1
|
Dang W, Wang Z, Li H, Yuan H, Iqbal B, Zhang H. Negative Regulation of Kog1 on Lipid Accumulation in the Oleaginous Fungus Mucor circinelloides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6807-6819. [PMID: 40052636 DOI: 10.1021/acs.jafc.4c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Oleaginous microorganisms can produce polyunsaturated fatty acids beneficial to human health through adjusting the nitrogen content in the medium. The target of rapamycin complex 1 (TORC1) is important for nitrogen sensing and then regulates lipid metabolism. However, the function of Kog1, a subunit of TORC1, in TORC1-regulated lipid metabolism in oleaginous microorganisms remains unclear. In this study, the gene kog1 was knocked out to explore the mechanism of lipid accumulation in the oleaginous fungus M. circinelloides under nitrogen-limited and nitrogen-rich conditions. The results showed that the cell dry weight (CDW) of the kog1 deletion mutant was obviously decreased from 22.2 to 15.4 g/L under nitrogen-limited conditions; however, the lipid content markedly increased by 43.2% compared to the control, from 20.8% of CDW to 29.9%. A similar trend was observed under nitrogen-rich conditions; the cell growth was significantly inhibited, the CDW was decreased from 28.6 to 23.0 g/L, and the lipid content increased by 79.6% compared to the control strain, reaching 9.7% of CDW. The addition of rapamycin further enhanced lipid accumulation in the kog1 knockout mutant but not in the tor knockout mutant, indicating that Kog1 is the upstream target of rapamycin (TOR) in regulating lipid regulation. Transcriptional analysis under both nitrogen-limited and nitrogen-rich conditions notably suggested that nitrogen stress may activate Snf1/AMPK to inhibit Kog1, facilitating SREBP-1c nuclear translocation and activating fatty acid biosynthesis genes.
Collapse
Affiliation(s)
- Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Zhen Wang
- School of public health, Qilu Medical University, Zibo, Shandong 255300, People's Republic of China
| | - Hequn Li
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Hongjuan Yuan
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
2
|
Paul S, Das S, Banerjea M, Chaudhuri S, Das B. The ATP-dependent DEAD-box RNA helicase Dbp2 regulates the glucose/nitrogen stress response in baker's yeast by modulating reversible nuclear retention and decay of SKS1 mRNA. Genetics 2025; 229:iyae221. [PMID: 39739574 DOI: 10.1093/genetics/iyae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
In Saccharomyces cerevisiae, SKS1 mRNA encoding a glucose-sensing serine/threonine kinase belongs to "nucleus-retained" (NR) mRNAs representing a subset of otherwise normal transcripts, which exhibits slow nuclear export and excessively long nuclear dwell time. Nuclear retention of the SKS1 mRNA triggered by a 202 nt "export-retarding" nuclear zip code element promotes its rapid degradation in the nucleus by the nuclear exosome/CTEXT. In this investigation, we demonstrate that Dbp2p, an ATP-dependent DEAD-box RNA helicase binds to SKS1 and other NR-mRNAs and thereby inhibits their export by antagonizing with the binding of the export factors Mex67p/Yra1p. Consistent with this observation, a significant portion of these NR-mRNAs was found to localize into the cytoplasm in a yeast strain carrying a deletion in the DBP2 gene with the concomitant enhancement of its steady-state level and stability. This observation supports the view that Dbp2p promotes the nuclear retention of NR-mRNAs to trigger their subsequent nuclear degradation. Further analysis revealed that Dbp2p-dependent nuclear retention of SKS1 mRNA is reversible, which plays a crucial role in the adaptability and viability of the yeast cells in low concentrations of glucose/nitrogen in the growth medium. At high nutrient levels when the function of Sks1p is not necessary, SKS1 mRNA is retained in the nucleus and degraded. In contrast, during low glucose/nitrogen levels when Sks1p is vital to respond to such situations, the nuclear retention of SKS1 mRNA is relieved to permit its increased nuclear export and translation leading to a huge burst of cytoplasmic Sks1p.
Collapse
Affiliation(s)
- Soumita Paul
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Shouvik Chaudhuri
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Bérard M, Merlini L, Martin SG. Proteomic and phosphoproteomic analyses reveal that TORC1 is reactivated by pheromone signaling during sexual reproduction in fission yeast. PLoS Biol 2024; 22:e3002963. [PMID: 39705284 PMCID: PMC11750111 DOI: 10.1371/journal.pbio.3002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
Starvation, which is associated with inactivation of the growth-promoting TOR complex 1 (TORC1), is a strong environmental signal for cell differentiation. In the fission yeast Schizosaccharomyces pombe, nitrogen starvation has distinct physiological consequences depending on the presence of mating partners. In their absence, cells enter quiescence, and TORC1 inactivation prolongs their life. In presence of compatible mates, TORC1 inactivation is essential for sexual differentiation. Gametes engage in paracrine pheromone signaling, grow towards each other, fuse to form the diploid zygote, and form resistant, haploid spore progenies. To understand the signaling changes in the proteome and phospho-proteome during sexual reproduction, we developed cell synchronization strategies and present (phospho-)proteomic data sets that dissect pheromone from starvation signals over the sexual differentiation and cell-cell fusion processes. Unexpectedly, these data sets reveal phosphorylation of ribosomal protein S6 during sexual development, which we establish requires TORC1 activity. We demonstrate that TORC1 is re-activated by pheromone signaling, in a manner that does not require autophagy. Mutants with low TORC1 re-activation exhibit compromised mating and poorly viable spores. Thus, while inactivated to initiate the mating process, TORC1 is reactivated by pheromone signaling in starved cells to support sexual reproduction.
Collapse
Affiliation(s)
- Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Laura Merlini
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Smiles WJ, Ovens AJ, Kemp BE, Galic S, Petersen J, Oakhill JS. New developments in AMPK and mTORC1 cross-talk. Essays Biochem 2024; 68:321-336. [PMID: 38994736 PMCID: PMC12055038 DOI: 10.1042/ebc20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Metabolic homeostasis and the ability to link energy supply to demand are essential requirements for all living cells to grow and proliferate. Key to metabolic homeostasis in all eukaryotes are AMPK and mTORC1, two kinases that sense nutrient levels and function as counteracting regulators of catabolism (AMPK) and anabolism (mTORC1) to control cell survival, growth and proliferation. Discoveries beginning in the early 2000s revealed that AMPK and mTORC1 communicate, or cross-talk, through direct and indirect phosphorylation events to regulate the activities of each other and their shared protein substrate ULK1, the master initiator of autophagy, thereby allowing cellular metabolism to rapidly adapt to energy and nutritional state. More recent reports describe divergent mechanisms of AMPK/mTORC1 cross-talk and the elaborate means by which AMPK and mTORC1 are activated at the lysosome. Here, we provide a comprehensive overview of current understanding in this exciting area and comment on new evidence showing mTORC1 feedback extends to the level of the AMPK isoform, which is particularly pertinent for some cancers where specific AMPK isoforms are implicated in disease pathogenesis.
Collapse
Affiliation(s)
- William J Smiles
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Fitzroy, Vic 3065, Vic. Australia
| | - Sandra Galic
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Metabolic Physiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Persyn F, Smagghe W, Eeckhout D, Mertens T, Smorscek T, De Winne N, Persiau G, Van De Slijke E, Crepin N, Gadeyne A, Van Leene J, De Jaeger G. A Nitrogen-specific Interactome Analysis Sheds Light on the Role of the SnRK1 and TOR Kinases in Plant Nitrogen Signaling. Mol Cell Proteomics 2024; 23:100842. [PMID: 39307424 PMCID: PMC11526089 DOI: 10.1016/j.mcpro.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Nitrogen (N) is of utmost importance for plant growth and development. Multiple studies have shown that N signaling is tightly coupled with carbon (C) levels, but the interplay between C/N metabolism and growth remains largely an enigma. Nonetheless, the protein kinases Sucrose Non-fermenting 1 (SNF1)-Related Kinase 1 (SnRK1) and Target Of Rapamycin (TOR), two ancient central metabolic regulators, are emerging as key integrators that link C/N status with growth. Despite their pivotal importance, the exact mechanisms behind the sensing of N status and its integration with C availability to drive metabolic decisions are largely unknown. Especially for SnRK1, it is not clear how this kinase responds to altered N levels. Therefore, we first monitored N-dependent SnRK1 kinase activity with an in vivo Separation of Phase-based Activity Reporter of Kinase (SPARK) sensor, revealing a contrasting N-dependency in Arabidopsis thaliana (Arabidopsis) shoot and root tissues. Next, using affinity purification (AP) and proximity labeling (PL) coupled to mass spectrometry (MS) experiments, we constructed a comprehensive SnRK1 and TOR interactome in Arabidopsis cell cultures during N-starved and N-repleted growth conditions. To broaden our understanding of the N-specificity of the TOR/SnRK1 signaling events, the resulting network was compared to corresponding C-related networks, identifying a large number of novel, N-specific interactors. Moreover, through integration of N-dependent transcriptome and phosphoproteome data, we were able to pinpoint additional N-dependent network components, highlighting for instance SnRK1 regulatory proteins that might function at the crosstalk of C/N signaling. Finally, confirmation of known and identification of novel SnRK1 interactors, such as Inositol-Requiring 1 (IRE1A) and the RAB GTPase RAB18, indicate that SnRK1, present at the ER, is involved in N signaling and autophagy induction.
Collapse
Affiliation(s)
- Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toon Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Smorscek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nathalie Crepin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
6
|
Zemlianski V, Marešová A, Princová J, Holič R, Häsler R, Ramos Del Río MJ, Lhoste L, Zarechyntsava M, Převorovský M. Nitrogen availability is important for preventing catastrophic mitosis in fission yeast. J Cell Sci 2024; 137:jcs262196. [PMID: 38780300 DOI: 10.1242/jcs.262196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Mitosis is a crucial stage in the cell cycle, controlled by a vast network of regulators responding to multiple internal and external factors. The fission yeast Schizosaccharomyces pombe demonstrates catastrophic mitotic phenotypes due to mutations or drug treatments. One of the factors provoking catastrophic mitosis is a disturbed lipid metabolism, resulting from, for example, mutations in the acetyl-CoA/biotin carboxylase (cut6), fatty acid synthase (fas2, also known as lsd1) or transcriptional regulator of lipid metabolism (cbf11) genes, as well as treatment with inhibitors of fatty acid synthesis. It has been previously shown that mitotic fidelity in lipid metabolism mutants can be partially rescued by ammonium chloride supplementation. In this study, we demonstrate that mitotic fidelity can be improved by multiple nitrogen sources. Moreover, this improvement is not limited to lipid metabolism disturbances but also applies to a number of unrelated mitotic mutants. Interestingly, the partial rescue is not achieved by restoring the lipid metabolism state, but rather indirectly. Our results highlight a novel role for nitrogen availability in mitotic fidelity.
Collapse
Affiliation(s)
- Viacheslav Zemlianski
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Jarmila Princová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Roman Holič
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Manuel José Ramos Del Río
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Laurane Lhoste
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Maryia Zarechyntsava
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| |
Collapse
|
7
|
Ohtsuka H, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. ecl family genes: Factors linking starvation and lifespan extension in Schizosaccharomyces pombe. Mol Microbiol 2023; 120:645-657. [PMID: 37525511 DOI: 10.1111/mmi.15134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, the duration of survival in the stationary phase, termed the chronological lifespan (CLS), is affected by various environmental factors and the corresponding gene activities. The ecl family genes were identified in the genomic region encoding non-coding RNA as positive regulators of CLS in S. pombe, and subsequently shown to encode relatively short proteins. Several studies revealed that ecl family genes respond to various nutritional starvation conditions via different mechanisms, and they are additionally involved in stress resistance, autophagy, sexual differentiation, and cell cycle control. Recent studies reported that Ecl family proteins strongly suppress target of rapamycin complex 1, which is a conserved eukaryotic nutrient-sensing kinase complex that also regulates longevity in a variety of organisms. In this review, we introduce the regulatory mechanisms of Ecl family proteins and discuss their emerging findings.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Li Y, Liu T, Qin L, Wu L. Effects of probiotic administration on overweight or obese children: a meta-analysis and systematic review. J Transl Med 2023; 21:525. [PMID: 37542325 PMCID: PMC10401801 DOI: 10.1186/s12967-023-04319-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/01/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in overweight or obese children by meta-analysis, namely, body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), adiponectin, leptin and tumor necrosis factor-α (TNF-α) and summarize the mechanisms of action of probiotics based on the existing researches. METHODS Six databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed and CNKI) were searched until March 2023. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model or random effect model to observe the effects of probiotic administration on the included indicators. RESULTS Four publications with a total of 206 overweight or obesity children were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HDL-C (MD, 0.06; 95% CI 0.03, 0.09; P = 0.0001), LDL-C (MD, - 0.06; 95% CI - 0.12, - 0.00; P = 0.04), adiponectin (MD, 1.39; 95% CI 1.19, 1.59; P < 0.00001), leptin (MD, - 2.72; 95% CI - 2.9, - 2.54; P < 0.00001) and TNF-α (MD, - 4.91; 95% CI - 7.15, - 2.67; P < 0.0001) compared to those in the placebo group. Still, for BMI, the palcebo group seemed to be better than the probiotic group (MD, 0.85; 95% CI 0.04, 1.66; P = 0.04). TC (MD, - 0.05; 95% CI - 0.12, 0.02; P = 0.14) and TG (MD, - 0.16; 95% CI - 0.36, 0.05; P = 0.14) were not different between two groups. CONCLUSIONS This review drew that probiotics might act as a role in regulating HDL-C, LDL-C, adiponectin, leptin and TNF-α in overweight or obesity children. Additionally, our systematic review yielded that probiotics might regulate lipid metabolism and improve obese associated symptoms by some paths. This meta-analysis has been registered at PROSPERO with ID: CRD42023408359.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
9
|
Agostini F, Bisaglia M, Plotegher N. Linking ROS Levels to Autophagy: The Key Role of AMPK. Antioxidants (Basel) 2023; 12:1406. [PMID: 37507945 PMCID: PMC10376219 DOI: 10.3390/antiox12071406] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Oxygen reactive species (ROS) are a group of molecules generated from the incomplete reduction of oxygen. Due to their high reactivity, ROS can interact with and influence the function of multiple targets, which include DNA, lipids, and proteins. Among the proteins affected by ROS, AMP-activated protein kinase (AMPK) is considered a major sensor of the intracellular energetic status and a crucial hub involved in the regulation of key cellular processes, like autophagy and lysosomal function. Thanks to these features, AMPK has been recently demonstrated to be able to perceive signals related to the variation of mitochondrial dynamics and to transduce them to the lysosomes, influencing the autophagic flux. Since ROS production is largely dependent on mitochondrial activity, through the modulation of AMPK these molecules may represent important signaling agents which participate in the crosstalk between mitochondria and lysosomes, allowing the coordination of these organelles' functions. In this review, we will describe the mechanisms through which ROS activate AMPK and the signaling pathways that allow this protein to affect the autophagic process. The picture that emerges from the literature is that AMPK regulation is highly tissue-specific and that different pools of AMPK can be localized at specific intracellular compartments, thus differentially responding to altered ROS levels. For this reason, future studies will be highly advisable to discriminate the specific contribution of the activation of different AMPK subpopulations to the autophagic pathway.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35121 Padova, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35121 Padova, Italy
| |
Collapse
|
10
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
11
|
Choi WJ, Kim MH, Park N, Chung JY, Park SJ, Yang WM. Effect and mechanism of Magnolia officinalis pharmacopuncture for treating localized fat via network pharmacology and experimental study. Integr Med Res 2023; 12:100948. [PMID: 37181416 PMCID: PMC10173613 DOI: 10.1016/j.imr.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background Recently, for various reasons, the need for non-invasive treatment for localized fat has emerged. This study confirmed whether Magnolia officinalis (MO) pharmacopuncture reduces localized fat by promoting lipolysis and inhibiting adipogenesis. Methods The network was built using genes related to the active compound of MO and the mode of action of MO was predicted by the functional enrichment analysis. Based on the result from network analysis, 100 µL of 2 mg/mL MO pharmacopuncture was injected into the inguinal fat pad for 6 weeks in obese C57BL/6J mice. Normal saline was injected into the right-side inguinal fat pad as a self-control. Results It was expected that the 'AMP-activated protein kinase (AMPK) signaling pathway' would be affected by the MO Network. MO pharmacopuncture reduced the weight and size of inguinal fat in HFD-induced obese mice. The phosphorylation of AMPK along with the increases of lipases was significantly increased by MO injection. Also, the expression levels of fatty acid synthesize-related mediators were suppressed by MO injection. Conclusion Our results demonstrated that MO pharmacopuncture promoted the expression of AMPK, which has beneficial effects on activation of lipolysis and inhibition of lipogenesis. Pharmacopuncture of MO can be a non-surgical alternative therapy in the treatment of local fat tissue.
Collapse
|
12
|
Pérez-Díaz AJ, Vázquez-Marín B, Vicente-Soler J, Prieto-Ruiz F, Soto T, Franco A, Cansado J, Madrid M. cAMP-Protein kinase A and stress-activated MAP kinase signaling mediate transcriptional control of autophagy in fission yeast during glucose limitation or starvation. Autophagy 2023; 19:1311-1331. [PMID: 36107819 PMCID: PMC10012941 DOI: 10.1080/15548627.2022.2125204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy is an essential adaptive physiological response in eukaryotes induced during nutrient starvation, including glucose, the primary immediate carbon and energy source for most cells. Although the molecular mechanisms that induce autophagy during glucose starvation have been extensively explored in the budding yeast Saccharomyces cerevisiae, little is known about how this coping response is regulated in the evolutionary distant fission yeast Schizosaccharomyces pombe. Here, we show that S. pombe autophagy in response to glucose limitation relies on mitochondrial respiration and the electron transport chain (ETC), but, in contrast to S. cerevisiae, the AMP-activated protein kinase (AMPK) and DNA damage response pathway components do not modulate fission yeast autophagic flux under these conditions. In the presence of glucose, the cAMP-protein kinase A (PKA) signaling pathway constitutively represses S. pombe autophagy by downregulating the transcription factor Rst2, which promotes the expression of respiratory genes required for autophagy induction under limited glucose availability. Furthermore, the stress-activated protein kinase (SAPK) signaling pathway, and its central mitogen-activated protein kinase (MAPK) Sty1, positively modulate autophagy upon glucose limitation at the transcriptional level through its downstream effector Atf1 and by direct in vivo phosphorylation of Rst2 at S292. Thus, our data indicate that the signaling pathways that govern autophagy during glucose shortage or starvation have evolved differently in S. pombe and uncover the existence of sophisticated and multifaceted mechanisms that control this self-preservation and survival response.
Collapse
Affiliation(s)
- Armando Jesús Pérez-Díaz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Beatriz Vázquez-Marín
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Francisco Prieto-Ruiz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - José Cansado
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
13
|
Alao JP, Legon L, Dabrowska A, Tricolici AM, Kumar J, Rallis C. Interplays of AMPK and TOR in Autophagy Regulation in Yeast. Cells 2023; 12:cells12040519. [PMID: 36831186 PMCID: PMC9953913 DOI: 10.3390/cells12040519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Cells survey their environment and need to balance growth and anabolism with stress programmes and catabolism towards maximum cellular bioenergetics economy and survival. Nutrient-responsive pathways, such as the mechanistic target of rapamycin (mTOR) interact and cross-talk, continuously, with stress-responsive hubs such as the AMP-activated protein kinase (AMPK) to regulate fundamental cellular processes such as transcription, protein translation, lipid and carbohydrate homeostasis. Especially in nutrient stresses or deprivations, cells tune their metabolism accordingly and, crucially, recycle materials through autophagy mechanisms. It has now become apparent that autophagy is pivotal in lifespan, health and cell survival as it is a gatekeeper of clearing damaged macromolecules and organelles and serving as quality assurance mechanism within cells. Autophagy is hard-wired with energy and nutrient levels as well as with damage-response, and yeasts have been instrumental in elucidating such connectivities. In this review, we briefly outline cross-talks and feedback loops that link growth and stress, mainly, in the fission yeast Schizosaccharomyces pombe, a favourite model in cell and molecular biology.
Collapse
|
14
|
The Role of GmSnRK1-GmNodH Module in Regulating Soybean Nodulation Capacity. Int J Mol Sci 2023; 24:ijms24021225. [PMID: 36674741 PMCID: PMC9861110 DOI: 10.3390/ijms24021225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
SnRK1 protein kinase plays hub roles in plant carbon and nitrogen metabolism. However, the function of SnRK1 in legume nodulation and symbiotic nitrogen fixation is still elusive. In this study, we identified GmNodH, a putative sulfotransferase, as an interacting protein of GmSnRK1 by yeast two-hybrid screen. The qRT-PCR assays indicate that GmNodH gene is highly expressed in soybean roots and could be induced by rhizobial infection and nitrate stress. Fluorescence microscopic analyses showed that GmNodH was colocalized with GsSnRK1 on plasma membrane. The physical interaction between GmNodH and GmSnRK1 was further verified by using split-luciferase complementary assay and pull-down approaches. In vitro phosphorylation assay showed that GmSnRK1 could phosphorylate GmNodH at Ser193. To dissect the function and genetic relationship of GmSnRK1 and GmNodH in soybean, we co-expressed the wild-type and mutated GmSnRK1 and GmNodH genes in soybean hairy roots and found that co-expression of GmSnRK1/GmNodH genes significantly promoted soybean nodulation rates and the expression levels of nodulation-related GmNF5α and GmNSP1 genes. Taken together, this study provides the first biological evidence that GmSnRK1 may interact with and phosphorylate GmNodH to synergistically regulate soybean nodulation.
Collapse
|
15
|
Kleijn IT, Martínez-Segura A, Bertaux F, Saint M, Kramer H, Shahrezaei V, Marguerat S. Growth-rate-dependent and nutrient-specific gene expression resource allocation in fission yeast. Life Sci Alliance 2022; 5:e202101223. [PMID: 35228260 PMCID: PMC8886410 DOI: 10.26508/lsa.202101223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Cellular resources are limited and their relative allocation to gene expression programmes determines physiological states and global properties such as the growth rate. Here, we determined the importance of the growth rate in explaining relative changes in protein and mRNA levels in the simple eukaryote Schizosaccharomyces pombe grown on non-limiting nitrogen sources. Although expression of half of fission yeast genes was significantly correlated with the growth rate, this came alongside wide-spread nutrient-specific regulation. Proteome and transcriptome often showed coordinated regulation but with notable exceptions, such as metabolic enzymes. Genes positively correlated with growth rate participated in every level of protein production apart from RNA polymerase II-dependent transcription. Negatively correlated genes belonged mainly to the environmental stress response programme. Critically, metabolic enzymes, which represent ∼55-70% of the proteome by mass, showed mostly condition-specific regulation. In summary, we provide a rich account of resource allocation to gene expression in a simple eukaryote, advancing our basic understanding of the interplay between growth-rate-dependent and nutrient-specific gene expression.
Collapse
Affiliation(s)
- Istvan T Kleijn
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Amalia Martínez-Segura
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - François Bertaux
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Malika Saint
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Holger Kramer
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Samuel Marguerat
- Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Ohtsuka H, Shimasaki T, Aiba H. Response to leucine in Schizosaccharomyces pombe (fission yeast). FEMS Yeast Res 2022; 22:6553821. [PMID: 35325114 PMCID: PMC9041340 DOI: 10.1093/femsyr/foac020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Leucine (Leu) is a branched-chain, essential amino acid in animals, including humans. Fungi, including the fission yeast Schizosaccharomyces pombe, can biosynthesize Leu, but deletion of any of the genes in this biosynthesis leads to Leu auxotrophy. In this yeast, although a mutation in the Leu biosynthetic pathway, leu1-32, is clearly inconvenient for this species, it has increased its usefulness as a model organism in laboratories worldwide. Leu auxotrophy produces intracellular responses and phenotypes different from those of the prototrophic strains, depending on the growing environment, which necessitates a certain degree of caution in the analysis and interpretation of the experimental results. Under amino acid starvation, the amino acid-auxotrophic yeast induces cellular responses, which are conserved in higher organisms without the ability of synthesizing amino acids. This mini-review focuses on the roles of Leu in S. pombe and discusses biosynthetic pathways, contribution to experimental convenience using a plasmid specific for Leu auxotrophic yeast, signaling pathways, and phenotypes caused by Leu starvation. An accurate understanding of the intracellular responses brought about by Leu auxotrophy can contribute to research in various fields using this model organism and to the understanding of intracellular responses in higher organisms that cannot synthesize Leu.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
17
|
Rodriguez-Lopez M, Anver S, Cotobal C, Kamrad S, Malecki M, Correia-Melo C, Hoti M, Townsend S, Marguerat S, Pong SK, Wu MY, Montemayor L, Howell M, Ralser M, Bähler J. Functional profiling of long intergenic non-coding RNAs in fission yeast. eLife 2022; 11:e76000. [PMID: 34984977 PMCID: PMC8730722 DOI: 10.7554/elife.76000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.
Collapse
Affiliation(s)
- Maria Rodriguez-Lopez
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Shajahan Anver
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Cristina Cotobal
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Stephan Kamrad
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Institute of BiochemistryBerlinGermany
| | - Michal Malecki
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Clara Correia-Melo
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
| | - Mimoza Hoti
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - StJohn Townsend
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
| | - Samuel Marguerat
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Sheng Kai Pong
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Mary Y Wu
- The Francis Crick Institute, High Throughput ScreeningLondonUnited Kingdom
| | - Luis Montemayor
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| | - Michael Howell
- The Francis Crick Institute, High Throughput ScreeningLondonUnited Kingdom
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism LaboratoryLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Institute of BiochemistryBerlinGermany
| | - Jürg Bähler
- University College London, Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentLondonUnited Kingdom
| |
Collapse
|
18
|
Waite KA, Burris A, Vontz G, Lang A, Roelofs J. Proteaphagy is specifically regulated and requires factors dispensable for general autophagy. J Biol Chem 2022; 298:101494. [PMID: 34919962 PMCID: PMC8732087 DOI: 10.1016/j.jbc.2021.101494] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Changing physiological conditions can increase the need for protein degradative capacity in eukaryotic cells. Both the ubiquitin-proteasome system and autophagy contribute to protein degradation. However, these processes can be differently regulated depending on the physiological conditions. Strikingly, proteasomes themselves can be a substrate for autophagy. The signals and molecular mechanisms that govern proteasome autophagy (proteaphagy) are only partly understood. Here, we used immunoblots, native gel analyses, and fluorescent microscopy to understand the regulation of proteaphagy in response to genetic and small molecule-induced perturbations. Our data indicate that chemical inhibition of the master nutrient sensor TORC1 (inhibition of which induces general autophagy) with rapamycin induces a bi-phasic response where proteasome levels are upregulated after an autophagy-dependent reduction. Surprisingly, several conditions that result in inhibited TORC1, such as caffeinine treatment or nitrogen starvation, only induced proteaphagy (i.e., without any proteasome upregulation), suggesting a convergence of signals upstream of proteaphagy under different physiological conditions. Indeed, we found that several conditions that activated general autophagy did not induce proteaphagy, further distinguishing proteaphagy from general autophagy. Consistent with this, we show that Atg11, a selective autophagy receptor, as well as the MAP kinases Mpk1, Mkk1, and Mkk2 all play a role in autophagy of proteasomes, although they are dispensable for general autophagy. Taken together, our data provide new insights into the molecular regulation of proteaphagy by demonstrating that degradation of proteasome complexes is specifically regulated under different autophagy-inducing conditions.
Collapse
Affiliation(s)
- Kenrick A Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA; Biology & Environmental Health, Missouri Southern State University, Joplin, Missouri, USA
| | - Gabrielle Vontz
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Angelica Lang
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
19
|
Li L, Zhu T, Song Y, Feng L, Kear PJ, Riseh RS, Sitohy M, Datla R, Ren M. Salicylic acid fights against Fusarium wilt by inhibiting target of rapamycin signaling pathway in Fusarium oxysporum. J Adv Res 2021; 39:1-13. [PMID: 35777900 PMCID: PMC9263656 DOI: 10.1016/j.jare.2021.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Isolating and sequencing the genome of F. oxysporum from potato tubers with dry rot symptoms. SA efficiently arrests hyphal growth, sporular production and pathogenicity of F. oxysporum. SA inhibits the activity of FoTORC1 via activating FoSNF1 in F. oxysporum. Transgenic potato plants with interference of FoTOR1 and FoSAH1 genes prevent the occurrence of Fusarium wilt. Providing insights SA into controlling various fungal diseases by targeting the SNF1-TORC1 pathway of pathogens.
Introduction Objectives Methods Results Conclusion
Collapse
Affiliation(s)
- Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Tingting Zhu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Philip James Kear
- International Potato Center (CIP) China Center Asia Pacific, Beijing 100000, China
| | - Rooallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Raju Datla
- Global Institute for Food Security in Saskatoon, University of Saskatchewan, Saskatoon S7N0W9, Canada
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
20
|
A rapidly reversible mutation generates subclonal genetic diversity and unstable drug resistance. Proc Natl Acad Sci U S A 2021; 118:2019060118. [PMID: 34675074 PMCID: PMC8639346 DOI: 10.1073/pnas.2019060118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
Most genetic changes have negligible reversion rates. As most mutations that confer resistance to an adverse condition (e.g., drug treatment) also confer a growth defect in its absence, it is challenging for cells to genetically adapt to transient environmental changes. Here, we identify a set of rapidly reversible drug-resistance mutations in Schizosaccharomyces pombe that are caused by microhomology-mediated tandem duplication (MTD) and reversion back to the wild-type sequence. Using 10,000× coverage whole-genome sequencing, we identify nearly 6,000 subclonal MTDs in a single clonal population and determine, using machine learning, how MTD frequency is encoded in the genome. We find that sequences with the highest-predicted MTD rates tend to generate insertions that maintain the correct reading frame, suggesting that MTD formation has shaped the evolution of coding sequences. Our study reveals a common mechanism of reversible genetic variation that is beneficial for adaptation to environmental fluctuations and facilitates evolutionary divergence.
Collapse
|
21
|
Tang C, Tao J, Sun J, Lv F, Lu Z, Lu Y. Regulatory mechanisms of energy metabolism and inflammation in oleic acid-treated HepG2 cells from Lactobacillus acidophilus NX2-6 extract. J Food Biochem 2021; 45:e13925. [PMID: 34486133 DOI: 10.1111/jfbc.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
In this study, the cell-free extracts (CFE) of Lactobacillus acidophilus NX2-6 were utilized to treat oleic acid (OA)-induced hepatic steatosis. It was found that CFE treatment improved lipid metabolism in OA-induced hepatic steatosis model by downregulating several lipogenic genes but increasing expression levels of lipolysis-related genes. In addition, gene expression analysis revealed that CFE treatment promoted mitochondrial biogenesis and fission by upregulating the mRNA levels of PGC-1α, PGC-1β, Sirt1, NRF1, and Fis1. CFE treatment also increased protein expression of p-AMPKα, PGC-1α, ACOX1, and Sirt1 in OA-treated cells, suggesting that CFE possessed ability to improve energy metabolism. Furthermore, CFE treatment also reversed OA-induced oxidative stress by increasing CAT activity and protein level of Nrf-2 as well as reducing protein expression of ATF6, XBP1, GRP78, p50, and p-ERK, indicating that CFE could inhibit endoplasmic reticulum stress and sterile inflammation. Thus, L. acidophilus NX2-6 had potential to fight against NAFLD. PRACTICAL APPLICATIONS: Diet-induced hepatic steatosis is one of major public health concerns all over the world. Hepatic steatosis is accompanied by disregulation of lipid metabolism and energy metabolism, endoplasmic reticulum stress, oxidative stress as well as chronic inflammation. It is reported that probiotics are considered as emerging therapeutic strategy to alleviate hepatic steatosis. This study indicated potential applications of dead probiotics in the prevention of hepatic steatosis and development of functional foods.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
22
|
Jamsheer K M, Kumar M, Srivastava V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6042-6065. [PMID: 33693699 DOI: 10.1093/jxb/erab079] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Manoj Kumar
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
23
|
Tang C, Kong L, Shan M, Lu Z, Lu Y. Protective and ameliorating effects of probiotics against diet-induced obesity: A review. Food Res Int 2021; 147:110490. [PMID: 34399486 DOI: 10.1016/j.foodres.2021.110490] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Diet-induced obesity is one of the major public health concerns all over the world, and obesity also contributes to the development of other chronic diseases such as non-alcoholic fatty acid liver disease, type 2 diabetes mellitus and cardiovascular diseases. Evidence shows that the pathogenesis of obesity and obesity-associated chronic diseases are closely related to dysregulation of lipid metabolism, glucose metabolism and cholesterol metabolism, and oxidative stress, endoplasmic reticulum stress, abnormal gut microbiome and chronic low-grade inflammation. Recently, in view of potential effects on lipid metabolism, glucose metabolism, cholesterol metabolism and intestinal microbiome, as well as anti-oxidative and anti-inflammatory activities, natural probiotics, including live and dead probiotics, and probiotic components and metabolites, have attracted increasing attention and are considered as novel strategies for preventing and ameliorating obesity and obesity-related chronic diseases. Specifically, this review is presented on the anti-obesity effects of probiotics and underlying molecular mechanisms, which will provide a theoretical basis of anti-obesity probiotics for the development of functional foods.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangyu Kong
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Shan
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
24
|
Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2022942118. [PMID: 33963081 DOI: 10.1073/pnas.2022942118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nitrogen (N) is an essential nutrient that affects multiple plant developmental processes, including flowering. As flowering requires resources to develop sink tissues for reproduction, nutrient availability is tightly linked to this process. Low N levels accelerate floral transition; however, the molecular mechanisms underlying this response are not well understood. Here, we identify the FLOWERING BHLH 4 (FBH4) transcription factor as a key regulator of N-responsive flowering in Arabidopsis Low N-induced early flowering is compromised in fbh quadruple mutants. We found that FBH4 is a highly phosphorylated protein and that FBH4 phosphorylation levels decrease under low N conditions. In addition, decreased phosphorylation promotes FBH4 nuclear localization and transcriptional activation of the direct target CONSTANS (CO) and downstream florigen FLOWERING LOCUS T (FT) genes. Moreover, we demonstrate that the evolutionarily conserved cellular fuel sensor SNF1-RELATED KINASE 1 (SnRK1), whose kinase activity is down-regulated under low N conditions, directly phosphorylates FBH4. SnRK1 negatively regulates CO and FT transcript levels under high N conditions. Together, these results reveal a mechanism by which N levels may fine-tune FBH4 nuclear localization by adjusting the phosphorylation state to modulate flowering time. In addition to its role in flowering regulation, we also showed that FBH4 was involved in low N-induced up-regulation of nutrient recycling and remobilization-related gene expression. Thus, our findings provide insight into N-responsive growth phase transitions and optimization of plant fitness under nutrient-limited conditions.
Collapse
|
25
|
Halova L, Cobley D, Franz-Wachtel M, Wang T, Morrison KR, Krug K, Nalpas N, Maček B, Hagan IM, Humphrey SJ, Petersen J. A TOR (target of rapamycin) and nutritional phosphoproteome of fission yeast reveals novel targets in networks conserved in humans. Open Biol 2021; 11:200405. [PMID: 33823663 PMCID: PMC8025308 DOI: 10.1098/rsob.200405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Fluctuations in TOR, AMPK and MAP-kinase signalling maintain cellular homeostasis and coordinate growth and division with environmental context. We have applied quantitative, SILAC mass spectrometry to map TOR and nutrient-controlled signalling in the fission yeast Schizosaccharomyces pombe. Phosphorylation levels at more than 1000 sites were altered following nitrogen stress or Torin1 inhibition of the TORC1 and TORC2 networks that comprise TOR signalling. One hundred and thirty of these sites were regulated by both perturbations, and the majority of these (119) new targets have not previously been linked to either nutritional or TOR control in either yeasts or humans. Elimination of AMPK inhibition of TORC1, by removal of AMPKα (ssp2::ura4+), identified phosphosites where nitrogen stress-induced changes were independent of TOR control. Using a yeast strain with an ATP analogue-sensitized Cdc2 kinase, we excluded sites that were changed as an indirect consequence of mitotic control modulation by nitrogen stress or TOR signalling. Nutritional control of gene expression was reflected in multiple targets in RNA metabolism, while significant modulation of actin cytoskeletal components points to adaptations in morphogenesis and cell integrity networks. Reduced phosphorylation of the MAPKK Byr1, at a site whose human equivalent controls docking between MEK and ERK, prevented sexual differentiation when resources were sparse but not eliminated.
Collapse
Affiliation(s)
- Lenka Halova
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - David Cobley
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5042, Australia
| | - Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5042, Australia
| | - Karsten Krug
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Nicolas Nalpas
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Boris Maček
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Iain M. Hagan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Sean J. Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Janni Petersen
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5042, Australia
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
26
|
Gerganova V, Bhatia P, Vincenzetti V, Martin SG. Direct and indirect regulation of Pom1 cell size pathway by the protein phosphatase 2C Ptc1. Mol Biol Cell 2021; 32:703-711. [PMID: 33625871 PMCID: PMC8108516 DOI: 10.1091/mbc.e20-08-0508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fission yeast cells Schizosaccharomyces pombe divide at constant cell size regulated by environmental stimuli. An important pathway of cell size control involves the membrane-associated DYRK-family kinase Pom1, which forms decreasing concentration gradients from cell poles and inhibits mitotic inducers at midcell. Here, we identify the phosphatase 2C Ptc1 as negative regulator of Pom1. Ptc1 localizes to cell poles in a manner dependent on polarity and cell-wall integrity factors. We show that Ptc1 directly binds Pom1 and can dephosphorylate it in vitro but modulates Pom1 localization indirectly upon growth in low-glucose conditions by influencing microtubule stability. Thus, Ptc1 phosphatase plays both direct and indirect roles in the Pom1 cell size control pathway.
Collapse
Affiliation(s)
- Veneta Gerganova
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Payal Bhatia
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Alao JP, Legon L, Rallis C. Crosstalk between the mTOR and DNA Damage Response Pathways in Fission Yeast. Cells 2021; 10:cells10020305. [PMID: 33540829 PMCID: PMC7913062 DOI: 10.3390/cells10020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cells have developed response systems to constantly monitor environmental changes and accordingly adjust growth, differentiation, and cellular stress programs. The evolutionarily conserved, nutrient-responsive, mechanistic target of rapamycin signaling (mTOR) pathway coordinates basic anabolic and catabolic cellular processes such as gene transcription, protein translation, autophagy, and metabolism, and is directly implicated in cellular and organismal aging as well as age-related diseases. mTOR mediates these processes in response to a broad range of inputs such as oxygen, amino acids, hormones, and energy levels, as well as stresses, including DNA damage. Here, we briefly summarize data relating to the interplays of the mTOR pathway with DNA damage response pathways in fission yeast, a favorite model in cell biology, and how these interactions shape cell decisions, growth, and cell-cycle progression. We, especially, comment on the roles of caffeine-mediated DNA-damage override. Understanding the biology of nutrient response, DNA damage and related pharmacological treatments can lead to the design of interventions towards improved cellular and organismal fitness, health, and survival.
Collapse
Affiliation(s)
- John-Patrick Alao
- ZEAB Therapeutic, University of East London, Stratford Campus, Water Lane, Stratford, London E15 4LZ, UK;
| | - Luc Legon
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, Stratford, London E15 4LZ, UK;
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Correspondence:
| |
Collapse
|
28
|
Malecki M, Kamrad S, Ralser M, Bähler J. Mitochondrial respiration is required to provide amino acids during fermentative proliferation of fission yeast. EMBO Rep 2020; 21:e50845. [PMID: 32896087 PMCID: PMC7645267 DOI: 10.15252/embr.202050845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
When glucose is available, many organisms repress mitochondrial respiration in favour of aerobic glycolysis, or fermentation in yeast, that suffices for ATP production. Fission yeast cells, however, rely partially on respiration for rapid proliferation under fermentative conditions. Here, we determined the limiting factors that require respiratory function during fermentation. When inhibiting the electron transport chain, supplementation with arginine was necessary and sufficient to restore rapid proliferation. Accordingly, a systematic screen for mutants growing poorly without arginine identified mutants defective in mitochondrial oxidative metabolism. Genetic or pharmacological inhibition of respiration triggered a drop in intracellular levels of arginine and amino acids derived from the Krebs cycle metabolite alpha‐ketoglutarate: glutamine, lysine and glutamic acid. Conversion of arginine into these amino acids was required for rapid proliferation when blocking the respiratory chain. The respiratory block triggered an immediate gene expression response diagnostic of TOR inhibition, which was muted by arginine supplementation or without the AMPK‐activating kinase Ssp1. The TOR‐controlled proteins featured biased composition of amino acids reflecting their shortage after respiratory inhibition. We conclude that respiration supports rapid proliferation in fermenting fission yeast cells by boosting the supply of Krebs cycle‐derived amino acids.
Collapse
Affiliation(s)
- Michal Malecki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Stephan Kamrad
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK.,Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jürg Bähler
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| |
Collapse
|
29
|
Lanzillotta C, Zuliani I, Vasavda C, Snyder SH, Paul BD, Perluigi M, Di Domenico F, Barone E. BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain-Implications for Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080671. [PMID: 32727065 PMCID: PMC7466043 DOI: 10.3390/antiox9080671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biliverdin reductase-A (BVR-A) impairment is associated with increased accumulation of oxidatively-damaged proteins along with the impairment of autophagy in the brain during neurodegenerative disorders. Reduced autophagy inhibits the clearance of misfolded proteins, which then form neurotoxic aggregates promoting neuronal death. The aim of our study was to clarify the role for BVR-A in the regulation of the mTOR/autophagy axis by evaluating age-associated changes (2, 6 and 11 months) in cerebral cortex samples collected from BVR-A knock-out (BVR-A−/−) and wild-type (WT) mice. Our results show that BVR-A deficiency leads to the accumulation of oxidatively-damaged proteins along with mTOR hyper-activation in the cortex. This process starts in juvenile mice and persists with aging. mTOR hyper-activation is associated with the impairment of autophagy as highlighted by reduced levels of Beclin-1, LC3β, LC3II/I ratio, Atg5–Atg12 complex and Atg7 in the cortex of BVR-A−/− mice. Furthermore, we have identified the dysregulation of AMP-activated protein kinase (AMPK) as a critical event driving mTOR hyper-activation in the absence of BVR-A. Overall, our results suggest that BVR-A is a new player in the regulation of autophagy, which may be targeted to arrive at novel therapeutics for diseases involving impaired autophagy.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
| | - Ilaria Zuliani
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
| | - Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.V.); (S.H.S.); (B.D.P.)
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.V.); (S.H.S.); (B.D.P.)
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.V.); (S.H.S.); (B.D.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
- Correspondence: (F.D.D.); (E.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
- Correspondence: (F.D.D.); (E.B.)
| |
Collapse
|
30
|
Ornithine-A urea cycle metabolite enhances autophagy and controls Mycobacterium tuberculosis infection. Nat Commun 2020; 11:3535. [PMID: 32669568 PMCID: PMC7363810 DOI: 10.1038/s41467-020-17310-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophages are professional phagocytes known to play a vital role in controlling Mycobacterium tuberculosis (Mtb) infection and disease progression. Here we compare Mtb growth in mouse alveolar (AMs), peritoneal (PMs), and liver (Kupffer cells; KCs) macrophages and in bone marrow-derived monocytes (BDMs). KCs restrict Mtb growth more efficiently than all other macrophages and monocytes despite equivalent infections through enhanced autophagy. A metabolomics comparison of Mtb-infected macrophages indicates that ornithine and imidazole are two top-scoring metabolites in Mtb-infected KCs and that acetylcholine is the top-scoring in Mtb-infected AMs. Ornithine, imidazole and atropine (acetylcholine inhibitor) inhibit Mtb growth in AMs. Ornithine enhances AMPK mediated autophagy whereas imidazole directly kills Mtb by reducing cytochrome P450 activity. Intranasal delivery of ornithine or imidazole or the two together restricts Mtb growth. Our study demonstrates that the metabolic differences between Mtb-infected AMs and KCs lead to differences in the restriction of Mtb growth. Kupffer cells are more resistant to M. tuberculosis when compared with alveolar macrophages. Here the authors show that this distinction is caused by the presence of ornithine and imidazole in Kupffer cells and that these metabolites can drive autophagy and M. tuberculosis killing in alveolar macrophages when given intranasally to infected mice.
Collapse
|
31
|
Almendáriz-Palacios C, Gillespie ZE, Janzen M, Martinez V, Bridger JM, Harkness TAA, Mousseau DD, Eskiw CH. The Nuclear Lamina: Protein Accumulation and Disease. Biomedicines 2020; 8:E188. [PMID: 32630170 PMCID: PMC7400325 DOI: 10.3390/biomedicines8070188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular health is reliant on proteostasis-the maintenance of protein levels regulated through multiple pathways modulating protein synthesis, degradation and clearance. Loss of proteostasis results in serious disease and is associated with aging. One proteinaceous structure underlying the nuclear envelope-the nuclear lamina-coordinates essential processes including DNA repair, genome organization and epigenetic and transcriptional regulation. Loss of proteostasis within the nuclear lamina results in the accumulation of proteins, disrupting these essential functions, either via direct interactions of protein aggregates within the lamina or by altering systems that maintain lamina structure. Here we discuss the links between proteostasis and disease of the nuclear lamina, as well as how manipulating specific proteostatic pathways involved in protein clearance could improve cellular health and prevent/reverse disease.
Collapse
Affiliation(s)
- Carla Almendáriz-Palacios
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Zoe E. Gillespie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Matthew Janzen
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Valeria Martinez
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
| | - Joanna M. Bridger
- Centre for Genome Engineering and Maintenance, College of Health, Life and Medical Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Troy A. A. Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| | - Darrell D. Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada;
| | - Christopher H. Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (C.A.-P.); (V.M.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Z.E.G.); (M.J.); (T.A.A.H.)
| |
Collapse
|
32
|
Protein Phosphatases in G1 Regulation. Int J Mol Sci 2020; 21:ijms21020395. [PMID: 31936296 PMCID: PMC7013402 DOI: 10.3390/ijms21020395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cells make the decision to proliferate, to differentiate or to cease dividing during G1, before passage through the restriction point or Start. Keeping cyclin-dependent kinase (CDK) activity low during this period restricts commitment to a new cell cycle and is essential to provide the adequate timeframe for the sensing of environmental signals. Here, we review the role of protein phosphatases in the modulation of CDK activity and as the counteracting force for CDK-dependent substrate phosphorylation, in budding and fission yeast. Moreover, we discuss recent findings that place protein phosphatases in the interface between nutritional signalling pathways and the cell cycle machinery.
Collapse
|
33
|
Ling NXY, Kaczmarek A, Hoque A, Davie E, Ngoei KRW, Morrison KR, Smiles WJ, Forte GM, Wang T, Lie S, Dite TA, Langendorf CG, Scott JW, Oakhill JS, Petersen J. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress. Nat Metab 2020; 2:41-49. [PMID: 31993556 PMCID: PMC6986917 DOI: 10.1038/s42255-019-0157-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2019] [Indexed: 11/20/2022]
Abstract
Central to cellular metabolism and cell proliferation are highly conserved signalling pathways controlled by mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK)1,2, dysregulation of which are implicated in pathogenesis of major human diseases such as cancer and type 2 diabetes. AMPK pathways leading to reduced cell proliferation are well established and, in part, act through inhibition of TOR complex-1 (TORC1) activity. Here we demonstrate reciprocal regulation, specifically that TORC1 directly down-regulates AMPK signalling by phosphorylating the evolutionarily conserved residue Ser367 in the fission yeast AMPK catalytic subunit Ssp2, and AMPK α1Ser347/α2Ser345 in the mammalian homologs, which is associated with reduced phosphorylation of activation loop Thr172. Genetic or pharmacological inhibition of TORC1 signalling led to AMPK activation in the absence of increased AMP:ATP ratios; under nutrient stress conditions this was associated with growth limitation in both yeast and human cell cultures. Our findings reveal fundamental, bi-directional regulation between two major metabolic signalling networks and uncover new opportunity for cancer treatment strategies aimed at suppressing cell proliferation in the nutrient-poor tumor microenvironment.
Collapse
Affiliation(s)
- Naomi X Y Ling
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Adrian Kaczmarek
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ashfaqul Hoque
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Davie
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Kevin R W Ngoei
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Kaitlin R Morrison
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - William J Smiles
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Tingting Wang
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Toby A Dite
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- MRC Protein Phosphorylation and Ubiquitylation Unit, James Black Centre, University of Dundee, Dundee, UK
| | - Christopher G Langendorf
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - John W Scott
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
34
|
Knapp BD, Odermatt P, Rojas ER, Cheng W, He X, Huang KC, Chang F. Decoupling of Rates of Protein Synthesis from Cell Expansion Leads to Supergrowth. Cell Syst 2019; 9:434-445.e6. [PMID: 31706948 PMCID: PMC6911364 DOI: 10.1016/j.cels.2019.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
Cell growth is a complex process in which cells synthesize cellular components while they increase in size. It is generally assumed that the rate of biosynthesis must somehow be coordinated with the rate of growth in order to maintain intracellular concentrations. However, little is known about potential feedback mechanisms that could achieve proteome homeostasis or the consequences when this homeostasis is perturbed. Here, we identify conditions in which fission yeast cells are prevented from volume expansion but nevertheless continue to synthesize biomass, leading to general accumulation of proteins and increased cytoplasmic density. Upon removal of these perturbations, this biomass accumulation drove cells to undergo a multi-generational period of "supergrowth" wherein rapid volume growth outpaced biosynthesis, returning proteome concentrations back to normal within hours. These findings demonstrate a mechanism for global proteome homeostasis based on modulation of volume growth and dilution.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Pascal Odermatt
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenpeng Cheng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiangwei He
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 941586, USA.
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Reidman S, Cohen A, Kupiec M, Weisman R. The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast. J Biol Chem 2019; 294:18244-18255. [PMID: 31641022 DOI: 10.1074/jbc.ra119.010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
The evolutionarily conserved TOR complex 1 (TORC1) activates cell growth and proliferation in response to nutritional signals. In the fission yeast Schizosaccharomyces pombe, TORC1 is essential for vegetative growth, and its activity is regulated in response to nitrogen quantity and quality. Yet, how TORC1 senses nitrogen is poorly understood. Rapamycin, a specific TOR inhibitor, inhibits growth in S. pombe only under conditions in which the activity of TORC1 is compromised. In a genetic screen for rapamycin-sensitive mutations, we isolated caa1-1, a loss-of-function mutation of the cytosolic form of aspartate aminotransferase (Caa1). We demonstrate that loss of caa1 + partially mimics loss of TORC1 activity and that Caa1 is required for full TORC1 activity. Disruption of caa1 + resulted in aspartate auxotrophy, a finding that prompted us to assess the role of aspartate in TORC1 activation. We found that the amino acids glutamine, asparagine, arginine, aspartate, and serine activate TORC1 most efficiently following nitrogen starvation. The glutamine synthetase inhibitor l-methionine sulfoximine abolished the ability of asparagine, arginine, aspartate, or serine, but not that of glutamine, to induce TORC1 activity, consistent with a central role for glutamine in activating TORC1. Neither addition of aspartate nor addition of glutamine restored TORC1 activity in caa1-deleted cells or in cells carrying a Caa1 variant with a catalytic site substitution, suggesting that the catalytic activity of Caa1 is required for TORC1 activation. Taken together, our results reveal the contribution of the key metabolic enzyme Caa1 to TORC1 activity in S. pombe.
Collapse
Affiliation(s)
- Sophie Reidman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel
| | - Adiel Cohen
- Department of Natural and Life Sciences, the Open University of Israel, University Road 1, 4353701 Ra'anana, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural and Life Sciences, the Open University of Israel, University Road 1, 4353701 Ra'anana, Israel.
| |
Collapse
|
36
|
Fang K, Wu F, Chen G, Dong H, Li J, Zhao Y, Xu L, Zou X, Lu F. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:255. [PMID: 31519174 PMCID: PMC6743105 DOI: 10.1186/s12906-019-2671-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is characterized by excessive hepatic lipid accumulation. Many studies have suggested that lipid overload is the key initial factor that contributes to hepatic steatosis. Our previous study indicated that diosgenin (DSG) has a beneficial effect on energy metabolism, but the underlying mechanism remains unclear. METHODS Human normal hepatocytes (LO2 cells) were incubated with palmitic acid to establish the cell model of nonalcoholic fatty liver. The effects of DSG on lipid metabolism, glucose uptake and mitochondrial function were evaluated. Furthermore, the mechanism of DSG on oxidative stress, lipid consumption and lipid synthesis in LO2 cells was investigated. RESULTS The results indicated that palmitic acid induced obvious lipid accumulation in LO2 cells and that DSG treatment significantly reduced the intracellular lipid content. DSG treatment upregulated expression of lipolysis proteins, including phospho-AMP activated protein kinase (p-AMPK), phospho-acetyl-coA carboxylase (p-ACC) and carnitine acyl transferase 1A (CPT-1A), and inhibited expression of lipid synthesis-related proteins, including sterol regulatory element-binding protein 1c (SREBP-1c) and fatty acid synthase (FAS). Additionally, DSG-treated cells displayed a marked improvement in mitochondrial function, with less production of reactive oxygen species and a higher mitochondrial membrane potential compared with the model group. CONCLUSION This study suggests that DSG can reduce intracellular lipid accumulation in LO2 cells and that the underlying mechanism may be related to the improving oxidative stress, increasing fatty acid β-oxidation and decreasing lipid synthesis. The above changes might be mediated by the activation of the AMPK/ACC/CPT-1A pathway and inhibition of the SREBP-1c/FAS pathway.
Collapse
|
37
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
38
|
Jamsheer K M, Jindal S, Laxmi A. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2239-2259. [PMID: 30870564 DOI: 10.1093/jxb/erz107] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/26/2019] [Indexed: 05/07/2023]
Abstract
The target of rapamycin (TOR)-sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) signaling is an ancient regulatory mechanism that originated in eukaryotes to regulate nutrient-dependent growth. Although the TOR-SnRK1 signaling cascade shows highly conserved functions among eukaryotes, studies in the past two decades have identified many important plant-specific innovations in this pathway. Plants also possess SnRK2 and SnRK3 kinases, which originated from the ancient SnRK1-related kinases and have specialized roles in controlling growth, stress responses and nutrient homeostasis in plants. Recently, an integrative picture has started to emerge in which different SnRKs and TOR kinase are highly interconnected to control nutrient and stress responses of plants. Further, these kinases are intimately involved with phytohormone signaling networks that originated at different stages of plant evolution. In this review, we highlight the evolution and divergence of TOR-SnRK signaling components in plants and their communication with each other as well as phytohormone signaling to fine-tune growth and stress responses in plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| | - Sunita Jindal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
39
|
Forte GM, Davie E, Lie S, Franz-Wachtel M, Ovens AJ, Wang T, Oakhill JS, Maček B, Hagan IM, Petersen J. Import of extracellular ATP in yeast and man modulates AMPK and TORC1 signalling. J Cell Sci 2019; 132:jcs223925. [PMID: 30814334 PMCID: PMC6467490 DOI: 10.1242/jcs.223925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/15/2019] [Indexed: 01/31/2023] Open
Abstract
AMP-activated kinase (AMPK) and target of rapamycin (TOR) signalling coordinate cell growth, proliferation, metabolism and cell survival with the nutrient environment of cells. The poor vasculature and nutritional stress experienced by cells in solid tumours raises the question: how do they assimilate sufficient nutrients to survive? Here, we show that human and fission yeast cells import ATP and AMP from their external environment to regulate AMPK and TOR signalling. Exposure of fission yeast (Schizosaccharomyces pombe) and human cells to external AMP impeded cell growth; however, in yeast this restraining impact required AMPK. In contrast, external ATP rescued the growth defect of yeast mutants with reduced TORC1 signalling; furthermore, exogenous ATP transiently enhanced TORC1 signalling in both yeast and human cell lines. Addition of the PANX1 channel inhibitor probenecid blocked ATP import into human cell lines suggesting that this channel may be responsible for both ATP release and uptake in mammals. In light of these findings, it is possible that the higher extracellular ATP concentration reported in solid tumours is both scavenged and recognized as an additional energy source beneficial for cell growth.
Collapse
Affiliation(s)
- Gabriella M Forte
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Elizabeth Davie
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine & Public health, Flinders University, Adelaide, SA 5001, Australia
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Ashley J Ovens
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Victoria 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria 3000, Australia
| | - Tingting Wang
- Flinders Centre for Innovation in Cancer, College of Medicine & Public health, Flinders University, Adelaide, SA 5001, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Victoria 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria 3000, Australia
| | - Boris Maček
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Iain M Hagan
- Cancer Research UK Manchester institute, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Janni Petersen
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
- Flinders Centre for Innovation in Cancer, College of Medicine & Public health, Flinders University, Adelaide, SA 5001, Australia
- South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide SA 5000 Australia
| |
Collapse
|
40
|
Lie S, Banks P, Lawless C, Lydall D, Petersen J. The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity. Open Biol 2019; 8:rsob.180015. [PMID: 29720420 PMCID: PMC5990653 DOI: 10.1098/rsob.180015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of Schizosaccharomyces pombe strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.
Collapse
Affiliation(s)
- Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Peter Banks
- High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia .,South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia
| |
Collapse
|
41
|
Lie S, Wang T, Forbes B, Proud CG, Petersen J. The ability to utilise ammonia as nitrogen source is cell type specific and intricately linked to GDH, AMPK and mTORC1. Sci Rep 2019; 9:1461. [PMID: 30728400 PMCID: PMC6365639 DOI: 10.1038/s41598-018-37509-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/28/2018] [Indexed: 11/23/2022] Open
Abstract
Ammonia can be utilised as an alternative nitrogen source to glutamine to support cell proliferation. However, the underlying molecular mechanisms and whether all cells have this ability is not fully understood. We find that eleven cancer and non-cancerous cell lines have opposite abilities to tolerate and utilise ammonia to support proliferation in a glutamine-depleted environment. HEK293, Huh7, T47D and MCF7 cells can use ammonia, when starved of glutamine, to support proliferation to varying degrees. Glutamine depletion reduced mTORC1 activity, while additional ammonia supplementation diminished this mTORC1 inhibition. Depletion of glutamine promoted a rapid and transient activation of AMPK, whereas, additional ammonia supplementation blocked this starvation-induced AMPK activation. As expected, drug-induced AMPK activation reduced cell proliferation in glutamine-depleted cells supplemented with ammonia. Surprisingly, mTORC1 activity was largely unchanged despite the enhanced AMPK activity, suggesting that AMPK does not inhibit mTORC1 signalling under these conditions. Finally, glutamate dehydrogenase (GDH) inhibition, a key enzyme regulating ammonia assimilation, leads to AMPK activation, mTORC1 inhibition and reduced proliferation. Ammonia provides an alternative nitrogen source that aids certain cancer cells ability to thrive in nutrient-deprived environment. The ability of cells to utilise ammonia as a nitrogen source is intricately linked to AMPK, mTORC1 and GDH.
Collapse
Affiliation(s)
- Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine and Public health, Flinders University, Adelaide, SA, 5042, Australia
| | - Tingting Wang
- Flinders Centre for Innovation in Cancer, College of Medicine and Public health, Flinders University, Adelaide, SA, 5042, Australia
| | - Briony Forbes
- Flinders Centre for Innovation in Cancer, College of Medicine and Public health, Flinders University, Adelaide, SA, 5042, Australia
| | - Christopher G Proud
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, SA, 5000, Australia
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, College of Medicine and Public health, Flinders University, Adelaide, SA, 5042, Australia. .,Nutrition and Metabolism, South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, SA, 5000, Australia.
| |
Collapse
|
42
|
Abstract
Enhanced glutaminolysis and glycolysis are the two most remarkable biochemical features of cancer cell metabolism, reflecting increased utilization of glutamine and glucose in proliferating cells. Most solid tumors often outgrow the blood supply, resulting in a tumor microenvironment characterized by the depletion of glutamine, glucose, and oxygen. Whereas mechanisms by which cancer cells sense and metabolically adapt to hypoxia have been well characterized with a variety of cancer types, mechanisms by which different types of tumor cells respond to a dynamic change of glutamine availability and the underlying importance remains to be characterized. Here we describe the protocol, which uses cultured Hep3B cells as a model in determining glutamine-dependent proliferation, metabolite rescuing, and cellular responses to glutamine depletion. These protocols may be modified to study the metabolic roles of glutamine in other types of tumor or non-tumor cells as well.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Dan He
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
| | - Nianli Sang
- Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA. .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Zach R, Tvarůžková J, Schätz M, Ťupa O, Grallert B, Převorovský M. Mitotic defects in fission yeast lipid metabolism 'cut' mutants are suppressed by ammonium chloride. FEMS Yeast Res 2018; 18:5040229. [PMID: 29931271 PMCID: PMC6037054 DOI: 10.1093/femsyr/foy064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023] Open
Abstract
Fission yeast 'cut' mutants show defects in temporal coordination of nuclear division with cytokinesis, resulting in aberrant mitosis and lethality. Among other causes, the 'cut' phenotype can be triggered by genetic or chemical perturbation of lipid metabolism, supposedly resulting in shortage of membrane phospholipids and insufficient nuclear envelope expansion during anaphase. Interestingly, penetrance of the 'cut' phenotype in mutants of the transcription factor cbf11 and acetyl-coenzyme A carboxylase cut6, both related to lipid metabolism, is highly dependent on growth media, although the specific nutrient(s) affecting 'cut' occurrence is not known. In this study, we set out to identify the growth media component(s) responsible for 'cut' phenotype suppression in Δcbf11 and cut6-621 cells. We show that mitotic defects occur rapidly in Δcbf11 cells upon shift from the minimal EMM medium ('cut' suppressing) to the complex YES medium ('cut' promoting). By growing cells in YES medium supplemented with individual EMM components, we identified ammonium chloride, an efficiently utilized nitrogen source, as a specific and potent suppressor of the 'cut' phenotype in both Δcbf11 and cut6-621. Furthermore, we found that ammonium chloride boosts lipid droplet formation in wild-type cells. Our findings suggest a possible involvement of nutrient-responsive signaling in 'cut' suppression.
Collapse
Affiliation(s)
- Róbert Zach
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jarmila Tvarůžková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Schätz
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Ondřej Ťupa
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
44
|
Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-Mediated Regulation of Lipid Metabolism by Phosphorylation. Biol Pharm Bull 2018; 41:985-993. [DOI: 10.1248/bpb.b17-00724] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qi Wang
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital
| | - Aihua Zhai
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| | - Bai Zhang
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| | - Guizhen Tian
- Department of Pharmacy, The Fifth People’s Hospital of Jinan
| |
Collapse
|
45
|
Rayhan A, Faller A, Chevalier R, Mattice A, Karagiannis J. Using genetic buffering relationships identified in fission yeast to reveal susceptibilities in cells lacking hamartin or tuberin function. Biol Open 2018; 7:bio.031302. [PMID: 29343513 PMCID: PMC5827267 DOI: 10.1242/bio.031302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tuberous sclerosis complex is an autosomal dominant disorder characterized by benign tumors arising from the abnormal activation of mTOR signaling in cells lacking TSC1 (hamartin) or TSC2 (tuberin) activity. To expand the genetic framework surrounding this group of growth regulators, we utilized the model eukaryote Schizosaccharomyces pombe to uncover and characterize genes that buffer the phenotypic effects of mutations in the orthologous tsc1 or tsc2 loci. Our study identified two genes: fft3 (encoding a DNA helicase) and ypa1 (encoding a peptidyle-prolyl cis/trans isomerase). While the deletion of fft3 or ypa1 has little effect in wild-type fission yeast cells, their loss in tsc1Δ or tsc2Δ backgrounds results in severe growth inhibition. These data suggest that the inhibition of Ypa1p or Fft3p might represent an 'Achilles' heel' of cells defective in hamartin/tuberin function. Furthermore, we demonstrate that the interaction between tsc1/tsc2 and ypa1 can be rescued through treatment with the mTOR inhibitor, torin-1, and that ypa1Δ cells are resistant to the glycolytic inhibitor, 2-deoxyglucose. This identifies ypa1 as a novel upstream regulator of mTOR and suggests that the effects of ypa1 loss, together with mTOR activation, combine to result in a cellular maladaptation in energy metabolism that is profoundly inhibitory to growth.
Collapse
Affiliation(s)
- Ashyad Rayhan
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Adam Faller
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Ryan Chevalier
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Alannah Mattice
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| | - Jim Karagiannis
- Department of Biology, The University of Western Ontario, London, ON N6A-5B7, Canada
| |
Collapse
|
46
|
Laboucarié T, Detilleux D, Rodriguez-Mias RA, Faux C, Romeo Y, Franz-Wachtel M, Krug K, Maček B, Villén J, Petersen J, Helmlinger D. TORC1 and TORC2 converge to regulate the SAGA co-activator in response to nutrient availability. EMBO Rep 2017; 18:2197-2218. [PMID: 29079657 DOI: 10.15252/embr.201744942] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Gene expression regulation is essential for cells to adapt to changes in their environment. Co-activator complexes have well-established roles in transcriptional regulation, but less is known about how they sense and respond to signaling cues. We have previously shown that, in fission yeast, one such co-activator, the SAGA complex, controls gene expression and the switch from proliferation to differentiation in response to nutrient availability. Here, using a combination of genetic, biochemical, and proteomic approaches, we show that SAGA responds to nutrients through the differential phosphorylation of its Taf12 component, downstream of both the TORC1 and TORC2 pathways. Taf12 phosphorylation increases early upon starvation and is controlled by the opposing activities of the PP2A phosphatase, which is activated by TORC1, and the TORC2-activated Gad8AKT kinase. Mutational analyses suggest that Taf12 phosphorylation prevents cells from committing to differentiation until starvation reaches a critical level. Overall, our work reveals that SAGA is a direct target of nutrient-sensing pathways and has uncovered a mechanism by which TORC1 and TORC2 converge to control gene expression and cell fate decisions.
Collapse
Affiliation(s)
| | | | | | - Céline Faux
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | - Yves Romeo
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | | | | | - Boris Maček
- Proteome Center Tübingen, Tuebingen, Germany
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, School of Medicine, Faculty of Health Science, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
47
|
Abstract
All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.
Collapse
|
48
|
Abstract
The control of cell fate, growth and proliferation in response to nitrogen availability is a tightly controlled process, with the two TOR complexes (TORC1 and TORC2) and their effectors playing a central role. PP2A-B55Pab1 has recently been shown to be a key element in this response in fission yeast, where it regulates cell cycle progression and sexual differentiation. Importantly, a recent study from our group has shown that PP2A-B55Pab1 acts as a mediator between the activities of the two TOR signaling modules, enabling a crosstalk that is required to engage in the differentiation program. In this review, we recapitulate the studies that have led to our current understanding of the interplay between TOR complexes. Moreover, we discuss several aspects of the response to nitrogen availability that still require further attention, and which will be important in the future to fully realize the implications of phosphatase activity in the context of TOR signaling.
Collapse
Affiliation(s)
- Ruth Martín
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Gaustadalleen 21, 0349, Oslo, Norway
| | - Sandra Lopez-Aviles
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Gaustadalleen 21, 0349, Oslo, Norway.
| |
Collapse
|
49
|
Abstract
Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR) signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.
Collapse
Affiliation(s)
- Suam Gonzalez
- School of Health, Sport and Bioscience, University of East LondonLondon, United Kingdom
| | - Charalampos Rallis
- School of Health, Sport and Bioscience, University of East LondonLondon, United Kingdom
| |
Collapse
|
50
|
Schutt KL, Moseley JB. Transient activation of fission yeast AMPK is required for cell proliferation during osmotic stress. Mol Biol Cell 2017; 28:1804-1814. [PMID: 28515144 PMCID: PMC5491188 DOI: 10.1091/mbc.e17-04-0235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023] Open
Abstract
Transient activation of the cellular energy sensor AMPK during osmotic stress requires its energy-sensing subunit. Cellular ATP levels decrease during osmotic stress, which triggers energy stress, which in turn requires dynamic activation of AMPK. The heterotrimeric kinase AMPK acts as an energy sensor to coordinate cell metabolism with environmental status in species from yeast through humans. Low intracellular ATP leads to AMPK activation through phosphorylation of the activation loop within the catalytic subunit. Other environmental stresses also activate AMPK, but it is unclear whether cellular energy status affects AMPK activation under these conditions. Fission yeast AMPK catalytic subunit Ssp2 is phosphorylated at Thr-189 by the upstream kinase Ssp1 in low-glucose conditions, similar to other systems. Here we find that hyperosmotic stress induces strong phosphorylation of Ssp2-T189 by Ssp1. Ssp2-pT189 during osmotic stress is transient and leads to transient regulation of AMPK targets, unlike sustained activation by low glucose. Cells lacking this activation mechanism fail to proliferate after hyperosmotic stress. Activation during osmotic stress requires energy sensing by AMPK heterotrimer, and osmotic stress leads to decreased intracellular ATP levels. We observed mitochondrial fission during osmotic stress, but blocking fission did not affect AMPK activation. Stress-activated kinases Sty1 and Pmk1 did not promote AMPK activation but contributed to subsequent inactivation. Our results show that osmotic stress induces transient energy stress, and AMPK activation allows cells to manage this energy stress for proliferation in new osmotic states.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B Moseley
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|