1
|
Rao VG, Subramanianbalachandar VA, Magaj MM, Redemann S, Kulkarni SS. Mechanisms of cilia regeneration in Xenopus multiciliated epithelium in vivo. EMBO Rep 2025; 26:2192-2220. [PMID: 40087471 PMCID: PMC12019409 DOI: 10.1038/s44319-025-00414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/17/2025] Open
Abstract
Cilia regeneration is a physiological event, and while studied extensively in unicellular organisms, it remains poorly understood in vertebrates. In this study, using Xenopus multiciliated cells (MCCs), we demonstrate that, unlike unicellular organisms, deciliation removes the transition zone (TZ) and the ciliary axoneme. While MCCs immediately begin regenerating the axoneme, surprisingly, the TZ assembly is delayed. However, ciliary tip proteins, Sentan and Clamp, localize to regenerating cilia without delay. Using cycloheximide (CHX) to block protein synthesis, we show that the TZ protein B9d1 is not present in the cilia precursor pool and requires new transcription/translation, providing insights into the delayed repair of TZ. Moreover, MCCs in CHX treatment assemble fewer but near wild-type length cilia by gradually concentrating ciliogenesis proteins like IFTs at a few basal bodies. Using mathematical modeling, we show that cilia length, compared to cilia number, has a larger influence on the force generated by MCCs. Our results question the requirement of TZ in motile cilia assembly and provide insights into the fundamental question of how cells determine organelle size and number.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Magdalena M Magaj
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
- Center for Membrane & Cell Physiology, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Stefanie Redemann
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
- Center for Membrane & Cell Physiology, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA.
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
2
|
Nguyen TK, Rodriguez JM, Wesselman HM, Wingert RA. Emx2 is an essential regulator of ciliated cell development across embryonic tissues. iScience 2024; 27:111271. [PMID: 39687012 PMCID: PMC11647118 DOI: 10.1016/j.isci.2024.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/30/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Cilia are hair-like organelles with vital physiological roles, and ciliogenesis defects underlie a range of severe congenital malformations and human diseases. Here, we report that empty spiracles homeobox 2 (emx2) is essential for cilia development across multiple embryonic tissues including the ear, neuromasts and Kupffer's vesicle (KV), which establishes left/right axial pattern. emx2 deficient embryos manifest altered fluid homeostasis and kidney defects including decreased multiciliated cells (MCCs), determining that emx2 is essential to properly establish several renal lineages. Further, emx2 deficiency disrupted renal monociliated cells, MCCs and led to aberrant basal body positioning. We reported that emx2 regulates prostaglandin biosynthesis in ciliogenesis and renal fate changes through key factors including ppargc1a, ptgs1 and PGE2. Our findings reveal essential roles of emx2 in tissue cilia development, and identify emx2 as a critical regulator of prostaglandin biosynthesis during renal development and ciliogenesis, providing insights relevant for future treatments of ciliopathies.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John-Michael Rodriguez
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah M. Wesselman
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
3
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
4
|
Mercey O, Mukherjee S, Guichard P, Hamel V. The molecular architecture of the ciliary transition zones. Curr Opin Cell Biol 2024; 88:102361. [PMID: 38648677 DOI: 10.1016/j.ceb.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Cilia and flagella are specialized eukaryotic organelles projecting from the surface of eukaryotic cells that play a central role in various physiological processes, including cell motility, sensory perception, and signal transduction. At the base of these structures lies the ciliary transition zone, a pivotal region that functions as a gatekeeper and communication hub for ciliary activities. Despite its crucial role, the intricacies of its architecture remain poorly understood, especially given the variations in its organization across different cell types and species. In this review, we explore the molecular architecture of the ciliary transition zone, with a particular focus on recent findings obtained using cryotomography and super-resolution imaging techniques.
Collapse
Affiliation(s)
- Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Souradip Mukherjee
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Rao VG, Subramanianbalachandar V, Magaj MM, Redemann S, Kulkarni SS. Mechanisms of cilia regeneration in Xenopus multiciliated epithelium in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544972. [PMID: 37398226 PMCID: PMC10312767 DOI: 10.1101/2023.06.14.544972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cilia regeneration is a physiological event, and while studied extensively in unicellular organisms, it remains poorly understood in vertebrates. In this study, using Xenopus multiciliated cells (MCCs) as a model, we demonstrate that, unlike unicellular organisms, deciliation removes the transition zone (TZ) and the ciliary axoneme. While MCCs immediately begin the regeneration of the ciliary axoneme, surprisingly, the assembly of TZ is delayed. However, ciliary tip proteins, Sentan and Clamp, localize to regenerating cilia without delay. Using cycloheximide (CHX) to block new protein synthesis, we show that the TZ protein B9d1 is not a component of the cilia precursor pool and requires new transcription/translation, providing insights into the delayed repair of TZ. Moreover, MCCs in CHX treatment assemble fewer (∼ 10 vs. ∼150 in controls) but near wild-type length (ranging between 60 to 90%) cilia by gradually concentrating ciliogenesis proteins like IFTs at a select few basal bodies. Using mathematical modeling, we show that cilia length compared to cilia number influences the force generated by MCCs more. In summary, our results question the requirement of TZ in motile cilia assembly and provide insights into how cells determine organelle size and number.
Collapse
|
6
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Chen Y, Zhang Y, Zhou X. Non-classical functions of nuclear pore proteins in ciliopathy. Front Mol Biosci 2023; 10:1278976. [PMID: 37908226 PMCID: PMC10614291 DOI: 10.3389/fmolb.2023.1278976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Nucleoporins (NUPs) constitute integral nuclear pore protein (NPC) elements. Although traditional NUP functions have been extensively researched, evidence of additional vital non-NPC roles, referred to herein as non-classical NUP functions, is also emerging. Several NUPs localise at the ciliary base. Indeed, Nup188, Nup93 or Nup205 knockdown results in cilia loss, impacting cardiac left-right patterning in models and cell lines. Genetic variants of Nup205 and Nup188 have been identified in patients with congenital heart disease and situs inversus totalis or heterotaxy, a prevalent human ciliopathy. These findings link non-classical NUP functions to human diseases. This mini-review summarises pivotal NUP interactions with NIMA-related kinases or nephronophthisis proteins that regulate ciliary function and explores other NUPs potentially implicated in cilia-related disorders. Overall, elucidating the non-classical roles of NUPs will enhance comprehension of ciliopathy aetiology.
Collapse
Affiliation(s)
- Yan Chen
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
8
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Dougherty LL, Dutta S, Avasthi P. The ERK activator, BCI, inhibits ciliogenesis and causes defects in motor behavior, ciliary gating, and cytoskeletal rearrangement. Life Sci Alliance 2023; 6:e202301899. [PMID: 36914265 PMCID: PMC10011610 DOI: 10.26508/lsa.202301899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
MAPK pathways are well-known regulators of the cell cycle, but they have also been found to control ciliary length in a wide variety of organisms and cell types from Caenorhabditis elegans neurons to mammalian photoreceptors through unknown mechanisms. ERK1/2 is a MAP kinase in human cells that is predominantly phosphorylated by MEK1/2 and dephosphorylated by the phosphatase DUSP6. We have found that the ERK1/2 activator/DUSP6 inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), inhibits ciliary maintenance in Chlamydomonas and hTERT-RPE1 cells and assembly in Chlamydomonas These effects involve inhibition of total protein synthesis, microtubule organization, membrane trafficking, and KAP-GFP motor dynamics. Our data provide evidence for various avenues for BCI-induced ciliary shortening and impaired ciliogenesis that gives mechanistic insight into how MAP kinases can regulate ciliary length.
Collapse
Affiliation(s)
- Larissa L Dougherty
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
| | - Soumita Dutta
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prachee Avasthi
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Bigge BM, Rosenthal NE, Avasthi P. Initial ciliary assembly in Chlamydomonas requires Arp2/3 complex-dependent endocytosis. Mol Biol Cell 2023; 34:ar24. [PMID: 36753382 PMCID: PMC10092647 DOI: 10.1091/mbc.e22-09-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Ciliary assembly, trafficking, and regulation are dependent on microtubules, but the mechanisms of ciliary assembly also require the actin cytoskeleton. Here, we dissect subcellular roles of actin in ciliogenesis by focusing on actin networks nucleated by the Arp2/3 complex in the powerful ciliary model, Chlamydomonas. We find that the Arp2/3 complex is required for the initial stages of ciliary assembly when protein and membrane are in high demand but cannot yet be supplied from the Golgi complex. We provide evidence for Arp2/3 complex-dependent endocytosis of ciliary proteins, an increase in endocytic activity upon induction of ciliary growth, and relocalization of plasma membrane proteins to newly formed cilia.
Collapse
Affiliation(s)
- Brae M Bigge
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS 66103
| | - Nicholas E Rosenthal
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS 66103
| | - Prachee Avasthi
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS 66103
| |
Collapse
|
11
|
Aslanyan MG, Doornbos C, Diwan GD, Anvarian Z, Beyer T, Junger K, van Beersum SEC, Russell RB, Ueffing M, Ludwig A, Boldt K, Pedersen LB, Roepman R. A targeted multi-proteomics approach generates a blueprint of the ciliary ubiquitinome. Front Cell Dev Biol 2023; 11:1113656. [PMID: 36776558 PMCID: PMC9908615 DOI: 10.3389/fcell.2023.1113656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease.
Collapse
Affiliation(s)
- Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cenna Doornbos
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Zeinab Anvarian
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Sylvia E. C. van Beersum
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Alexander Ludwig
- School of Biological Sciences, NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lotte B. Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
12
|
Pepe A, Colucci A, Carucci M, Nazzaro L, Bucci C, Ranucci G, Di Giorgio A, Vajro P, Mandato C. Case Report: Add-on treatment with odevixibat in a new subtype of progressive familial intrahepatic cholestasis broadens the therapeutic horizon of genetic cholestasis. Front Pediatr 2023; 11:1061535. [PMID: 36865697 PMCID: PMC9974160 DOI: 10.3389/fped.2023.1061535] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Odevixibat, an ileal bile acid transporter (IBAT) inhibitor, is effective for the treatment of pruritus in children diagnosed with progressive familial intrahepatic cholestasis (PFIC) type 1 and 2. There are no studies showing the efficacy of Odevixibat in children with different subtypes of PFIC. We describe the case of a 6-year-old girl with chronic cholestatic jaundice. In the last 12 months laboratory data showed high serum levels of bilirubin (total bilirubin x 2.5 ULN; direct bilirubin x 1.7 ULN) and bile acids (sBA x 70 ULN), elevated transaminases (x 3-4 ULN), and preserved synthetic liver function. Genetic testing showed homozygous mutation in ZFYVE19 gene, which is not included among the classic causative genes of PFIC and determined a new non-syndromic phenotype recently classified as PFIC9 (OMIM # 619849). Due to the persistent intensity of itching [score of 5 (very severe) at the Caregiver Global Impression of Severity (CaGIS)] and sleep disturbances not responsive to rifampicin and ursodeoxycholic acid (UDCA), Odevixibat treatment was started. After treatment with odevixibat we observed: (i) reduction in sBA from 458 to 71 μmol/L (absolute change from baseline: -387 μmol/L), (ii) reduction in CaGIS from 5 to 1, and (iii) resolution of sleep disturbances. The BMI z-score progressively increased from -0.98 to +0.56 after 3 months of treatment. No adverse drug events were recorded. Treatment with IBAT inhibitor was effective and safe in our patient suggesting that Odevixibat may be potentially considered for the treatment of cholestatic pruritus also in children with rare subtypes of PFIC. Further studies on a larger scale could lead to the increasing of patients eligible for this treatment.
Collapse
Affiliation(s)
- Angela Pepe
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| | - Angelo Colucci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| | - Martina Carucci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| | - Lucia Nazzaro
- Pediatric Unit, University Hospital "San Giovanni di Dio e Ruggi d"Aragona", Salerno, Italy
| | - Cristina Bucci
- Department of Gastroenterology, AORN Santobono- Pausilipon Children Hospital, Naples, Italy
| | - Giusy Ranucci
- Pediatric Department, AORN Santobono- Pausilipon Children Hospital, Naples, Italy
| | - Angelo Di Giorgio
- Department of Pediatric Gastroenterology Hepatology and Transplantation, Pediatric Hepatology, Gastroenterology and Transplantation, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| | - Claudia Mandato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Pediatrics Section, University of Salerno, Baronissi (Salerno), Italy
| |
Collapse
|
13
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
14
|
Abstract
Cilia sense and transduce sensory stimuli, homeostatic cues and developmental signals by orchestrating signaling reactions. Extracellular vesicles (EVs) that bud from the ciliary membrane have well-studied roles in the disposal of excess ciliary material, most dramatically exemplified by the shedding of micrometer-sized blocks by photoreceptors. Shedding of EVs by cilia also affords cells with a powerful means to shorten cilia. Finally, cilium-derived EVs may enable cell-cell communication in a variety of organisms, ranging from single-cell parasites and algae to nematodes and vertebrates. Mechanistic understanding of EV shedding by cilia is an active area of study, and future progress may open the door to testing the function of ciliary EV shedding in physiological contexts. In this Cell Science at a Glance and the accompanying poster, we discuss the molecular mechanisms that drive the shedding of ciliary material into the extracellular space, the consequences of shedding for the donor cell and the possible roles that ciliary EVs may have in cell non-autonomous contexts.
Collapse
Affiliation(s)
- Irene Ojeda Naharros
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Maxence V. Nachury
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| |
Collapse
|
15
|
Wang L, Wen X, Wang Z, Lin Z, Li C, Zhou H, Yu H, Li Y, Cheng Y, Chen Y, Lou G, Pan J, Cao M. Ciliary transition zone proteins coordinate ciliary protein composition and ectosome shedding. Nat Commun 2022; 13:3997. [PMID: 35810181 PMCID: PMC9271036 DOI: 10.1038/s41467-022-31751-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
The transition zone (TZ) of the cilium/flagellum serves as a diffusion barrier that controls the entry/exit of ciliary proteins. Mutations of the TZ proteins disrupt barrier function and lead to multiple human diseases. However, the systematic regulation of ciliary composition and signaling-related processes by different TZ proteins is not completely understood. Here, we reveal that loss of TCTN1 in Chlamydomonas reinhardtii disrupts the assembly of wedge-shaped structures in the TZ. Proteomic analysis of cilia from WT and three TZ mutants, tctn1, cep290, and nphp4, shows a unique role of each TZ subunit in the regulation of ciliary composition, explaining the phenotypic diversity of different TZ mutants. Interestingly, we find that defects in the TZ impair the formation and biological activity of ciliary ectosomes. Collectively, our findings provide systematic insights into the regulation of ciliary composition by TZ proteins and reveal a link between the TZ and ciliary ectosomes. Cilia project from cells to serve sensory functions, and ciliary disruption can result in multiple disorders known as ciliopathies. Here the authors show that the ciliopathy gene TCTN1 functions to regulate the ciliary transition zone and ectosome formation.
Collapse
Affiliation(s)
- Liang Wang
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China.
| | - Xin Wen
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Zhengmao Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266071, Qingdao, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Chunhong Li
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Huilin Zhou
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Huimin Yu
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yuhan Li
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yifei Cheng
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Geer Lou
- Shanghai Biotree Biotech Co. Ltd, 201815, Shanghai, China
| | - Junmin Pan
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266071, Qingdao, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
16
|
Nikonorova IA, Wang J, Cope AL, Tilton PE, Power KM, Walsh JD, Akella JS, Krauchunas AR, Shah P, Barr MM. Isolation, profiling, and tracking of extracellular vesicle cargo in Caenorhabditis elegans. Curr Biol 2022; 32:1924-1936.e6. [PMID: 35334227 PMCID: PMC9491618 DOI: 10.1016/j.cub.2022.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) may mediate intercellular communication by carrying protein and RNA cargo. The composition, biology, and roles of EVs in physiology and pathology have been primarily studied in the context of biofluids and in cultured mammalian cells. The experimental tractability of C. elegans makes for a powerful in vivo animal system to identify and study EV cargo from its cellular source. We developed an innovative method to label, track, and profile EVs using genetically encoded, fluorescent-tagged EV cargo and conducted a large-scale isolation and proteomic profiling. Nucleic acid binding proteins (∼200) are overrepresented in our dataset. By integrating our EV proteomic dataset with single-cell transcriptomic data, we identified and validated ciliary EV cargo: CD9-like tetraspanin (TSP-6), ectonucleotide pyrophosphatase/phosphodiesterase (ENPP-1), minichromosome maintenance protein (MCM-3), and double-stranded RNA transporter SID-2. C. elegans EVs also harbor RNA, suggesting that EVs may play a role in extracellular RNA-based communication.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| | - Juan Wang
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Alexander L Cope
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Peter E Tilton
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Kaiden M Power
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jonathon D Walsh
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Jyothi S Akella
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Amber R Krauchunas
- University of Delaware, Department of Biological Sciences, 105 The Green, Newark, DE 19716, USA
| | - Premal Shah
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Rutgers, The State University of New Jersey, Department of Genetics and Human Genetics Institute of New Jersey Piscataway, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
17
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
18
|
Coceres VM, Iriarte LS, Miranda-Magalhães A, Santos de Andrade TA, de Miguel N, Pereira-Neves A. Ultrastructural and Functional Analysis of a Novel Extra-Axonemal Structure in Parasitic Trichomonads. Front Cell Infect Microbiol 2021; 11:757185. [PMID: 34858875 PMCID: PMC8630684 DOI: 10.3389/fcimb.2021.757185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Trichomonas vaginalis and Tritrichomonas foetus are extracellular flagellated parasites that inhabit humans and other mammals, respectively. In addition to motility, flagella act in a variety of biological processes in different cell types, and extra-axonemal structures (EASs) have been described as fibrillar structures that provide mechanical support and act as metabolic, homeostatic, and sensory platforms in many organisms. It has been assumed that T. vaginalis and T. foetus do not have EASs. However, here, we used complementary electron microscopy techniques to reveal the ultrastructure of EASs in both parasites. Such EASs are thin filaments (3-5 nm diameter) running longitudinally along the axonemes and surrounded by the flagellar membrane, forming prominent flagellar swellings. We observed that the formation of EAS increases after parasite adhesion on the host cells, fibronectin, and precationized surfaces. A high number of rosettes, clusters of intramembrane particles that have been proposed as sensorial structures, and microvesicles protruding from the membrane were observed in the EASs. Our observations demonstrate that T. vaginalis and T. foetus can connect to themselves by EASs present in flagella. The protein VPS32, a member of the ESCRT-III complex crucial for diverse membrane remodeling events, the pinching off and release of microvesicles, was found in the surface as well as in microvesicles protruding from EASs. Moreover, we demonstrated that the formation of EAS also increases in parasites overexpressing VPS32 and that T. vaginalis-VPS32 parasites showed greater motility in semisolid agar. These results provide valuable data about the role of the flagellar EASs in the cell-to-cell communication and pathogenesis of these extracellular parasites.
Collapse
Affiliation(s)
- Veronica M. Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Lucrecia S. Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | | | | | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | | |
Collapse
|
19
|
Wang J, Nikonorova IA, Silva M, Walsh JD, Tilton PE, Gu A, Akella JS, Barr MM. Sensory cilia act as a specialized venue for regulated extracellular vesicle biogenesis and signaling. Curr Biol 2021; 31:3943-3951.e3. [PMID: 34270950 DOI: 10.1016/j.cub.2021.06.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Ciliary extracellular vesicle (EV) shedding is evolutionarily conserved. In Chlamydomonas and C. elegans, ciliary EVs act as signaling devices.1-3 In cultured mammalian cells, ciliary EVs regulate ciliary disposal but also receptor abundance and signaling, ciliary length, and ciliary membrane dynamics.4-7 Mammalian cilia produce EVs from the tip and along the ciliary membrane.8,9 This study aimed to determine the functional significance of shedding at distinct locations and to explore ciliary EV biogenesis mechanisms. Using Airyscan super-resolution imaging in living C. elegans animals, we find that neuronal sensory cilia shed TRP polycystin-2 channel PKD-2::GFP-carrying EVs from two distinct sites: the ciliary tip and the ciliary base. Ciliary tip shedding requires distal ciliary enrichment of PKD-2 by the myristoylated coiled-coil protein CIL-7. Kinesin-3 KLP-6 and intraflagellar transport (IFT) kinesin-2 motors are also required for ciliary tip EV shedding. A big unanswered question in the EV field is how cells sort EV cargo. Here, we show that two EV cargoes- CIL-7 and PKD-2-localized and trafficked differently along cilia and were sorted to different environmentally released EVs. In response to mating partners, C. elegans males modulate EV cargo composition by increasing the ratio of PKD-2 to CIL-7 EVs. Overall, our study indicates that the cilium and its trafficking machinery act as a specialized venue for regulated EV biogenesis and signaling.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Malan Silva
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jonathon D Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Peter E Tilton
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Amanda Gu
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jyothi S Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
20
|
Abstract
Ciliogenesis describes the assembly of cilia in interphase cells. Several hundred proteins have been linked to ciliogenesis, which proceeds through a highly coordinated multistage process at the distal end of centrioles requiring membranes. In this short review, we focus on recently reported insights into the biogenesis of the primary cilium membrane and its association with other ciliogenic processes in the intracellular ciliogenesis pathway.
Collapse
Affiliation(s)
- Saurabh Shakya
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| |
Collapse
|
21
|
Rao VG, Kulkarni SS. Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes. Genesis 2021; 59:e23414. [PMID: 33576572 DOI: 10.1002/dvg.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Cilia are present on most vertebrate cells and play a central role in development, growth, and homeostasis. Thus, cilia dysfunction can manifest into an array of diseases, collectively termed ciliopathies, affecting millions of lives worldwide. Yet, our understanding of the gene regulatory networks that control cilia assembly and functions remain incomplete. With the advances in next-generation sequencing technologies, we can now rapidly predict pathogenic variants from hundreds of ciliopathy patients. While the pace of candidate gene discovery is exciting, most of these genes have never been previously implicated in cilia assembly or function. This makes assigning the disease causality difficult. This review discusses how Xenopus, a genetically tractable and high-throughput vertebrate model, has played a central role in identifying, validating, and characterizing candidate ciliopathy genes. The review is focused on multiciliated cells (MCCs) and diseases associated with MCC dysfunction. MCCs harbor multiple motile cilia on their apical surface to generate extracellular fluid flow inside the airway, the brain ventricles, and the oviduct. In Xenopus, these cells are external and present on the embryonic epidermal epithelia, facilitating candidate genes analysis in MCC development in vivo. The ability to introduce patient variants to study their effects on disease progression makes Xenopus a powerful model to improve our understanding of the underlying disease mechanisms and explain the patient phenotype.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Corkins ME, Krneta-Stankic V, Kloc M, Miller RK. Aquatic models of human ciliary diseases. Genesis 2021; 59:e23410. [PMID: 33496382 PMCID: PMC8593908 DOI: 10.1002/dvg.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/06/2022]
Abstract
Cilia are microtubule-based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes & Development, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston Texas 77030
| |
Collapse
|
23
|
Labat-de-Hoz L, Rubio-Ramos A, Casares-Arias J, Bernabé-Rubio M, Correas I, Alonso MA. A Model for Primary Cilium Biogenesis by Polarized Epithelial Cells: Role of the Midbody Remnant and Associated Specialized Membranes. Front Cell Dev Biol 2021; 8:622918. [PMID: 33585461 PMCID: PMC7873843 DOI: 10.3389/fcell.2020.622918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are solitary, microtubule-based protrusions surrounded by a ciliary membrane equipped with selected receptors that orchestrate important signaling pathways that control cell growth, differentiation, development and homeostasis. Depending on the cell type, primary cilium assembly takes place intracellularly or at the cell surface. The intracellular route has been the focus of research on primary cilium biogenesis, whereas the route that occurs at the cell surface, which we call the "alternative" route, has been much less thoroughly characterized. In this review, based on recent experimental evidence, we present a model of primary ciliogenesis by the alternative route in which the remnant of the midbody generated upon cytokinesis acquires compact membranes, that are involved in compartmentalization of biological membranes. The midbody remnant delivers part of those membranes to the centrosome in order to assemble the ciliary membrane, thereby licensing primary cilium formation. The midbody remnant's involvement in primary cilium formation, the regulation of its inheritance by the ESCRT machinery, and the assembly of the ciliary membrane from the membranes originally associated with the remnant are discussed in the context of the literature concerning the ciliary membrane, the emerging roles of the midbody remnant, the regulation of cytokinesis, and the role of membrane compartmentalization. We also present a model of cilium emergence during evolution, and summarize the directions for future research.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Casares-Arias
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Bernabé-Rubio
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Bloodgood RA. Prey capture in protists utilizing microtubule filled processes and surface motility. Cytoskeleton (Hoboken) 2020; 77:500-514. [PMID: 33190423 DOI: 10.1002/cm.21644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 11/05/2022]
Abstract
Surface motility, which can be visualized by the movement of live prey organisms, polystyrene microspheres or other inert particles, has been shown to occur in a wide variety of microtubule-filled extensions of the protistan cell surface, although the associated functions remain enigmatic. This article integrates an extensive but poorly known body of literature showing that surface motility, associated with microtubule-filled cell extensions such as flagella, axopodia, actinopodia, reticulopodia, and haptonema, plays a crucial role in protistan prey capture. Surface motility has been most extensively studied in Chlamydomonas where it is responsible for flagella-dependent whole cell gliding motility. The force transduction machinery for gliding motility in Chlamydomonas is intraflagellar transport. Other than in Chlamydomonas, this field has not moved far beyond the descriptive to the mechanistic because of technical challenges associated with many of the protistan organisms that utilize surface motility for prey capture. The purpose of this article is to rekindle interest in the protistan systems that utilize surface motility for prey capture at a time when newly emerging molecular tools for working with protists are poised to reinvigorate a field that has been quiescent too long.
Collapse
Affiliation(s)
- Robert A Bloodgood
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
25
|
Spencer WJ, Lewis TR, Pearring JN, Arshavsky VY. Photoreceptor Discs: Built Like Ectosomes. Trends Cell Biol 2020; 30:904-915. [PMID: 32900570 DOI: 10.1016/j.tcb.2020.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 01/22/2023]
Abstract
The light-sensitive outer segment organelle of the vertebrate photoreceptor cell is a modified cilium filled with hundreds of flattened 'disc' membranes that provide vast light-absorbing surfaces. The outer segment is constantly renewed with new discs added at its base every day. This continuous process is essential for photoreceptor viability. In this review, we describe recent breakthroughs in the understanding of disc morphogenesis, with a focus on the molecular mechanisms responsible for initiating disc formation from the ciliary membrane. We highlight the discoveries that this mechanism evolved from an innate ciliary process of releasing small extracellular vesicles, or ectosomes, and that both disc formation and ectosome release rely on the actin cytoskeleton.
Collapse
Affiliation(s)
- William J Spencer
- Albert Eye Research Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Tylor R Lewis
- Albert Eye Research Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jillian N Pearring
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Vadim Y Arshavsky
- Albert Eye Research Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
26
|
Luan W, Hao CZ, Li JQ, Wei Q, Gong JY, Qiu YL, Lu Y, Shen CH, Xia Q, Xie XB, Zhang MH, Abuduxikuer K, Li ZD, Wang L, Xing QH, Knisely AS, Wang JS. Biallelic loss-of-function ZFYVE19 mutations are associated with congenital hepatic fibrosis, sclerosing cholangiopathy and high-GGT cholestasis. J Med Genet 2020; 58:514-525. [PMID: 32737136 DOI: 10.1136/jmedgenet-2019-106706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND For many children with intrahepatic cholestasis and high-serum gamma-glutamyl transferase (GGT) activity, a genetic aetiology of hepatobiliary disease remains undefined. We sought to identify novel genes mutated in children with idiopathic high-GGT intrahepatic cholestasis, with clinical, histopathological and functional correlations. METHODS We assembled a cohort of 25 children with undiagnosed high-GGT cholestasis and without clinical features of biliary-tract infection or radiological features of choledochal malformation, sclerosing cholangitis or cholelithiasis. Mutations were identified through whole-exome sequencing and targeted Sanger sequencing. We reviewed histopathological findings and assessed phenotypical effects of ZFYVE19 deficiency in cultured cells by immunofluorescence microscopy. RESULTS Nine Han Chinese children harboured biallelic, predictedly complete loss-of-function pathogenic mutations in ZFYVE19 (c.314C>G, p.S105X; c.379C>T, p.Q127X; c.514C>T, p.R172X; c.547C>T, p.R183X; c.226A>G, p.M76V). All had portal hypertension and, at liver biopsy, histopathological features of the ductal plate malformation (DPM)/congenital hepatic fibrosis (CHF). Four children required liver transplantation for recurrent gastrointestinal haemorrhage. DPM/CHF was confirmed at hepatectomy, with sclerosing small-duct cholangitis. Immunostaining for two primary-cilium axonemal proteins found expression that was deficient intraluminally and ectopic within cholangiocyte cytoplasm. ZFYVE19 depletion in cultured cells yielded abnormalities of centriole and axoneme. CONCLUSION Biallelic ZFYVE19 mutations can lead to high-GGT cholestasis and DPM/CHF in vivo. In vitro, they can lead to centriolar and axonemal abnormalities. These observations indicate that mutation in ZFYVE19 results, through as yet undefined mechanisms, in a ciliopathy.
Collapse
Affiliation(s)
- Weisha Luan
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China.,The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Chen-Zhi Hao
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jia-Qi Li
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China.,The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Qing Wei
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yi-Ling Qiu
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China.,The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Cong-Huan Shen
- Department of Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Mei-Hong Zhang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Kuerbanjiang Abuduxikuer
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhong-Die Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Li Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Qing-He Xing
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, Graz, Austria
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
27
|
Chen HY, Kelley RA, Li T, Swaroop A. Primary cilia biogenesis and associated retinal ciliopathies. Semin Cell Dev Biol 2020; 110:70-88. [PMID: 32747192 PMCID: PMC7855621 DOI: 10.1016/j.semcdb.2020.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, which is packed with membranous discs enriched for components of the phototransduction machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A network. We will also explore how recent technologies can advance our understanding of cilia biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.
Collapse
Affiliation(s)
- Holly Y Chen
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| | - Ryan A Kelley
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Gogendeau D, Lemullois M, Le Borgne P, Castelli M, Aubusson-Fleury A, Arnaiz O, Cohen J, Vesque C, Schneider-Maunoury S, Bouhouche K, Koll F, Tassin AM. MKS-NPHP module proteins control ciliary shedding at the transition zone. PLoS Biol 2020; 18:e3000640. [PMID: 32163404 PMCID: PMC7093003 DOI: 10.1371/journal.pbio.3000640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/24/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Ciliary shedding occurs from unicellular organisms to metazoans. Although required during the cell cycle and during neurogenesis, the process remains poorly understood. In all cellular models, this phenomenon occurs distal to the transition zone (TZ), suggesting conserved molecular mechanisms. The TZ module proteins (Meckel Gruber syndrome [MKS]/Nephronophtysis [NPHP]/Centrosomal protein of 290 kDa [CEP290]/Retinitis pigmentosa GTPase regulator-Interacting Protein 1-Like Protein [RPGRIP1L]) are known to cooperate to establish TZ formation and function. To determine whether they control deciliation, we studied the function of 5 of them (Transmembrane protein 107 [TMEM107], Transmembrane protein 216 [TMEM216], CEP290, RPGRIP1L, and NPHP4) in Paramecium. All proteins are recruited to the TZ of growing cilia and localize with 9-fold symmetry at the level of the most distal part of the TZ. We demonstrate that depletion of the MKS2/TMEM216 and TMEM107 proteins induces constant deciliation of some cilia, while depletion of either NPHP4, CEP290, or RPGRIP1L prevents Ca2+/EtOH deciliation. Our results constitute the first evidence for a role of conserved TZ proteins in deciliation and open new directions for understanding motile cilia physiology. Functional analysis and subcellular localisation of the conserved transition zone proteins in the ciliate Paramecium tetraurelia demonstrates their involvement in the ciliary shedding process, opening new avenues fir understanding the molecular mechanism of deciliation.
Collapse
Affiliation(s)
- Delphine Gogendeau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Michel Lemullois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pierrick Le Borgne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Manon Castelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne Aubusson-Fleury
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jean Cohen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Developmental Biology Laboratory-Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Developmental Biology Laboratory-Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Khaled Bouhouche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - France Koll
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne-Marie Tassin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
29
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
30
|
Long H, Huang K. Transport of Ciliary Membrane Proteins. Front Cell Dev Biol 2020; 7:381. [PMID: 31998723 PMCID: PMC6970386 DOI: 10.3389/fcell.2019.00381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cilia and flagella are highly conserved organelles in eukaryotic cells that drive cell movement and act as cell antennae that receive and transmit signals. In addition to receiving and transducing external signals that activate signal cascades, cilia also secrete ciliary ectosomes that send signals to recipient cells, and thereby mediate cell–cell communication. Abnormal ciliary function leads to various ciliopathies, and the precise transport and localization of ciliary membrane proteins are essential for cilium function. This review summarizes current knowledge about the transport processes of ciliary membrane proteins after their synthesis at the endoplasmic reticulum: modification and sorting in the Golgi apparatus, transport through vesicles to the ciliary base, entrance into cilia through the diffusion barrier, and turnover by ectosome secretion. The molecular mechanisms and regulation involved in each step are also discussed. Transport of ciliary membrane proteins is a complex, precise cellular process coordinated among multiple organelles. By systematically analyzing the existing research, we identify topics that should be further investigated to promote progress in this field of research.
Collapse
Affiliation(s)
- Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
31
|
Jung E, Choi TI, Lee JE, Kim CH, Kim J. ESCRT subunit CHMP4B localizes to primary cilia and is required for the structural integrity of the ciliary membrane. FASEB J 2019; 34:1331-1344. [PMID: 31914703 DOI: 10.1096/fj.201901778r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
Proteins specialized in the detection, generation, or stabilization of membrane curvature play important roles in establishing various morphologies of cells and cellular organelles. Primary cilia are cellular organelles that protrude from the cell surface using a microtubule-based cytoskeleton called the axoneme as a structural support. It is unclear whether the integrity of the high curvature of the ciliary membrane depends on membrane curvature-related proteins. Charged Multivesicular Body Protein 4B (CHMP4B), a subunit of the endosomal sorting complexes required for transport (ESCRT), can stabilize membrane curvature. Here we show that CHMP4B is involved in the assembly and maintenance of primary cilia. CHMP4B was localized to primary cilia in mammalian cells. Knockdown of CHMP4B interfered with cilium assembly and also caused fragmentation of preexisting cilia. By contrast, cilium formation was unaffected by the interruption of the ESCRT-dependent endocytic degradation pathway. Morpholino (MO)-mediated CHMP4B depletion in zebrafish embryos induced characteristic phenotypes of ciliary defects such as curved body axis, hydrocephalus, otolith malformation, and kidney cyst. Our study reveals a new role for the multifunctional protein CHMP4B as a key factor in maintaining the structural integrity of primary cilia.
Collapse
Affiliation(s)
- Eunji Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Ji-Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Joon Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
32
|
Sim HJ, Yun S, Kim HE, Kwon KY, Kim GH, Yun S, Kim BG, Myung K, Park TJ, Kwon T. Simple Method To Characterize the Ciliary Proteome of Multiciliated Cells. J Proteome Res 2019; 19:391-400. [DOI: 10.1021/acs.jproteome.9b00589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | - Gun-Hwa Kim
- Drug & Disease Target Group, Korea Basic Science Institute (KSBI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
- Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul 02841, Republic of Korea
| | - Sungho Yun
- Drug & Disease Target Group, Korea Basic Science Institute (KSBI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Byung Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Tae Joo Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Taejoon Kwon
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
33
|
Ma M, Stoyanova M, Rademacher G, Dutcher SK, Brown A, Zhang R. Structure of the Decorated Ciliary Doublet Microtubule. Cell 2019; 179:909-922.e12. [PMID: 31668805 PMCID: PMC6936269 DOI: 10.1016/j.cell.2019.09.030] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/29/2019] [Accepted: 09/23/2019] [Indexed: 02/02/2023]
Abstract
The axoneme of motile cilia is the largest macromolecular machine of eukaryotic cells. In humans, impaired axoneme function causes a range of ciliopathies. Axoneme assembly, structure, and motility require a radially arranged set of doublet microtubules, each decorated in repeating patterns with non-tubulin components. We use single-particle cryo-electron microscopy to visualize and build an atomic model of the repeating structure of a native axonemal doublet microtubule, which reveals the identities, positions, repeat lengths, and interactions of 38 associated proteins, including 33 microtubule inner proteins (MIPs). The structure demonstrates how these proteins establish the unique architecture of doublet microtubules, maintain coherent periodicities along the axoneme, and stabilize the microtubules against the repeated mechanical stress induced by ciliary motility. Our work elucidates the architectural principles that underpin the assembly of this large, repetitive eukaryotic structure and provides a molecular basis for understanding the etiology of human ciliopathies.
Collapse
Affiliation(s)
- Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Mihaela Stoyanova
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Griffin Rademacher
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
35
|
Kumar D, Mains RE, Eipper BA, King SM. Ciliary and cytoskeletal functions of an ancient monooxygenase essential for bioactive amidated peptide synthesis. Cell Mol Life Sci 2019; 76:2329-2348. [PMID: 30879092 PMCID: PMC6529398 DOI: 10.1007/s00018-019-03065-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
Many secreted peptides used for cell-cell communication require conversion of a C-terminal glycine to an amide for bioactivity. This reaction is catalyzed only by the integral membrane protein peptidylglycine α-amidating monooxygenase (PAM). PAM has been highly conserved and is found throughout the metazoa; PAM-like sequences are also present in choanoflagellates, filastereans, unicellular and colonial chlorophyte green algae, dinoflagellates and haptophytes. Recent studies have revealed that in addition to playing a key role in peptidergic signaling, PAM also regulates ciliogenesis in vertebrates, planaria and chlorophyte algae, and is required for the stability of actin-based microvilli. Here we briefly introduce the basic principles involved in ciliogenesis, the sequential reactions catalyzed by PAM and the trafficking of PAM through the secretory and endocytic pathways. We then discuss the multi-faceted roles this enzyme plays in the formation and maintenance of cytoskeleton-based cellular protrusions and propose models for how PAM protein and amidating activity might contribute to ciliogenesis. Finally, we consider why some ciliated organisms lack PAM, and discuss the potential ramifications of ciliary localized PAM for the endocrine features commonly observed in patients with ciliopathies.
Collapse
Affiliation(s)
- Dhivya Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
36
|
Jack B, Mueller DM, Fee AC, Tetlow AL, Avasthi P. Partially Redundant Actin Genes in Chlamydomonas Control Transition Zone Organization and Flagellum-Directed Traffic. Cell Rep 2019; 27:2459-2467.e3. [PMID: 31116988 PMCID: PMC6541019 DOI: 10.1016/j.celrep.2019.04.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a biflagellated cell with two actin genes: one encoding a conventional actin (IDA5) and the other encoding a divergent novel actin-like protein (NAP1). Here, we probe how actin redundancy contributes to flagellar assembly. Disrupting a single actin allows complete flagellar assembly. However, when disrupting both actins using latrunculin B (LatB) treatment on the nap1 mutant background, we find that actins are necessary for flagellar growth from newly synthesized limiting flagellar proteins. Under total actin disruption, transmission electron microscopy identified an accumulation of Golgi-adjacent vesicles. We also find that there is a mislocalization of a key transition zone gating and ciliopathy protein, NPHP-4. Our experiments demonstrate that each stage of flagellar biogenesis requires redundant actin function to varying degrees, with an absolute requirement for these actins in transport of Golgi-adjacent vesicles and flagellar incorporation of newly synthesized proteins.
Collapse
Affiliation(s)
- Brittany Jack
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David M Mueller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ann C Fee
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64110, USA
| | - Ashley L Tetlow
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Prachee Avasthi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
37
|
Kashihara H, Chiba S, Kanno SI, Suzuki K, Yano T, Tsukita S. Cep128 associates with Odf2 to form the subdistal appendage of the centriole. Genes Cells 2019; 24:231-243. [PMID: 30623524 DOI: 10.1111/gtc.12668] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 12/13/2022]
Abstract
The mother centriole in a cell has two appendages, the distal appendage (DA) and subdistal appendage (SDA), which have roles in generating cilia and organizing the cellular microtubular network, respectively. In the knockout (KO) cells of Odf2, the component of the DA and SDA, both appendages simultaneously disappear. However, the molecular mechanisms by which the DA and SDA form independently but close to each other downstream of Odf2 are unknown. Here, using super-resolution structured illumination microscopy (SR-SIM), we found that the signal for GFP-tagged Odf2 overlapped considerably with that of immunofluorescently labeled Cep128. We further found that Cep128 knockdown (KD) caused the dissociation of other SDA components from the centriole, including centriolin, Ndel1, ninein and Cep170, whereas Odf2 was still associated with the centriole. In contrast, the DA components remained associated with the centriole in Cep128 KD cells. Consistent with this observation, we identified Cep128 as an Odf2-interacting protein by immunoprecipitation. Taken with the finding that Cep128 deletion decreased the stability of centriolar microtubules, our results indicate that Cep128 associates with Odf2 in the hierarchical assembly of SDA components to elicit the microtubule-organizing function.
Collapse
Affiliation(s)
| | - Shuhei Chiba
- Graduate School of Medicine, Osaka University, Osaka, Japan.,Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shin-Ichiro Kanno
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Koya Suzuki
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Yano
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | | |
Collapse
|
38
|
Akella JS, Silva M, Morsci NS, Nguyen KC, Rice WJ, Hall DH, Barr MM. Cell type-specific structural plasticity of the ciliary transition zone in C. elegans. Biol Cell 2019; 111:95-107. [PMID: 30681171 DOI: 10.1111/boc.201800042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION The current consensus on cilia development posits that the ciliary transition zone (TZ) is formed via extension of nine centrosomal microtubules. In this model, TZ structure remains unchanged in microtubule number throughout the cilium life cycle. This model does not however explain structural variations of TZ structure seen in nature and could also lend itself to the misinterpretation that deviations from nine-doublet microtubule ultrastructure represent an abnormal phenotype. Thus, a better understanding of events that occur at the TZ in vivo during metazoan development is required. RESULTS To address this issue, we characterized ultrastructure of two types of sensory cilia in developing Caenorhabditis elegans. We discovered that, in cephalic male (CEM) and inner labial quadrant (IL2Q) sensory neurons, ciliary TZs are structurally plastic and remodel from one structure to another during animal development. The number of microtubule doublets forming the TZ can be increased or decreased over time, depending on cilia type. Both cases result in structural TZ intermediates different from TZ in cilia of adult animals. In CEM cilia, axonemal extension and maturation occurs concurrently with TZ structural maturation. CONCLUSIONS AND SIGNIFICANCE Our work extends the current model to include the structural plasticity of metazoan transition zone, which can be structurally delayed, maintained or remodelled in cell type-specific manner.
Collapse
Affiliation(s)
- Jyothi S Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA
| | - Malan Silva
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, NY, 10027, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
39
|
Lin H, Guo S, Dutcher SK. RPGRIP1L helps to establish the ciliary gate for entry of proteins. J Cell Sci 2018; 131:jcs220905. [PMID: 30237221 PMCID: PMC6215392 DOI: 10.1242/jcs.220905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in transition zone genes change the composition of the ciliary proteome. We isolated new mutations in RPGRIP1L (denotated as RPG1 in algae) that affect the localization of the transition zone protein NPHP4 in the model organism Chlamydomonas reinhardtii NPHP4 localization is not affected in multiple new intraflagellar transport (IFT) mutants. We compared the proteome of cilia from wild-type and mutants that affect the transition zone (RPGRIP1L) or IFT (IFT172 and DHC1b) by mass spectrometry. The rpg1-1 mutant cilia show the most dramatic increase in cytoplasmic proteins. These nonciliary proteins function in translation, membrane remodeling, ATP production and as chaperonins. These proteins are excluded in isolated cilia from fla11-1 (IFT172) and fla24-1 (DHC1b). Our data support the idea that RPGRIP1L, but not IFT proteins, acts as part of the gate for cytoplasmic proteins. The rpg1-1 cilia lack only a few proteins, which suggests that RPGRIP1L only has a minor role of in the retention of ciliary proteins. The fla11-1 mutant shows the greatest loss/reduction of proteins, and one-third of these proteins have a transmembrane domain. Hence, IFT172 may play a role in the retention of proteins.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Suyang Guo
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
McCullough J, Frost A, Sundquist WI. Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes. Annu Rev Cell Dev Biol 2018; 34:85-109. [PMID: 30095293 PMCID: PMC6241870 DOI: 10.1146/annurev-cellbio-100616-060600] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway mediates cellular membrane remodeling and fission reactions. The pathway comprises five core complexes: ALIX, ESCRT-I, ESCRT-II, ESCRT-III, and Vps4. These soluble complexes are typically recruited to target membranes by site-specific adaptors that bind one or both of the early-acting ESCRT factors: ALIX and ESCRT-I/ESCRT-II. These factors, in turn, nucleate assembly of ESCRT-III subunits into membrane-bound filaments that recruit the AAA ATPase Vps4. Together, ESCRT-III filaments and Vps4 remodel and sever membranes. Here, we review recent advances in our understanding of the structures, activities, and mechanisms of the ESCRT-III and Vps4 machinery, including the first high-resolution structures of ESCRT-III filaments, the assembled Vps4 enzyme in complex with an ESCRT-III substrate, the discovery that ESCRT-III/Vps4 complexes can promote both inside-out and outside-in membrane fission reactions, and emerging mechanistic models for ESCRT-mediated membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA;
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
41
|
Chlamydomonas Basal Bodies as Flagella Organizing Centers. Cells 2018; 7:cells7070079. [PMID: 30018231 PMCID: PMC6070942 DOI: 10.3390/cells7070079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
During ciliogenesis, centrioles convert to membrane-docked basal bodies, which initiate the formation of cilia/flagella and template the nine doublet microtubules of the flagellar axoneme. The discovery that many human diseases and developmental disorders result from defects in flagella has fueled a strong interest in the analysis of flagellar assembly. Here, we will review the structure, function, and development of basal bodies in the unicellular green alga Chlamydomonas reinhardtii, a widely used model for the analysis of basal bodies and flagella. Intraflagellar transport (IFT), a flagella-specific protein shuttle critical for ciliogenesis, was first described in C. reinhardtii. A focus of this review will be on the role of the basal bodies in organizing the IFT machinery.
Collapse
|
42
|
Cell-cell communication via ciliary extracellular vesicles: clues from model systems. Essays Biochem 2018; 62:205-213. [PMID: 29717060 DOI: 10.1042/ebc20170085] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
In this short review, we will focus on the uniqueness of ciliary extracellular vesicles (EVs). In particular, we will review what has been learned regarding EVs produced by cilia of model organisms. Model systems including Chlamydomonas, Caenorhabditis elegans, and mouse revealed the fundamental biology of cilia and flagella and provide a paradigm to understand the roles of cilia and flagella in human development, health, and disease. Likewise, we propose that general principles learned from model systems regarding ciliary EV biogenesis and functions may provide a framework to explore the roles of ciliary EVs in human development, health, and disease.
Collapse
|
43
|
VPS4 is a dynamic component of the centrosome that regulates centrosome localization of γ-tubulin, centriolar satellite stability and ciliogenesis. Sci Rep 2018; 8:3353. [PMID: 29463826 PMCID: PMC5820263 DOI: 10.1038/s41598-018-21491-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/06/2018] [Indexed: 01/18/2023] Open
Abstract
The hexameric AAA ATPase VPS4 facilitates ESCRT III filament disassembly on diverse intracellular membranes. ESCRT III components and VPS4 have been localized to the ciliary transition zone and spindle poles and reported to affect centrosome duplication and spindle pole stability. How the canonical ESCRT pathway could mediate these events is unclear. We studied the association of VPS4 with centrosomes and found that GFP-VPS4 was a dynamic component of both mother and daughter centrioles. A mutant, VPS4EQ, which can’t hydrolyze ATP, was less dynamic and accumulated at centrosomes. Centrosome localization of the VPS4EQ mutant, caused reduced γ-tubulin levels at centrosomes and consequently decreased microtubule growth and altered centrosome positioning. In addition, preventing VPS4 ATP hydrolysis nearly eliminated centriolar satellites and paused ciliogensis after formation of the ciliary vesicle. Zebrafish embryos injected with GFP-VPS4EQ mRNA were less viable, exhibited developmental defects and had fewer cilia in Kupffer’s vesicle. Surprisingly, ESCRT III proteins seldom localized to centrosomes and their depletion did not lead to these phenotypes. Our data support an ESCRT III-independent function for VPS4 at the centrosome and reveal that this evolutionary conserved AAA ATPase influences diverse centrosome functions and, as a result, global cellular architecture and development.
Collapse
|
44
|
Cell-Type Transcriptomes of the Multicellular Green Alga Volvox carteri Yield Insights into the Evolutionary Origins of Germ and Somatic Differentiation Programs. G3-GENES GENOMES GENETICS 2018; 8:531-550. [PMID: 29208647 PMCID: PMC5919742 DOI: 10.1534/g3.117.300253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germ-soma differentiation is a hallmark of complex multicellular organisms, yet its origins are not well understood. Volvox carteri is a simple multicellular green alga that has recently evolved a simple germ-soma dichotomy with only two cell-types: large germ cells called gonidia and small terminally differentiated somatic cells. Here, we provide a comprehensive characterization of the gonidial and somatic transcriptomes of V. carteri to uncover fundamental differences between the molecular and metabolic programming of these cell-types. We found extensive transcriptome differentiation between cell-types, with somatic cells expressing a more specialized program overrepresented in younger, lineage-specific genes, and gonidial cells expressing a more generalist program overrepresented in more ancient genes that shared striking overlap with stem cell-specific genes from animals and land plants. Directed analyses of different pathways revealed a strong dichotomy between cell-types with gonidial cells expressing growth-related genes and somatic cells expressing an altruistic metabolic program geared toward the assembly of flagella, which support organismal motility, and the conversion of storage carbon to sugars, which act as donors for production of extracellular matrix (ECM) glycoproteins whose secretion enables massive organismal expansion. V. carteri orthologs of diurnally controlled genes from C. reinhardtii, a single-celled relative, were analyzed for cell-type distribution and found to be strongly partitioned, with expression of dark-phase genes overrepresented in somatic cells and light-phase genes overrepresented in gonidial cells- a result that is consistent with cell-type programs in V. carteri arising by cooption of temporal regulons in a unicellular ancestor. Together, our findings reveal fundamental molecular, metabolic, and evolutionary mechanisms that underlie the origins of germ-soma differentiation in V. carteri and provide a template for understanding the acquisition of germ-soma differentiation in other multicellular lineages.
Collapse
|
45
|
Atkins KC, Cross FR. Interregulation of CDKA/CDK1 and the Plant-Specific Cyclin-Dependent Kinase CDKB in Control of the Chlamydomonas Cell Cycle. THE PLANT CELL 2018; 30:429-446. [PMID: 29367304 PMCID: PMC5868683 DOI: 10.1105/tpc.17.00759] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/17/2017] [Accepted: 01/24/2018] [Indexed: 05/09/2023]
Abstract
The cyclin-dependent kinase CDK1 is essential for mitosis in fungi and animals. Plant genomes contain the CDK1 ortholog CDKA and a plant kingdom-specific relative, CDKB. The green alga Chlamydomonas reinhardtii has a long G1 growth period followed by rapid cycles of DNA replication and cell division. We show that null alleles of CDKA extend the growth period prior to the first division cycle and modestly extend the subsequent division cycles, but do not prevent cell division, indicating at most a minor role for the CDK1 ortholog in mitosis in Chlamydomonas. A null allele of cyclin A has a similar though less extreme phenotype. In contrast, both CDKB and cyclin B are essential for mitosis. CDK kinase activity measurements imply that the predominant in vivo complexes are probably cyclin A-CDKA and cyclin B-CDKB. We propose a negative feedback loop: CDKA activates cyclin B-CDKB. Cyclin B-CDKB in turn promotes mitotic entry and inactivates cyclin A-CDKA. Cyclin A-CDKA and cyclin B-CDKB may redundantly promote DNA replication. We show that the anaphase-promoting complex is required for inactivation of both CDKA and CDKB and is essential for anaphase. These results are consistent with findings in Arabidopsis thaliana and may delineate the core of plant kingdom cell cycle control that, compared with the well-studied yeast and animal systems, exhibits deep conservation in some respects and striking divergence in others.
Collapse
|
46
|
Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol 2017; 74:66-77. [PMID: 28807885 DOI: 10.1016/j.semcdb.2017.08.022] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
From bacteria to humans, cells secrete a large variety of membrane-bound extracellular vesicles. Only relatively recently has it however started to become clear that the exovesicular transport of proteins and RNAs is important for normal physiology and numerous pathological conditions. Extracellular vesicles can be formed through the release of the intralumenal vesicles of multivesicular endosomes as so-called exosomes, or through direct, ectosomal, budding from the cell surface. Through their ability to promote the bending of membranes away from the cytoplasm, the components of the Endosomal Sorting Complex Required for Transport (ESCRT) have been implicated in both exo- and ectosomal biogenesis. Studies of the ESCRT machinery may therefore provide important insights into the formation and function of extracellular vesicles. In the present review, we first describe the cell biological mechanisms through which ESCRT components contribute to the biogenesis of different types of extracellular vesicles. We then discuss how recent functional studies have started to uncover important roles of ESCRT-dependent extracellular vesicles in a wide variety of processes, including the transport of developmental signaling molecules and embryonic morphogenesis, the regulation of social behavior and host-pathogen interactions, as well as the etiology and progression of neurodegenerative pathologies and cancer.
Collapse
Affiliation(s)
- Thomas Juan
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | | |
Collapse
|
47
|
Avidor-Reiss T, Ha A, Basiri ML. Transition Zone Migration: A Mechanism for Cytoplasmic Ciliogenesis and Postaxonemal Centriole Elongation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028142. [PMID: 28108487 DOI: 10.1101/cshperspect.a028142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cilium is an elongated and continuous structure that spans two major subcellular domains. The cytoplasmic domain contains a short centriole, which serves to nucleate the main projection of the cilium. This projection, known as the axoneme, remains separated from the cytoplasm by a specialized gatekeeping complex within a ciliary subdomain called the transition zone. In this way, the axoneme is compartmentalized. Intriguingly, however, this general principle of cilium biology is altered in the sperm cells of many animals, which instead contain a cytoplasmic axoneme domain. Here, we discuss the hypothesis that the formation of specialized sperm giant centrioles and cytoplasmic cilia is mediated by the migration of the transition zone from its typical location as part of a structure known as the annulus and examine the intrinsic properties of the transition zone that may facilitate its migratory behavior.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- University of Toledo, Department of Biological Sciences, Toledo, Ohio 43606
| | - Andrew Ha
- University of Toledo, Department of Biological Sciences, Toledo, Ohio 43606
| | - Marcus L Basiri
- University of Toledo, Department of Biological Sciences, Toledo, Ohio 43606
| |
Collapse
|
48
|
Abstract
Nuclear pore proteins at the base of cilia were thought to regulate transport into cilia. In this issue of Developmental Cell, Del Viso et al. (2016) challenge this view, showing instead that pore proteins localize to ciliary basal bodies and that their perturbation leads to congenital heart disease.
Collapse
Affiliation(s)
- Samson O Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
49
|
Lu H, Galeano MCR, Ott E, Kaeslin G, Kausalya PJ, Kramer C, Ortiz-Brüchle N, Hilger N, Metzis V, Hiersche M, Tay SY, Tunningley R, Vij S, Courtney AD, Whittle B, Wühl E, Vester U, Hartleben B, Neuber S, Frank V, Little MH, Epting D, Papathanasiou P, Perkins AC, Wright GD, Hunziker W, Gee HY, Otto EA, Zerres K, Hildebrandt F, Roy S, Wicking C, Bergmann C. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet 2017; 49:1025-1034. [PMID: 28530676 DOI: 10.1038/ng.3871] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 04/24/2017] [Indexed: 12/21/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in DZIP1L, which encodes DAZ interacting protein 1-like, in patients with ARPKD. We further validated these findings through loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and to the distal ends of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. In agreement with a defect in the diffusion barrier, we found that the ciliary-membrane translocation of the PKD proteins polycystin-1 and polycystin-2 is compromised in DZIP1L-mutant cells. Together, these data provide what is, to our knowledge, the first conclusive evidence that ARPKD is not a homogeneous disorder and further establish DZIP1L as a second gene involved in ARPKD pathogenesis.
Collapse
Affiliation(s)
- Hao Lu
- Institute of Molecular and Cell Biology, Singapore
| | - Maria C Rondón Galeano
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Elisabeth Ott
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geraldine Kaeslin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Carina Kramer
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Nadescha Hilger
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Vicki Metzis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Milan Hiersche
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | | | - Robert Tunningley
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Shubha Vij
- Institute of Molecular and Cell Biology, Singapore
| | - Andrew D Courtney
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Belinda Whittle
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Elke Wühl
- Division of Pediatric Nephrology, University Children's Hospital Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Udo Vester
- Department of Pediatric Nephrology, University Children's Hospital Essen, Essen, Germany
| | - Björn Hartleben
- Institute of Pathology, MHH University Medical School Hannover, Hannover, Germany
| | - Steffen Neuber
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Valeska Frank
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Epting
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Papathanasiou
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Andrew C Perkins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Mater Research Institute, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Walter Hunziker
- Institute of Molecular and Cell Biology, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Eye Research Institute, Singapore
| | - Heon Yung Gee
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Edgar A Otto
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Klaus Zerres
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Human Genetics, RWTH Aachen University, Aachen, Germany.,Center for Human Genetics, Bioscientia, Ingelheim, Germany
| |
Collapse
|
50
|
Gonçalves J, Pelletier L. The Ciliary Transition Zone: Finding the Pieces and Assembling the Gate. Mol Cells 2017; 40:243-253. [PMID: 28401750 PMCID: PMC5424270 DOI: 10.14348/molcells.2017.0054] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cilia are organelles that project from the surface of cells to fulfill motility and sensory functions. In vertebrates, the functions of both motile and immotile cilia are critical for embryonic development and adult tissue homeostasis. Importantly, a multitude of human diseases is caused by abnormal cilia biogenesis and functions which rely on the compartmentalization of the cilium and the maintenance of its protein composition. The transition zone (TZ) is a specialized ciliary domain present at the base of the cilium and is part of a gate that controls protein entry and exit from this organelle. The relevance of the TZ is highlighted by the fact that several of its components are coded by ciliopathy genes. Here we review recent developments in the study of TZ proteomes, the mapping of individual components to the TZ structure and the establishment of the TZ as a lipid gate.
Collapse
Affiliation(s)
- João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5,
Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8,
Canada
| |
Collapse
|