1
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Le Cunff Y, Chesneau L, Pastezeur S, Pinson X, Soler N, Fairbrass D, Mercat B, Rodriguez-Garcia R, Alayan Z, Abdouni A, de Neidhardt G, Costes V, Anjubault M, Bouvrais H, Héligon C, Pécréaux J. Unveiling inter-embryo variability in spindle length over time: Towards quantitative phenotype analysis. PLoS Comput Biol 2024; 20:e1012330. [PMID: 39236069 PMCID: PMC11376571 DOI: 10.1371/journal.pcbi.1012330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
How can inter-individual variability be quantified? Measuring many features per experiment raises the question of choosing them to recapitulate high-dimensional data. Tackling this challenge on spindle elongation phenotypes, we showed that only three typical elongation patterns describe spindle elongation in C. elegans one-cell embryo. These archetypes, automatically extracted from the experimental data using principal component analysis (PCA), accounted for more than 95% of inter-individual variability of more than 1600 experiments across more than 100 different conditions. The two first archetypes were related to spindle average length and anaphasic elongation rate. The third archetype, accounting for 6% of the variability, was novel and corresponded to a transient spindle shortening in late metaphase, reminiscent of kinetochore function-defect phenotypes. Importantly, these three archetypes were robust to the choice of the dataset and were found even considering only non-treated conditions. Thus, the inter-individual differences between genetically perturbed embryos have the same underlying nature as natural inter-individual differences between wild-type embryos, independently of the temperatures. We thus propose that beyond the apparent complexity of the spindle, only three independent mechanisms account for spindle elongation, weighted differently in the various conditions. Interestingly, the spindle-length archetypes covered both metaphase and anaphase, suggesting that spindle elongation in late metaphase is sufficient to predict the late anaphase length. We validated this idea using a machine-learning approach. Finally, given amounts of these three archetypes could represent a quantitative phenotype. To take advantage of this, we set out to predict interacting genes from a seed based on the PCA coefficients. We exemplified this firstly on the role of tpxl-1 whose homolog tpx2 is involved in spindle microtubule branching, secondly the mechanism regulating metaphase length, and thirdly the central spindle players which set the length at anaphase. We found novel interactors not in public databases but supported by recent experimental publications.
Collapse
Affiliation(s)
- Yann Le Cunff
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Laurent Chesneau
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Sylvain Pastezeur
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Xavier Pinson
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Nina Soler
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Danielle Fairbrass
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Benjamin Mercat
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ruddi Rodriguez-Garcia
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Zahraa Alayan
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ahmed Abdouni
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Gary de Neidhardt
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Valentin Costes
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Mélodie Anjubault
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Hélène Bouvrais
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Christophe Héligon
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Jacques Pécréaux
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| |
Collapse
|
3
|
Woodruff GC, Willis JH, Johnson E, Phillips PC. Widespread changes in gene expression accompany body size evolution in nematodes. G3 (BETHESDA, MD.) 2024; 14:jkae110. [PMID: 38775657 PMCID: PMC11304970 DOI: 10.1093/g3journal/jkae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/27/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Body size is a fundamental trait that drives multiple evolutionary and ecological patterns. Caenorhabditis inopinata is a fig-associated nematode that is exceptionally large relative to other members of the genus, including Caenorhabditis elegans. We previously showed that C. inopinata is large primarily due to postembryonic cell size expansion that occurs during the larval-to-adult transition. Here, we describe gene expression patterns in C. elegans and C. inopinata throughout this developmental period to understand the transcriptional basis of body size change. We performed RNA-seq in both species across the L3, L4, and adult stages. Most genes are differentially expressed across all developmental stages, consistent with C. inopinata's divergent ecology and morphology. We also used a model comparison approach to identify orthologues with divergent dynamics across this developmental period between the 2 species. This included genes connected to neurons, behavior, stress response, developmental timing, and small RNA/chromatin regulation. Multiple hypodermal collagens were also observed to harbor divergent developmental dynamics across this period, and genes important for molting and body morphology were also detected. Genes associated with transforming growth factor β signaling revealed idiosyncratic and unexpected transcriptional patterns given their role in body size regulation in C. elegans. This widespread transcriptional divergence between these species is unexpected and maybe a signature of the ecological and morphological divergence of C. inopinata. Alternatively, transcriptional turnover may be the rule in the Caenorhabditis genus, indicative of widespread developmental system drift among species. This work lays the foundation for future functional genetic studies interrogating the bases of body size evolution in this group.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
4
|
Mallard F, Noble L, Guzella T, Afonso B, Baer CF, Teotónio H. Phenotypic stasis with genetic divergence. PEER COMMUNITY JOURNAL 2023; 3:e119. [PMID: 39346701 PMCID: PMC11434230 DOI: 10.24072/pcjournal.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Whether or not genetic divergence in the short-term of tens to hundreds of generations is compatible with phenotypic stasis remains a relatively unexplored problem. We evolved predominantly outcrossing, genetically diverse populations of the nematode Caenorhabditis elegans under a constant and homogeneous environment for 240 generations and followed individual locomotion behavior. Although founders of lab populations show highly diverse locomotion behavior, during lab evolution, the component traits of locomotion behavior - defined as the transition rates in activity and direction - did not show divergence from the ancestral population. In contrast, transition rates' genetic (co)variance structure showed a marked divergence from the ancestral state and differentiation among replicate populations during the final 100 generations and after most adaptation had been achieved. We observe that genetic differentiation is a transient pattern during the loss of genetic variance along phenotypic dimensions under drift during the last 100 generations of lab evolution. These results suggest that short-term stasis of locomotion behavior is maintained because of stabilizing selection, while the genetic structuring of component traits is contingent upon drift history.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Luke Noble
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Thiago Guzella
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Bruno Afonso
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Charles F Baer
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainsville, Florida 32611, U.S.A
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| |
Collapse
|
5
|
Woodruff GC, Willis JH, Johnson E, Phillips PC. Widespread changes in gene expression accompany body size evolution in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564729. [PMID: 37961435 PMCID: PMC10635002 DOI: 10.1101/2023.10.30.564729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Body size is a fundamental trait that drives multiple evolutionary and ecological patterns. Caenorhabditis inopinata is a fig-associated nematode that is exceptionally large relative to other members of the genus, including C. elegans. We previously showed that C. inopinata is large primarily due to postembryonic cell size expansion that occurs during the larval-to-adult transition. Here, we describe gene expression patterns in C. elegans and C. inopinata throughout this developmental period to understand the transcriptional basis of body size change. We performed RNA-seq in both species across the L3, L4, and adult stages. Most genes are differentially expressed across all developmental stages, consistent with C. inopinata's divergent ecology and morphology. We also used a model comparison approach to identify orthologs with divergent dynamics across this developmental period between the two species. This included genes connected to neurons, behavior, stress response, developmental timing, and small RNA/chromatin regulation. Multiple hypodermal collagens were also observed to harbor divergent developmental dynamics across this period, and genes important for molting and body morphology were also detected. Genes associated with TGF-β signaling revealed idiosyncratic and unexpected transcriptional patterns given their role in body size regulation in C. elegans. Widespread transcriptional divergence between these species is unexpected and may be a signature of the ecological and morphological divergence of C. inopinata. Alternatively, transcriptional turnover may be the rule in the Caenorhabditis genus, indicative of widespread developmental system drift among species. This work lays the foundation for future functional genetic studies interrogating the bases of body size evolution in this group.
Collapse
Affiliation(s)
- Gavin C Woodruff
- University of Oregon, Eugene, Oregon, USA
- Current institution: University of Oklahoma, Norman, Oklahoma, USA
| | | | | | | |
Collapse
|
6
|
Mallard F, Afonso B, Teotónio H. Selection and the direction of phenotypic evolution. eLife 2023; 12:e80993. [PMID: 37650381 PMCID: PMC10564456 DOI: 10.7554/elife.80993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Abstract
Predicting adaptive phenotypic evolution depends on invariable selection gradients and on the stability of the genetic covariances between the component traits of the multivariate phenotype. We describe the evolution of six traits of locomotion behavior and body size in the nematode Caenorhabditis elegans for 50 generations of adaptation to a novel environment. We show that the direction of adaptive multivariate phenotypic evolution can be predicted from the ancestral selection differentials, particularly when the traits were measured in the new environment. Interestingly, the evolution of individual traits does not always occur in the direction of selection, nor are trait responses to selection always homogeneous among replicate populations. These observations are explained because the phenotypic dimension with most of the ancestral standing genetic variation only partially aligns with the phenotypic dimension under directional selection. These findings validate selection theory and suggest that the direction of multivariate adaptive phenotypic evolution is predictable for tens of generations.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research UniversityParisFrance
| | - Bruno Afonso
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research UniversityParisFrance
| | - Henrique Teotónio
- Institut de Biologie de l’École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research UniversityParisFrance
| |
Collapse
|
7
|
Jain I, Tran PT. Prolongation of mitosis is associated with enhanced endogenous DNA damage in fission yeast. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000911. [PMID: 37521138 PMCID: PMC10375284 DOI: 10.17912/micropub.biology.000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/13/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Mitosis is usually shorter than other phases of the cell cycle and maintains a consistent duration despite variations in cell size and spindle size. This suggests the existence of a compensatory mechanism that ensures a short duration, possibly as a protective measure against irreversible damage, such as DNA damage. To explore the link between prolonged mitosis and DNA damage, we develop a microscopy-based assay utilizing Rad52-GFP as a marker for mitotic DNA damage. Through this assay, we provide evidence that mutants with prolonged mitosis exhibit increased Rad52 puncta, indicating an elevation in endogenous DNA damage.
Collapse
Affiliation(s)
- Ishutesh Jain
- Institut Curie, PSL Université, Sorbonne Université, CNRS UMR 144, Paris 75005, France
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
| | - Phong T. Tran
- Institut Curie, PSL Université, Sorbonne Université, CNRS UMR 144, Paris 75005, France
- University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Mallard F, Noble L, Baer CF, Teotónio H. Variation in mutational (co)variances. G3 (BETHESDA, MD.) 2023; 13:jkac335. [PMID: 36548954 PMCID: PMC9911065 DOI: 10.1093/g3journal/jkac335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Because of pleiotropy, mutations affect the expression and inheritance of multiple traits and, together with selection, are expected to shape standing genetic covariances between traits and eventual phenotypic divergence between populations. It is therefore important to find if the M matrix, describing mutational variances of each trait and covariances between traits, varies between genotypes. We here estimate the M matrix for six locomotion behavior traits in lines of two genotypes of the nematode Caenorhabditis elegans that accumulated mutations in a nearly neutral manner for 250 generations. We find significant mutational variance along at least one phenotypic dimension of the M matrices, but neither their size nor their orientation had detectable differences between genotypes. The number of generations of mutation accumulation, or the number of MA lines measured, was likely insufficient to sample enough mutations and detect potentially small differences between the two M matrices. We then tested if the M matrices were similar to one G matrix describing the standing genetic (co)variances of a population derived by the hybridization of several genotypes, including the two measured for M, and domesticated to a lab-defined environment for 140 generations. We found that the M and G were different because the genetic covariances caused by mutational pleiotropy in the two genotypes are smaller than those caused by linkage disequilibrium in the lab population. We further show that M matrices differed in their alignment with the lab population G matrix. If generalized to other founder genotypes of the lab population, these observations indicate that selection does not shape the evolution of the M matrix for locomotion behavior in the short-term of a few tens to hundreds of generations and suggests that the hybridization of C. elegans genotypes allows selection on new phenotypic dimensions of locomotion behavior.
Collapse
Affiliation(s)
- François Mallard
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Luke Noble
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| | - Charles F Baer
- Department of Biology, University of Florida Genetics Institute, University of Florida, Gainsville, FL 32611, USA
| | - Henrique Teotónio
- Institut de Biologie de l’École Normale Supérieure, PSL Research University, CNRS UMR 8197, Inserm U1024, F-75005 Paris, France
| |
Collapse
|
9
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
10
|
Kaul S, Chou HT, Charles S, Aubry G, Lu H, Paaby AB. Single-molecule FISH in C. elegans embryos reveals early embryonic expression dynamics of par-2 , lgl-1 and chin-1 and possible differences between hyper-diverged strains. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000609. [PMID: 35903776 PMCID: PMC9315406 DOI: 10.17912/micropub.biology.000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Wild C. elegans strains harbor natural variation in developmental pathways, but investigating these differences requires precise and well-powered phenotyping methods. Here we employ a microfluidics platform for single-molecule FISH to simultaneously visualize the transcripts of three genes in embryos of two distinct strains. We capture transcripts at high resolution by developmental stage in over one hundred embryos of each strain and observe wide-scale conservation of expression, but subtle differences in par-2 and chin-1 abundance and rate of change. As both genes reside in a genomic interval of hyper-divergence, these results may reflect consequences of pathway evolution over long timescales.
Collapse
Affiliation(s)
- Samiksha Kaul
- School of Biological Sciences, Georgia Institute of Technology
| | - Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology
| | - Seleipiri Charles
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
| | - Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology
| | | |
Collapse
|
11
|
Khatri D, Brugière T, Athale CA, Delattre M. Evolutionary divergence of anaphase spindle mechanics in nematode embryos constrained by antagonistic pulling and viscous forces. Mol Biol Cell 2022; 33:ar61. [PMID: 35235368 PMCID: PMC9265157 DOI: 10.1091/mbc.e21-10-0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular functions like cell division are remarkably conserved across phyla. However the evolutionary principles of cellular organization that drive it are less well explored. Thus, an essential question remains: to what extent cellular parameters evolve without altering the basic function they sustain? Here we have observed 6 different nematode species for which the mitotic spindle is positioned asymmetrically during the first embryonic division. Whereas the C. elegans spindle undergoes oscillations during its displacement, the spindle elongates without oscillations in other species. We asked which evolutionary changes in biophysical parameters could explain differences in spindle motion while maintaining a constant output. Using laser microsurgery of the spindle we revealed that all species are subjected to cortical pulling forces, of varying magnitudes. Using a viscoelastic model to fit the recoil trajectories and with an independent measurement of cytoplasmic viscosity, we extracted the values of cytoplasmic drag, cortical pulling forces and spindle elasticity for all species. We found large variations in cytoplasmic viscosity whereas cortical pulling forces and elasticity were often more constrained. In agreement with previous simulations, we found that increased viscosity correlates with decreased oscillation speeds across species. However, the absence of oscillations despite low viscosity in some species, can only be explained by smaller pulling forces. Consequently, we find that spindle mobility across the species analyzed here is characterized by a tradeoff between cytoplasmic viscosity and pulling forces normalized by the size of the embryo. Our work provides a framework for understanding mechanical constraints on evolutionary diversification of spindle mobility.
Collapse
Affiliation(s)
- Dhruv Khatri
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Thibault Brugière
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, 69007 Lyon, France
| | - Chaitanya A Athale
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, 69007 Lyon, France
| |
Collapse
|
12
|
Lacroix B, Dumont J. Spatial and Temporal Scaling of Microtubules and Mitotic Spindles. Cells 2022; 11:cells11020248. [PMID: 35053364 PMCID: PMC8774166 DOI: 10.3390/cells11020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
During cell division, the mitotic spindle, a macromolecular structure primarily comprised of microtubules, drives chromosome alignment and partitioning between daughter cells. Mitotic spindles can sense cellular dimensions in order to adapt their length and mass to cell size. This scaling capacity is particularly remarkable during early embryo cleavage when cells divide rapidly in the absence of cell growth, thus leading to a reduction of cell volume at each division. Although mitotic spindle size scaling can occur over an order of magnitude in early embryos, in many species the duration of mitosis is relatively short, constant throughout early development and independent of cell size. Therefore, a key challenge for cells during embryo cleavage is not only to assemble a spindle of proper size, but also to do it in an appropriate time window which is compatible with embryo development. How spatial and temporal scaling of the mitotic spindle is achieved and coordinated with the duration of mitosis remains elusive. In this review, we will focus on the mechanisms that support mitotic spindle spatial and temporal scaling over a wide range of cell sizes and cellular contexts. We will present current models and propose alternative mechanisms allowing cells to spatially and temporally coordinate microtubule and mitotic spindle assembly.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
- Correspondence:
| | - Julien Dumont
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France;
| |
Collapse
|
13
|
Chatterjee S, Som S, Varshney N, Satyadev P, Sanyal K, Paul R. Mechanics of microtubule organizing center clustering and spindle positioning in budding yeast Cryptococcus neoformans. Phys Rev E 2021; 104:034402. [PMID: 34654156 DOI: 10.1103/physreve.104.034402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/09/2021] [Indexed: 11/07/2022]
Abstract
The dynamic process of mitotic spindle assembly depends on multitudes of inter-dependent interactions involving kinetochores (KTs), microtubules (MTs), spindle pole bodies (SPBs), and molecular motors. Before forming the mitotic spindle, multiple visible microtubule organizing centers (MTOCs) coalesce into a single focus to serve as an SPB in the pathogenic budding yeast, Cryptococcus neoformans. To explain this unusual phenomenon in the fungal kingdom, we propose a "search and capture" model, in which cytoplasmic MTs (cMTs) nucleated by MTOCs grow and capture each other to promote MTOC clustering. Our quantitative modeling identifies multiple redundant mechanisms mediated by a combination of cMT-cell cortex interactions and inter-cMT coupling to facilitate MTOC clustering within the physiological time limit as determined by time-lapse live-cell microscopy. Besides, we screen various possible mechanisms by computational modeling and propose optimal conditions that favor proper spindle positioning-a critical determinant for timely chromosome segregation. These analyses also reveal that a combined effect of MT buckling, dynein pull, and cortical push maintains spatiotemporal spindle localization.
Collapse
Affiliation(s)
| | - Subhendu Som
- Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Neha Varshney
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Pvs Satyadev
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Raja Paul
- Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|
14
|
Cell division geometries as central organizers of early embryo development. Semin Cell Dev Biol 2021; 130:3-11. [PMID: 34419349 DOI: 10.1016/j.semcdb.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/08/2021] [Indexed: 11/24/2022]
Abstract
Early cellular patterning is a critical step of embryonic development that determines the proper progression of morphogenesis in all metazoans. It relies on a series of rapid reductive divisions occurring simultaneously with the specification of the fate of different subsets of cells. Multiple species developmental strategies emerged in the form of a unique cleavage pattern with stereotyped division geometries. Cleavage geometries have long been associated to the emergence of canonical developmental features such as cell cycle asynchrony, zygotic genome activation and fate specification. Yet, the direct causal role of division positioning on blastomere cell behavior remain partially understood. Oriented and/or asymmetric divisions define blastomere cell sizes, contacts and positions, with potential immediate impact on cellular decisions, lineage specification and morphogenesis. Division positions also instruct daughter cells polarity, mechanics and geometries, thereby influencing subsequent division events, in an emergent interplay that may pattern early embryos independently of firm deterministic genetic programs. We here review the recent literature which helped to delineate mechanisms and functions of division positioning in early embryos.
Collapse
|
15
|
Dubois C, Gupta S, Mugler A, Félix MA. Temporally regulated cell migration is sensitive to variation in body size. Development 2021; 148:dev196949. [PMID: 33593818 PMCID: PMC10683003 DOI: 10.1242/dev.196949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Few studies have measured the robustness to perturbations of the final position of a long-range migrating cell. In the nematode Caenorhabditis elegans, the QR neuroblast migrates anteriorly, while undergoing three division rounds. We study the final position of two of its great-granddaughters, the end of migration of which was previously shown to depend on a timing mechanism. We find that the variance in their final position is similar to that of other long-range migrating neurons. As expected from the timing mechanism, the position of QR descendants depends on body size, which we varied by changing maternal age or using body size mutants. Using a mathematical model, we show that body size variation is partially compensated for. Applying environmental perturbations, we find that the variance in final position increased following starvation at hatching. The mean position is displaced upon a temperature shift. Finally, highly significant variation was found among C. elegans wild isolates. Overall, this study reveals that the final position of these neurons is quite robust to stochastic variation, shows some sensitivity to body size and to external perturbations, and varies in the species.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Clément Dubois
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, 75005 Paris, France
| | - Shivam Gupta
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, 75005 Paris, France
| |
Collapse
|
16
|
Mechanical Mechanisms of Chromosome Segregation. Cells 2021; 10:cells10020465. [PMID: 33671543 PMCID: PMC7926803 DOI: 10.3390/cells10020465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation—the partitioning of genetic material into two daughter cells—is one of the most crucial processes in cell division. In all Eukaryotes, chromosome segregation is driven by the spindle, a microtubule-based, self-organizing subcellular structure. Extensive research performed over the past 150 years has identified numerous commonalities and contrasts between spindles in different systems. In this review, we use simple coarse-grained models to organize and integrate previous studies of chromosome segregation. We discuss sites of force generation in spindles and fundamental mechanical principles that any understanding of chromosome segregation must be based upon. We argue that conserved sites of force generation may interact differently in different spindles, leading to distinct mechanical mechanisms of chromosome segregation. We suggest experiments to determine which mechanical mechanism is operative in a particular spindle under study. Finally, we propose that combining biophysical experiments, coarse-grained theories, and evolutionary genetics will be a productive approach to enhance our understanding of chromosome segregation in the future.
Collapse
|
17
|
Spindle scaling mechanisms. Essays Biochem 2021; 64:383-396. [PMID: 32501481 DOI: 10.1042/ebc20190064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/02/2023]
Abstract
The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.
Collapse
|
18
|
Rieckhoff EM, Berndt F, Elsner M, Golfier S, Decker F, Ishihara K, Brugués J. Spindle Scaling Is Governed by Cell Boundary Regulation of Microtubule Nucleation. Curr Biol 2020; 30:4973-4983.e10. [DOI: 10.1016/j.cub.2020.10.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
|
19
|
Rathbun LI, Aljiboury AA, Bai X, Hall NA, Manikas J, Amack JD, Bembenek JN, Hehnly H. PLK1- and PLK4-Mediated Asymmetric Mitotic Centrosome Size and Positioning in the Early Zebrafish Embryo. Curr Biol 2020; 30:4519-4527.e3. [PMID: 32916112 PMCID: PMC8159022 DOI: 10.1016/j.cub.2020.08.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Factors that regulate mitotic spindle positioning remain unclear within the confines of extremely large embryonic cells, such as the early divisions of the vertebrate embryo, Danio rerio (zebrafish). We find that the mitotic centrosome, a structure that assembles the mitotic spindle [1], is notably large in the zebrafish embryo (246.44 ± 11.93 μm2 in a 126.86 ± 0.35 μm diameter cell) compared to a C. elegans embryo (5.78 ± 0.18 μm2 in a 55.83 ± 1.04 μm diameter cell). During embryonic cell divisions, cell size changes rapidly in both C. elegans and zebrafish [2, 3], where mitotic centrosome area scales more closely with changes in cell size compared to changes in spindle length. Embryonic zebrafish spindles contain asymmetrically sized mitotic centrosomes (2.14 ± 0.13-fold difference between the two), with the larger mitotic centrosome placed toward the embryo center in a polo-like kinase (PLK) 1- and PLK4-dependent manner. We propose a model in which uniquely large zebrafish embryonic centrosomes direct spindle placement within disproportionately large cells.
Collapse
Affiliation(s)
- Lindsay I Rathbun
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Abrar A Aljiboury
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Xiaofei Bai
- University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology, 1311 Cumberland Avenue, Knoxville, TN 37916, USA
| | - Nicole A Hall
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Julie Manikas
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
| | - Jeffrey D Amack
- SUNY Upstate Medical School, Department of Cell and Developmental Biology, 766 Irving Avenue, Syracuse, NY 13210, USA
| | - Joshua N Bembenek
- University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology, 1311 Cumberland Avenue, Knoxville, TN 37916, USA; University of Michigan Medical School, Department of Molecular, Cellular, Developmental Biology, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Heidi Hehnly
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
20
|
Chen H, Qian W, Good MC. Integrating cellular dimensions with cell differentiation during early development. Curr Opin Cell Biol 2020; 67:109-117. [PMID: 33152556 DOI: 10.1016/j.ceb.2020.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
Early embryo development is characterized by alteration of cellular dimensions and fating of blastomeres. An emerging concept is that cell size and shape drive cellular differentiation during early embryogenesis in a variety of model organisms. In this review, we summarize recent advances that elucidate the contribution of the physical dimensions of a cell to major embryonic transitions and cell fate specification in vivo. We also highlight techniques and newly evolving methods for manipulating the sizes and shapes of cells and whole embryos in situ and ex vivo. Finally, we provide an outlook for addressing fundamental questions in the field and more broadly uncovering how changes to cell size control decision making in a variety of biological contexts.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenchao Qian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Farhadifar R, Yu CH, Fabig G, Wu HY, Stein DB, Rockman M, Müller-Reichert T, Shelley MJ, Needleman DJ. Stoichiometric interactions explain spindle dynamics and scaling across 100 million years of nematode evolution. eLife 2020; 9:e55877. [PMID: 32966209 PMCID: PMC7511230 DOI: 10.7554/elife.55877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023] Open
Abstract
The spindle shows remarkable diversity, and changes in an integrated fashion, as cells vary over evolution. Here, we provide a mechanistic explanation for variations in the first mitotic spindle in nematodes. We used a combination of quantitative genetics and biophysics to rule out broad classes of models of the regulation of spindle length and dynamics, and to establish the importance of a balance of cortical pulling forces acting in different directions. These experiments led us to construct a model of cortical pulling forces in which the stoichiometric interactions of microtubules and force generators (each force generator can bind only one microtubule), is key to explaining the dynamics of spindle positioning and elongation, and spindle final length and scaling with cell size. This model accounts for variations in all the spindle traits we studied here, both within species and across nematode species spanning over 100 million years of evolution.
Collapse
Affiliation(s)
- Reza Farhadifar
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Che-Hang Yu
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav CarusDresdenGermany
| | - Hai-Yin Wu
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - David B Stein
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Matthew Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | | | - Michael J Shelley
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
- Courant Institute, New York UniversityNew YorkUnited States
| | - Daniel J Needleman
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| |
Collapse
|
22
|
Besnard F, Picao-Osorio J, Dubois C, Félix MA. A broad mutational target explains a fast rate of phenotypic evolution. eLife 2020; 9:54928. [PMID: 32851977 PMCID: PMC7556874 DOI: 10.7554/elife.54928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
The rapid evolution of a trait in a clade of organisms can be explained by the sustained action of natural selection or by a high mutational variance, that is the propensity to change under spontaneous mutation. The causes for a high mutational variance are still elusive. In some cases, fast evolution depends on the high mutation rate of one or few loci with short tandem repeats. Here, we report on the fastest evolving cell fate among vulva precursor cells in Caenorhabditis nematodes, that of P3.p. We identify and validate causal mutations underlying P3.p's high mutational variance. We find that these positions do not present any characteristics of a high mutation rate, are scattered across the genome and the corresponding genes belong to distinct biological pathways. Our data indicate that a broad mutational target size is the cause of the high mutational variance and of the corresponding fast phenotypic evolutionary rate. Heritable characteristics or traits of a group of organisms, for example the large brain size of primates or the hooves of a horse, are determined by genes, the environment, and by the interactions between them. Traits can change over time and generations when enough mutations in these genes have spread in a species to result in visible differences. However, some traits, such as the large brain of primates, evolve faster than others, but why this is the case has been unclear. It could be that a few specific genes important for that trait in question mutate at a high rate, or, that many genes affect the trait, creating a lot of variation for natural selection to choose from. Here, Besnard, Picao-Osorio et al. studied the roundworm Caenorhabditis elegans to better understand the causes underlying the different rates of trait evolution. These worms have a short life cycle and evolve quickly over many generations, making them an ideal candidate for studying mutation rates in different traits. Previous studies have shown that one of C. elegans’ six cells of the reproductive system evolves faster than the others. To investigate this further, Besnard, Picao-Osorio et al. analysed the genetic mutations driving change in this cell in 250 worm generations. The results showed that five mutations in five different genes – all responsible for different processes in the cells – were behind the supercharged evolution of this particular cell. This suggests that fast evolution results from natural selection acting upon a collection of genes, rather than one gene, and that many genes and pathways shape this trait. In conclusion, these results demonstrate that how traits are coded at the molecular level, in one gene or many, can influence the rate at which they evolve.
Collapse
Affiliation(s)
- Fabrice Besnard
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France.,Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, Lyon, France
| | - Joao Picao-Osorio
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| | - Clément Dubois
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
23
|
Chatterjee S, Sarkar A, Zhu J, Khodjakov A, Mogilner A, Paul R. Mechanics of Multicentrosomal Clustering in Bipolar Mitotic Spindles. Biophys J 2020; 119:434-447. [PMID: 32610087 DOI: 10.1016/j.bpj.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
To segregate chromosomes in mitosis, cells assemble a mitotic spindle, a molecular machine with centrosomes at two opposing cell poles and chromosomes at the equator. Microtubules and molecular motors connect the poles to kinetochores, specialized protein assemblies on the centromere regions of the chromosomes. Bipolarity of the spindle is crucial for the proper cell division, and two centrosomes in animal cells naturally become two spindle poles. Cancer cells are often multicentrosomal, yet they are able to assemble bipolar spindles by clustering centrosomes into two spindle poles. Mechanisms of this clustering are debated. In this study, we computationally screen effective forces between 1) centrosomes, 2) centrosomes and kinetochores, 3) centrosomes and chromosome arms, and 4) centrosomes and cell cortex to understand mechanics that determines three-dimensional spindle architecture. To do this, we use the stochastic Monte Carlo search for stable mechanical equilibria in the effective energy landscape of the spindle. We find that the following conditions have to be met to robustly assemble the bipolar spindle in a multicentrosomal cell: 1) the strengths of centrosomes' attraction to each other and to the cell cortex have to be proportional to each other and 2) the strengths of centrosomes' attraction to kinetochores and repulsion from the chromosome arms have to be proportional to each other. We also find that three other spindle configurations emerge if these conditions are not met: 1) collapsed, 2) monopolar, and 3) multipolar spindles, and the computational screen reveals mechanical conditions for these abnormal spindles.
Collapse
Affiliation(s)
| | - Apurba Sarkar
- Indian Association for the Cultivation of Science, Kolkata, India
| | - Jie Zhu
- Gerber Technology, Tolland, Connecticut
| | - Alexei Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, New York; Rensselaer Polytechnic Institute, Troy, New York
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, New York.
| | - Raja Paul
- Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
24
|
Abstract
The size of the intracellular structure that encloses genomic DNA - known as the nucleus in eukaryotes and nucleoid in prokaryotes - is believed to scale according to cell size and genomic content inside them across the tree of life. However, an actual scaling relationship remains largely unexplored across eukaryotic species. Here, I collected a large dataset of nuclear and cell volumes in diverse species across different phyla, including some prokaryotes, from the published literature and assessed the scaling relationship. Although entire inter-species data showed that nuclear volume correlates with cell volume, the quantitative scaling property exhibited differences among prokaryotes, unicellular eukaryotes and multicellular eukaryotes. Additionally, the nuclear volume correlates with genomic content inside the nucleus of multicellular eukaryotes but not of prokaryotes and unicellular eukaryotes. In this Hypothesis, I, thus, propose that the basic concept of nuclear-size scaling is conserved across eukaryotes; however, structural and mechanical properties of nuclear membranes and chromatin can result in different scaling relationships of nuclear volume to cell volume and genomic content among species. In particular, eukaryote-specific properties of the nuclear membrane may contribute to the extreme flexibility of nuclear size with regard to DNA density inside the nucleus.
Collapse
Affiliation(s)
- Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi city 753-8512, Japan
| |
Collapse
|
25
|
Liberles DA, Chang B, Geiler-Samerotte K, Goldman A, Hey J, Kaçar B, Meyer M, Murphy W, Posada D, Storfer A. Emerging Frontiers in the Study of Molecular Evolution. J Mol Evol 2020; 88:211-226. [PMID: 32060574 PMCID: PMC7386396 DOI: 10.1007/s00239-020-09932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.
Collapse
Affiliation(s)
- David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Belinda Chang
- Department of Ecology and Evolutionary Biology and Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Aaron Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Jody Hey
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
26
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
27
|
Vargas-Hurtado D, Brault JB, Piolot T, Leconte L, Da Silva N, Pennetier C, Baffet A, Marthiens V, Basto R. Differences in Mitotic Spindle Architecture in Mammalian Neural Stem Cells Influence Mitotic Accuracy during Brain Development. Curr Biol 2019; 29:2993-3005.e9. [DOI: 10.1016/j.cub.2019.07.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
|
28
|
Rieckhoff EM, Ishihara K, Brugués J. How to tune spindle size relative to cell size? Curr Opin Cell Biol 2019; 60:139-144. [PMID: 31377657 DOI: 10.1016/j.ceb.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
Cells need to regulate the size and shape of their organelles for proper function. For example, the mitotic spindle adapts its size to changes in cell size over several orders of magnitude, but we lack a mechanistic understanding of how this is achieved. Here, we review our current knowledge of how small and large spindles assemble and ask which microtubule-based biophysical processes (nucleation, polymerization dynamics, transport) may be responsible for spindle size regulation. Finally, we review possible cell-scale mechanisms that put spindle size under the regulation of cell size.
Collapse
Affiliation(s)
- Elisa Maria Rieckhoff
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Keisuke Ishihara
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Cutter AD, Garrett RH, Mark S, Wang W, Sun L. Molecular evolution across developmental time reveals rapid divergence in early embryogenesis. Evol Lett 2019; 3:359-373. [PMID: 31388446 PMCID: PMC6675142 DOI: 10.1002/evl3.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
Ontogenetic development hinges on the changes in gene expression in time and space within an organism, suggesting that the demands of ontogenetic growth can impose or reveal predictable pattern in the molecular evolution of genes expressed dynamically across development. Here, we characterize coexpression modules of the Caenorhabditis elegans transcriptome, using a time series of 30 points from early embryo to adult. By capturing the functional form of expression profiles with quantitative metrics, we find fastest evolution in the distinctive set of genes with transcript abundance that declines through development from a peak in young embryos. These genes are highly enriched for oogenic function and transient early zygotic expression, are nonrandomly distributed in the genome, and correspond to a life stage especially prone to inviability in interspecies hybrids. These observations conflict with the "early conservation model" for the evolution of development, although expression-weighted sequence divergence analysis provides some support for the "hourglass model." Genes in coexpression modules that peak toward adulthood also evolve fast, being hyper-enriched for roles in spermatogenesis, implicating a history of sexual selection and relaxation of selection on sperm as key factors driving rapid change to ontogenetically distinguishable coexpression modules of genes. We propose that these predictable trends of molecular evolution for dynamically expressed genes across ontogeny predispose particular life stages, early embryogenesis in particular, to hybrid dysfunction in the speciation process.
Collapse
Affiliation(s)
- Asher D. Cutter
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM6G1W3Canada
| | - Rose H. Garrett
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM6G1W3Canada
- Division of Biostatistics, Dalla Lana School of Public HealthUniversity of TorontoTorontoONM6G1W3Canada
- Department of Statistical SciencesUniversity of TorontoTorontoONM6G1W3Canada
| | - Stephanie Mark
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM6G1W3Canada
| | - Wei Wang
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONM6G1W3Canada
| | - Lei Sun
- Division of Biostatistics, Dalla Lana School of Public HealthUniversity of TorontoTorontoONM6G1W3Canada
- Department of Statistical SciencesUniversity of TorontoTorontoONM6G1W3Canada
| |
Collapse
|
30
|
Chen Y, Nam S, Chaudhuri O, Huang HC. The evolution of spindles and their mechanical implications for cancer metastasis. Cell Cycle 2019; 18:1671-1675. [PMID: 31234701 DOI: 10.1080/15384101.2019.1632137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The mitotic spindle has long been known to play a crucial role in mitosis, orchestrating the segregation of chromosomes into two daughter cells during mitosis with high fidelity. Intracellular forces generated by the mitotic spindle are increasingly well understood, and recent work has revealed that the efficiency and the accuracy of mitosis is ensured by the scaling of mitotic spindle size with cell size. However, the role of the spindle in cancer progression has largely been ignored. Two recent studies point toward the role of mitotic spindle evolution in cancer progression through extracellular force generation. Cancer cells with lengthened spindles exhibit highly increased metastatic potential. Further, interpolar spindle elongation drives protrusive extracellular force generation along the mitotic axis to allow mitotic elongation, a morphological change that is required for cell division. Together, these findings open a new research area studying the role of the mitotic spindle evolution in cancer metastasis.
Collapse
Affiliation(s)
- Yun Chen
- a Institute of Molecular and Cellular Biology , National Taiwan University , Taipei , Taiwan
| | - Sungmin Nam
- b Department of Mechanical Engineering , Stanford University , Stanford , CA , USA
| | - Ovijit Chaudhuri
- b Department of Mechanical Engineering , Stanford University , Stanford , CA , USA
| | - Hsiao-Chun Huang
- a Institute of Molecular and Cellular Biology , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
31
|
Hueschen CL, Galstyan V, Amouzgar M, Phillips R, Dumont S. Microtubule End-Clustering Maintains a Steady-State Spindle Shape. Curr Biol 2019; 29:700-708.e5. [PMID: 30744975 DOI: 10.1016/j.cub.2019.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/26/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
Each time a cell divides, the microtubule cytoskeleton self-organizes into the metaphase spindle: an ellipsoidal steady-state structure that holds its stereotyped geometry despite microtubule turnover and internal stresses [1-6]. Regulation of microtubule dynamics, motor proteins, microtubule crosslinking, and chromatid cohesion can modulate spindle size and shape, and yet modulated spindles reach and hold a new steady state [7-11]. Here, we ask what maintains any spindle steady-state geometry. We report that clustering of microtubule ends by dynein and NuMA is essential for mammalian spindles to hold a steady-state shape. After dynein or NuMA deletion, the mitotic microtubule network is "turbulent"; microtubule bundles extend and bend against the cell cortex, constantly remodeling network shape. We find that spindle turbulence is driven by the homotetrameric kinesin-5 Eg5, and that acute Eg5 inhibition in turbulent spindles recovers spindle geometry and stability. Inspired by in vitro work on active turbulent gels of microtubules and kinesin [12, 13], we explore the kinematics of this in vivo turbulent network. We find that turbulent spindles display decreased nematic order and that motile asters distort the nematic director field. Finally, we see that turbulent spindles can drive both flow of cytoplasmic organelles and whole-cell movement-analogous to the autonomous motility displayed by droplet-encapsulated turbulent gels [12]. Thus, end-clustering by dynein and NuMA is required for mammalian spindles to reach a steady-state geometry, and in their absence Eg5 powers a turbulent microtubule network inside mitotic cells.
Collapse
Affiliation(s)
- Christina L Hueschen
- Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, UCSF, San Francisco, CA 94143, USA.
| | - Vahe Galstyan
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, CA 91106, USA
| | - Meelad Amouzgar
- Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA
| | - Rob Phillips
- Department of Physics, California Institute of Technology, Pasadena, CA 91106, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| | - Sophie Dumont
- Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, UCSF, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
32
|
Ting JJ, Tsai CN, Schalkowski R, Cutter AD. Genetic Contributions to Ectopic Sperm Cell Migration in Caenorhabditis Nematodes. G3 (BETHESDA, MD.) 2018; 8:3891-3902. [PMID: 30327379 PMCID: PMC6288822 DOI: 10.1534/g3.118.200785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Reproductive barriers involving gametic incompatibilities can act to enhance population divergence and promote the persistence of species boundaries. Observing gametic interactions in internal fertilizing organisms, however, presents a considerable practical challenge to characterizing mechanisms of such gametic isolation. Here we exploit the transparency of Caenorhabditis nematodes to investigate gametic isolation mediated by sperm that can migrate to ectopic locations, with this sperm invasion capable of inducing female sterility and premature death. As a step toward identifying genetic factors and mechanisms associated with female susceptibility to sperm invasion, we characterized a panel of 25 C. elegans genetic mutants to test for effects on the incidence and severity of sperm invasion in both conspecific and inter-species matings. We found genetic perturbations to contribute to distinct patterns of susceptibility that identify ovulation dynamics and sperm guidance cues as modulators of ectopic sperm migration incidence and severity. Genotypes confer distinctive phenotypic sensitivities to the sperm from conspecific C. elegans males vs. heterospecific C. nigoni males, implicating evolution of functional divergence in the history of these species for components of sperm-reproductive tract interactions. Sexually-antagonistic co-evolution within species that drives divergent trait and molecular evolution between species provides a working model to explain mismatched species-specific gametic interactions that promote or mitigate ectopic sperm migration.
Collapse
Affiliation(s)
- Janice J Ting
- Department of Ecology & Evolutionary Biology, University of Toronto
| | - Caressa N Tsai
- Department of Ecology & Evolutionary Biology, University of Toronto
| | | | - Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto
| |
Collapse
|
33
|
Bouvrais H, Chesneau L, Pastezeur S, Fairbrass D, Delattre M, Pécréaux J. Microtubule Feedback and LET-99-Dependent Control of Pulling Forces Ensure Robust Spindle Position. Biophys J 2018; 115:2189-2205. [PMID: 30447992 PMCID: PMC6289040 DOI: 10.1016/j.bpj.2018.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022] Open
Abstract
During asymmetric division of the Caenorhabditis elegans zygote, to properly distribute cell fate determinants, the mitotic spindle is asymmetrically localized by a combination of centering and cortical-pulling microtubule-mediated forces, the dynamics of the latter being regulated by mitotic progression. Here, we show a, to our knowledge, novel and additional regulation of these forces by spindle position itself. For that, we observed the onset of transverse spindle oscillations, which reflects the burst of anaphase pulling forces. After delaying anaphase onset, we found that the position at which the spindle starts to oscillate was unchanged compared to control embryos and uncorrelated to anaphase onset. In mapping the cortical microtubule dynamics, we measured a steep increase in microtubule contact density after the posterior centrosome reached the critical position of 70% of embryo length, strongly suggesting the presence of a positional switch for spindle oscillations. Expanding a previous model based on a force-generator temporal control, we implemented this positional switch and observed that the large increase in microtubule density accounted for the pulling force burst. Thus, we propose that the spindle position influences the cortical availability of microtubules on which the active force generators, controlled by cell cycle progression, can pull. Importantly, we found that this positional control relies on the polarity-dependent LET-99 cortical band, the boundary of which could be probed by microtubules. This dual positional and temporal control well accounted for our observation that the oscillation onset position resists changes in cellular geometry and moderate variations in the active force generator number. Finally, our model suggests that spindle position at mitosis end is more sensitive to the polarity factor LET-99, which restricts the region of active force generators to a posterior-most region, than to microtubule number or force generator number/activity. Overall, we show that robustness in spindle positioning originates in cell mechanics rather than biochemical networks.
Collapse
Affiliation(s)
| | | | | | | | - Marie Delattre
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | | |
Collapse
|
34
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
35
|
Oliferenko S. Understanding eukaryotic chromosome segregation from a comparative biology perspective. J Cell Sci 2018; 131:131/14/jcs203653. [PMID: 30030298 DOI: 10.1242/jcs.203653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A long-appreciated variation in fundamental cell biological processes between different species is becoming increasingly tractable due to recent breakthroughs in whole-genome analyses and genome editing techniques. However, the bulk of our mechanistic understanding in cell biology continues to come from just a few well-established models. In this Review, I use the highly diverse strategies of chromosome segregation in eukaryotes as an instrument for a more general discussion on phenotypic variation, possible rules underlying its emergence and its utility in understanding conserved functional relationships underlying this process. Such a comparative approach, supported by modern molecular biology tools, might provide a wider, holistic view of biology that is difficult to achieve when concentrating on a single experimental system.
Collapse
Affiliation(s)
- Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK .,Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| |
Collapse
|
36
|
Donoughe S, Kim C, Extavour CG. High-throughput live-imaging of embryos in microwell arrays using a modular specimen mounting system. Biol Open 2018; 7:bio031260. [PMID: 29712638 PMCID: PMC6078342 DOI: 10.1242/bio.031260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/03/2018] [Indexed: 01/09/2023] Open
Abstract
High-throughput live-imaging of embryos is an essential technique in developmental biology, but it is difficult and costly to mount and image embryos in consistent conditions. Here, we present OMMAwell, a simple, reusable device to easily mount dozens of embryos in arrays of agarose microwells with customizable dimensions and spacing. OMMAwell can be configured to mount specimens for upright or inverted microscopes, and includes a reservoir to hold live-imaging medium to maintain constant moisture and osmolarity of specimens during time-lapse imaging. All device components can be fabricated by cutting pieces from a sheet of acrylic using a laser cutter or by making them with a 3D printer. We demonstrate how to design a custom mold and use it to live-image dozens of embryos at a time. We include descriptions, schematics, and design files for 13 additional molds for nine animal species, including most major traditional laboratory models and a number of emerging model systems. Finally, we provide instructions for researchers to customize OMMAwell inserts for embryos or tissues not described herein.
Collapse
Affiliation(s)
- Seth Donoughe
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, USA
| | - Chiyoung Kim
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138, USA
| |
Collapse
|
37
|
Lynch M. Phylogenetic divergence of cell biological features. eLife 2018; 7:34820. [PMID: 29927740 PMCID: PMC6013259 DOI: 10.7554/elife.34820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
Most cellular features have a range of states, but understanding the mechanisms responsible for interspecific divergence is a challenge for evolutionary cell biology. Models are developed for the distribution of mean phenotypes likely to evolve under the joint forces of mutation and genetic drift in the face of constant selection pressures. Mean phenotypes will deviate from optimal states to a degree depending on the effective population size, potentially leading to substantial divergence in the absence of diversifying selection. The steady-state distribution for the mean can even be bimodal, with one domain being largely driven by selection and the other by mutation pressure, leading to the illusion of phenotypic shifts being induced by movement among alternative adaptive domains. These results raise questions as to whether lineage-specific selective pressures are necessary to account for interspecific divergence, providing a possible platform for the establishment of null models for the evolution of cell-biological traits.
Collapse
Affiliation(s)
- Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
38
|
Heald R, Gibeaux R. Subcellular scaling: does size matter for cell division? Curr Opin Cell Biol 2018; 52:88-95. [PMID: 29501026 PMCID: PMC5988940 DOI: 10.1016/j.ceb.2018.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
Among different species or cell types, or during early embryonic cell divisions that occur in the absence of cell growth, the size of subcellular structures, including the nucleus, chromosomes, and mitotic spindle, scale with cell size. Maintaining correct subcellular scales is thought to be important for many cellular processes and, in particular, for mitosis. In this review, we provide an update on nuclear and chromosome scaling mechanisms and their significance in metazoans, with a focus on Caenorhabditis elegans, Xenopus and mammalian systems, for which a common role for the Ran (Ras-related nuclear protein)-dependent nuclear transport system has emerged.
Collapse
Affiliation(s)
- Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
Haupt A, Minc N. How cells sense their own shape - mechanisms to probe cell geometry and their implications in cellular organization and function. J Cell Sci 2018; 131:131/6/jcs214015. [PMID: 29581183 DOI: 10.1242/jcs.214015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cells come in a variety of shapes that most often underlie their functions. Regulation of cell morphogenesis implies that there are mechanisms for shape sensing that still remain poorly appreciated. Global and local cell geometry features, such as aspect ratio, size or membrane curvature, may be probed by intracellular modules, such as the cytoskeleton, reaction-diffusion systems or molecular complexes. In multicellular tissues, cell shape emerges as an important means to transduce tissue-inherent chemical and mechanical cues into intracellular organization. One emergent paradigm is that cell-shape sensing is most often based upon mechanisms of self-organization, rather than determinism. Here, we review relevant work that has elucidated some of the core principles of how cellular geometry may be conveyed into spatial information to guide processes, such as polarity, signaling, morphogenesis and division-plane positioning.
Collapse
Affiliation(s)
- Armin Haupt
- Institut Jacques Monod, CNRS UMR7592 and Université Paris Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Nicolas Minc
- Institut Jacques Monod, CNRS UMR7592 and Université Paris Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
40
|
Valfort AC, Launay C, Sémon M, Delattre M. Evolution of mitotic spindle behavior during the first asymmetric embryonic division of nematodes. PLoS Biol 2018; 16:e2005099. [PMID: 29357348 PMCID: PMC5794175 DOI: 10.1371/journal.pbio.2005099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/01/2018] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
Asymmetric cell division is essential to generate cellular diversity. In many animal cells, the cleavage plane lies perpendicular to the mitotic spindle, and it is the spindle positioning that dictates the size of the daughter cells. Although some properties of spindle positioning are conserved between distantly related model species and different cell types, little is known of the evolutionary robustness of the mechanisms underlying this event. We recorded the first embryonic division of 42 species of nematodes closely related to Caenorhabditis elegans, which is an excellent model system to study the biophysical properties of asymmetric spindle positioning. Our recordings, corresponding to 128 strains from 27 Caenorhabditis and 15 non-Caenorhabditis species (accessible at http://www.ens-lyon.fr/LBMC/NematodeCell/videos/), constitute a powerful collection of subcellular phenotypes to study the evolution of various cellular processes across species. In the present work, we analyzed our collection to the study of asymmetric spindle positioning. Although all the strains underwent an asymmetric first cell division, they exhibited large intra- and inter-species variations in the degree of cell asymmetry and in several parameters controlling spindle movement, including spindle oscillation, elongation, and displacement. Notably, these parameters changed frequently during evolution with no apparent directionality in the species phylogeny, with the exception of spindle transverse oscillations, which were an evolutionary innovation at the base of the Caenorhabditis genus. These changes were also unrelated to evolutionary variations in embryo size. Importantly, spindle elongation, displacement, and oscillation each evolved independently. This finding contrasts starkly with expectations based on C. elegans studies and reveals previously unrecognized evolutionary changes in spindle mechanics. Collectively, these data demonstrate that, while the essential process of asymmetric cell division has been conserved over the course of nematode evolution, the underlying spindle movement parameters can combine in various ways. Like other developmental processes, asymmetric cell division is subject to system drift.
Collapse
Affiliation(s)
- Aurore-Cécile Valfort
- Department of Pharmacology & Physiology (Colin Flaveny lab), Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Caroline Launay
- UnivLyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | - Marie Sémon
- UnivLyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | - Marie Delattre
- UnivLyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| |
Collapse
|
41
|
Spindle Size Scaling Contributes to Robust Silencing of Mitotic Spindle Assembly Checkpoint. Biophys J 2017; 111:1064-77. [PMID: 27602734 DOI: 10.1016/j.bpj.2016.07.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/25/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Chromosome segregation during mitosis hinges on proper assembly of the microtubule spindle that establishes bipolar attachment to each chromosome. Experiments demonstrate allometry of mitotic spindles and a universal scaling relationship between spindle size and cell size across metazoans, which indicates a conserved principle of spindle assembly at play during evolution. However, the nature of this principle is currently unknown. Researchers have focused on deriving the mechanistic underpinning of the size scaling from the mechanical aspects of the spindle assembly process. In this work we take a different standpoint and ask: What is the size scaling for? We address this question from the functional perspectives of spindle assembly checkpoint (SAC). SAC is the critical surveillance mechanism that prevents premature chromosome segregation in the presence of unattached or misattached chromosomes. The SAC signal gets silenced after and only after the last chromosome-spindle attachment in mitosis. We previously established a model that explains the robustness of SAC silencing based on spindle-mediated spatiotemporal regulation of SAC proteins. Here, we refine the previous model, and find that robust and timely SAC silencing entails proper size scaling of mitotic spindle. This finding provides, to our knowledge, a novel, function-oriented angle toward understanding the observed spindle allometry, and the universal scaling relationship between spindle size and cell size in metazoans. In a broad sense, the functional requirement of robust SAC silencing could have helped shape the spindle assembly mechanism in evolution.
Collapse
|
42
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
43
|
Abstract
The mitotic spindle has a crucial role in ensuring the accurate segregation of chromosomes into the two daughter cells during cell division, which is paramount for maintaining genome integrity. It is a self-organized and dynamic macromolecular structure that is constructed from microtubules, microtubule-associated proteins and motor proteins. Thirty years of research have led to the identification of centrosome-, chromatin- and microtubule-mediated microtubule nucleation pathways that each contribute to mitotic spindle assembly. Far from being redundant pathways, data are now emerging regarding how they function together to ensure the timely completion of mitosis. We are also beginning to comprehend the multiple mechanisms by which cells regulate spindle scaling. Together, this research has increased our understanding of how cells coordinate hundreds of proteins to assemble the dynamic, precise and robust structure that is the mitotic spindle.
Collapse
|
44
|
Migas UM, Quinn MK, McManus JJ. Protein self-assembly following in situ expression in artificial and mammalian cells. Integr Biol (Camb) 2017; 9:444-450. [DOI: 10.1039/c6ib00240d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of in vitro measurements in explaining the mechanisms underlying protein self-assembly in physiologically relevant conditions has been demonstrated in solution and in artificial and mammalian cells.
Collapse
|
45
|
Mashock MJ, Zanon T, Kappell AD, Petrella LN, Andersen EC, Hristova KR. Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in Caenorhabditis elegans. PLoS One 2016; 11:e0167613. [PMID: 27911941 PMCID: PMC5135131 DOI: 10.1371/journal.pone.0167613] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress).
Collapse
Affiliation(s)
- Michael J. Mashock
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Tyler Zanon
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Anthony D. Kappell
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Lisa N. Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Krassimira R. Hristova
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
46
|
The Evolution of the Algorithms for Collective Behavior. Cell Syst 2016; 3:514-520. [PMID: 28009263 DOI: 10.1016/j.cels.2016.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/30/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022]
Abstract
Collective behavior is the outcome of a network of local interactions. Here, I consider collective behavior as the result of algorithms that have evolved to operate in response to a particular environment and physiological context. I discuss how algorithms are shaped by the costs of operating under the constraints that the environment imposes, the extent to which the environment is stable, and the distribution, in space and time, of resources. I suggest that a focus on the dynamics of the environment may provide new hypotheses for elucidating the algorithms that produce the collective behavior of cellular systems.
Collapse
|
47
|
Kinesin-5 Contributes to Spindle-length Scaling in the Evolution of Cancer toward Metastasis. Sci Rep 2016; 6:35767. [PMID: 27767194 PMCID: PMC5073351 DOI: 10.1038/srep35767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/05/2016] [Indexed: 01/03/2023] Open
Abstract
During natural evolution, the spindles often scale with cell sizes to orchestrate accurate chromosome segregation. Whether in cancer evolution, when the constraints on genome integrity are relaxed, cancer cells may evolve the spindle to confer other advantages has not been investigated. Using invasion as a selective pressure in vitro, we found that a highly metastatic cancer clone displays a lengthened metaphase spindle, with faster spindle elongation that correlates with transiently elevated speed of cell migration. We found that kinesin-5 is upregulated in this malignant clone, and weak inhibition of kinesin-5 activity could revert the spindle to a smaller aspect ratio, decrease the speed of spindle pole separation, and suppress post-mitotic cell migration. A correlation was found between high aspect ratio and strong metastatic potential in cancers that evolved and were selected in vivo, implicating that the spindle aspect ratio could serve as a promising cellular biomarker for metastatic cancer clones.
Collapse
|
48
|
Davies SK, Leroi A, Burt A, Bundy JG, Baer CF. The mutational structure of metabolism in Caenorhabditis elegans. Evolution 2016; 70:2239-2246. [PMID: 27465022 PMCID: PMC5050113 DOI: 10.1111/evo.13020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/27/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022]
Abstract
A properly functioning organism must maintain metabolic homeostasis. Deleterious mutations degrade organismal function, presumably at least in part via effects on metabolic function. Here we present an initial investigation into the mutational structure of the Caenorhabditis elegans metabolome by means of a mutation accumulation experiment. We find that pool sizes of 29 metabolites vary greatly in their vulnerability to mutation, both in terms of the rate of accumulation of genetic variance (the mutational variance, VM) and the rate of change of the trait mean (the mutational bias, ΔM). Strikingly, some metabolites are much more vulnerable to mutation than any other trait previously studied in the same way. Although we cannot statistically assess the strength of mutational correlations between individual metabolites, principal component analysis provides strong evidence that some metabolite pools are genetically correlated, but also that there is substantial scope for independent evolution of different groups of metabolites. Averaged over mutation accumulation lines, PC3 is positively correlated with relative fitness, but a model in which metabolites are uncorrelated with fitness is nearly as good by Akaike's Information Criterion.
Collapse
Affiliation(s)
- Sarah K Davies
- Department of Life Sciences, Imperial College London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Armand Leroi
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Austin Burt
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Jacob G Bundy
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida.
- Genetics Institute, University of Florida, Gainesville, Florida.
| |
Collapse
|
49
|
Vielle A, Callemeyn-Torre N, Gimond C, Poullet N, Gray JC, Cutter AD, Braendle C. Convergent evolution of sperm gigantism and the developmental origins of sperm size variability in Caenorhabditis nematodes. Evolution 2016; 70:2485-2503. [PMID: 27565121 DOI: 10.1111/evo.13043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
Sperm cells provide essential, if usually diminutive, ingredients to successful sexual reproduction. Despite this conserved function, sperm competition and coevolution with female traits can drive spectacular morphological change in these cells. Here, we characterize four repeated instances of convergent evolution of sperm gigantism in Caenorhabditis nematodes using phylogenetic comparative methods on 26 species. Species at the extreme end of the 50-fold range of sperm-cell volumes across the genus have sperm capable of comprising up to 5% of egg-cell volume, representing severe attenuation of the magnitude of anisogamy. Furthermore, we uncover significant differences in mean and variance of sperm size among genotypes, between sexes, and within and between individuals of identical genotypes. We demonstrate that the developmental basis of sperm size variation, both within and between species, becomes established during an early stage of sperm development at the formation of primary spermatocytes, while subsequent meiotic divisions contribute little further sperm size variability. These findings provide first insights into the developmental determinants of inter- and intraspecific sperm size differences in Caenorhabditis. We hypothesize that life history and ecological differences among species favored the evolution of alternative sperm competition strategies toward either many smaller sperm or fewer larger sperm.
Collapse
Affiliation(s)
- Anne Vielle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | | | - Clotilde Gimond
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Nausicaa Poullet
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Christian Braendle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
50
|
Abstract
Concentration gradients of soluble proteins are believed to be responsible for control of morphogenesis of subcellular systems, but the mechanisms that generate the spatial organization of these subcellular gradients remain poorly understood. Here, we use a newly developed multipoint fluorescence fluctuation spectroscopy technique to study the ras-related nuclear protein (Ran) pathway, which forms soluble gradients around chromosomes in mitosis and is thought to spatially regulate microtubule behaviors during spindle assembly. We found that the distribution of components of the Ran pathway that influence microtubule behaviors is determined by their interactions with microtubules, resulting in microtubule nucleators being localized by the microtubules whose formation they stimulate. Modeling and perturbation experiments show that this feedback makes the length of the spindle insensitive to the length scale of the Ran gradient, allows the spindle to assemble outside the peak of the Ran gradient, and explains the scaling of the spindle with cell size. Such feedback between soluble signaling pathways and the mechanics of the cytoskeleton may be a general feature of subcellular organization.
Collapse
|