1
|
Bellaart A, Brambila A, Xu J, Mendez Diaz F, Deep A, Anzola J, Meitinger F, Ohta M, Corbett KD, Desai A, Oegema K. TRIM37 prevents ectopic spindle pole assembly by peptide motif recognition and substrate-dependent oligomerization. Nat Struct Mol Biol 2025:10.1038/s41594-025-01562-0. [PMID: 40415024 DOI: 10.1038/s41594-025-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/10/2025] [Indexed: 05/27/2025]
Abstract
Tightly controlled duplication of centrosomes, the primary microtubule-organizing centers of animal cells, ensures bipolarity of the mitotic spindle and accurate chromosome segregation. The RING-B-box-coiled coil ubiquitin ligase tripartite motif-containing protein 37 (TRIM37), whose loss is associated with elevated chromosome missegregation and the tumor-prone human developmental disorder Mulibrey nanism, prevents the formation of ectopic spindle poles assembling around structured condensates that contain the centrosomal protein centrobin. Here, we show that TRIM37's tumor necrosis factor receptor-associated factor (TRAF) domain, which is unique in the extended TRIM family, engages peptide motifs in centrobin to suppress condensate formation. TRIM family proteins form antiparallel coiled-coil dimers with RING-B-box domains at each end. Oligomerization resulting from RING-RING interactions and conformational regulation through B-box 2-B-box 2 interfaces are essential for TRIM37 to suppress centrobin condensate formation. These results indicate that, similar to antiviral TRIM ligases, TRIM37 activation is coupled to detection of oligomerized substrates, facilitated by recognition of specific motifs in the substrate, to enforce ubiquitination-mediated clearance of ectopic centrosomal protein assemblies.
Collapse
Affiliation(s)
- Andrew Bellaart
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Brambila
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jiawei Xu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Francisco Mendez Diaz
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - John Anzola
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Franz Meitinger
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Okinawa Institute of Science and Technology, Onna, Japan
| | - Midori Ohta
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Okinawa Institute of Science and Technology, Onna, Japan
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Arshad Desai
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Karen Oegema
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Lee D, Ryu S, Hea JH, Kim G, Baek IJ, Sung YH, Rhee K. Centrobin serves as a safeguard to guide timely centriole maturation during the cell cycle. Sci Rep 2025; 15:9280. [PMID: 40102598 PMCID: PMC11920255 DOI: 10.1038/s41598-025-94414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/13/2025] [Indexed: 03/20/2025] Open
Abstract
Centrioles assemble and segregate in link to the cell cycle. Daughter centrioles assemble at S phase, and become young mother centrioles after M phase. Since distal appendages (DAs) are installed to young mother centrioles at the second G2/M transition phase, it takes one and a half cell cycle for a daughter centriole to fully mature into an old mother centriole. Here, we investigated specific roles of centrobin on centriole maturation by tracing its centriole localization throughout the cell cycle. Centrobin instantly places at the nascent daughter centrioles during the S phase, maintains its localization through subsequent cell cycle as these daughter centrioles mature into young mother centrioles, and detaches from the young mother centriole during the G2 phase, prior to DA installation. Centrobin KO cells exhibit two DA-installed centrioles, due to premature DA installation in daughter centrioles, and can produce doublet cilia from two DA-installed basal bodies. We also present evidence that direct phosphorylation of Plk1 is crucial for centrobin attachment to centrioles during G2 and M phases. Finally, premature DA installation was also observed in centrobin KO mice. Our results collectively demonstrate that centrobin serves as a safeguard to guide timely centriole maturation during the cell cycle.
Collapse
Affiliation(s)
- Dohyong Lee
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Sungjin Ryu
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ji Hwa Hea
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, Korea
| | - Globinna Kim
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - In-Jeoung Baek
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, Korea
| | - Young Hoon Sung
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, Korea.
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Bellaart A, Brambila A, Xu J, Mendez Diaz F, Deep A, Anzola J, Meitinger F, Ohta M, Corbett KD, Desai A, Oegema K. TRIM37 employs peptide motif recognition and substrate-dependent oligomerization to prevent ectopic spindle pole assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617493. [PMID: 39416052 PMCID: PMC11482875 DOI: 10.1101/2024.10.09.617493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tightly controlled duplication of centrosomes, the major microtubule-organizing centers of animal cells, ensures bipolarity of the mitotic spindle and accurate chromosome segregation. The RBCC (RING-B-box-coiled coil) ubiquitin ligase TRIM37, whose loss is associated with elevated chromosome missegregation and the tumor-prone developmental human disorder Mulibrey nanism, prevents the formation of ectopic spindle poles that assemble around structured condensates containing the centrosomal protein centrobin. Here, we show that TRIM37's TRAF domain, unique in the extended TRIM family, engages peptide motifs in centrobin to suppress condensate formation. TRIM proteins form anti-parallel coiled-coil dimers with RING-B-box domains on each end. Oligomerization due to RING-RING interactions and conformational regulation by B-box-2-B-box-2 interfaces are critical for TRIM37 to suppress centrobin condensate formation. These results indicate that, analogous to anti-viral TRIM ligases, TRIM37 activation is linked to the detection of oligomerized substrates. Thus, TRIM37 couples peptide motif recognition and substrate-dependent oligomerization to effect ubiquitination-mediated clearance of ectopic centrosomal protein assemblies.
Collapse
Affiliation(s)
- Andrew Bellaart
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Amanda Brambila
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Jiawei Xu
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Francisco Mendez Diaz
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Amar Deep
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - John Anzola
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Franz Meitinger
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Midori Ohta
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Kevin D. Corbett
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Karen Oegema
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
4
|
Jaiswal A, Boring A, Mukherjee A, Avidor-Reiss T. Fly Fam161 is an essential centriole and cilium transition zone protein with unique and diverse cell type-specific localizations. Open Biol 2024; 14:240036. [PMID: 39255847 PMCID: PMC11500687 DOI: 10.1098/rsob.240036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024] Open
Abstract
Family with sequence similarity 161 (Fam161) is an ancient family of microtubule-binding proteins located at the centriole and cilium transition zone (TZ) lumen that exhibit rapid evolution in mice. However, their adaptive role is unclear. Here, we used flies to gain insight into their cell type-specific adaptations. Fam161 is the sole orthologue of FAM161A and FAM161B found in flies. Mutating Fam161 results in reduced male reproduction and abnormal geotaxis behaviour. Fam161 localizes to sensory neuron centrioles and their specialized TZ (the connecting cilium) in a cell type-specific manner, sometimes labelling only the centrioles, sometimes labelling the centrioles and cilium TZ and sometimes labelling the TZ with varying lengths that are longer than other TZ proteins, defining a new ciliary compartment, the extra distal TZ. These findings suggest that Fam161 is an essential centriole and TZ protein with a unique cell type-specific localization in fruit flies that can produce cell type-specific adaptations.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Andrew Boring
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| | - Avik Mukherjee
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH43606, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH43614, USA
| |
Collapse
|
5
|
Dobbelaere J, Su TY, Erdi B, Schleiffer A, Dammermann A. A phylogenetic profiling approach identifies novel ciliogenesis genes in Drosophila and C. elegans. EMBO J 2023; 42:e113616. [PMID: 37317646 PMCID: PMC10425847 DOI: 10.15252/embj.2023113616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Cilia are cellular projections that perform sensory and motile functions in eukaryotic cells. A defining feature of cilia is that they are evolutionarily ancient, yet not universally conserved. In this study, we have used the resulting presence and absence pattern in the genomes of diverse eukaryotes to identify a set of 386 human genes associated with cilium assembly or motility. Comprehensive tissue-specific RNAi in Drosophila and mutant analysis in C. elegans revealed signature ciliary defects for 70-80% of novel genes, a percentage similar to that for known genes within the cluster. Further characterization identified different phenotypic classes, including a set of genes related to the cartwheel component Bld10/CEP135 and two highly conserved regulators of cilium biogenesis. We propose this dataset defines the core set of genes required for cilium assembly and motility across eukaryotes and presents a valuable resource for future studies of cilium biology and associated disorders.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Tiffany Y Su
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Balazs Erdi
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC)ViennaAustria
| | | |
Collapse
|
6
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Roux-Bourdieu ML, Dwivedi D, Harry D, Meraldi P. PLK1 controls centriole distal appendage formation and centrobin removal via independent pathways. J Cell Sci 2022; 135:275085. [PMID: 35343570 DOI: 10.1242/jcs.259120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Centrioles are central structural elements of centrosomes and cilia. In human cells daughter centrioles are assembled adjacent to existing centrioles in S-phase and reach their full functionality with the formation of distal and subdistal appendages one-and-a-half cell cycle later, as they exit their second mitosis. Current models postulate that the centriolar protein centrobin acts as placeholder for distal appendage proteins that must be removed to complete distal appendage formation. Here, we investigated in non-transformed human epithelial RPE1 cells the mechanisms controlling centrobin removal and its effect on distal appendage formation. Our data are consistent with a speculative model in which centrobin is removed from older centrioles due to a higher affinity for the newly born daughter centrioles, under the control of the centrosomal kinase Plk1. This removal also depends on the presence of subdistal appendage proteins on the oldest centriole. Removing centrobin, however, is not required for the recruitment of distal appendage proteins, even though this process is equally dependent on Plk1. We conclude that Plk1 kinase regulates centrobin removal and distal appendage formation during centriole maturation via separate pathways.
Collapse
Affiliation(s)
- Morgan Le Roux-Bourdieu
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
8
|
Jana SC. Centrosome structure and biogenesis: Variations on a theme? Semin Cell Dev Biol 2021; 110:123-138. [PMID: 33455859 DOI: 10.1016/j.semcdb.2020.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022]
Abstract
Centrosomes are composed of two orthogonally arranged centrioles surrounded by an electron-dense matrix called the pericentriolar material (PCM). Centrioles are cylinders with diameters of ~250 nm, are several hundred nanometres in length and consist of 9-fold symmetrically arranged microtubules (MT). In dividing animal cells, centrosomes act as the principal MT-organising centres and they also organise actin, which tunes cytoplasmic MT nucleation. In some specialised cells, the centrosome acquires additional critical structures and converts into the base of a cilium with diverse functions including signalling and motility. These structures are found in most eukaryotes and are essential for development and homoeostasis at both cellular and organism levels. The ultrastructure of centrosomes and their derived organelles have been known for more than half a century. However, recent advances in a number of techniques have revealed the high-resolution structures (at Å-to-nm scale resolution) of centrioles and have begun to uncover the molecular principles underlying their properties, including: protein components; structural elements; and biogenesis in various model organisms. This review covers advances in our understanding of the features and processes that are critical for the biogenesis of the evolutionarily conserved structures of the centrosomes. Furthermore, it discusses how variations of these aspects can generate diversity in centrosome structure and function among different species and even between cell types within a multicellular organism.
Collapse
Affiliation(s)
- Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; National Centre for Biological Sciences-TIFR, Bellary Road, 560065 Bangalore, India.
| |
Collapse
|
9
|
Persico V, Callaini G, Riparbelli MG. Sas-4 Colocalizes with the Ciliary Rootlets of the Drosophila Sensory Organs. J Dev Biol 2021; 9:jdb9010001. [PMID: 33466292 PMCID: PMC7839044 DOI: 10.3390/jdb9010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
The Drosophila eye displays peculiar sensory organs of unknown function, the mechanosensory bristles, that are intercalated among the adjacent ommatidia. Like the other Drosophila sensory organs, the mechanosensory bristles consist of a bipolar neuron and two tandemly aligned centrioles, the distal of which nucleates the ciliary axoneme and represents the starting point of the ciliary rootlets. We report here that the centriole associated protein Sas-4 colocalizes with the short ciliary rootlets of the mechanosensory bristles and with the elongated rootlets of chordotonal and olfactory neurons. This finding suggests an unexpected cytoplasmic localization of Sas-4 protein and points to a new underscored role for this protein. Moreover, we observed that the sheath cells associated with the sensory neurons also display two tandemly aligned centrioles but lacks ciliary axonemes, suggesting that the dendrites of the sensory neurons are dispensable for the assembly of aligned centrioles and rootlets.
Collapse
Affiliation(s)
- Veronica Persico
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (V.P.); (M.G.R.)
| | - Giuliano Callaini
- Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Correspondence:
| | - Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (V.P.); (M.G.R.)
| |
Collapse
|
10
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
11
|
Tona Y, Wu DK. Live imaging of hair bundle polarity acquisition demonstrates a critical timeline for transcription factor Emx2. eLife 2020; 9:e59282. [PMID: 32965215 PMCID: PMC7535933 DOI: 10.7554/elife.59282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Directional sensitivity of hair cells (HCs) is conferred by the aymmetric apical hair bundle, comprised of a kinocilium and stereocilia staircase. The mother centriole (MC) forms the base of the kinocilium and the stereocilia develop adjacent to it. Previously, we showed that transcription factor Emx2 reverses hair bundle orientation and its expression in the mouse vestibular utricle is restricted, resulting in two regions of opposite bundle orientation (Jiang et al., 2017). Here, we investigated establishment of opposite bundle orientation in embryonic utricles by live-imaging GFP-labeled centrioles in HCs. The daughter centriole invariably migrated ahead of the MC from the center to their respective peripheral locations in HCs. Comparing HCs between utricular regions, centriole trajectories were similar but they migrated toward opposite directions, suggesting that Emx2 pre-patterned HCs prior to centriole migration. Ectopic Emx2, however, reversed centriole trajectory within hours during a critical time-window when centriole trajectory was responsive to Emx2.
Collapse
Affiliation(s)
- Yosuke Tona
- National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Doris K Wu
- National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
12
|
Panda P, Kovacs L, Dzhindzhev N, Fatalska A, Persico V, Geymonat M, Riparbelli MG, Callaini G, Glover DM. Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis. J Cell Biol 2020; 219:151861. [PMID: 32543652 PMCID: PMC7401805 DOI: 10.1083/jcb.201912154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/01/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rcd4 is a poorly characterized Drosophila centriole component whose mammalian counterpart, PPP1R35, is suggested to function in centriole elongation and conversion to centrosomes. Here, we show that rcd4 mutants exhibit fewer centrioles, aberrant mitoses, and reduced basal bodies in sensory organs. Rcd4 interacts with the C-terminal part of Ana3, which loads onto the procentriole during interphase, ahead of Rcd4 and before mitosis. Accordingly, depletion of Ana3 prevents Rcd4 recruitment but not vice versa. We find that neither Ana3 nor Rcd4 participates directly in the mitotic conversion of centrioles to centrosomes, but both are required to load Ana1, which is essential for such conversion. Whereas ana3 mutants are male sterile, reflecting a requirement for Ana3 for centriole development in the male germ line, rcd4 mutants are fertile and have male germ line centrioles of normal length. Thus, Rcd4 is essential in somatic cells but is not absolutely required in spermatogenesis, indicating tissue-specific roles in centriole and basal body formation.
Collapse
Affiliation(s)
- Pallavi Panda
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Levente Kovacs
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Agnieszka Fatalska
- Department of Genetics, University of Cambridge, Cambridge, UK.,Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Veronica Persico
- Department of Genetics, University of Cambridge, Cambridge, UK.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Geymonat
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, UK.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
13
|
Stracker TH, Morrison CG, Gergely F. Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop. Chromosoma 2020; 129:115-120. [PMID: 32424716 DOI: 10.1007/s00412-020-00737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
The International University of Andalucía (UNIA) Current Trends in Biomedicine Workshop on Molecular Causes of Primary Microcephaly and Related Diseases took place in Baeza, Spain, November 18-20, 2019. This meeting brought together scientists from Europe, the USA and China to discuss recent advances in our molecular and genetic understanding of a group of rare neurodevelopmental diseases characterised by primary microcephaly, a condition in which head circumference is smaller than normal at birth. Microcephaly can be caused by inherited mutations that affect key cellular processes, or environmental exposure to radiation or other toxins. It can also result from viral infection, as exemplified by the recent Zika virus outbreak in South America. Here we summarise a number of the scientific advances presented and topics discussed at the meeting.
Collapse
Affiliation(s)
- Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, H91 TK33, Ireland
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
14
|
Riparbelli MG, Persico V, Dallai R, Callaini G. Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models. Cells 2020; 9:E744. [PMID: 32197383 PMCID: PMC7140630 DOI: 10.3390/cells9030744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Centrioles are-widely conserved barrel-shaped organelles present in most organisms. They are indirectly involved in the organization of the cytoplasmic microtubules both in interphase and during the cell division by recruiting the molecules needed for microtubule nucleation. Moreover, the centrioles are required to assemble cilia and flagella by the direct elongation of their microtubule wall. Due to the importance of the cytoplasmic microtubules in several aspects of the cell life, any defect in centriole structure can lead to cell abnormalities that in humans may result in significant diseases. Many aspects of the centriole dynamics and function have been clarified in the last years, but little attention has been paid to the exceptions in centriole structure that occasionally appeared within the animal kingdom. Here, we focused our attention on non-canonical aspects of centriole architecture within the Hexapoda. The Hexapoda is one of the major animal groups and represents a good laboratory in which to examine the evolution and the organization of the centrioles. Although these findings represent obvious exceptions to the established rules of centriole organization, they may contribute to advance our understanding of the formation and the function of these organelles.
Collapse
Affiliation(s)
- Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Veronica Persico
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
- Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
15
|
The Singularity of the Drosophila Male Germ Cell Centriole: The Asymmetric Distribution of Sas4 and Sas6. Cells 2020; 9:cells9010115. [PMID: 31947732 PMCID: PMC7016748 DOI: 10.3390/cells9010115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 01/01/2020] [Indexed: 12/18/2022] Open
Abstract
Drosophila spermatocytes have giant centrioles that display unique properties. Both the parent centrioles maintain a distinct cartwheel and nucleate a cilium-like region that persists during the meiotic divisions and organizes a structured sperm axoneme. Moreover, the parent centrioles are morphologically undistinguishable, unlike vertebrate cells in which mother and daughter centrioles have distinct structural features. However, our immunofluorescence analysis of the parent centrioles in mature primary spermatocytes revealed an asymmetric accumulation of the typical Sas4 and Sas6 proteins. Notably, the fluorescence intensity of Sas4 and Sas6 at the daughter centrioles is greater than the intensity found at the mother ones. In contrast, the centrioles of wing imaginal disc cells display an opposite condition in which the loading of Sas4 and Sas6 at the mother centrioles is greater. These data underlie a subtle asymmetry among the parent centrioles and point to a cell type diversity of the localization of the Sas4 and Sas6 proteins.
Collapse
|
16
|
Lapart JA, Gottardo M, Cortier E, Duteyrat JL, Augière C, Mangé A, Jerber J, Solassol J, Gopalakrishnan J, Thomas J, Durand B. Dzip1 and Fam92 form a ciliary transition zone complex with cell type specific roles in Drosophila. eLife 2019; 8:49307. [PMID: 31821146 PMCID: PMC6904220 DOI: 10.7554/elife.49307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Cilia and flagella are conserved eukaryotic organelles essential for cellular signaling and motility. Cilia dysfunctions cause life-threatening ciliopathies, many of which are due to defects in the transition zone (TZ), a complex structure of the ciliary base. Therefore, understanding TZ assembly, which relies on ordered interactions of multiprotein modules, is of critical importance. Here, we show that Drosophila Dzip1 and Fam92 form a functional module which constrains the conserved core TZ protein, Cep290, to the ciliary base. We identify cell type specific roles of this functional module in two different tissues. While it is required for TZ assembly in all Drosophila ciliated cells, it also regulates basal-body growth and docking to the plasma membrane during spermatogenesis. We therefore demonstrate a novel regulatory role for Dzip1 and Fam92 in mediating membrane/basal-body interactions and show that these interactions exhibit cell type specific functions in basal-body maturation and TZ organization. Many animal cells have hair-like structures called cilia on their surface, which help them to sense and interact with their surroundings. The cilia are supported by protein filaments and must assemble correctly because faulty cilia can lead to several life-threatening diseases. Problems in an area at the base of the cilia, known as the ‘transition zone’, account for the most severe forms of these diseases in humans. The transition zone is responsible for selecting which proteins are allowed in and out of the cilia. The transition zone itself is made up of many proteins that work together to determine the cilia composition. But not all of these proteins are known, and it is unclear how those that are known affect cilia structure. One protein found in transition zones of several animals, including fruit flies and mice, is called Cby. Lapart et al. set out to understand which other proteins interact with Cby in fruit flies to better understand what this protein does in the transition zone. A series of experiments showed that Cby interacts with two proteins called Dzip1 and Fam92 to regulate the assembly of transition zones. Together these three proteins constrain a core component of the transition zone, a fourth protein called Cep290, to the base of the cilia. Fruit flies only have cilia on cells in their sensory organs and testes and, in both types of tissue, cilia could only form properly when Dzip1 and Fam92 were present. Lapart et al. also showed that, in the fruit fly testes, Dzip1 and Fam92 helped to anchor the newly forming cilia to the cell surface. This anchoring role was particularly important for the fruit flies’ sperm to grow their characteristic whip-like tails, which are a specialized type of cilia that allow sperm cells to move. Overall, the findings show how some transition zone proteins work together and that they can have different effects in different tissues. Understanding the mechanisms behind healthy cilia assembly will likely be key to tackling cilia-related diseases.
Collapse
Affiliation(s)
- Jean-André Lapart
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Marco Gottardo
- Institute of Human Genetics, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Elisabeth Cortier
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Luc Duteyrat
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Céline Augière
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Mangé
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Julie Jerber
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Solassol
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joëlle Thomas
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Bénédicte Durand
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
17
|
Riparbelli MG, Persico V, Callaini G. A transient microtubule-based structure uncovers a new intrinsic asymmetry between the mother centrioles in the early Drosophila spermatocytes. Cytoskeleton (Hoboken) 2019; 75:472-480. [PMID: 30381895 DOI: 10.1002/cm.21503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
Abstract
Parent centrioles are characterized in most organisms by individual morphological traits and have distinct asymmetries that provide different functional properties. By contrast, mother and daughter centrioles are morphologically undistinguishable during Drosophila male gametogenesis. Here we report the presence of previously unrecognized microtubule-based structures that extend into the peripheral cytoplasm of the Drosophila polar spermatocytes at the onset of the first meiosis and are positive for the typical centriolar protein Sas-4 and for the kinesin-like protein Klp10A. These structures have a short lifespan and are no longer found in early apolar spermatocytes. Remarkably, each polar spermatocyte holds only one microtubule-based structure that is associated with one of the sister centriole pairs and specifically with the mother centriole. These findings reveal an inherent asymmetry between the parent centrioles at the onset of male meiosis and also uncover unexpected functional properties between the mother centrioles of the same cells.
Collapse
|
18
|
Persico V, Callaini G, Riparbelli MG. The Microtubule-Depolymerizing Kinesin-13 Klp10A Is Enriched in the Transition Zone of the Ciliary Structures of Drosophila melanogaster. Front Cell Dev Biol 2019; 7:173. [PMID: 31497602 PMCID: PMC6713071 DOI: 10.3389/fcell.2019.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
The precursor of the flagellar axoneme is already present in the primary spermatocytes of Drosophila melanogaster. During spermatogenesis each primary spermatocyte shows a centriole pair that moves to the cell membrane and organizes an axoneme-based structure, the cilium-like region (CLR). The CLRs persist through the meiotic divisions and are inherited by young spermatids. During spermatid differentiation the ciliary caps elongate giving rise to the sperm axoneme. Mutations in Klp10A, a kinesin-13 of Drosophila, results in defects of centriole/CLR organization in spermatocytes and of ciliary cap assembly in elongating spermatids. Reduced Klp10A expression also results in strong structural defects of sensory type I neurons. We show, here, that this protein displays a peculiar localization during male gametogenesis. The Klp10A signal is first detected at the distal ends of the centrioles when they dock to the plasma membrane of young primary spermatocytes. At the onset of the first meiotic prometaphase, when the CLRs reach their full size, Klp10A is enriched in a distinct narrow area at the distal end of the centrioles and persists in elongating spermatids at the base of the ciliary cap. We conclude that Klp10A could be a core component of the ciliary transition zone in Drosophila.
Collapse
Affiliation(s)
| | - Giuliano Callaini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | |
Collapse
|
19
|
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018; 7:E121. [PMID: 30154378 PMCID: PMC6162459 DOI: 10.3390/cells7090121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.
Collapse
Affiliation(s)
- Marisa M L Tillery
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Caitlyn Blake-Hedges
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| |
Collapse
|
20
|
The "transition zone" of the cilium-like regions in the Drosophila spermatocytes and the role of the C-tubule in axoneme assembly. Exp Cell Res 2018; 371:262-268. [PMID: 30130520 DOI: 10.1016/j.yexcr.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/24/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023]
Abstract
The fruit-fly Drosophila melanogaster harbours different types of ciliary structures: ciliary projections associated with neurons of type I and cilium-like regions (CLRs) found during male gametogenesis. The latter deserve particular attention since they are morphologically similar to vertebrate primary cilia and transform into the sperm axonemes during spermiogenesis. Although, all the centrioles are able to organize the CLRs, we found that the mother centriole docks first to the plasma membrane suggesting a new intrinsic functional asymmetry between the parent centrioles. We also show that the CLRs lack the Y-links that connect the axoneme doublets with the plasma membrane in conventional primary cilia. Moreover, the C-tubules, that are lacking in the axoneme of the primary cilia, persisted along the CLRs albeit modified into longitudinal blades. Remarkably, mutant flies in which the CLRs are devoid of the C-tubules or their number is reduced lack sperm axonemes or have incomplete axonemes. Therefore, the C-tubules are dispensable for the assembly of the CLRs but are essential for sperm axoneme elongation and maintenance in Drosophila.
Collapse
|
21
|
Jana SC, Mendonça S, Machado P, Werner S, Rocha J, Pereira A, Maiato H, Bettencourt-Dias M. Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nat Cell Biol 2018; 20:928-941. [PMID: 30013109 DOI: 10.1038/s41556-018-0132-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/25/2018] [Indexed: 01/26/2023]
Abstract
Cilia are evolutionarily conserved structures with many sensory and motility-related functions. The ciliary base, composed of the basal body and the transition zone, is critical for cilia assembly and function, but its contribution to cilia diversity remains unknown. Hence, we generated a high-resolution structural and biochemical atlas of the ciliary base of four functionally distinct neuronal and sperm cilia types within an organism, Drosophila melanogaster. We uncovered a common scaffold and diverse structures associated with different localization of 15 evolutionarily conserved components. Furthermore, CEP290 (also known as NPHP6) is involved in the formation of highly diverse transition zone links. In addition, the cartwheel components SAS6 and ANA2 (also known as STIL) have an underappreciated role in basal body elongation, which depends on BLD10 (also known as CEP135). The differential expression of these cartwheel components contributes to diversity in basal body length. Our results offer a plausible explanation to how mutations in conserved ciliary base components lead to tissue-specific diseases.
Collapse
Affiliation(s)
| | - Susana Mendonça
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Patologia e Imunologia Molecular (IPATIMUP), Universidade do Porto, Porto, Portugal.,Portugal and Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Pedro Machado
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Sascha Werner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jaqueline Rocha
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Porto, Portugal
| | - António Pereira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
22
|
Kovacs L, Chao-Chu J, Schneider S, Gottardo M, Tzolovsky G, Dzhindzhev NS, Riparbelli MG, Callaini G, Glover DM. Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles. Nat Genet 2018; 50:1021-1031. [PMID: 29892014 PMCID: PMC6097609 DOI: 10.1038/s41588-018-0149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022]
Abstract
We demonstrate that a Drosophila Golgi protein, Gorab, is present not only in the trans-Golgi but also in the centriole cartwheel where, complexed to Sas6, it is required for centriole duplication. In addition to centriole defects, flies lacking Gorab are uncoordinated due to defects in sensory cilia, which lose their nine-fold symmetry. We demonstrate the separation of centriole and Golgi functions of Drosophila Gorab in two ways: first, we have created Gorab variants that are unable to localize to trans-Golgi but can still rescue the centriole and cilia defects of gorab null flies; second, we show that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male meiosis, a dominant phenotype overcome by mutations preventing Golgi targeting. Our findings suggest that during animal evolution, a Golgi protein has arisen with a second, apparently independent, role in centriole duplication.
Collapse
Affiliation(s)
| | - Jennifer Chao-Chu
- University of Cambridge, Cambridge, UK
- The University of Hong Kong, Hong Kong, China
| | | | - Marco Gottardo
- University of Siena, Siena, Italy
- Alexander von Humboldt Foundation Fellow, Center for Molecular Medicine and Institute for Biochemistry of the University of Cologne, Cologne, Germany
| | - George Tzolovsky
- University of Cambridge, Cambridge, UK
- Carl Zeiss Microscopy Ltd, ZEISS Group, Cambridge, UK
| | | | | | | | | |
Collapse
|
23
|
Reina J, Gottardo M, Riparbelli MG, Llamazares S, Callaini G, Gonzalez C. Centrobin is essential for C-tubule assembly and flagellum development in Drosophila melanogaster spermatogenesis. J Cell Biol 2018; 217:2365-2372. [PMID: 29712734 PMCID: PMC6028543 DOI: 10.1083/jcb.201801032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
This work shows that Centrobin (CNB) mutant males assemble aberrant basal bodies and do not produce functional sperm. It also shows that CNB can act as a positive or negative regulator of ciliogenesis in a cell type–dependent manner. Centrobin homologues identified in different species localize on daughter centrioles. In Drosophila melanogaster sensory neurons, Centrobin (referred to as CNB in Drosophila) inhibits basal body function. These data open the question of CNB’s role in spermatocytes, where daughter and mother centrioles become basal bodies. In this study, we report that in these cells, CNB localizes equally to mother and daughter centrioles and is essential for C-tubules to attain the right position and remain attached to B-tubules as well as for centrioles to grow in length. CNB appears to be dispensable for meiosis, but flagellum development is severely compromised in Cnb mutant males. Remarkably, three N-terminal POLO phosphorylation sites that are critical for CNB function in neuroblasts are dispensable for spermatogenesis. Our results underpin the multifunctional nature of CNB that plays different roles in different cell types in Drosophila, and they identify CNB as an essential component for C-tubule assembly and flagellum development in Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Jose Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Salud Llamazares
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
24
|
Ogungbenro YA, Tena TC, Gaboriau D, Lalor P, Dockery P, Philipp M, Morrison CG. Centrobin controls primary ciliogenesis in vertebrates. J Cell Biol 2018; 217:1205-1215. [PMID: 29440264 PMCID: PMC5881496 DOI: 10.1083/jcb.201706095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/19/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
The BRCA2 interactor, centrobin, is a centrosomal protein that has been implicated in centriole duplication and microtubule stability. We used genome editing to ablate CNTROB in hTERT-RPE1 cells and observed an increased frequency of monocentriolar and acentriolar cells. Using a novel monoclonal antibody, we found that centrobin primarily localizes to daughter centrioles but also associates with mother centrioles upon serum starvation. Strikingly, centrobin loss abrogated primary ciliation upon serum starvation. Ultrastructural analysis of centrobin nulls revealed defective axonemal extension after mother centriole docking. Ciliogenesis required a C-terminal portion of centrobin that interacts with CP110 and tubulin. We also depleted centrobin in zebrafish embryos to explore its roles in an entire organism. Centrobin-depleted embryos showed microcephaly, with curved and shorter bodies, along with marked defects in laterality control, morphological features that indicate ciliary dysfunction. Our data identify new roles for centrobin as a positive regulator of vertebrate ciliogenesis.
Collapse
Affiliation(s)
- Yetunde Adesanya Ogungbenro
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - David Gaboriau
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Facility for Imaging by Light Microscopy, Imperial College London, London, England, UK
| | - Pierce Lalor
- Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
25
|
Lattao R, Kovács L, Glover DM. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster. Genetics 2017; 206:33-53. [PMID: 28476861 PMCID: PMC5419478 DOI: 10.1534/genetics.116.198168] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division.
Collapse
Affiliation(s)
- Ramona Lattao
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - Levente Kovács
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| | - David M Glover
- Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
26
|
Riparbelli MG, Gottardo M, Callaini G. Parthenogenesis in Insects: The Centriole Renaissance. Results Probl Cell Differ 2017; 63:435-479. [PMID: 28779329 DOI: 10.1007/978-3-319-60855-6_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Building a new organism usually requires the contribution of two differently shaped haploid cells, the male and female gametes, each providing its genetic material to restore diploidy of the new born zygote. The successful execution of this process requires defined sequential steps that must be completed in space and time. Otherwise, development fails. Relevant among the earlier steps are pronuclear migration and formation of the first mitotic spindle that promote the mixing of parental chromosomes and the formation of the zygotic nucleus. A complex microtubule network ensures the proper execution of these processes. Instrumental to microtubule organization and bipolar spindle assembly is a distinct non-membranous organelle, the centrosome. Centrosome inheritance during fertilization is biparental, since both gametes provide essential components to build a functional centrosome. This model does not explain, however, centrosome formation during parthenogenetic development, a special mode of sexual reproduction in which the unfertilized egg develops without the contribution of the male gamete. Moreover, whereas fertilization is a relevant example in which the cells actively check the presence of only one centrosome, to avoid multipolar spindle formation, the development of parthenogenetic eggs is ensured, at least in insects, by the de novo assembly of multiple centrosomes.Here, we will focus our attention on the assembly of functional centrosomes following fertilization and during parthenogenetic development in insects. Parthenogenetic development in which unfertilized eggs are naturally depleted of centrosomes would provide a useful experimental system to investigate centriole assembly and duplication together with centrosome formation and maturation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
27
|
Jana SC, Bettencourt-Dias M, Durand B, Megraw TL. Drosophila melanogaster as a model for basal body research. Cilia 2016; 5:22. [PMID: 27382461 PMCID: PMC4932733 DOI: 10.1186/s13630-016-0041-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.
Collapse
Affiliation(s)
- Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, número 6, 2780-156 Oeiras, Portugal
| | | | - Bénédicte Durand
- Institut NeuroMyogène, CNRS UMR-5310 INSERM-U1217, Université Claude Bernard Lyon-1, Lyon, Villeurbanne, France
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306 USA
| |
Collapse
|