1
|
Yogesh B, Heindorf M, Jordan R, Keller GB. Quantification of the effect of hemodynamic occlusion in two-photon imaging of mouse cortex. eLife 2025; 14:RP104914. [PMID: 40434064 PMCID: PMC12119086 DOI: 10.7554/elife.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
The last few years have seen an explosion in the number of tools available to measure neuronal activity using fluorescence imaging (Chen et al., 2013; Feng et al., 2019; Jing et al., 2019; Sun et al., 2018; Wan et al., 2021). When performed in vivo, these measurements are invariably contaminated by hemodynamic occlusion artifacts. In widefield calcium imaging, this problem is well recognized. For two-photon imaging, however, the effects of hemodynamic occlusion have only been sparsely characterized. Here, we perform a quantification of hemodynamic occlusion effects using measurements of fluorescence changes observed with GFP expression using both widefield and two-photon imaging in mouse cortex. We find that in many instances the magnitude of signal changes attributable to hemodynamic occlusion is comparable to that observed with activity sensors. Moreover, we find that hemodynamic occlusion effects were spatially heterogeneous, both over cortical regions and across cortical depth, and exhibited a complex relationship with behavior. Thus, hemodynamic occlusion is an important caveat to consider when analyzing and interpreting not just widefield but also two-photon imaging data.
Collapse
Affiliation(s)
- Baba Yogesh
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| | - Matthias Heindorf
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Rebecca Jordan
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
2
|
Lebedeva A, Kling F, Rakela B, Stryker MP, Sun JY. GABAergic signaling by VIP interneurons gates running-dependent visual recovery in the adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.21.655402. [PMID: 40475408 PMCID: PMC12139864 DOI: 10.1101/2025.05.21.655402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Experience-dependent plasticity in the adult visual cortex is enhanced by locomotion, a process mediated by vasoactive intestinal peptide (VIP)-expressing interneurons. While VIP interneurons are known to signal through both Gamma-aminobutyric acid (GABA) and VIP peptide, the specific contributions of these pathways during different forms of plasticity remain unclear. Monocular deprivation (MD) in adult mice alters cortical responses, though more slowly and differently than during a critical period in early life. Here, we used two-photon calcium imaging in awake adult mice to dissect the roles of VIP and GABA release from VIP interneurons during adult MD and subsequent binocular recovery. We found comparable level of ocular dominance shifts after MD in mice deficient in either peptidergic or GABA signaling, but disrupting GABA signaling impaired recovery of binocular responses. We also showed that running preferentially enhances contralateral eye responses in binocular primary visual cortex. However, this eye-specific modulation of visual responses by running was altered during recovery from MD and was dependent on VIP signaling pathways. These findings highlight the GABA-mediated inhibition by VIP interneurons as a critical pathway for promoting visual restoration in the adult brain. Significance Statement Using longitudinal two-photon imaging in awake adult mice with genetically altered signaling path-ways in VIP interneurons, we demonstrate that GABAergic, but not peptidergic, signaling from VIP interneurons is essential for the recovery of binocular vision following monocular deprivation. We further reveal that locomotion modulates cortical responses in an eye-specific manner, a property dynamically reshaped by plasticity and dependent on VIP interneuron function. These findings identify a discrete inhibitory circuit element that links behavioral state to sensory recovery and highlight GABA release from VIP cells as a potential therapeutic target for restoring visual function in adulthood.
Collapse
Affiliation(s)
- Anna Lebedeva
- Department of Physiology, University of California San Francisco, San Francisco, United States
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Friedrich Kling
- Institute of Ophthalmology, University College London, London, United Kingdom
- Wellcome Optical Biology, University College London, London, United Kingdom
| | - Benjamin Rakela
- Department of Physiology, University of California San Francisco, San Francisco, United States
| | - Michael P. Stryker
- Department of Physiology, University of California San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, United States
| | - Jennifer Y. Sun
- Department of Physiology, University of California San Francisco, San Francisco, United States
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Vélez-Fort M, Cossell L, Porta L, Clopath C, Margrie TW. Motor and vestibular signals in the visual cortex permit the separation of self versus externally generated visual motion. Cell 2025; 188:2175-2189.e15. [PMID: 39978344 DOI: 10.1016/j.cell.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Knowing whether we are moving or something in the world is moving around us is possibly the most critical sensory discrimination we need to perform. How the brain and, in particular, the visual system solves this motion-source separation problem is not known. Here, we find that motor, vestibular, and visual motion signals are used by the mouse primary visual cortex (VISp) to differentially represent the same visual flow information according to whether the head is stationary or experiencing passive versus active translation. During locomotion, we find that running suppresses running-congruent translation input and that translation signals dominate VISp activity when running and translation speed become incongruent. This cross-modal interaction between the motor and vestibular systems was found throughout the cortex, indicating that running and translation signals provide a brain-wide egocentric reference frame for computing the internally generated and actual speed of self when moving through and sensing the external world.
Collapse
Affiliation(s)
- Mateo Vélez-Fort
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Lee Cossell
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Laura Porta
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Claudia Clopath
- Sainsbury Wellcome Centre, University College London, London, UK; Bioengineering Department, Imperial College London, London, UK
| | - Troy W Margrie
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
4
|
Peelman K, Haider B. Environmental context influences visual processing in thalamus. Curr Biol 2025; 35:1422-1430.e5. [PMID: 40049173 PMCID: PMC11952198 DOI: 10.1016/j.cub.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 03/12/2025]
Abstract
Behavioral state modulates neural activity throughout the visual system.1,2,3 This is largely due to changes in arousal that alter internal brain states.4,5,6,7,8,9,10 Much is known about how these internal factors influence visual processing,7,8,9,10,11 but comparatively less is known about the role of external environmental contexts.12 Environmental contexts can promote or prevent certain actions,13 and it remains unclear if and how this affects visual processing. Here, we addressed this question in the thalamus of awake, head-fixed mice while they viewed stimuli but remained stationary in two different environmental contexts: either a cylindrical tube or a circular running wheel that enabled locomotion. We made silicon probe recordings in the dorsal lateral geniculate nucleus (dLGN) while simultaneously measuring multiple metrics of arousal changes so that we could control for these across contexts. We found surprising differences in spatial and temporal processing in dLGN across contexts. The wheel context (versus tube) showed elevated baseline activity and faster but less spatially selective visual responses; however, these visual processing differences disappeared if the wheel no longer enabled locomotion. Our results reveal an unexpected influence of the physical environmental context on fundamental aspects of early visual processing, even in otherwise identical states of alertness and stillness.
Collapse
Affiliation(s)
- Kayla Peelman
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Bilal Haider
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
5
|
Giesbrecht B, Bullock T, Garrett J. Physically activated modes of attentional control. Trends Cogn Sci 2025; 29:295-307. [PMID: 39690081 DOI: 10.1016/j.tics.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
As we navigate through the day, our attentional control processes are constantly challenged by changing sensory information, goals, expectations, and motivations. At the same time, our bodies and brains are impacted by changes in global physiological state that can influence attentional processes. Based on converging lines of evidence from brain recordings in physically active humans and nonhumans, we propose a new framework incorporating at least two physically activated modes of attentional control in humans: altered gain control and differential neuromodulation of control networks. We discuss the implications of this framework for understanding a broader range of states and cognitive functions studied both in the laboratory and in the wild.
Collapse
Affiliation(s)
- Barry Giesbrecht
- Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA.
| | - Tom Bullock
- Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| | - Jordan Garrett
- Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Akella S, Ledochowitsch P, Siegle JH, Belski H, Denman DD, Buice MA, Durand S, Koch C, Olsen SR, Jia X. Deciphering neuronal variability across states reveals dynamic sensory encoding. Nat Commun 2025; 16:1768. [PMID: 39971911 PMCID: PMC11839951 DOI: 10.1038/s41467-025-56733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025] Open
Abstract
Influenced by non-stationary factors such as brain states and behavior, neurons exhibit substantial response variability even to identical stimuli. However, it remains unclear how their relative impact on neuronal variability evolves over time. To address this question, we designed an encoding model conditioned on latent states to partition variability in the mouse visual cortex across internal brain dynamics, behavior, and external visual stimulus. Applying a hidden Markov model to local field potentials, we consistently identified three distinct oscillation states, each with a unique variability profile. Regression models within each state revealed a dynamic composition of factors influencing spiking variability, with the dominant factor switching within seconds. The state-conditioned regression model uncovered extensive diversity in source contributions across units, varying in accordance with anatomical hierarchy and internal state. This heterogeneity in encoding underscores the importance of partitioning variability over time, particularly when considering the influence of non-stationary factors on sensory processing.
Collapse
Affiliation(s)
| | | | | | | | - Daniel D Denman
- Allen Institute, Seattle, WA, USA
- Anschutz Medical Campus School of Medicine, University of Colorado, Aurora, CO, USA
| | | | | | | | | | - Xiaoxuan Jia
- School of Life Science, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Peelman K, Haider B. Environmental context sculpts spatial and temporal visual processing in thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.26.605345. [PMID: 39091887 PMCID: PMC11291113 DOI: 10.1101/2024.07.26.605345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Behavioral state modulates neural activity throughout the visual system1-3. This is largely due to changes in arousal that alter internal brain state4-10. Much is known about how these internal factors influence visual processing7-11, but comparatively less is known about the role of external environmental contexts12. Environmental contexts can promote or prevent certain actions13, and it remains unclear if and how this affects visual processing. Here, we addressed this question in the thalamus of awake head-fixed mice while they viewed stimuli but remained stationary in two different environmental contexts: either a cylindrical tube, or a circular running wheel that enabled locomotion. We made silicon probe recordings in the dorsal lateral geniculate nucleus (dLGN) while simultaneously measuring multiple metrics of arousal changes, so that we could control for them across contexts. We found surprising differences in spatial and temporal processing in dLGN across contexts. The wheel context (versus tube) showed elevated baseline activity, and faster but less spatially selective visual responses; however, these visual processing differences disappeared if the wheel no longer enabled locomotion. Our results reveal an unexpected influence of the physical environmental context on fundamental aspects of early visual processing, even in otherwise identical states of alertness and stillness.
Collapse
Affiliation(s)
- Kayla Peelman
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Rakela B, Sun J, Marchetta P, Alvarez-Buylla A, Hasenstaub A, Stryker M. Integration of Transplanted Interneurons Over a New Period of Ocular Dominance Plasticity in Adult Visual Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.27.630358. [PMID: 39829855 PMCID: PMC11741398 DOI: 10.1101/2024.12.27.630358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cortical interneurons play an important role in mediating the juvenile critical period for ocular dominance plasticity in the mouse primary visual cortex. Previously, we showed that transplantation of cortical interneurons derived from the medial ganglionic eminence (MGE) opens a robust period of ocular dominance plasticity 33-35 days after transplantation into neonatal host visual cortex. The plasticity can be induced by transplanting either PV or SST MGE-derived cortical interneurons; it requires transplanted interneurons to express the vesicular GABAergic transporter; and it is manifested by changes to the host visual circuit. Here, we show that transplantation of MGE-derived cortical interneurons into the adult host visual cortex also opens a period of ocular dominance plasticity. The transplanted interneurons must be active to induce plasticity, and the neuronal activity and tuning of visually evoked responses in transplanted and host PV and SST interneurons are modulated by the locomotor state of the host. We also show that changes in activity over the period of plasticity induction are different between PV and SST interneurons but similar between host and transplanted interneurons of each type. The present findings demonstrate that the transplant-induced plasticity generated in adult visual cortex has many features in common with the role of these interneurons during the normal, juvenile critical period.
Collapse
Affiliation(s)
- Benjamin Rakela
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Jennifer Sun
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
- Institute of Ophthalmology, University College London, London, EC1V
| | - Philine Marchetta
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, United States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Andrea Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Michael Stryker
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
9
|
Barnes L, Davidson MJ, Alais D. The speed and phase of locomotion dictate saccade probability and simultaneous low-frequency power spectra. Atten Percept Psychophys 2025; 87:245-260. [PMID: 39048846 PMCID: PMC11845409 DOI: 10.3758/s13414-024-02932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Every day we make thousands of saccades and take thousands of steps as we explore our environment. Despite their common co-occurrence in a typical active state, we know little about the coordination between eye movements, walking behaviour and related changes in cortical activity. Technical limitations have been a major impediment, which we overcome here by leveraging the advantages of an immersive wireless virtual reality (VR) environment with three-dimensional (3D) position tracking, together with simultaneous recording of eye movements and mobile electroencephalography (EEG). Using this approach with participants engaged in unencumbered walking along a clear, level path, we find that the likelihood of eye movements at both slow and natural walking speeds entrains to the rhythm of footfall, peaking after the heel-strike of each step. Compared to previous research, this entrainment was captured in a task that did not require visually guided stepping - suggesting a persistent interaction between locomotor and visuomotor functions. Simultaneous EEG recordings reveal a concomitant modulation entrained to heel-strike, with increases and decreases in oscillatory power for a broad range of frequencies. The peak of these effects occurred in the theta and alpha range for slow and natural walking speeds, respectively. Together, our data show that the phase of the step-cycle influences other behaviours such as eye movements, and produces related modulations of simultaneous EEG following the same rhythmic pattern. These results reveal gait as an important factor to be considered when interpreting saccadic and time-frequency EEG data in active observers, and demonstrate that saccadic entrainment to gait may persist throughout everyday activities.
Collapse
Affiliation(s)
- Lydia Barnes
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | | | - David Alais
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Kang I, Talluri BC, Yates JL, Niell CM, Nienborg H. Is the impact of spontaneous movements on early visual cortex species specific? Trends Neurosci 2025; 48:7-21. [PMID: 39701910 PMCID: PMC11741931 DOI: 10.1016/j.tins.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Recent studies in non-human primates do not find pronounced signals related to the animal's own body movements in the responses of neurons in the visual cortex. This is notable because such pronounced signals have been widely observed in the visual cortex of mice. Here, we discuss factors that may contribute to the differences observed between species, such as state, slow neural drift, eccentricity, and changes in retinal input. The interpretation of movement-related signals in the visual cortex also exemplifies the challenge of identifying the sources of correlated variables. Dissecting these sources is central for understanding the functional roles of movement-related signals. We suggest a functional classification of the possible sources, aimed at facilitating cross-species comparative approaches to studying the neural mechanisms of vision during natural behavior.
Collapse
Affiliation(s)
- Incheol Kang
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bharath Chandra Talluri
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob L Yates
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Socha KZ, Couto J, Whiteway MR, Hosseinjany S, Butts DA, Bonin V. Behavioral modulations can alter the visual tuning of neurons in the mouse thalamocortical pathway. Cell Rep 2024; 43:114947. [PMID: 39643973 DOI: 10.1016/j.celrep.2024.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/27/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024] Open
Abstract
Behavioral influences shape processing in the retina and the dorsal lateral geniculate nucleus (dLGN), although their precise effects on visual tuning remain debated. Using 2-photon functional Ca2+ imaging, we characterize the dynamics of dLGN axon activity in the primary visual cortex of awake behaving mice, examining the effects of visual stimulation, pupil size, stillness, locomotion, and anesthesia. In awake recordings, nasal visual motion triggers pupil dilation and, occasionally, locomotion, increasing responsiveness and leading to an overrepresentation of boutons tuned to nasal motion. These effects are pronounced during quiet wakefulness, weaker during locomotion, and absent under anesthesia. Accounting for dynamic changes in responsiveness reduces tuning biases, revealing an overall preservation of retinal representations of visual motion in the visual thalamocortical pathway. Thus, stimulus-driven behavioral modulations can alter tuning and bias classification of early visual neurons, underscoring the importance of considering such influences in sensory processing experiments.
Collapse
Affiliation(s)
- Karolina Z Socha
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; Department of Biology & Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - João Couto
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuro-Electronics Research Flanders, 3000 Leuven, Belgium
| | - Matthew R Whiteway
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Shahriar Hosseinjany
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; Department of Biology & Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - Vincent Bonin
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; Department of Biology & Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Liska JP, Rowley DP, Nguyen TTK, Muthmann JO, Butts DA, Yates J, Huk AC. Running modulates primate and rodent visual cortex differently. eLife 2024; 12:RP87736. [PMID: 39560660 PMCID: PMC11575896 DOI: 10.7554/elife.87736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
When mice run, activity in their primary visual cortex (V1) is strongly modulated. This observation has altered conceptions of a brain region assumed to be a passive image processor. Extensive work has followed to dissect the circuits and functions of running-correlated modulation. However, it remains unclear whether visual processing in primates might similarly change during locomotion. We therefore measured V1 activity in marmosets while they viewed stimuli on a treadmill. In contrast to mouse, running-correlated modulations of marmoset V1 were small and tended to be slightly suppressive. Population-level analyses revealed trial-to-trial fluctuations of shared gain across V1 in both species, but while strongly correlated with running in mice, gain modulations were smaller and more often negatively correlated with running in marmosets. Thus, population-wide fluctuations of V1 may reflect a common feature of mammalian visual cortical function, but important quantitative differences point to distinct consequences for the relation between vision and action in primates versus rodents.
Collapse
Affiliation(s)
- John P Liska
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Declan P Rowley
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
- Departments of Ophthalmology and Psychiatry & Biobehavioral Sciences, Fuster Laboratory for Cognitive Neuroscience, UCLA, Los Angeles, United States
| | - Trevor Thai Kim Nguyen
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Jens-Oliver Muthmann
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, United States
| | - Jacob Yates
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, United States
| | - Alexander C Huk
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
- Departments of Ophthalmology and Psychiatry & Biobehavioral Sciences, Fuster Laboratory for Cognitive Neuroscience, UCLA, Los Angeles, United States
| |
Collapse
|
13
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
14
|
Neyhart E, Zhou N, Munn BR, Law RG, Smith C, Mridha ZH, Blanco FA, Li G, Li Y, Hu M, McGinley MJ, Shine JM, Reimer J. Cortical acetylcholine dynamics are predicted by cholinergic axon activity and behavior state. Cell Rep 2024; 43:114808. [PMID: 39383037 PMCID: PMC11755675 DOI: 10.1016/j.celrep.2024.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Acetylcholine (ACh) is thought to play a role in driving the rapid, spontaneous brain-state transitions that occur during wakefulness; however, the spatiotemporal properties of cortical ACh activity during these state changes are still unclear. We perform simultaneous imaging of GRAB-ACh sensors, GCaMP-expressing basal forebrain axons, and behavior to address this question. We observed a high correlation between axon and GRAB-ACh activity around periods of locomotion and pupil dilation. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, and local ACh activity decreased at farther distances from an axon. Deconvolution of GRAB-ACh traces allowed us to account for sensor kinetics and emphasized rapid clearance of small ACh transients. We trained a model to predict ACh from pupil size and running speed, which generalized well to unseen data. These results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain-state transitions.
Collapse
Affiliation(s)
- Erin Neyhart
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Zhou
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon R Munn
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Complex Systems Group, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Robert G Law
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cameron Smith
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zakir H Mridha
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francisco A Blanco
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ming Hu
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J McGinley
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Complex Systems Group, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jacob Reimer
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Geurts LS, Ling S, Jehee JFM. Pupil-Linked Arousal Modulates Precision of Stimulus Representation in Cortex. J Neurosci 2024; 44:e1522232024. [PMID: 39151956 PMCID: PMC11484544 DOI: 10.1523/jneurosci.1522-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/19/2024] Open
Abstract
Neural responses are naturally variable from one moment to the next, even when the stimulus is held constant. What factors might underlie this variability in neural population activity? We hypothesized that spontaneous fluctuations in cortical stimulus representations are created by changes in arousal state. We tested the hypothesis using a combination of fMRI, probabilistic decoding methods, and pupillometry. Human participants (20 female, 12 male) were presented with gratings of random orientation. Shortly after viewing the grating, participants reported its orientation and gave their level of confidence in this judgment. Using a probabilistic fMRI decoding technique, we quantified the precision of the stimulus representation in the visual cortex on a trial-by-trial basis. Pupil size was recorded and analyzed to index the observer's arousal state. We found that the precision of the cortical stimulus representation, reported confidence, and variability in the behavioral orientation judgments varied from trial to trial. Interestingly, these trial-by-trial changes in cortical and behavioral precision and confidence were linked to pupil size and its temporal rate of change. Specifically, when the cortical stimulus representation was more precise, the pupil dilated more strongly prior to stimulus onset and remained larger during stimulus presentation. Similarly, stronger pupil dilation during stimulus presentation was associated with higher levels of subjective confidence, a secondary measure of sensory precision, as well as improved behavioral performance. Taken together, our findings support the hypothesis that spontaneous fluctuations in arousal state modulate the fidelity of the stimulus representation in the human visual cortex, with clear consequences for behavior.
Collapse
Affiliation(s)
- Laura S Geurts
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 EN, the Netherlands
| | - Sam Ling
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Janneke F M Jehee
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 EN, the Netherlands
| |
Collapse
|
16
|
Dai J, Sun QQ. Modulation of cortical representations of sensory and contextual information underlies aversive associative learning. Cell Rep 2024; 43:114672. [PMID: 39196779 PMCID: PMC11472654 DOI: 10.1016/j.celrep.2024.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 08/30/2024] Open
Abstract
Cortical neurons encode both sensory and contextual information, yet it remains unclear how experiences modulate these cortical representations. Here, we demonstrate that trace eyeblink conditioning (TEC), an aversive associative-learning paradigm linking conditioned (CS) with unconditioned stimuli (US), finely tunes cortical coding at both population and single-neuron levels. Initially, we show that the primary somatosensory cortex (S1) is necessary for TEC acquisition, as evidenced by local muscimol administration. At the population level, TEC enhances activity in a small subset (∼20%) of CS- or US-responsive primary neurons (rPNs) while diminishing activity in non-rPNs, including locomotion-tuned or unresponsive PNs. Crucially, TEC learning modulates the encoding of sensory versus contextual information in single rPNs: CS-responsive neurons become less responsive, while US-responsive neurons gain responses to CS. Moreover, we find that the cholinergic pathway, via nicotinic receptors, underlies TEC-induced modulations. These findings suggest that experiences dynamically tune cortical representations through cholinergic pathways.
Collapse
Affiliation(s)
- Jiaman Dai
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
17
|
Inacio AR, Lam KC, Zhao Y, Pereira F, Gerfen CR, Lee S. Distinct brain-wide presynaptic networks underlie the functional identity of individual cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542329. [PMID: 37425800 PMCID: PMC10327181 DOI: 10.1101/2023.05.25.542329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neuronal connections provide the scaffolding for neuronal function. Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behavior. Yet, the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain largely unexplored. Cortical neurons, even in primary sensory cortex, are heterogeneous in their selectivity, not only to sensory stimuli but also to multiple aspects of behavior. Here, to investigate presynaptic connectivity rules underlying the selectivity of pyramidal neurons to behavioral state 1-12 in primary somatosensory cortex (S1), we used two-photon calcium imaging, neuropharmacology, single-cell based monosynaptic input tracing, and optogenetics. We show that behavioral state-dependent neuronal activity patterns are stable over time. These are minimally affected by neuromodulatory inputs and are instead driven by glutamatergic inputs. Analysis of brain-wide presynaptic networks of individual neurons with distinct behavioral state-dependent activity profiles revealed characteristic patterns of anatomical input. While both behavioral state-related and unrelated neurons had a similar pattern of local inputs within S1, their long-range glutamatergic inputs differed. Individual cortical neurons, irrespective of their functional properties, received converging inputs from the main S1-projecting areas. Yet, neurons that tracked behavioral state received a smaller proportion of motor cortical inputs and a larger proportion of thalamic inputs. Optogenetic suppression of thalamic inputs reduced behavioral state-dependent activity in S1, but this activity was not externally driven. Our results revealed distinct long-range glutamatergic inputs as a substrate for preconfigured network dynamics associated with behavioral state.
Collapse
|
18
|
Warwick RA, Riccitelli S, Heukamp AS, Yaakov H, Swain BP, Ankri L, Mayzel J, Gilead N, Parness-Yossifon R, Di Marco S, Rivlin-Etzion M. Top-down modulation of the retinal code via histaminergic neurons of the hypothalamus. SCIENCE ADVANCES 2024; 10:eadk4062. [PMID: 39196935 PMCID: PMC11352916 DOI: 10.1126/sciadv.adk4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
The mammalian retina is considered an autonomous circuit, yet work dating back to Ramon y Cajal indicates that it receives inputs from the brain. How such inputs affect retinal processing has remained unknown. We confirmed brain-to-retina projections of histaminergic neurons from the mouse hypothalamus. Histamine application ex vivo altered the activity of various retinal ganglion cells (RGCs), including direction-selective RGCs that gained responses to high motion velocities. These results were reproduced in vivo with optic tract recordings where histaminergic retinopetal axons were activated chemogenetically. Such changes could improve vision of fast-moving objects (e.g., while running), which fits with the known increased activity of histaminergic neurons during arousal. An antihistamine drug reduced optomotor responses to high-speed moving stimuli in freely moving mice. In humans, the same antihistamine nonuniformly modulated visual sensitivity across the visual field, indicating an evolutionary conserved function of the histaminergic system. Our findings expose a previously unappreciated role for brain-to-retina projections in modulating retinal function.
Collapse
Affiliation(s)
- Rebekah A. Warwick
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alina S. Heukamp
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadar Yaakov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bani Prasad Swain
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Mayzel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Gilead
- Ophthalmology Department, Kaplan Medical Center, Rehovot, Israel
| | | | - Stefano Di Marco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | |
Collapse
|
19
|
Horrocks EAB, Rodrigues FR, Saleem AB. Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex. Nat Commun 2024; 15:6415. [PMID: 39080254 PMCID: PMC11289260 DOI: 10.1038/s41467-024-50563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Time courses of neural responses underlie real-time sensory processing and perception. How these temporal dynamics change may be fundamental to how sensory systems adapt to different perceptual demands. By simultaneously recording from hundreds of neurons in mouse primary visual cortex, we examined neural population responses to visual stimuli at sub-second timescales, during different behavioural states. We discovered that during active behavioural states characterised by locomotion, single-neurons shift from transient to sustained response modes, facilitating rapid emergence of visual stimulus tuning. Differences in single-neuron response dynamics were associated with changes in temporal dynamics of neural correlations, including faster stabilisation of stimulus-evoked changes in the structure of correlations during locomotion. Using Factor Analysis, we examined temporal dynamics of latent population responses and discovered that trajectories of population activity make more direct transitions between baseline and stimulus-encoding neural states during locomotion. This could be partly explained by dampening of oscillatory dynamics present during stationary behavioural states. Functionally, changes in temporal response dynamics collectively enabled faster, more stable and more efficient encoding of new visual information during locomotion. These findings reveal a principle of how sensory systems adapt to perceptual demands, where flexible neural population dynamics govern the speed and stability of sensory encoding.
Collapse
Affiliation(s)
- Edward A B Horrocks
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| | - Fabio R Rodrigues
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK
| | - Aman B Saleem
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| |
Collapse
|
20
|
Egger SW, Keemink SW, Goldman MS, Britten KH. Context-dependence of deterministic and nondeterministic contributions to closed-loop steering control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605325. [PMID: 39131368 PMCID: PMC11312469 DOI: 10.1101/2024.07.26.605325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In natural circumstances, sensory systems operate in a closed loop with motor output, whereby actions shape subsequent sensory experiences. A prime example of this is the sensorimotor processing required to align one's direction of travel, or heading, with one's goal, a behavior we refer to as steering. In steering, motor outputs work to eliminate errors between the direction of heading and the goal, modifying subsequent errors in the process. The closed-loop nature of the behavior makes it challenging to determine how deterministic and nondeterministic processes contribute to behavior. We overcome this by applying a nonparametric, linear kernel-based analysis to behavioral data of monkeys steering through a virtual environment in two experimental contexts. In a given context, the results were consistent with previous work that described the transformation as a second-order linear system. Classically, the parameters of such second-order models are associated with physical properties of the limb such as viscosity and stiffness that are commonly assumed to be approximately constant. By contrast, we found that the fit kernels differed strongly across tasks in these and other parameters, suggesting context-dependent changes in neural and biomechanical processes. We additionally fit residuals to a simple noise model and found that the form of the noise was highly conserved across both contexts and animals. Strikingly, the fitted noise also closely matched that found previously in a human steering task. Altogether, this work presents a kernel-based analysis that characterizes the context-dependence of deterministic and non-deterministic components of a closed-loop sensorimotor task.
Collapse
Affiliation(s)
- Seth W. Egger
- Center for Neuroscience, University of California, Davis
| | - Sander W. Keemink
- Department of Neurobiology, Physiology and Behavior, University of California, Davis
| | - Mark S. Goldman
- Center for Neuroscience, University of California, Davis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis
- Department of Ophthalmology and Vision Science, University of California, Davis
| | - Kenneth H. Britten
- Center for Neuroscience, University of California, Davis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis
| |
Collapse
|
21
|
Yogesh B, Keller GB. Cholinergic input to mouse visual cortex signals a movement state and acutely enhances layer 5 responsiveness. eLife 2024; 12:RP89986. [PMID: 39057843 PMCID: PMC11281783 DOI: 10.7554/elife.89986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.
Collapse
Affiliation(s)
- Baba Yogesh
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
22
|
Xia R, Chen X, Engel TA, Moore T. Common and distinct neural mechanisms of attention. Trends Cogn Sci 2024; 28:554-567. [PMID: 38388258 PMCID: PMC11153008 DOI: 10.1016/j.tics.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Despite a constant deluge of sensory stimulation, only a fraction of it is used to guide behavior. This selective processing is generally referred to as attention, and much research has focused on the neural mechanisms controlling it. Recently, research has broadened to include more ways by which different species selectively process sensory information, whether due to the sensory input itself or to different behavioral and brain states. This work has produced a complex and disjointed body of evidence across different species and forms of attention. However, it has also provided opportunities to better understand the breadth of attentional mechanisms. Here, we summarize the evidence that suggests that different forms of selective processing are supported by mechanisms both common and distinct.
Collapse
Affiliation(s)
- Ruobing Xia
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xiaomo Chen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Tatiana A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Yin C, Melin MD, Rojas-Bowe G, Sun XR, Couto J, Gluf S, Kostiuk A, Musall S, Churchland AK. Spontaneous movements and their impact on neural activity fluctuate with latent engagement states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.26.546404. [PMID: 37425720 PMCID: PMC10327038 DOI: 10.1101/2023.06.26.546404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Existing work demonstrates that animals alternate between engaged and disengaged states during perceptual decision-making. To understand the neural signature of these states, we performed cortex-wide measurements of neural activity in mice making auditory decisions. The trial-averaged magnitude of neural activity was similar in the two states. However, the trial-to-trial variance in neural activity was higher during disengagement. To understand this increased variance, we trained separate linear encoding models on neural data from each state. The models demonstrated that although task variables and task-aligned movements impacted neural activity similarly during the two states, movements that are independent of task events explained more variance during disengagement. Behavioral analyses uncovered that during disengagement, movements become uncoupled to task events. Taken together, these results argue that the neural signature of disengagement, though obscured in trial-averaged neural activity, is evident in trial-to-trial variability driven by changing patterns of spontaneous movements.
Collapse
Affiliation(s)
- Chaoqun Yin
- UCLA Neuroscience Interdepartmental Program
- Department of Neurobiology, University of California, Los Angeles
| | - Maxwell D Melin
- UCLA Neuroscience Interdepartmental Program
- UCLA-Caltech Medical Scientist Training Program
- Department of Neurobiology, University of California, Los Angeles
| | - Gabriel Rojas-Bowe
- UCLA Neuroscience Interdepartmental Program
- Department of Neurobiology, University of California, Los Angeles
| | | | - João Couto
- Department of Neurobiology, University of California, Los Angeles
| | | | - Alex Kostiuk
- UCLA Neuroscience Interdepartmental Program
- UCLA-Caltech Medical Scientist Training Program
- Department of Neurobiology, University of California, Los Angeles
| | - Simon Musall
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich
| | | |
Collapse
|
24
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
25
|
Crombie D, Spacek MA, Leibold C, Busse L. Spiking activity in the visual thalamus is coupled to pupil dynamics across temporal scales. PLoS Biol 2024; 22:e3002614. [PMID: 38743775 PMCID: PMC11093384 DOI: 10.1371/journal.pbio.3002614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
The processing of sensory information, even at early stages, is influenced by the internal state of the animal. Internal states, such as arousal, are often characterized by relating neural activity to a single "level" of arousal, defined by a behavioral indicator such as pupil size. In this study, we expand the understanding of arousal-related modulations in sensory systems by uncovering multiple timescales of pupil dynamics and their relationship to neural activity. Specifically, we observed a robust coupling between spiking activity in the mouse dorsolateral geniculate nucleus (dLGN) of the thalamus and pupil dynamics across timescales spanning a few seconds to several minutes. Throughout all these timescales, 2 distinct spiking modes-individual tonic spikes and tightly clustered bursts of spikes-preferred opposite phases of pupil dynamics. This multi-scale coupling reveals modulations distinct from those captured by pupil size per se, locomotion, and eye movements. Furthermore, coupling persisted even during viewing of a naturalistic movie, where it contributed to differences in the encoding of visual information. We conclude that dLGN spiking activity is under the simultaneous influence of multiple arousal-related processes associated with pupil dynamics occurring over a broad range of timescales.
Collapse
Affiliation(s)
- Davide Crombie
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Martin A. Spacek
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
| | - Christian Leibold
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| |
Collapse
|
26
|
Hulsey D, Zumwalt K, Mazzucato L, McCormick DA, Jaramillo S. Decision-making dynamics are predicted by arousal and uninstructed movements. Cell Rep 2024; 43:113709. [PMID: 38280196 PMCID: PMC11016285 DOI: 10.1016/j.celrep.2024.113709] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/05/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
During sensory-guided behavior, an animal's decision-making dynamics unfold through sequences of distinct performance states, even while stimulus-reward contingencies remain static. Little is known about the factors that underlie these changes in task performance. We hypothesize that these decision-making dynamics can be predicted by externally observable measures, such as uninstructed movements and changes in arousal. Here, using computational modeling of visual and auditory task performance data from mice, we uncovered lawful relationships between transitions in strategic task performance states and an animal's arousal and uninstructed movements. Using hidden Markov models applied to behavioral choices during sensory discrimination tasks, we find that animals fluctuate between minutes-long optimal, sub-optimal, and disengaged performance states. Optimal state epochs are predicted by intermediate levels, and reduced variability, of pupil diameter and movement. Our results demonstrate that externally observable uninstructed behaviors can predict optimal performance states and suggest that mice regulate their arousal during optimal performance.
Collapse
Affiliation(s)
- Daniel Hulsey
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA
| | - Kevin Zumwalt
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA
| | - Luca Mazzucato
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA; Department of Biology, University of Oregon, Eugene, OR 97405, USA; Departments of Physics and Mathematics, University of Oregon, Eugene, OR 97405, USA.
| | - David A McCormick
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA; Department of Biology, University of Oregon, Eugene, OR 97405, USA.
| | - Santiago Jaramillo
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA; Department of Biology, University of Oregon, Eugene, OR 97405, USA.
| |
Collapse
|
27
|
Neyhart E, Zhou N, Munn BR, Law RG, Smith C, Mridha ZH, Blanco FA, Li G, Li Y, McGinley MJ, Shine JM, Reimer J. Cortical acetylcholine dynamics are predicted by cholinergic axon activity and behavior state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567116. [PMID: 38352527 PMCID: PMC10862699 DOI: 10.1101/2023.11.14.567116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Even under spontaneous conditions and in the absence of changing environmental demands, awake animals alternate between increased or decreased periods of alertness. These changes in brain state can occur rapidly, on a timescale of seconds, and neuromodulators such as acetylcholine (ACh) are thought to play an important role in driving these spontaneous state transitions. Here, we perform the first simultaneous imaging of ACh sensors and GCaMP-expressing axons in vivo, to examine the spatiotemporal properties of cortical ACh activity and release during spontaneous changes in behavioral state. We observed a high correlation between simultaneously recorded basal forebrain axon activity and neuromodulator sensor fluorescence around periods of locomotion and pupil dilation. Consistent with volume transmission of ACh, increases in axon activity were accompanied by increases in local ACh levels that fell off with the distance from the nearest axon. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, providing the first validation that neuromodulator axon activity is a reliable proxy for nearby neuromodulator levels. Deconvolution of fluorescence traces allowed us to account for the kinetics of the GRAB-ACh sensor and emphasized the rapid clearance of ACh for smaller transients outside of running periods. Finally, we trained a predictive model of ACh fluctuations from the combination of pupil size and running speed; this model performed better than using either variable alone, and generalized well to unseen data. Overall, these results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain state transitions.
Collapse
Affiliation(s)
- Erin Neyhart
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Na Zhou
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Brandon R Munn
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Complex Systems Group, School of Physics, Faculty of Science, The University of Sydney, Australia
| | - Robert G Law
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Cameron Smith
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Zakir H Mridha
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Francisco A Blanco
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Matthew J McGinley
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Complex Systems Group, School of Physics, Faculty of Science, The University of Sydney, Australia
| | - Jacob Reimer
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
28
|
Syeda A, Zhong L, Tung R, Long W, Pachitariu M, Stringer C. Facemap: a framework for modeling neural activity based on orofacial tracking. Nat Neurosci 2024; 27:187-195. [PMID: 37985801 PMCID: PMC10774130 DOI: 10.1038/s41593-023-01490-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Recent studies in mice have shown that orofacial behaviors drive a large fraction of neural activity across the brain. To understand the nature and function of these signals, we need better computational models to characterize the behaviors and relate them to neural activity. Here we developed Facemap, a framework consisting of a keypoint tracker and a deep neural network encoder for predicting neural activity. Our algorithm for tracking mouse orofacial behaviors was more accurate than existing pose estimation tools, while the processing speed was several times faster, making it a powerful tool for real-time experimental interventions. The Facemap tracker was easy to adapt to data from new labs, requiring as few as 10 annotated frames for near-optimal performance. We used the keypoints as inputs to a deep neural network which predicts the activity of ~50,000 simultaneously-recorded neurons and, in visual cortex, we doubled the amount of explained variance compared to previous methods. Using this model, we found that the neuronal activity clusters that were well predicted from behavior were more spatially spread out across cortex. We also found that the deep behavioral features from the model had stereotypical, sequential dynamics that were not reversible in time. In summary, Facemap provides a stepping stone toward understanding the function of the brain-wide neural signals and their relation to behavior.
Collapse
Affiliation(s)
- Atika Syeda
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| | - Lin Zhong
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Renee Tung
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Will Long
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | | |
Collapse
|
29
|
Jeong H, Namboodiri VMK, Jung MW, Andermann ML. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions. Curr Biol 2023; 33:5185-5198.e4. [PMID: 37995696 PMCID: PMC10842729 DOI: 10.1016/j.cub.2023.10.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Cortical neurons activated during recent experiences often reactivate with dorsal hippocampal CA1 ripples during subsequent rest. Less is known about cortical interactions with intermediate hippocampal CA1, whose connectivity, functions, and ripple events differ from dorsal CA1. We identified three clusters of putative excitatory neurons in mouse visual cortex that are preferentially excited together with either dorsal or intermediate CA1 ripples or suppressed before both ripples. Neurons in each cluster were evenly distributed across primary and higher visual cortices and co-active even in the absence of ripples. These ensembles exhibited similar visual responses but different coupling to thalamus and pupil-indexed arousal. We observed a consistent activity sequence preceding and predicting ripples: (1) suppression of ripple-suppressed cortical neurons, (2) thalamic silence, and (3) activation of intermediate CA1-ripple-activated cortical neurons. We propose that coordinated dynamics of these ensembles relay visual experiences to distinct hippocampal subregions for incorporation into different cognitive maps.
Collapse
Affiliation(s)
- Huijeong Jeong
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA.
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| | - Mark L Andermann
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Boissonnet T, Tripodi M, Asari H. Awake responses suggest inefficient dense coding in the mouse retina. eLife 2023; 12:e78005. [PMID: 37922200 PMCID: PMC10624425 DOI: 10.7554/elife.78005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/28/2023] [Indexed: 11/05/2023] Open
Abstract
The structure and function of the vertebrate retina have been extensively studied across species with an isolated, ex vivo preparation. Retinal function in vivo, however, remains elusive, especially in awake animals. Here, we performed single-unit extracellular recordings in the optic tract of head-fixed mice to compare the output of awake, anesthetized, and ex vivo retinas. While the visual response properties were overall similar across conditions, we found that awake retinal output had in general (1) faster kinetics with less variability in the response latencies; (2) a larger dynamic range; and (3) higher firing activity, by ~20 Hz on average, for both baseline and visually evoked responses. Our modeling analyses further showed that such awake response patterns convey comparable total information but less efficiently, and allow for a linear population decoder to perform significantly better than the anesthetized or ex vivo responses. These results highlight distinct retinal behavior in awake states, in particular suggesting that the retina employs dense coding in vivo, rather than sparse efficient coding as has been often assumed from ex vivo studies.
Collapse
Affiliation(s)
- Tom Boissonnet
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
- Collaboration for joint PhD degree between EMBL and Université Grenoble Alpes, Grenoble Institut des NeurosciencesLa TroncheFrance
| | - Matteo Tripodi
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
| | - Hiroki Asari
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
| |
Collapse
|
31
|
Purandare C, Mehta M. Mega-scale movie-fields in the mouse visuo-hippocampal network. eLife 2023; 12:RP85069. [PMID: 37910428 PMCID: PMC10619982 DOI: 10.7554/elife.85069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Natural visual experience involves a continuous series of related images while the subject is immobile. How does the cortico-hippocampal circuit process a visual episode? The hippocampus is crucial for episodic memory, but most rodent single unit studies require spatial exploration or active engagement. Hence, we investigated neural responses to a silent movie (Allen Brain Observatory) in head-fixed mice without any task or locomotion demands, or rewards. Surprisingly, a third (33%, 3379/10263) of hippocampal -dentate gyrus, CA3, CA1 and subiculum- neurons showed movie-selectivity, with elevated firing in specific movie sub-segments, termed movie-fields, similar to the vast majority of thalamo-cortical (LGN, V1, AM-PM) neurons (97%, 6554/6785). Movie-tuning remained intact in immobile or spontaneously running mice. Visual neurons had >5 movie-fields per cell, but only ~2 in hippocampus. The movie-field durations in all brain regions spanned an unprecedented 1000-fold range: from 0.02s to 20s, termed mega-scale coding. Yet, the total duration of all the movie-fields of a cell was comparable across neurons and brain regions. The hippocampal responses thus showed greater continuous-sequence encoding than visual areas, as evidenced by fewer and broader movie-fields than in visual areas. Consistently, repeated presentation of the movie images in a fixed, but scrambled sequence virtually abolished hippocampal but not visual-cortical selectivity. The preference for continuous, compared to scrambled sequence was eight-fold greater in hippocampal than visual areas, further supporting episodic-sequence encoding. Movies could thus provide a unified way to probe neural mechanisms of episodic information processing and memory, even in immobile subjects, across brain regions, and species.
Collapse
Affiliation(s)
- Chinmay Purandare
- Department of Bioengineering, University of California, Los AngelesLos AngelesUnited States
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, University of California, Los AngelesLos AngelesUnited States
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
| | - Mayank Mehta
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, University of California, Los AngelesLos AngelesUnited States
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
- Department of Electrical and Computer Engineering, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
32
|
Talluri BC, Kang I, Lazere A, Quinn KR, Kaliss N, Yates JL, Butts DA, Nienborg H. Activity in primate visual cortex is minimally driven by spontaneous movements. Nat Neurosci 2023; 26:1953-1959. [PMID: 37828227 PMCID: PMC10620084 DOI: 10.1038/s41593-023-01459-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Organisms process sensory information in the context of their own moving bodies, an idea referred to as embodiment. This idea is important for developmental neuroscience, robotics and systems neuroscience. The mechanisms supporting embodiment are unknown, but a manifestation could be the observation in mice of brain-wide neuromodulation, including in the primary visual cortex, driven by task-irrelevant spontaneous body movements. We tested this hypothesis in macaque monkeys (Macaca mulatta), a primate model for human vision, by simultaneously recording visual cortex activity and facial and body movements. We also sought a direct comparison using an analogous approach to those used in mouse studies. Here we found that activity in the primate visual cortex (V1, V2 and V3/V3A) was associated with the animals' own movements, but this modulation was largely explained by the impact of the movements on the retinal image, that is, by changes in visual input. These results indicate that visual cortex in primates is minimally driven by spontaneous movements and may reflect species-specific sensorimotor strategies.
Collapse
Affiliation(s)
- Bharath Chandra Talluri
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Incheol Kang
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adam Lazere
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katrina R Quinn
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nicholas Kaliss
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob L Yates
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Dearnley B, Jones M, Dervinis M, Okun M. Brain state transitions primarily impact the spontaneous rate of slow-firing neurons. Cell Rep 2023; 42:113185. [PMID: 37773749 DOI: 10.1016/j.celrep.2023.113185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
The spontaneous firing of neurons is modulated by brain state. Here, we examine how such modulation impacts the overall distribution of firing rates in neuronal populations of neocortical, hippocampal, and thalamic areas across natural and pharmacologically driven brain state transitions. We report that across all the examined combinations of brain area and state transition category, the structure of rate modulation is similar, with almost all fast-firing neurons experiencing proportionally weak modulation, while slow-firing neurons exhibit high inter-neuron variability in the modulation magnitude, leading to a stronger modulation on average. We further demonstrate that this modulation structure is linked to the left-skewed distribution of firing rates on the logarithmic scale and is recapitulated by bivariate log-gamma, but not Gaussian, distributions. Our findings indicate that a preconfigured log-rate distribution with rigid fast-firing neurons and a long left tail of malleable slow-firing neurons is a generic property of forebrain neuronal circuits.
Collapse
Affiliation(s)
- Bradley Dearnley
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Melissa Jones
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Martynas Dervinis
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Michael Okun
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK; School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
34
|
Xie Y, Sadeh S. Computational assessment of visual coding across mouse brain areas and behavioural states. Front Comput Neurosci 2023; 17:1269019. [PMID: 37899886 PMCID: PMC10613063 DOI: 10.3389/fncom.2023.1269019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Our brain is bombarded by a diverse range of visual stimuli, which are converted into corresponding neuronal responses and processed throughout the visual system. The neural activity patterns that result from these external stimuli vary depending on the object or scene being observed, but they also change as a result of internal or behavioural states. This raises the question of to what extent it is possible to predict the presented visual stimuli from neural activity across behavioural states, and how this varies in different brain regions. Methods To address this question, we assessed the computational capacity of decoders to extract visual information in awake behaving mice, by analysing publicly available standardised datasets from the Allen Brain Institute. We evaluated how natural movie frames can be distinguished based on the activity of units recorded in distinct brain regions and under different behavioural states. This analysis revealed the spectrum of visual information present in different brain regions in response to binary and multiclass classification tasks. Results Visual cortical areas showed highest classification accuracies, followed by thalamic and midbrain regions, with hippocampal regions showing close to chance accuracy. In addition, we found that behavioural variability led to a decrease in decoding accuracy, whereby large behavioural changes between train and test sessions reduced the classification performance of the decoders. A generalised linear model analysis suggested that this deterioration in classification might be due to an independent modulation of neural activity by stimulus and behaviour. Finally, we reconstructed the natural movie frames from optimal linear classifiers, and observed a strong similarity between reconstructed and actual movie frames. However, the similarity was significantly higher when the decoders were trained and tested on sessions with similar behavioural states. Conclusion Our analysis provides a systematic assessment of visual coding in the mouse brain, and sheds light on the spectrum of visual information present across brain areas and behavioural states.
Collapse
Affiliation(s)
| | - Sadra Sadeh
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
35
|
O'Toole SM, Oyibo HK, Keller GB. Molecularly targetable cell types in mouse visual cortex have distinguishable prediction error responses. Neuron 2023; 111:2918-2928.e8. [PMID: 37708892 DOI: 10.1016/j.neuron.2023.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Predictive processing postulates the existence of prediction error neurons in cortex. Neurons with both negative and positive prediction error response properties have been identified in layer 2/3 of visual cortex, but whether they correspond to transcriptionally defined subpopulations is unclear. Here we used the activity-dependent, photoconvertible marker CaMPARI2 to tag neurons in layer 2/3 of mouse visual cortex during stimuli and behaviors designed to evoke prediction errors. We performed single-cell RNA-sequencing on these populations and found that previously annotated Adamts2 and Rrad layer 2/3 transcriptional cell types were enriched when photolabeling during stimuli that drive negative or positive prediction error responses, respectively. Finally, we validated these results functionally by designing artificial promoters for use in AAV vectors to express genetically encoded calcium indicators. Thus, transcriptionally distinct cell types in layer 2/3 that can be targeted using AAV vectors exhibit distinguishable negative and positive prediction error responses.
Collapse
Affiliation(s)
- Sean M O'Toole
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hassana K Oyibo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Parajuli A, Gutnisky D, Tandon N, Dragoi V. Endogenous fluctuations in cortical state selectively enhance different modes of sensory processing in human temporal lobe. Nat Commun 2023; 14:5591. [PMID: 37696880 PMCID: PMC10495466 DOI: 10.1038/s41467-023-41406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
The degree of synchronized fluctuations in neocortical network activity can vary widely during alertness. One influential idea that has emerged over the past few decades is that perceptual decisions are more accurate when the state of population activity is desynchronized. This suggests that optimal task performance may occur during a particular cortical state - the desynchronized state. Here we show that, contrary to this view, cortical state can both facilitate and suppress perceptual performance in a task-dependent manner. We performed electrical recordings from surface-implanted grid electrodes in the temporal lobe while human subjects completed two perceptual tasks. We found that when local population activity is in a synchronized state, network and perceptual performance are enhanced in a detection task and impaired in a discrimination task, but these modulatory effects are reversed when population activity is desynchronized. These findings indicate that the brain has adapted to take advantage of endogenous fluctuations in the state of neural populations in temporal cortex to selectively enhance different modes of sensory processing during perception in a state-dependent manner.
Collapse
Affiliation(s)
- Arun Parajuli
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX, USA
| | - Diego Gutnisky
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, University of Texas Medical School, Houston, TX, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
37
|
Dai J, Sun QQ. Learning induced neuronal identity switch in the superficial layers of the primary somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555603. [PMID: 37693620 PMCID: PMC10491147 DOI: 10.1101/2023.08.30.555603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
During learning, multi-dimensional inputs are integrated within the sensory cortices. However, the strategies by which the sensory cortex employs to achieve learning remains poorly understood. We studied the sensory cortical neuronal coding of trace eyeblink conditioning (TEC) in head-fixed, freely running mice, where whisker deflection was used as a conditioned stimulus (CS) and an air puff to the cornea delivered after an interval was used as unconditioned stimulus (US). After training, mice learned the task with a set of stereotypical behavioral changes, most prominent ones include prolonged closure of eyelids, and increased reverse running between CS and US onset. The local blockade of the primary somatosensory cortex (S1) activities with muscimol abolished the behavior learning suggesting that S1 is required for the TEC. In naive animals, based on the response properties to the CS and US, identities of the small proportion (~20%) of responsive primary neurons (PNs) were divided into two subtypes: CR (i.e. CS-responsive) and UR neurons (i.e. US-responsive). After animals learned the task, identity of CR and UR neurons changed: while the CR neurons are less responsive to CS, UR neurons gain responsiveness to CS, a new phenomenon we defined as 'learning induced neuronal identity switch (LINIS)'. To explore the potential mechanisms underlying LINIS, we found that systemic and local (i.e. in S1) administration of the nicotinic receptor antagonist during TEC training blocked the LINIS, and concomitantly disrupted the behavior learning. Additionally, we monitored responses of two types of cortical interneurons (INs) and observed that the responses of the somatostatin-expressing (SST), but not parvalbumin-expressing (PV) INs are negatively correlated with the learning performance, suggesting that SST-INs contribute to the LINIS. Thus, we conclude that L2/3 PNs in S1 encode perceptual learning by LINIS like mechanisms, and cholinergic pathways and cortical SST interneurons are involved in the formation of LINIS.
Collapse
Affiliation(s)
- Jiaman Dai
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY82071, USA
| |
Collapse
|
38
|
Mimica B, Tombaz T, Battistin C, Fuglstad JG, Dunn BA, Whitlock JR. Behavioral decomposition reveals rich encoding structure employed across neocortex in rats. Nat Commun 2023; 14:3947. [PMID: 37402724 PMCID: PMC10319800 DOI: 10.1038/s41467-023-39520-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
The cortical population code is pervaded by activity patterns evoked by movement, but it remains largely unknown how such signals relate to natural behavior or how they might support processing in sensory cortices where they have been observed. To address this we compared high-density neural recordings across four cortical regions (visual, auditory, somatosensory, motor) in relation to sensory modulation, posture, movement, and ethograms of freely foraging male rats. Momentary actions, such as rearing or turning, were represented ubiquitously and could be decoded from all sampled structures. However, more elementary and continuous features, such as pose and movement, followed region-specific organization, with neurons in visual and auditory cortices preferentially encoding mutually distinct head-orienting features in world-referenced coordinates, and somatosensory and motor cortices principally encoding the trunk and head in egocentric coordinates. The tuning properties of synaptically coupled cells also exhibited connection patterns suggestive of area-specific uses of pose and movement signals, particularly in visual and auditory regions. Together, our results indicate that ongoing behavior is encoded at multiple levels throughout the dorsal cortex, and that low-level features are differentially utilized by different regions to serve locally relevant computations.
Collapse
Affiliation(s)
- Bartul Mimica
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, 100190, NJ, USA.
| | - Tuçe Tombaz
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
| | - Claudia Battistin
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jingyi Guo Fuglstad
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
| | - Benjamin A Dunn
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jonathan R Whitlock
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030, Trondheim, Norway.
| |
Collapse
|
39
|
Jordan R, Keller GB. The locus coeruleus broadcasts prediction errors across the cortex to promote sensorimotor plasticity. eLife 2023; 12:RP85111. [PMID: 37285281 PMCID: PMC10328511 DOI: 10.7554/elife.85111] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Prediction errors are differences between expected and actual sensory input and are thought to be key computational signals that drive learning related plasticity. One way that prediction errors could drive learning is by activating neuromodulatory systems to gate plasticity. The catecholaminergic locus coeruleus (LC) is a major neuromodulatory system involved in neuronal plasticity in the cortex. Using two-photon calcium imaging in mice exploring a virtual environment, we found that the activity of LC axons in the cortex correlated with the magnitude of unsigned visuomotor prediction errors. LC response profiles were similar in both motor and visual cortical areas, indicating that LC axons broadcast prediction errors throughout the dorsal cortex. While imaging calcium activity in layer 2/3 of the primary visual cortex, we found that optogenetic stimulation of LC axons facilitated learning of a stimulus-specific suppression of visual responses during locomotion. This plasticity - induced by minutes of LC stimulation - recapitulated the effect of visuomotor learning on a scale that is normally observed during visuomotor development across days. We conclude that prediction errors drive LC activity, and that LC activity facilitates sensorimotor plasticity in the cortex, consistent with a role in modulating learning rates.
Collapse
Affiliation(s)
- Rebecca Jordan
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
40
|
Fişek M, Herrmann D, Egea-Weiss A, Cloves M, Bauer L, Lee TY, Russell LE, Häusser M. Cortico-cortical feedback engages active dendrites in visual cortex. Nature 2023; 617:769-776. [PMID: 37138089 DOI: 10.1038/s41586-023-06007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Sensory processing in the neocortex requires both feedforward and feedback information flow between cortical areas1. In feedback processing, higher-level representations provide contextual information to lower levels, and facilitate perceptual functions such as contour integration and figure-ground segmentation2,3. However, we have limited understanding of the circuit and cellular mechanisms that mediate feedback influence. Here we use long-range all-optical connectivity mapping in mice to show that feedback influence from the lateromedial higher visual area (LM) to the primary visual cortex (V1) is spatially organized. When the source and target of feedback represent the same area of visual space, feedback is relatively suppressive. By contrast, when the source is offset from the target in visual space, feedback is relatively facilitating. Two-photon calcium imaging data show that this facilitating feedback is nonlinearly integrated in the apical tuft dendrites of V1 pyramidal neurons: retinotopically offset (surround) visual stimuli drive local dendritic calcium signals indicative of regenerative events, and two-photon optogenetic activation of LM neurons projecting to identified feedback-recipient spines in V1 can drive similar branch-specific local calcium signals. Our results show how neocortical feedback connectivity and nonlinear dendritic integration can together form a substrate to support both predictive and cooperative contextual interactions.
Collapse
Affiliation(s)
- Mehmet Fişek
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Dustin Herrmann
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Alexander Egea-Weiss
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matilda Cloves
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lisa Bauer
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Tai-Ying Lee
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
41
|
Vasilevskaya A, Widmer FC, Keller GB, Jordan R. Locomotion-induced gain of visual responses cannot explain visuomotor mismatch responses in layer 2/3 of primary visual cortex. Cell Rep 2023; 42:112096. [PMID: 36821437 PMCID: PMC9945359 DOI: 10.1016/j.celrep.2023.112096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/27/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
The aim of this work is to provide a comment on a recent paper by Muzzu and Saleem (2021), which claims that visuomotor mismatch responses in mouse visual cortex can be explained by a locomotion-induced gain of visual halt responses. Our primary concern is that without directly comparing these responses with mismatch responses, the claim that one response can explain the other appears difficult to uphold, more so because previous work finds that a uniform locomotion-induced gain cannot explain mismatch responses. To support these arguments, we analyze layer 2/3 calcium imaging datasets and show that coupling between visual flow and locomotion greatly enhances mismatch responses in an experience-dependent manner compared with halts in non-coupled visual flow. This is consistent with mismatch responses representing visuomotor prediction errors. Thus, we conclude that while feature selectivity might contribute to mismatch responses in mouse visual cortex, it cannot explain these responses.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Felix C Widmer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Rebecca Jordan
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
42
|
Hulsey D, Zumwalt K, Mazzucato L, McCormick DA, Jaramillo S. Decision-making dynamics are predicted by arousal and uninstructed movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530651. [PMID: 37034793 PMCID: PMC10081205 DOI: 10.1101/2023.03.02.530651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
During sensory-guided behavior, an animal's decision-making dynamics unfold through sequences of distinct performance states, even while stimulus-reward contingencies remain static. Little is known about the factors that underlie these changes in task performance. We hypothesize that these decision-making dynamics can be predicted by externally observable measures, such as uninstructed movements and changes in arousal. Here, combining behavioral experiments in mice with computational modeling, we uncovered lawful relationships between transitions in strategic task performance states and an animal's arousal and uninstructed movements. Using hidden Markov models applied to behavioral choices during sensory discrimination tasks, we found that animals fluctuate between minutes-long optimal, sub-optimal and disengaged performance states. Optimal state epochs were predicted by intermediate levels, and reduced variability, of pupil diameter, along with reduced variability in face movements and locomotion. Our results demonstrate that externally observable uninstructed behaviors can predict optimal performance states, and suggest mice regulate their arousal during optimal performance.
Collapse
Affiliation(s)
- Daniel Hulsey
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Kevin Zumwalt
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Luca Mazzucato
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- Department of Biology, University of Oregon, Eugene, OR, USA
- Departments of Physics and Mathematics, University of Oregon, Eugene, OR, USA
| | - David A. McCormick
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- Department of Biology, University of Oregon, Eugene, OR, USA
| | - Santiago Jaramillo
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
43
|
Jeong H, Namboodiri VMK, Jung MW, Andermann ML. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533028. [PMID: 36993665 PMCID: PMC10055189 DOI: 10.1101/2023.03.17.533028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cortical neurons activated during recent experiences often reactivate with dorsal hippocampal CA1 sharp-wave ripples (SWRs) during subsequent rest. Less is known about cortical interactions with intermediate hippocampal CA1, whose connectivity, functions, and SWRs differ from those of dorsal CA1. We identified three clusters of visual cortical excitatory neurons that are excited together with either dorsal or intermediate CA1 SWRs, or suppressed before both SWRs. Neurons in each cluster were distributed across primary and higher visual cortices and co-active even in the absence of SWRs. These ensembles exhibited similar visual responses but different coupling to thalamus and pupil-indexed arousal. We observed a consistent activity sequence: (i) suppression of SWR-suppressed cortical neurons, (ii) thalamic silence, and (iii) activation of the cortical ensemble preceding and predicting intermediate CA1 SWRs. We propose that the coordinated dynamics of these ensembles relay visual experiences to distinct hippocampal subregions for incorporation into different cognitive maps.
Collapse
Affiliation(s)
- Huijeong Jeong
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
- Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco 94158, CA, USA
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Mark L. Andermann
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
- Lead contact
| |
Collapse
|
44
|
Reggiani JDS, Jiang Q, Barbini M, Lutas A, Liang L, Fernando J, Deng F, Wan J, Li Y, Chen C, Andermann ML. Brainstem serotonin neurons selectively gate retinal information flow to thalamus. Neuron 2023; 111:711-726.e11. [PMID: 36584680 PMCID: PMC10131437 DOI: 10.1016/j.neuron.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022]
Abstract
Retinal ganglion cell (RGC) types relay parallel streams of visual feature information. We hypothesized that neuromodulators might efficiently control which visual information streams reach the cortex by selectively gating transmission from specific RGC axons in the thalamus. Using fiber photometry recordings, we found that optogenetic stimulation of serotonergic axons in primary visual thalamus of awake mice suppressed ongoing and visually evoked calcium activity and glutamate release from RGC boutons. Two-photon calcium imaging revealed that serotonin axon stimulation suppressed RGC boutons that responded strongly to global changes in luminance more than those responding only to local visual stimuli, while the converse was true for suppression induced by increases in arousal. Converging evidence suggests that differential expression of the 5-HT1B receptor on RGC presynaptic terminals, but not differential density of nearby serotonin axons, may contribute to the selective serotonergic gating of specific visual information streams before they can activate thalamocortical neurons.
Collapse
Affiliation(s)
- Jasmine D S Reggiani
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Qiufen Jiang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Barbini
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Liang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesseba Fernando
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Horrocks EAB, Mareschal I, Saleem AB. Walking humans and running mice: perception and neural encoding of optic flow during self-motion. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210450. [PMID: 36511417 PMCID: PMC9745880 DOI: 10.1098/rstb.2021.0450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022] Open
Abstract
Locomotion produces full-field optic flow that often dominates the visual motion inputs to an observer. The perception of optic flow is in turn important for animals to guide their heading and interact with moving objects. Understanding how locomotion influences optic flow processing and perception is therefore essential to understand how animals successfully interact with their environment. Here, we review research investigating how perception and neural encoding of optic flow are altered during self-motion, focusing on locomotion. Self-motion has been found to influence estimation and sensitivity for optic flow speed and direction. Nonvisual self-motion signals also increase compensation for self-driven optic flow when parsing the visual motion of moving objects. The integration of visual and nonvisual self-motion signals largely follows principles of Bayesian inference and can improve the precision and accuracy of self-motion perception. The calibration of visual and nonvisual self-motion signals is dynamic, reflecting the changing visuomotor contingencies across different environmental contexts. Throughout this review, we consider experimental research using humans, non-human primates and mice. We highlight experimental challenges and opportunities afforded by each of these species and draw parallels between experimental findings. These findings reveal a profound influence of locomotion on optic flow processing and perception across species. This article is part of a discussion meeting issue 'New approaches to 3D vision'.
Collapse
Affiliation(s)
- Edward A. B. Horrocks
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Isabelle Mareschal
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Aman B. Saleem
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
46
|
Human visual processing during walking: Dissociable pre- and post-stimulus influences. Neuroimage 2022; 264:119757. [PMID: 36414209 PMCID: PMC9771827 DOI: 10.1016/j.neuroimage.2022.119757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Walking influences visual processing but the underlying mechanism remains poorly understood. In this study, we investigated the influence of walking on pre-stimulus and stimulus-induced visual neural activity and behavioural performance in a discrimination task while participants were standing or freely walking. The results showed dissociable pre- and post-stimulus influences by the movement state. Walking was associated with a reduced pre-stimulus alpha power, which predicted enhanced N1 and decreased P3 components during walking. This pre-stimulus alpha activity was additionally modulated by time on the task, which was paralleled by a similar behavioural modulation. In contrast, the post-stimulus alpha power was reduced in its modulation due to stimulus onset during walking but showed no evidence of modulation by time on the task. Additionally, stimulus parameters (eccentricity, laterality, distractor presence significantly influenced post-stimulus alpha power, whereas the visually evoked components showed no evidence of such an influence. There was further no evidence of a correlation between pre-stimulus and post stimulus alpha power. We conclude that walking has two dissociable influences on visual processing: while the walking induced reduction in alpha power suggests an attentional state change that relates to visual awareness, the post-stimulus influence on alpha power modulation indicates changed spatial visual processing during walking.
Collapse
|
47
|
Franke K, Willeke KF, Ponder K, Galdamez M, Zhou N, Muhammad T, Patel S, Froudarakis E, Reimer J, Sinz FH, Tolias AS. State-dependent pupil dilation rapidly shifts visual feature selectivity. Nature 2022; 610:128-134. [PMID: 36171291 PMCID: PMC10635574 DOI: 10.1038/s41586-022-05270-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
To increase computational flexibility, the processing of sensory inputs changes with behavioural context. In the visual system, active behavioural states characterized by motor activity and pupil dilation1,2 enhance sensory responses, but typically leave the preferred stimuli of neurons unchanged2-9. Here we find that behavioural state also modulates stimulus selectivity in the mouse visual cortex in the context of coloured natural scenes. Using population imaging in behaving mice, pharmacology and deep neural network modelling, we identified a rapid shift in colour selectivity towards ultraviolet stimuli during an active behavioural state. This was exclusively caused by state-dependent pupil dilation, which resulted in a dynamic switch from rod to cone photoreceptors, thereby extending their role beyond night and day vision. The change in tuning facilitated the decoding of ethological stimuli, such as aerial predators against the twilight sky10. For decades, studies in neuroscience and cognitive science have used pupil dilation as an indirect measure of brain state. Our data suggest that, in addition, state-dependent pupil dilation itself tunes visual representations to behavioural demands by differentially recruiting rods and cones on fast timescales.
Collapse
Affiliation(s)
- Katrin Franke
- Institute for Ophthalmic Research, Tübingen University, Tübingen, Germany.
- Center for Integrative Neuroscience, Tübingen University, Tübingen, Germany.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
| | - Konstantin F Willeke
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany
- Department of Computer Science, Göttingen University, Göttingen, Germany
| | - Kayla Ponder
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Mario Galdamez
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Taliah Muhammad
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Saumil Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Fabian H Sinz
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany
- Department of Computer Science, Göttingen University, Göttingen, Germany
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
48
|
Orlowska-Feuer P, Ebrahimi AS, Zippo AG, Petersen RS, Lucas RJ, Storchi R. Look-up and look-down neurons in the mouse visual thalamus during freely moving exploration. Curr Biol 2022; 32:3987-3999.e4. [PMID: 35973431 PMCID: PMC9616738 DOI: 10.1016/j.cub.2022.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 12/28/2022]
Abstract
Visual information reaches cortex via the thalamic dorsal lateral geniculate nucleus (dLGN). dLGN activity is modulated by global sleep/wake states and arousal, indicating that it is not simply a passive relay station. However, its potential for more specific visuomotor integration is largely unexplored. We addressed this question by developing robust 3D video reconstruction of mouse head and body during spontaneous exploration paired with simultaneous neuronal recordings from dLGN. Unbiased evaluation of a wide range of postures and movements revealed a widespread coupling between neuronal activity and few behavioral parameters. In particular, postures associated with the animal looking up/down correlated with activity in >50% neurons, and the extent of this effect was comparable with that induced by full-body movements (typically locomotion). By contrast, thalamic activity was minimally correlated with other postures or movements (e.g., left/right head and body torsions). Importantly, up/down postures and full-body movements were largely independent and jointly coupled to neuronal activity. Thus, although most units were excited during full-body movements, some expressed highest firing when the animal was looking up ("look-up" neurons), whereas others expressed highest firing when the animal was looking down ("look-down" neurons). These results were observed in the dark, thus representing a genuine behavioral modulation, and were amplified in a lit arena. Our results demonstrate that the primary visual thalamus, beyond global modulations by sleep/awake states, is potentially involved in specific visuomotor integration and reveal two distinct couplings between up/down postures and neuronal activity.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK
| | - Aghileh S Ebrahimi
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK
| | - Antonio G Zippo
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Via Raoul Follereau, 3, 20854 Vedano al Lambro, Italy
| | - Rasmus S Petersen
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK
| | - Robert J Lucas
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK
| | - Riccardo Storchi
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK.
| |
Collapse
|
49
|
Bonato J, Panzeri S. Neural coding: Looking up and down the visual thalamus. Curr Biol 2022; 32:R941-R943. [PMID: 36167039 DOI: 10.1016/j.cub.2022.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Integrating sensory and postural information is essential for perception and behavior. A new study shows that information about whether mice are looking up or down is combined with visual information in the primary visual thalamus, an early sensory stage of visual processing.
Collapse
Affiliation(s)
- Jacopo Bonato
- Department of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Istituto Italiano di Tecnologia, Genova, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Panzeri
- Department of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
50
|
Potter HD, Mitchell KJ. Naturalising Agent Causation. ENTROPY 2022; 24:e24040472. [PMID: 35455135 PMCID: PMC9030586 DOI: 10.3390/e24040472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
The idea of agent causation—that a system such as a living organism can be a cause of things in the world—is often seen as mysterious and deemed to be at odds with the physicalist thesis that is now commonly embraced in science and philosophy. Instead, the causal power of organisms is attributed to mechanistic components within the system or derived from the causal activity at the lowest level of physical description. In either case, the ‘agent’ itself (i.e., the system as a whole) is left out of the picture entirely, and agent causation is explained away. We argue that this is not the right way to think about causation in biology or in systems more generally. We present a framework of eight criteria that we argue, collectively, describe a system that overcomes the challenges concerning agent causality in an entirely naturalistic and non-mysterious way. They are: (1) thermodynamic autonomy, (2) persistence, (3) endogenous activity, (4) holistic integration, (5) low-level indeterminacy, (6) multiple realisability, (7) historicity, (8) agent-level normativity. Each criterion is taken to be dimensional rather than categorical, and thus we conclude with a short discussion on how researchers working on quantifying agency may use this multidimensional framework to situate and guide their research.
Collapse
Affiliation(s)
- Henry D. Potter
- Smurfit Institute of Genetics, Trinity College Dublin, D02 VF25 Dublin, Ireland;
- Institute of Neuroscience, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, D02 VF25 Dublin, Ireland;
- Institute of Neuroscience, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|