrupted development. Here, we investigated a mouse model for X-linked retinoschisis, a well defined monogenic degenerative disease caused by mutations in the Rs1 gene, which codes for the protein retinoschisin. We evaluated the spontaneous activity of explanted retinas lacking retinoschisin at key stages of development using the unbiased approach of ubiquitously expressing GCaMP6f in all retinal neurons, vasculature, and glia. In mice lacking RS1, we found that an array of novel phenotypes, which present around eye opening, are linked to glutamatergic neurotransmission and affect visual processing. These data identify a novel pathophysiology linked to RS1, and define a window where treatments might be best targeted.
Collapse
Affiliation(s)
- Cyril G Eleftheriou
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605
| | - Carlo Corona
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605
| | | | - Nazia M Alam
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605
| | - Elena Ivanova
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605
- Regeneron Pharmaceuticals, Tarrytown, New York 10591
| | - Paola Bianchimano
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605
| | - Yang Liu
- Regeneron Pharmaceuticals, Tarrytown, New York 10591
| | - Duo Sun
- Regeneron Pharmaceuticals, Tarrytown, New York 10591
| | - Rupesh Singh
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Julia C Batoki
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Glen T Prusky
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605
| | - J Jason McAnany
- Department of Ophthalmology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | | | - Botir T Sagdullaev
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605
- Regeneron Pharmaceuticals, Tarrytown, New York 10591
| |
Collapse
|
17
|
Caval-Holme FS, Aranda ML, Chen AQ, Tiriac A, Zhang Y, Smith B, Birnbaumer L, Schmidt TM, Feller MB. The Retinal Basis of Light Aversion in Neonatal Mice. J Neurosci 2022; 42:4101-4115. [PMID: 35396331 PMCID: PMC9121827 DOI: 10.1523/jneurosci.0151-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Aversive responses to bright light (photoaversion) require signaling from the eye to the brain. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) encode absolute light intensity and are thought to provide the light signals for photoaversion. Consistent with this, neonatal mice exhibit photoaversion before the developmental onset of image vision, and melanopsin deletion abolishes photoaversion in neonates. It is not well understood how the population of ipRGCs, which constitutes multiple physiologically distinct types (denoted M1-M6 in mouse), encodes light stimuli to produce an aversive response. Here, we provide several lines of evidence that M1 ipRGCs that lack the Brn3b transcription factor drive photoaversion in neonatal mice. First, neonatal mice lacking TRPC6 and TRPC7 ion channels failed to turn away from bright light, while two photon Ca2+ imaging of their acutely isolated retinas revealed reduced photosensitivity in M1 ipRGCs, but not other ipRGC types. Second, mice in which all ipRGC types except for Brn3b-negative M1 ipRGCs are ablated exhibited normal photoaversion. Third, pharmacological blockade or genetic knockout of gap junction channels expressed by ipRGCs, which reduces the light sensitivity of M2-M6 ipRGCs in the neonatal retina, had small effects on photoaversion only at the brightest light intensities. Finally, M1s were not strongly depolarized by spontaneous retinal waves, a robust source of activity in the developing retina that depolarizes all other ipRGC types. M1s therefore constitute a separate information channel between the neonatal retina and brain that could ensure behavioral responses to light but not spontaneous retinal waves.SIGNIFICANCE STATEMENT At an early stage of development, before the maturation of photoreceptor input to the retina, neonatal mice exhibit photoaversion. On exposure to bright light, they turn away and emit ultrasonic vocalizations, a cue to their parents to return them to the nest. Neonatal photoaversion is mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs), a small percentage of the retinal ganglion cell population that express the photopigment melanopsin and depolarize directly in response to light. This study shows that photoaversion is mediated by a subset of ipRGCs, called M1-ipRGCs. Moreover, M1-ipRGCs have reduced responses to retinal waves, providing a mechanism by which the mouse distinguishes light stimulation from developmental patterns of spontaneous activity.
Collapse
Affiliation(s)
- Franklin S Caval-Holme
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Andy Q Chen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Alexandre Tiriac
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Yizhen Zhang
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Benjamin Smith
- School of Optometry, University of California Berkeley, Berkeley, California 94720
| | - Lutz Birnbaumer
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
- Institute of Biomedical Research, School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina C1107AFF
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
18
|
Seeing and sensing temporal variations in natural daylight. PROGRESS IN BRAIN RESEARCH 2022; 273:275-301. [DOI: 10.1016/bs.pbr.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Melanopic stimulation does not alter psychophysical threshold sensitivity for luminance flicker. Sci Rep 2021; 11:20167. [PMID: 34635745 PMCID: PMC8505480 DOI: 10.1038/s41598-021-99684-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
In addition to the rod and cone photoreceptors the retina contains intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells express the photopigment melanopsin and are known to be involved in reflexive visual functions such as pupil response and photo-entrainment of the circadian rhythm. It is possible that the ipRGCs contribute to conscious visual perception, either by providing an independent signal to the geniculo-striate pathway, or by interacting with and thus modifying signals arising from “classical” retinal ganglion cells that combine and contrast cone input. Here, we tested for the existence of an interaction by asking if a 350% change in melanopsin stimulation alters psychophysical sensitivity for the detection of luminance flicker. In Experiment 1, we tested for a change in the threshold for detecting luminance flicker in three participants after they adapted to backgrounds with different degrees of tonic melanopsin stimulation. In Experiments 2 and 3, this test was repeated, but now for luminance flicker presented on a transient pedestal of melanopsin stimulation. Across the three experiments, no effect of melanopsin stimulation upon threshold flicker sensitivity was found. Our results suggest that even large changes in melanopsin stimulation do not affect near-threshold, cone-mediated visual perception.
Collapse
|
20
|
Evangelisti S, La Morgia C, Testa C, Manners DN, Brizi L, Bianchini C, Carbonelli M, Barboni P, Sadun AA, Tonon C, Carelli V, Vandewalle G, Lodi R. Brain functional MRI responses to blue light stimulation in Leber’s hereditary optic neuropathy. Biochem Pharmacol 2021; 191:114488. [DOI: 10.1016/j.bcp.2021.114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
|
21
|
Mouland JW, Pienaar A, Williams C, Watson AJ, Lucas RJ, Brown TM. Extensive cone-dependent spectral opponency within a discrete zone of the lateral geniculate nucleus supporting mouse color vision. Curr Biol 2021; 31:3391-3400.e4. [PMID: 34111401 PMCID: PMC8360768 DOI: 10.1016/j.cub.2021.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
Color vision, originating with opponent processing of spectrally distinct photoreceptor signals, plays important roles in animal behavior.1-4 Surprisingly, however, comparatively little is understood about color processing in the brain, including in widely used laboratory mammals such as mice. The retinal gradient in S- and M-cone opsin (co-)expression has traditionally been considered an impediment to mouse color vision.5-8 However, recent data indicate that mice exhibit robust chromatic discrimination within the central-upper visual field.9 Retinal color opponency has been reported to emerge from superimposing inhibitory surround receptive fields on the cone opsin expression gradient, and by introducing opponent rod signals in retinal regions with sparse M-cone opsin expression.10-13 The relative importance of these proposed mechanisms in determining the properties of neurons at higher visual processing stages remains unknown. We address these questions using multielectrode recordings from the lateral geniculate nucleus (LGN) in mice with altered M-cone spectral sensitivity (Opn1mwR) and multispectral stimuli that allow selective modulation of signaling by individual opsin classes. Remarkably, we find many (∼25%) LGN cells are color opponent, that such cells are localized to a distinct medial LGN zone and that their properties cannot simply be explained by the proposed retinal opponent mechanisms. Opponent responses in LGN can be driven solely by cones, independent of cone-opsin expression gradients and rod input, with many cells exhibiting spatially congruent antagonistic receptive fields. Our data therefore suggest previously unidentified mechanisms may support extensive and sophisticated color processing in the mouse LGN.
Collapse
Affiliation(s)
- Josh W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Abigail Pienaar
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Christopher Williams
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alex J Watson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
22
|
Pant M, Zele AJ, Feigl B, Adhikari P. Light adaptation characteristics of melanopsin. Vision Res 2021; 188:126-138. [PMID: 34315092 DOI: 10.1016/j.visres.2021.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Following photopigment bleaching, the rhodopsin and cone-opsins show a characteristic exponential regeneration in the dark with a photocycle dependent on the retinal pigment epithelium. Melanopsin pigment regeneration in animal models requires different pathways to rods and cones. To quantify melanopsin-mediated light adaptation in humans, we first estimated its photopigment regeneration kinetics through the photo-bleach recovery of the intrinsic melanopsin pupil light response (PLR). An intense broadband light (~120,000 Td) bleached 43% of melanopsin compared to 86% of the cone-opsins. Recovery from a 43% bleach was 3.4X slower for the melanopsin than cone-opsin. Post-bleach melanopsin regeneration followed an exponential growth with a 2.5 min time-constant (τ) that required 11.2 min for complete recovery; the half-bleaching level (Ip) was ~ 4.47 log melanopic Td (16.10 log melanopsin effective photons.cm-2.s-1; 8.25 log photoisomerisations.photoreceptor-1.s-1). The effect on the cone-directed PLR of the level of the melanopsin excitation during continuous light adaptation was then determined. We observed that cone-directed pupil constriction amplitudes increased by ~ 10% when adapting lights had a higher melanopic excitation but the same mean photometric luminance. Our findings suggest that melanopsin light adaptation enhances cone signalling along the non-visual retina-brain axis. Parameters τ and Ip will allow estimation of the level of melanopsin bleaching in any light units; the data have implications for quantifying the relative contributions of putative melanopsin pathways to regulate the post-bleach photopigment regeneration and adaptation.
Collapse
Affiliation(s)
- Mukund Pant
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Queensland Eye Institute, Brisbane, Australia
| | - Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
| |
Collapse
|
23
|
Shi HY, Xu W, Guo H, Dong H, Qu WM, Huang ZL. Lesion of intergeniculate leaflet GABAergic neurons attenuates sleep in mice exposed to light. Sleep 2021; 43:5573593. [PMID: 31552427 DOI: 10.1093/sleep/zsz212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/16/2019] [Indexed: 11/12/2022] Open
Abstract
Light has immediate effects on sleep in rodents, but the neural pathways underlying the effect remain to be elucidated. The intergeniculate leaflet (IGL) containing GABAergic neurons receives direct retinal inputs. We hypothesized that IGL GABAergic neurons may mediate light-induced sleep. EEG/electromyogram recording, immunohistochemistry, electrophysiology, optogenetics, fiber photometry, behavioral tests, and cell-specific destruction were employed to investigate the role of IGL GABAergic neurons in the regulation of acute light-induced sleep. Here, EEG/electromyogram recordings revealed that acute light exposure during the nocturnal active phase in mice induced a significant increase in non-rapid eye movement and rapid eye movement sleep compared with controls. Immunohistochemistry showed that acute light exposure for 2 hours in the active phase induced an increase in c-Fos expression in the IGL, whereas lights-off in the rest phase inhibited it. Patch clamp coupled with optogenetics demonstrated that retinal ganglion cells had monosynaptic functional connections to IGL GABAergic neurons. Calcium activity by fiber photometry in freely behaving mice showed that light exposure increased the activity of IGL GABAergic neurons. Furthermore, lesion of IGL GABAergic neurons by caspase-3 virus significantly attenuated the sleep-promoting effect of light exposure during active phases. Collectively, these results clearly indicated that the IGL is one of key nuclei mediating light-induced sleep in mice.
Collapse
Affiliation(s)
- Huan-Ying Shi
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Han Guo
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Dong
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Pottackal J, Walsh HL, Rahmani P, Zhang K, Justice NJ, Demb JB. Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina. J Neurosci 2021; 41:1489-1504. [PMID: 33397711 PMCID: PMC7896016 DOI: 10.1523/jneurosci.0674-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/11/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) exhibit melanopsin-dependent light responses that persist in the absence of rod and cone photoreceptor-mediated input. In addition to signaling anterogradely to the brain, ipRGCs signal retrogradely to intraretinal circuitry via gap junction-mediated electrical synapses with amacrine cells (ACs). However, the targets and functions of these intraretinal signals remain largely unknown. Here, in mice of both sexes, we identify circuitry that enables M5 ipRGCs to locally inhibit retinal neurons via electrical synapses with a nonspiking GABAergic AC. During pharmacological blockade of rod- and cone-mediated input, whole-cell recordings of corticotropin-releasing hormone-expressing (CRH+) ACs reveal persistent visual responses that require both melanopsin expression and gap junctions. In the developing retina, ipRGC-mediated input to CRH+ ACs is weak or absent before eye opening, indicating a primary role for this input in the mature retina (i.e., in parallel with rod- and cone-mediated input). Among several ipRGC types, only M5 ipRGCs exhibit consistent anatomical and physiological coupling to CRH+ ACs. Optogenetic stimulation of local CRH+ ACs directly drives IPSCs in M4 and M5, but not M1-M3, ipRGCs. CRH+ ACs also inhibit M2 ipRGC-coupled spiking ACs, demonstrating direct interaction between discrete networks of ipRGC-coupled interneurons. Together, these results demonstrate a functional role for electrical synapses in translating ipRGC activity into feedforward and feedback inhibition of local retinal circuits.SIGNIFICANCE STATEMENT Melanopsin directly generates light responses in intrinsically photosensitive retinal ganglion cells (ipRGCs). Through gap junction-mediated electrical synapses with retinal interneurons, these uniquely photoreceptive RGCs may also influence the activity and output of neuronal circuits within the retina. Here, we identified and studied an electrical synaptic circuit that, in principle, could couple ipRGC activity to the chemical output of an identified retinal interneuron. Specifically, we found that M5 ipRGCs form electrical synapses with corticotropin-releasing hormone-expressing amacrine cells, which locally release GABA to inhibit specific RGC types. Thus, ipRGCs are poised to influence the output of diverse retinal circuits via electrical synapses with interneurons.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Jonathan B Demb
- Interdepartmental Neuroscience Program
- Department of Ophthalmology and Visual Science
- Department of Cellular and Molecular Physiology
- Department of Neuroscience, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
25
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|
26
|
Touitou Y, Point S. Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. ENVIRONMENTAL RESEARCH 2020; 190:109942. [PMID: 32758719 DOI: 10.1016/j.envres.2020.109942] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 05/11/2023]
Abstract
White light-emitting diodes (LEDs) will likely become the most used lighting devices worldwide in the future because of their very low prices over the course of their long lifespans which can be up to several tens of thousands of hours. The expansion of LED use in both urban and domestic lighting has prompted questions regarding their possible health effects, because the light that they provide is potentially high in the harmful blue band (400-500 nm) of the visible light spectrum. Research on the potential effects of LEDs and their blue band on human health has followed three main directions: 1) examining their retinal phototoxicity; 2) examining disruption of the internal clock, i.e., an out-of-sync clock, in shift workers and night workers, including the accompanying health issues, most concerningly an increased relative risk of cancer; and 3) examining risky, inappropriate late-night use of smartphones and consoles among children and adolescents. Here, we document the recognized or potential health issues associated with LED lighting together with their underlying mechanisms of action. There is so far no evidence that LED lighting is deleterious to human retina under normal use. However, exposure to artificial light at night is a new source of pollution because it affects the circadian clock. Blue-rich light, including cold white LEDs, should be considered a new endocrine disruptor, because it affects estrogen secretion and has unhealthful consequences in women, as demonstrated to occur via a complex mechanism.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, 75019, Paris, France.
| | | |
Collapse
|
27
|
Mouland JW, Martial F, Watson A, Lucas RJ, Brown TM. Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight. Curr Biol 2020; 29:4260-4267.e4. [PMID: 31846668 PMCID: PMC6926481 DOI: 10.1016/j.cub.2019.10.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 10/16/2019] [Indexed: 01/04/2023]
Abstract
In humans, short-wavelength light evokes larger circadian responses than longer wavelengths [1-3]. This reflects the fact that melanopsin, a key contributor to circadian assessments of light intensity, most efficiently captures photons around 480 nm [4-8] and gives rise to the popular view that "blue" light exerts the strongest effects on the clock. However, in the natural world, there is often no direct correlation between perceived color (as reported by the cone-based visual system) and melanopsin excitation. Accordingly, although the mammalian clock does receive cone-based chromatic signals [9], the influence of color on circadian responses to light remains unclear. Here, we define the nature and functional significance of chromatic influences on the mouse circadian system. Using polychromatic lighting and mice with altered cone spectral sensitivity (Opn1mwR), we generate conditions that differ in color (i.e., ratio of L- to S-cone opsin activation) while providing identical melanopsin and rod activation. When biased toward S-opsin activation (appearing "blue"), these stimuli reliably produce weaker circadian behavioral responses than those favoring L-opsin ("yellow"). This influence of color (which is absent in animals lacking cone phototransduction; Cnga3-/-) aligns with natural changes in spectral composition over twilight, where decreasing solar angle is accompanied by a strong blue shift [9-11]. Accordingly, we find that naturalistic color changes support circadian alignment when environmental conditions render diurnal variations in light intensity weak/ambiguous sources of timing information. Our data thus establish how color contributes to circadian entrainment in mammals and provide important new insight to inform the design of lighting environments that benefit health.
Collapse
Affiliation(s)
- Joshua W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Franck Martial
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alex Watson
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
28
|
Cameron MA, Morley JW, Pérez-Fernández V. Seeing the light: different photoreceptor classes work together to drive adaptation in the mammalian retina. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Foster RG, Hughes S, Peirson SN. Circadian Photoentrainment in Mice and Humans. BIOLOGY 2020; 9:biology9070180. [PMID: 32708259 PMCID: PMC7408241 DOI: 10.3390/biology9070180] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.
Collapse
|
30
|
Abstract
A small fraction of mammalian retinal ganglion cells are directly photoreceptive thanks to their expression of the photopigment melanopsin. These intrinsically photosensitive retinal ganglion cells (ipRGCs) have well-established roles in a variety of reflex responses to changes in ambient light intensity, including circadian photoentrainment. In this article, we review the growing evidence, obtained primarily from laboratory mice and humans, that the ability to sense light via melanopsin is also an important component of perceptual and form vision. Melanopsin photoreception has low temporal resolution, making it fundamentally biased toward detecting changes in ambient light and coarse patterns rather than fine details. Nevertheless, melanopsin can indirectly impact high-acuity vision by driving aspects of light adaptation ranging from pupil constriction to changes in visual circuit performance. Melanopsin also contributes directly to perceptions of brightness, and recent data suggest that this influences the appearance not only of overall scene brightness, but also of low-frequency patterns.
Collapse
Affiliation(s)
- Robert J Lucas
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Annette E Allen
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Nina Milosavljevic
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Riccardo Storchi
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Tom Woelders
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
31
|
Allen AE, Mouland JW, Rodgers J, Baño-Otálora B, Douglas RH, Jeffery G, Vugler AA, Brown TM, Lucas RJ. Spectral sensitivity of cone vision in the diurnal murid Rhabdomys pumilio. J Exp Biol 2020; 223:jeb215368. [PMID: 32371443 PMCID: PMC7272338 DOI: 10.1242/jeb.215368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/20/2020] [Indexed: 01/14/2023]
Abstract
An animal's temporal niche - the time of day at which it is active - is known to drive a variety of adaptations in the visual system. These include variations in the topography, spectral sensitivity and density of retinal photoreceptors, and changes in the eye's gross anatomy and spectral transmission characteristics. We have characterised visual spectral sensitivity in the murid rodent Rhabdomys pumilio (the four-striped grass mouse), which is in the same family as (nocturnal) mice and rats but exhibits a strong diurnal niche. As is common in diurnal species, the R. pumilio lens acts as a long-pass spectral filter, providing limited transmission of light <400 nm. Conversely, we found strong sequence homologies with the R. pumilio SWS and MWS opsins and those of related nocturnal species (mice and rats) whose SWS opsins are maximally sensitive in the near-UV. We continued to assess in vivo spectral sensitivity of cone vision using electroretinography and multi-channel recordings from the visual thalamus. These revealed that responses across the human visible range could be adequately described by those of a single pigment (assumed to be MWS opsin) maximally sensitive at ∼500 nm, but that sensitivity in the near-UV required inclusion of a second pigment whose peak sensitivity lay well into the UV range (λmax<400 nm, probably ∼360 nm). We therefore conclude that, despite the UV-filtering effects of the lens, R. pumilio retains an SWS pigment with a UV-A λmax In effect, this somewhat paradoxical combination of long-pass lens and UV-A λmax results in narrow-band sensitivity for SWS cone pathways in the UV-A range.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Joshua W Mouland
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Jessica Rodgers
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Beatriz Baño-Otálora
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ronald H Douglas
- Department of Optometry and Visual Science, City, University of London, London, EC1V 0HB, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Anthony A Vugler
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Timothy M Brown
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
32
|
Eleftheriou CG, Wright P, Allen AE, Elijah D, Martial FP, Lucas RJ. Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina. Front Neurosci 2020; 14:320. [PMID: 32317928 PMCID: PMC7147324 DOI: 10.3389/fnins.2020.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and project to central targets, allowing them to contribute to both image-forming and non-image forming vision. Recent studies have highlighted chemical and electrical synapses between ipRGCs and neurons of the inner retina, suggesting a potential influence from the melanopsin-born signal to affect visual processing at an early stage of the visual pathway. We investigated melanopsin responses in ganglion cell layer (GCL) neurons of both intact and dystrophic mouse retinas using 256 channel multi-electrode array (MEA) recordings. A wide 200 μm inter-electrode spacing enabled a pan-retinal visualization of melanopsin's influence upon GCL activity. Upon initial stimulation of dystrophic retinas with a long, bright light pulse, over 37% of units responded with an increase in firing (a far greater fraction than can be expected from the anatomically characterized number of ipRGCs). This relatively widespread response dissipated with repeated stimulation even at a quite long inter-stimulus interval (ISI; 120 s), to leave a smaller fraction of responsive units (<10%; more in tune with the predicted number of ipRGCs). Visually intact retinas appeared to lack such widespread melanopsin responses indicating that it is a feature of dystrophy. Taken together, our data reveal the potential for anomalously widespread melanopsin responses in advanced retinal degeneration. These could be used to probe the functional reorganization of retinal circuits in degeneration and should be taken into account when using retinally degenerate mice as a model of disease.
Collapse
Affiliation(s)
- Cyril G. Eleftheriou
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, United States
| | - Phillip Wright
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Elijah
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Sonoda T, Okabe Y, Schmidt TM. Overlapping morphological and functional properties between M4 and M5 intrinsically photosensitive retinal ganglion cells. J Comp Neurol 2020; 528:1028-1040. [PMID: 31691279 PMCID: PMC7007370 DOI: 10.1002/cne.24806] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 02/03/2023]
Abstract
Multiple retinal ganglion cell (RGC) types in the mouse retina mediate pattern vision by responding to specific features of the visual scene. The M4 and M5 melanopsin-expressing, intrinsically photosensitive retinal ganglion cell (ipRGC) subtypes are two RGC types that are thought to play major roles in pattern vision. The M4 ipRGCs overlap in population with ON-alpha RGCs, while M5 ipRGCs were recently reported to exhibit opponent responses to different wavelengths of light (color opponency). Despite their seemingly distinct roles in visual processing, previous reports have suggested that these two populations may exhibit overlap in their morphological and functional properties, which calls into question whether these are in fact distinct RGC types. Here, we show that M4 and M5 ipRGCs are distinct morphological classes of ipRGCs, but they cannot be exclusively differentiated based on color opponency and dendritic morphology as previously reported. Instead, we find that M4 and M5 ipRGCs can only be distinguished based on soma size and the number of dendritic branch points in combination with SMI-32 immunoreactivity. These results have important implications for clearly defining RGC types and their roles in visual behavior.
Collapse
Affiliation(s)
- Takuma Sonoda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Yudai Okabe
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
34
|
Sondereker KB, Stabio ME, Renna JM. Crosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J Comp Neurol 2020; 528:2044-2067. [PMID: 32003463 DOI: 10.1002/cne.24873] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin ganglion cells have defied convention since their discovery almost 20 years ago. In the years following, many types of these intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged. In the mouse retina, there are currently six known types (M1-M6) of melanopsin ganglion cells, each with unique morphology, mosaics, connections, physiology, projections, and functions. While melanopsin-expressing cells are usually associated with behaviors like circadian photoentrainment and the pupillary light reflex, the characterization of multiple types has demonstrated a reach that may extend far beyond non-image-forming vision. In fact, studies have shown that individual types of melanopsin ganglion cells have the potential to impact image-forming functions like contrast sensitivity and color opponency. Thus, the goal of this review is to summarize the morphological and functional aspects of the six known types of melanopsin ganglion cells in the mouse retina and to highlight their respective roles in non-image-forming and image-forming vision. Although many melanopsin ganglion cell types do project to image-forming brain targets, it is important to note that this is only the first step in determining their influence on image-forming vision. Even so, the visual system has canonically been divided into these two functional realms and melanopsin ganglion cells have begun to challenge the boundary between them, providing an overlap of visual information that is complementary rather than redundant. Further studies on these ganglion cell photoreceptors will no doubt continue to illustrate an ever-expanding role for melanopsin ganglion cells in image-forming vision.
Collapse
Affiliation(s)
| | - Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
35
|
Caval-Holme F, Zhang Y, Feller MB. Gap Junction Coupling Shapes the Encoding of Light in the Developing Retina. Curr Biol 2019; 29:4024-4035.e5. [PMID: 31708397 PMCID: PMC6927338 DOI: 10.1016/j.cub.2019.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
Abstract
Detection of ambient illumination in the developing retina prior to maturation of conventional photoreceptors is mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs) and is critical for driving several physiological processes, including light aversion, pupillary light reflexes, and photoentrainment of circadian rhythms. The strategies by which ipRGCs encode variations in ambient light intensity at these early ages are not known. Using unsupervised clustering of two-photon calcium responses followed by inspection of anatomical features, we found that the population activity of the neonatal retina could be modeled as six functional groups that were composed of mixtures of ipRGC subtypes and non-ipRGC cell types. By combining imaging, whole-cell recording, pharmacology, and anatomical techniques, we found that functional mixing of cell types is mediated in part by gap junction coupling. Together, these data show that both cell-autonomous intrinsic light responses and gap junction coupling among ipRGCs contribute to the proper encoding of light intensity in the developing retina.
Collapse
Affiliation(s)
- Franklin Caval-Holme
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yizhen Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Adhikari P, Zele AJ, Cao D, Kremers J, Feigl B. The melanopsin-directed white noise electroretinogram (wnERG). Vision Res 2019; 164:83-93. [DOI: 10.1016/j.visres.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
|
37
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Rapid and active stabilization of visual cortical firing rates across light-dark transitions. Proc Natl Acad Sci U S A 2019; 116:18068-18077. [PMID: 31366632 DOI: 10.1073/pnas.1906595116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The dynamics of neuronal firing during natural vision are poorly understood. Surprisingly, mean firing rates of neurons in primary visual cortex (V1) of freely behaving rodents are similar during prolonged periods of light and darkness, but it is unknown whether this reflects a slow adaptation to changes in natural visual input or insensitivity to rapid changes in visual drive. Here, we use chronic electrophysiology in freely behaving rats to follow individual V1 neurons across many dark-light (D-L) and light-dark (L-D) transitions. We show that, even on rapid timescales (1 s to 10 min), neuronal activity was only weakly modulated by transitions that coincided with the expected 12-/12-h L-D cycle. In contrast, a larger subset of V1 neurons consistently responded to unexpected L-D and D-L transitions, and disruption of the regular L-D cycle with 60 h of complete darkness induced a robust increase in V1 firing on reintroduction of visual input. Thus, V1 neurons fire at similar rates in the presence or absence of natural stimuli, and significant changes in activity arise only transiently in response to unexpected changes in the visual environment. Furthermore, although mean rates were similar in light and darkness, pairwise correlations were significantly stronger during natural vision, suggesting that information about natural scenes in V1 may be more strongly reflected in correlations than individual firing rates. Together, our findings show that V1 firing rates are rapidly and actively stabilized during expected changes in visual input and are remarkably stable at both short and long timescales.
Collapse
|
39
|
Abstract
Melanopsin is a short-wavelength-sensitive photopigment that was discovered only around 20 years ago. It is expressed in the cell bodies and processes of a subset of retinal ganglion cells in the retina (the intrinsically photosensitive retinal ganglion cells; ipRGCs), thereby allowing them to signal light even in the absence of cone and rod input. Many of the fundamental properties of melanopsin signalling in humans for both visual (e.g. detection, discrimination, brightness estimation) and non-visual function (e.g. melatonin suppression, circadian phase shifting) remain to be elucidated. Here, we give an overview of what we know about melanopsin contributions in visual function and non-visual function.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, United Kingdom.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Switzerland
| |
Collapse
|
40
|
Milosavljevic N. How Does Light Regulate Mood and Behavioral State? Clocks Sleep 2019; 1:319-331. [PMID: 33089172 PMCID: PMC7445808 DOI: 10.3390/clockssleep1030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023] Open
Abstract
The idea that light affects mood and behavioral state is not new. However, not much is known about the particular mechanisms and circuits involved. To fully understand these, we need to know what properties of light are important for mediating changes in mood as well as what photoreceptors and pathways are responsible. Increasing evidence from both human and animal studies imply that a specialized class of retinal ganglion cells, intrinsically photosensitive retinal ganglion cells (ipRGCs), plays an important role in the light-regulated effects on mood and behavioral state, which is in line with their well-established roles in other non-visual responses (pupillary light reflex and circadian photoentrainment). This paper reviews our current understanding on the mechanisms and paths by which the light information modulates behavioral state and mood.
Collapse
Affiliation(s)
- Nina Milosavljevic
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
41
|
Zele AJ, Adhikari P, Cao D, Feigl B. Melanopsin driven enhancement of cone-mediated visual processing. Vision Res 2019; 160:72-81. [DOI: 10.1016/j.visres.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 12/13/2022]
|
42
|
Allen AE, Hazelhoff EM, Martial FP, Cajochen C, Lucas RJ. Exploiting metamerism to regulate the impact of a visual display on alertness and melatonin suppression independent of visual appearance. Sleep 2019; 41:4999302. [PMID: 29788219 PMCID: PMC6093320 DOI: 10.1093/sleep/zsy100] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 01/14/2023] Open
Abstract
Objectives Artificial light sources such as visual display units (VDUs) elicit a range of subconscious and reflex light responses, including increases in alertness and suppression of pineal melatonin. Such responses employ dedicated retinal circuits encompassing melanopsin photoreceptors. Here, we aimed to determine whether this arrangement can be exploited to modulate the impact of VDUs on melatonin onset and alertness without altering visual appearance. Methods We generated a five-primary VDU capable of presenting metameric movies (matched for color and luminance) but varying in melanopic-irradiance. Healthy human participants (n = 11) were exposed to the VDU from 18:00 to 23:00 hours at high- or low-melanopic setting in a randomized cross-over design and measured salivary melatonin and self-reported sleepiness at 30-minute intervals. Results Our VDU presented a 3× adjustment in melanopic-irradiance for images matched photometrically for color and luminance. Participants reported no significant difference in visual appearance (color and glare) between conditions. During the time in which the VDU was viewed, self-reported sleepiness and salivary melatonin levels increased significantly, as would be expected in this phase of the diurnal cycle. The magnitude of the increase in both parameters was significantly enhanced when melanopic-irradiance was reduced. Conclusions Our data demonstrate that melatonin onset and self-reported sleepiness can be modulated independent of photometric parameters (color and luminance) under a commonly encountered light exposure scenario (evening use of a VDU). They provide the first demonstration that the impact of light on alertness and melatonin production can be controlled independently of visual experience, and establish a VDU capable of achieving this objective.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Esther M Hazelhoff
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Franck P Martial
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Abstract
Detection and discrimination of spatial patterns is thought to originate with photoreception by rods and cones. Here, we investigated whether the inner-retinal photoreceptor melanopsin could represent a third origin for form vision. We developed a 4-primary visual display capable of presenting patterns differing in contrast for melanopsin vs cones, and generated spectrally distinct stimuli that were indistinguishable for cones (metamers) but presented contrast for melanopsin. Healthy observers could detect sinusoidal gratings formed by these metamers when presented in the peripheral retina at low spatial (≤0.8 cpd) and temporal (≤0.45 Hz) frequencies, and Michelson contrasts ≥14% for melanopsin. Metameric gratings became invisible at lower light levels (<1013 melanopsin photons cm−2 sr−1 s−1) when rods are more active. The addition of metameric increases in melanopsin contrast altered appearance of greyscale representations of coarse gratings and a range of everyday images. These data identify melanopsin as a new potential origin for aspects of spatial vision in humans. The perception of spatial patterns (form vision) is thought to rely on rod and cone cells in the retina. Here, the authors show that a third kind of retinal cell, melanopsin-expressing ganglion cells, can also detect form in humans, under particular conditions.
Collapse
|
44
|
A quantitative analysis of the contribution of melanopsin to brightness perception. Sci Rep 2019; 9:7568. [PMID: 31110303 PMCID: PMC6527610 DOI: 10.1038/s41598-019-44035-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
In the retina, intrinsically photosensitive retinal ganglion cells (ipRGCs) which express photopigment melanopsin have been identified as photoreceptors which differ from cones and rods. It has been established that such melanopsin-expressing RGCs are involved in the circadian photo-entrainment and pupillary light reflexes. An additional projection from ipRGCs to the lateral geniculate nucleus has been identified, which indicates the association of ipRGCs with visual perception induced by the image-forming pathway. Reportedly, ipRGCs modulate brightness perception but quantitative analysis of brightness perception involving melanopsin and cones-based signals has not been elucidated. We conducted brightness perception experiments that involved melanopsin using a novel projector with six primary colors and formulated the results for melanopsin and cone stimuli. The white visual stimuli (5 degrees in size) that we used had a single xy-chromaticity values but melanopsin stimuli were modulated by designing different spectral distributions. Perceived brightness was measured using a magnitude estimation method at several luminance levels in the near periphery (7 degrees). Additionally, pupil diameter was measured for estimating the intensity of visual stimuli on the retina. The results showed that the perceived brightness of a white visual stimulus with different spectral distributions can be described by a summation of the nearly linear melanopsin response and the non-linear cone response with weighted coefficients, and the contribution ratio of melanopsin in brightness perception increased to 50% and more with increasing visual stimulus. These suggest that melanopsin signals play a crucial role in the estimation of the absolute intensity of the light environment by obtaining absolute brightness information even when cones are adapted by light.
Collapse
|
45
|
Pupil responses to hidden photoreceptor-specific modulations in movies. PLoS One 2019; 14:e0216307. [PMID: 31071113 PMCID: PMC6508665 DOI: 10.1371/journal.pone.0216307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/17/2019] [Indexed: 11/19/2022] Open
Abstract
Under typical daytime light levels, the human pupillary light response (PLR) is driven by the activity of the L, M, and S cones, and melanopsin expressed in the so-called intrinsically photosensitive retinal ganglion cells (ipRGCs). However, the importance of each of these photoreceptive mechanisms in defining pupil size under real-world viewing conditions remains to be established. To address this question, we embedded photoreceptor-specific modulations in a movie displayed using a novel projector-based five-primary spatial stimulation system, which allowed for the precise control of photoreceptor activations in time and space. We measured the pupillary light response in eleven observers, who viewed short cartoon movies which contained hidden low-frequency (0.25 Hz) silent-substitution modulations of the L, M and S cones (no stimulation of melanopsin), melanopsin (no stimulation of L, M and S cones), both L, M, and S cones and melanopsin or no modulation at all. We find that all photoreceptors active at photopic light levels regulate pupil size under this condition. Our data imply that embedding modulations in photoreceptor contrast could provide a method to manipulate key adaptive aspects of the human visual system in everyday, real-world activities such as watching a movie.
Collapse
|
46
|
Harrison EM, Yablonsky AM, Powell AL, Ancoli-Israel S, Glickman GL. Reported light in the sleep environment: enhancement of the sleep diary. Nat Sci Sleep 2019; 11:11-26. [PMID: 30988646 PMCID: PMC6438264 DOI: 10.2147/nss.s193902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Light is the primary synchronizing cue for the circadian timing system, capable of exerting robust physiological effects, even with very dim and/or brief photic exposure. Mammals, including humans, are particularly susceptible to light at night. As such, measures of light in the sleeping environment are critical for evaluating sleep health. Sleep diaries provide inexpensive measures of sleep, but do not typically include light information. METHODS Four questions probing visual perception of light in the bedtime and waking environments were added to the Consensus Sleep Diary for Morning administration. As part of a lighting intervention study, 18 hospital Labor and Delivery Department personnel completed the sleep diary for 1 week in each of two experimental conditions while wearing Actiwatch devices equipped with photosensors. Diary responses were evaluated against photosensor values from the beginning and end of each rest interval (n=194 rest intervals), as well as against sleep measures, utilizing linear mixed models. RESULTS Responses to light questions were related to actual light measures at bedtime, controlling for shift type and experimental condition. In addition, subjective light information at bedtime and waking was related to both objective and subjective sleep parameters, with data generally indicating poorer sleep with light in the sleeping environment. CONCLUSION Questions addressing perception of light in the sleeping environment may provide a crude yet affordable metric of relative photic intensity. Further, as responses relate to sleep outcomes, subjective light information may yield valuable insights regarding mechanisms and outcomes of clinical significance in sleep and circadian research.
Collapse
Affiliation(s)
| | - Abigail M Yablonsky
- Clinical Investigations Department, Naval Medical Center San Diego, San Diego, CA, USA
| | - Alexandra L Powell
- Center for Circadian Biology, University of California, San Diego, CA, USA,
| | - Sonia Ancoli-Israel
- Center for Circadian Biology, University of California, San Diego, CA, USA,
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Gena L Glickman
- Center for Circadian Biology, University of California, San Diego, CA, USA,
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
47
|
Photoreceptive retinal ganglion cells control the information rate of the optic nerve. Proc Natl Acad Sci U S A 2018; 115:E11817-E11826. [PMID: 30487225 PMCID: PMC6294960 DOI: 10.1073/pnas.1810701115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Noise in the visual signal falls as ambient light increases, allowing the retina to extract more information from the scene. We show here that a measure of ambient light produced by the small number of inner retinal photoreceptors [intrinsically photosensitive retinal ganglion cells (ipRGCs)] regulates intrinsic rates of spike firing across the population of retinal ganglion cells that form the optic nerve. Increased firing at higher irradiance allows the ganglion cells to convey more information. Our findings reveal a potential mechanism for increasing visual performance at high ambient light and show that changes in maintained activity can be used to provide proactive control over rates of information flow in the CNS. Information transfer in the brain relies upon energetically expensive spiking activity of neurons. Rates of information flow should therefore be carefully optimized, but mechanisms to control this parameter are poorly understood. We address this deficit in the visual system, where ambient light (irradiance) is predictive of the amount of information reaching the eye and ask whether a neural measure of irradiance can therefore be used to proactively control information flow along the optic nerve. We first show that firing rates for the retina’s output neurons [retinal ganglion cells (RGCs)] scale with irradiance and are positively correlated with rates of information and the gain of visual responses. Irradiance modulates firing in the absence of any other visual signal confirming that this is a genuine response to changing ambient light. Irradiance-driven changes in firing are observed across the population of RGCs (including in both ON and OFF units) but are disrupted in mice lacking melanopsin [the photopigment of irradiance-coding intrinsically photosensitive RGCs (ipRGCs)] and can be induced under steady light exposure by chemogenetic activation of ipRGCs. Artificially elevating firing by chemogenetic excitation of ipRGCs is sufficient to increase information flow by increasing the gain of visual responses, indicating that enhanced firing is a cause of increased information transfer at higher irradiance. Our results establish a retinal circuitry driving changes in RGC firing as an active response to alterations in ambient light to adjust the amount of visual information transmitted to the brain.
Collapse
|
48
|
Light modulates oscillatory alpha activity in the occipital cortex of totally visually blind individuals with intact non-image-forming photoreception. Sci Rep 2018; 8:16968. [PMID: 30446699 PMCID: PMC6240048 DOI: 10.1038/s41598-018-35400-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
The discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs) marked a major shift in our understanding of how light information is processed by the mammalian brain. These ipRGCs influence multiple functions not directly related to image formation such as circadian resetting and entrainment, pupil constriction, enhancement of alertness, as well as the modulation of cognition. More recently, it was demonstrated that ipRGCs may also contribute to basic visual functions. The impact of ipRGCs on visual function, independently of image forming photoreceptors, remains difficult to isolate, however, particularly in humans. We previously showed that exposure to intense monochromatic blue light (465 nm) induced non-conscious light perception in a forced choice task in three rare totally visually blind individuals without detectable rod and cone function, but who retained non-image-forming responses to light, very likely via ipRGCs. The neural foundation of such light perception in the absence of conscious vision is unknown, however. In this study, we characterized the brain activity of these three participants using electroencephalography (EEG), and demonstrate that unconsciously perceived light triggers an early and reliable transient desynchronization (i.e. decreased power) of the alpha EEG rhythm (8–14 Hz) over the occipital cortex. These results provide compelling insight into how ipRGC may contribute to transient changes in ongoing brain activity. They suggest that occipital alpha rhythm synchrony, which is typically linked to the visual system, is modulated by ipRGCs photoreception; a process that may contribute to the non-conscious light perception in those blind individuals.
Collapse
|
49
|
Rodgers J, Peirson SN, Hughes S, Hankins MW. Functional characterisation of naturally occurring mutations in human melanopsin. Cell Mol Life Sci 2018; 75:3609-3624. [PMID: 29700553 PMCID: PMC6133154 DOI: 10.1007/s00018-018-2813-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 missense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight into the structure-function relationships of human melanopsin, including several key functional residues of the melanopsin protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian dysfunction, and visual abnormalities.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
50
|
Palumaa T, Gilhooley MJ, Jagannath A, Hankins MW, Hughes S, Peirson SN. Melanopsin: photoreceptors, physiology and potential. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|