1
|
Walck-Shannon EM, Barton HD, Rowell SF, Chalker DL, Fink A. Students Don't Learn the Way They Think They Do in a Large, Active-Learning Genetics Course. CBE LIFE SCIENCES EDUCATION 2025; 24:ar29. [PMID: 40373176 DOI: 10.1187/cbe.24-10-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Recently, our course team transformed a large-enrollment introductory genetics course from being predominantly lecture based to active learning based. During class sessions, students engaged in problem solving, which occurs when a student attempts to solve a problem without knowing the path to complete it. We designed class activities incorporating three distinct pedagogies from cognitive psychology: inquiry-based prediction, tell-then-practice case studies, and worked examples. We used a within-subjects design to compare students' attitudes toward these activities and their learning gains. Postsurvey results indicated that students felt worked examples helped them perform well on exams (a performance goal) and understand the information (a mastery goal) significantly better than the other activity types. However, students reported that all activity types required similar effort. Interestingly, students exhibited larger learning gains from prediction activities compared with worked examples or tell-then-practice activities, as evidenced by a course pretest/posttest. We discuss potential reasons for this misalignment between perceived helpfulness and actual learning gains. Additionally, we evaluate the strengths and weaknesses of each pedagogical approach.
Collapse
Affiliation(s)
| | - Heather D Barton
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Shaina F Rowell
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458
| | - Douglas L Chalker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Angela Fink
- Program in Undergraduate Research, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
2
|
Shang L, Gad K, Lenhard M. Converging on long and short: The genetics, molecular biology and evolution of heterostyly. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102731. [PMID: 40319570 DOI: 10.1016/j.pbi.2025.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Heterostyly is a fascinating floral polymorphism that enhances outcrossing. In heterostylous species the flowers of the two or three morphs differ in multiple traits, including reciprocal reproductive-organ placement and self-incompatibility. These traits are controlled by individual genes within an S-locus supergene, whose suppressed recombination ensures the coordinated inheritance of the morph phenotypes. Recent breakthroughs about the genetic and molecular basis of heterostyly have resulted from studies on many independently evolved instances and include the following: The S-locus is a hemizygous region comprising several individual genes in multiple heterostylous taxa. In many systems, a single gene within the S-locus plays dual roles in regulating both female traits of style length and self-incompatibility type, often involving brassinosteroid signalling. The S-loci have evolved through stepwise or segmental duplication in different lineages. The frequent breakdown of heterostyly generally results from individual mutations at the S-locus and leads to a genomic selfing syndrome. These discoveries suggest convergent and genetically constrained evolution of heterostyly at the molecular level.
Collapse
Affiliation(s)
- Lele Shang
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Karol Gad
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Ravagni S, Montero-Mendieta S, Leonard JA, Webster MT, Christmas MJ, Bunikis I, Rodríguez-Teijeiro JD, Sanchez-Donoso I, Vilà C. Large Inversions Shape Diversification and Genome Evolution in Common Quails. Mol Ecol 2025; 34:e17740. [PMID: 40183764 DOI: 10.1111/mec.17740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Chromosomal inversions, by suppressing recombination, can profoundly shape genome evolution and drive adaptation. In the common quail (Coturnix coturnix), a highly mobile bird with a vast Palearctic breeding range, we previously identified a massive inversion on chromosome 1 associated with distinct phenotypes and restricted geographic distribution. Here, using a new de novo genome assembly, we characterise this inversion and uncover additional, ancient structural variation on chromosome 2 that segregates across the species' range: either two putatively linked inversions or a single, large inversion that appears as two due to scaffolding limitations. Together, the inversions encompass a remarkable 15.6% of the quail genome (153.6 Mbp), creating highly divergent haplotypes that diverged over a million years ago. While the chromosome 1 inversion is linked to phenotypic differences, including morphology and migratory behaviour, the chromosome 2 inversion(s) show no such association. Notably, all inversion regions exhibit reduced effective population size and a relaxation of purifying selection, evidenced by elevated nonsynonymous-to-synonymous substitution ratios (N/S). This suggests that inversions, particularly the geographically restricted one on chromosome 1, may act as engines of diversification, accelerating the accumulation of functional variation and potentially contributing to local adaptation, especially within isolated island populations. Our findings demonstrate how large-scale chromosomal rearrangements can compartmentalise a genome, fostering distinct evolutionary trajectories within a single, highly mobile species.
Collapse
Affiliation(s)
- Sara Ravagni
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
- Department of Biology and Biotechnologies "Charles Darwin", University of Rome La Sapienza, Rome, Italy
| | - Santiago Montero-Mendieta
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure Hosted by SciLifeLab, Uppsala, Sweden
| | | | - Ines Sanchez-Donoso
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| |
Collapse
|
4
|
Hibbins MS, Rifkin JL, Choudhury BI, Voznesenska O, Sacchi B, Yuan M, Gong Y, Barrett SCH, Wright SI. Phylogenomics resolves key relationships in Rumex and uncovers a dynamic history of independently evolving sex chromosomes. Evol Lett 2025; 9:221-235. [PMID: 40191415 PMCID: PMC11968192 DOI: 10.1093/evlett/qrae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/13/2024] [Accepted: 10/22/2024] [Indexed: 04/09/2025] Open
Abstract
Sex chromosomes have evolved independently many times across eukaryotes. Despite a considerable body of literature on sex chromosome evolution, the causes and consequences of variation in their formation, degeneration, and turnover remain poorly understood. Chromosomal rearrangements are thought to play an important role in these processes by promoting or extending the suppression of recombination on sex chromosomes. Sex chromosome variation may also contribute to barriers to gene flow, limiting introgression among species. Comparative approaches in groups with sexual system variation can be valuable for understanding these questions. Rumex is a diverse genus of flowering plants harboring significant sexual system and karyotypic variation, including hermaphroditic and dioecious clades with XY (and XYY) sex chromosomes. Previous disagreement in the phylogenetic relationships among key species has rendered the history of sex chromosome evolution uncertain. Resolving this history is important for investigating the interplay of chromosomal rearrangements, introgression, and sex chromosome evolution in the genus. Here, we use new transcriptome assemblies from 11 species representing major clades in the genus, along with a whole-genome assembly generated for a key hermaphroditic species. Using phylogenomic approaches, we find evidence for the independent evolution of sex chromosomes across two major clades, and introgression from unsampled lineages likely predating the formation of sex chromosomes in the genus. Comparative genomic approaches revealed high rates of chromosomal rearrangement, especially in dioecious species, with evidence for a complex origin of the sex chromosomes through multiple chromosomal fusions. However, we found no evidence of elevated rates of fusion on the sex chromosomes in comparison with autosomes, providing no support for an adaptive hypothesis of sex chromosome expansion due to sexually antagonistic selection. Overall, our results highlight a complex history of karyotypic evolution in Rumex, raising questions about the role that chromosomal rearrangements might play in the evolution of large heteromorphic sex chromosomes.
Collapse
Affiliation(s)
- Mark S Hibbins
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Joanna L Rifkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Baharul I Choudhury
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Olena Voznesenska
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Bianca Sacchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Meng Yuan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Yunchen Gong
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
5
|
Kumar NM, Cooper TL, Kocher TD, Streelman JT, McGrath PT. Large inversions in Lake Malawi cichlids are associated with habitat preference, lineage, and sex determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.28.620687. [PMID: 39554119 PMCID: PMC11565711 DOI: 10.1101/2024.10.28.620687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chromosomal inversions are an important class of genetic variation that link multiple alleles together into a single inherited block that can have important effects on fitness. To study the role of large inversions in the massive evolutionary radiation of Lake Malawi cichlids, we used long-read technologies to identify four single and two tandem inversions that span half of each respective chromosome, and which together encompass over 10% of the genome. Each inversion is fixed in one of the two states within the seven major ecogroups, suggesting they played a role in the separation of the major lake lineages into specific lake habitats. One exception is within the benthic sub-radiation, where both inverted and non-inverted alleles continue to segregate within the group. The evolutionary histories of three of the six inversions suggest they transferred from the pelagic Diplotaxodon group into benthic ancestors at the time the benthic sub-radiation was seeded. The remaining three inversions are found in a subset of benthic species living in deep waters. We show that some of these inversions are used as XY sex-determination systems but are also likely limited to a subset of total lake species. Our work suggests that inversions have been under both sexual and natural selection in Lake Malawi cichlids and that they will be important to understanding how this adaptive radiation evolved.
Collapse
Affiliation(s)
- Nikesh M. Kumar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Taylor L. Cooper
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, MD USA
| | - J. Todd Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Patrick T. McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Jay P, Aubier TG, Joron M. The interplay of local adaptation and gene flow may lead to the formation of supergenes. Mol Ecol 2024; 33:e17297. [PMID: 38415327 DOI: 10.1111/mec.17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Supergenes are genetic architectures resulting in the segregation of alternative combinations of alleles underlying complex phenotypes. The co-segregation of alleles at linked loci is often facilitated by polymorphic chromosomal rearrangements suppressing recombination locally. Supergenes are involved in many complex polymorphisms, including sexual, colour or behavioural polymorphisms in numerous plants, fungi, mammals, fish, and insects. Despite a long history of empirical and theoretical research, the formation of supergenes remains poorly understood. Here, using a two-island population genetic model, we explore how gene flow and the evolution of overdominant chromosomal inversions may jointly lead to the formation of supergenes. We show that the evolution of inversions in differentiated populations, both under disruptive selection, leads to an increase in frequency of poorly adapted, immigrant haplotypes. Indeed, rare allelic combinations, such as immigrant haplotypes, are more frequently reshuffled by recombination than common allelic combinations, and therefore benefit from the recombination suppression generated by inversions. When an inversion capturing a locally adapted haplotype spreads but is associated with a fitness cost hampering its fixation (e.g. a recessive mutation load), the maintenance of a non-inverted haplotype in the population is enhanced; under certain conditions, the immigrant haplotype persists alongside the inverted local haplotype, while the standard local haplotype disappears. This establishes a stable, local polymorphism with two non-recombining haplotypes encoding alternative adaptive strategies, that is, a supergene. These results bring new light to the importance of local adaptation, overdominance, and gene flow in the formation of supergenes and inversion polymorphisms in general.
Collapse
Affiliation(s)
- Paul Jay
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas G Aubier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
7
|
Ruckman SN, Humphrey EA, Muzzey L, Prantalou I, Pleasants M, Hughes KA. Assessing the Association Between Animal Color and Behavior: A Meta-Analysis of Experimental Studies. Ecol Evol 2024; 14:e70655. [PMID: 39640225 PMCID: PMC11617328 DOI: 10.1002/ece3.70655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Color varies in pattern and degree across the tree of life. In animals, genetic variation in color is hypothesized to have pleiotropic effects on a variety of behaviors due to shared dependence on underlying biochemical pathways. Such pleiotropy can constrain the independent evolution of color and behavior. Although associations between color and behavior have been reported, this relationship has not yet been addressed across a broad taxonomic scale with a formal meta-analysis. We used a phylogenetic meta-analytic approach to examine the relationship between individual variation in aggressive behavior and variation in multiple colors. Seventy-four studies met our inclusion criteria (vertebrates = 70; invertebrates = 4). After accounting for phylogeny and correcting for publication bias, there was a positive association between measures of aggression and degree or area of coloration (mean = 0.248, 95% CI = (0.044, 0.477)). Because this positive association was not restricted to melanin-based coloration, we conclude that this pattern does not strongly support the melanin pleiotropy hypothesis. Because the association was also not affected by moderators accounting for individual condition, social rank, or age, the results do not strongly support hypotheses that condition dependence accounts for relationships between color and aggressive behavior. The badge of status hypothesis predicts that arbitrary traits can evolve to signal aggression or social dominance. We propose that this is the most parsimonious explanation for the patterns we observe. Because of the lack of evidence for condition dependence in the association between color and aggression, we further propose that the genetic covariation between traits contributes to the evolution of the badges of status.
Collapse
Affiliation(s)
- Sarah N. Ruckman
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | | | - Lily Muzzey
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Ioanna Prantalou
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Madison Pleasants
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kimberly A. Hughes
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
8
|
Veltsos P, Madrigal-Roca LJ, Kelly JK. Testing the evolutionary theory of inversion polymorphisms in the yellow monkeyflower (Mimulus guttatus). Nat Commun 2024; 15:10397. [PMID: 39613756 PMCID: PMC11607379 DOI: 10.1038/s41467-024-54534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Chromosomal inversions have been implicated in a remarkable range of natural phenomena, but it remains unclear how much they contribute to standing genetic variation. Here, we evaluate 64 inversions that segregate within a single natural population of the yellow monkeyflower (Mimulus guttatus). Nucleotide diversity patterns confirm low internal variation for the derived orientation (predicted by recent origin), elevated diversity between orientations (predicted by natural selection), and localized fluctuations (predicted by gene flux). Sequence divergence between orientations varies idiosyncratically by position, not following the suspension bridge pattern predicted if the breakpoints are the targets of selection. Genetic variation in gene expression is not inflated close to inversion breakpoints but is clearly partitioned between orientations. Like sequence variation, the pattern of expression variation suggests that the capture of coadapted alleles is more important than the breakpoints for the fitness effects of inversions. This work confirms several evolutionary predictions for inversion polymorphisms, but clarity emerges only by synthesizing estimates across many loci.
Collapse
Affiliation(s)
- Paris Veltsos
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Ecology, Evolution and Genetics Research Group, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Luis J Madrigal-Roca
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
9
|
Jin M, Peng Y, Peng J, Yu S, Wu C, Yang X, Zhu J, Infante O, Xu Q, Wang H, Wu K, Xiao Y. A supergene controls facultative diapause in the crop pest Helicoverpa armigera. Cell Rep 2024; 43:114939. [PMID: 39509270 DOI: 10.1016/j.celrep.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Many insect species, including the economically important pest Helicoverpa armigera, avoid unfavorable conditions by suspending development. This form of phenotypic plasticity-facultative diapause-is a complex trait, though its evolution and intricate genetic architecture remain poorly understood. To investigate how such a polygenic trait could be locally adapted, we explore its genetic architecture. We map a large-effect diapause-associated locus to the Z chromosome by crossing high- and low-latitude populations. By generating multiple chromosome-scale assemblies, we identify an ∼5.93-Mb chromosomal inversion that constitutes the locus. Within this inversion, 33 genes harbor divergent non-synonymous mutations, notably including three circadian rhythm genes: Period, Clock, and Cycle. CRISPR-Cas9 knockout experiments confirm that each gene is independently essential for pupal diapause. Thus, a diapause supergene arose within H. armigera via a Z chromosome inversion, enabling local climatic adaptation in this economically important crop pest.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Jie Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Songmiao Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Xianming Yang
- The State Key Laboratory for Biology and Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingyun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Oscar Infante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 04510, México
| | - Qi Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China.
| | - Kongming Wu
- The State Key Laboratory for Biology and Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China.
| |
Collapse
|
10
|
Fang B, Edwards SV. Fitness consequences of structural variation inferred from a House Finch pangenome. Proc Natl Acad Sci U S A 2024; 121:e2409943121. [PMID: 39531493 PMCID: PMC11588099 DOI: 10.1073/pnas.2409943121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Genomic structural variants (SVs) play a crucial role in adaptive evolution, yet their average fitness effects and characterization with pangenome tools are understudied in wild animal populations. We constructed a pangenome for House Finches (Haemorhous mexicanus), a model for studies of host-pathogen coevolution, using long-read sequence data on 16 individuals (32 de novo-assembled haplotypes) and one outgroup. We identified 887,118 SVs larger than 50 base pairs, mostly (60%) involving repetitive elements, with reduced SV diversity in the eastern US as a result of its introduction by humans. The distribution of fitness effects of genome-wide SVs was estimated using maximum likelihood approaches and revealed that SVs in both coding and noncoding regions were on average more deleterious than smaller indels or single nucleotide polymorphisms. The reference-free pangenome facilitated identification of a > 10-My-old, 11-megabase-long pericentric inversion on chromosome 1. We found that the genotype frequencies of the inversion, estimated from 135 birds widely sampled temporally and geographically, increased steadily over the 25 y since House Finches were first exposed to the bacterial pathogen Mycoplasma gallisepticum and showed signatures of balancing selection, capturing genes related to immunity and telomerase activity. We also observed shorter telomeres in populations with a greater number of years exposure to Mycoplasma. Our study illustrates the utility of long-read sequencing and pangenome methods for understanding wild animal populations, estimating fitness effects of genome-wide SVs, and advancing our understanding of adaptive evolution through structural variation.
Collapse
Affiliation(s)
- Bohao Fang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
11
|
Miura I, Shams F, Ezaz T, Ogata M. One-Step Leaping Evolution from an Autosomal Pair to the Heteromorphic Sex Chromosomes. Sex Dev 2024; 18:61-69. [PMID: 39522502 DOI: 10.1159/000542537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sex chromosomes evolve from an autosomal pair after the acquisition of a sex-determining gene. The primary sex chromosomes are homomorphic in both sexes and often undergo heteromorphism in either sex (XY in males or ZW in females) in association with chromosome rearrangements such as inversion, which creates a non-recombining region, called a stratum. Then, multiple strata may form by sequential inversions and extend the non-recombining region, where gene divergence accelerates, and degeneration of the Y or W chromosome progressively occurs. SUMMARY In contrast to the conventional theory, we propose a shortcut in heteromorphic sex chromosome evolution, where an autosomal pair directly evolves into a heteromorphic sex chromosome pair. We illustrate this with two frog cases where Y chromosome or autosome, which is morphologically inverted, was introgressed from another species through interspecific hybridization, instantly forming a new heteromorphic sex chromosome pair. This event resulted in a distinct non-recombining region immediately after hybridization. KEY MESSAGES The introduction of an inverted chromosome from a different species may be associated with benefits in morphology, breeding behavior, hybrid viability, sex determination, and recovery of the sex ratio of the hybrids. We discuss the molecular mechanisms driving preferential mutations in the introduced, inverted chromosome through interspecific hybridization.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Foyez Shams
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Mitsuaki Ogata
- Breeding Center and Institute, City of Yokohama, Yokohama, Japan
| |
Collapse
|
12
|
Recuerda M, Montoya JCH, Blanco G, Milá B. Repeated evolution on oceanic islands: comparative genomics reveals species-specific processes in birds. BMC Ecol Evol 2024; 24:140. [PMID: 39516810 PMCID: PMC11545622 DOI: 10.1186/s12862-024-02320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the interplay between genetic drift, natural selection, gene flow, and demographic history in driving phenotypic and genomic differentiation of insular populations can help us gain insight into the speciation process. Comparing patterns across different insular taxa subjected to similar selective pressures upon colonizing oceanic islands provides the opportunity to study repeated evolution and identify shared patterns in their genomic landscapes of differentiation. We selected four species of passerine birds (Common Chaffinch Fringilla coelebs/canariensis, Red-billed Chough Pyrrhocorax pyrrhocorax, House Finch Haemorhous mexicanus and Dark-eyed/island Junco Junco hyemalis/insularis) that have both mainland and insular populations. Changes in body size between island and mainland populations were consistent with the island rule. For each species, we sequenced whole genomes from mainland and insular individuals to infer their demographic history, characterize their genomic differentiation, and identify the factors shaping them. We estimated the relative (Fst) and absolute (dxy) differentiation, nucleotide diversity (π), Tajima's D, gene density and recombination rate. We also searched for selective sweeps and chromosomal inversions along the genome. All species shared a marked reduction in effective population size (Ne) upon island colonization. We found diverse patterns of differentiated genomic regions relative to the genome average in all four species, suggesting the role of selection in island-mainland differentiation, yet the lack of congruence in the location of these regions indicates that each species evolved differently in insular environments. Our results suggest that the genomic mechanisms involved in the divergence upon island colonization-such as chromosomal inversions, and historical factors like recurrent selection-differ in each species, despite the highly conserved structure of avian genomes and the similar selective factors involved. These differences are likely influenced by factors such as genetic drift, the polygenic nature of fitness traits and the action of case-specific selective pressures.
Collapse
Affiliation(s)
- María Recuerda
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain.
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.
| | | | - Guillermo Blanco
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Borja Milá
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain.
| |
Collapse
|
13
|
De Pasqual C, Selenius E, Burdfield-Steel E, Mappes J. Morph-linked variation in female pheromone signalling and male response in a polymorphic moth. J Anim Ecol 2024; 93:1697-1709. [PMID: 39295575 DOI: 10.1111/1365-2656.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 08/20/2024] [Indexed: 09/21/2024]
Abstract
Understanding the maintenance of genetic variation in reproductive strategies and polymorphisms in the wild requires a comprehensive examination of the complex interactions between genetic basis, behaviour and environmental factors. We tested the association between three colour genotypes and variation in female pheromone signalling and male antennal morphology in the wood tiger moth (Arctia plantaginis). These moths have genetically determined white (WW, Wy) and yellow (yy) hindwings that are linked to mating success and fitness, with heterozygotes (Wy) having an advantage. We hypothesized that attractiveness and reproductive success are correlated, with Wy females being more attractive than the other two genotypes which could contribute to maintaining the polymorphism. Female attractiveness was tested by baiting traps with females of the three colour genotypes both in low- (i.e. field set-up) and in high-population density (i.e. large enclosure set-up). Male's ability to reach females was correlated to their own colour genotype and antennal morphology (length, area and lamellae count). Contrary to our prediction, morph-related reproductive success and attractiveness were not correlated. Heavier Wy females attracted a lower proportion of males compared to WW and yy females. Specifically, an increase in weight corresponded to a decreased Wy but increased yy female attractiveness. yy females were generally more attractive than others likely due to earlier pheromone release. In males, lamellae count and genetic colour morph were linked to the male's ability to locate females. Furthermore, male traits affected their ability to reach females in a context-specific way. Males with denser antennae (i.e. higher lamellae count) and white males reached the females faster than yellows in the enclosure, while yellow males located females faster than whites in the field. Our results indicate that higher yy female attractiveness was likely affected by the combined effect of early pheromone release, female weight and higher population density. Males' searching success was affected by morph-specific behavioural strategies and local population density. Ultimately, the combined effect of genotype-related pheromone signalling strategies of females together with environment-dependent male behaviour affect male response and potentially contribute to maintaining variation in fitness-related traits.
Collapse
Affiliation(s)
- Chiara De Pasqual
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Eetu Selenius
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Emily Burdfield-Steel
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Dunn PO, Sly ND, Freeman-Gallant CR, Henschen AE, Bossu CM, Ruegg KC, Minias P, Whittingham LA. Sexually selected differences in warbler plumage are related to a putative inversion on the Z chromosome. Mol Ecol 2024; 33:e17525. [PMID: 39268700 DOI: 10.1111/mec.17525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.
Collapse
Affiliation(s)
- Peter O Dunn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicholas D Sly
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Amberleigh E Henschen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christen M Bossu
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Linda A Whittingham
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Dodge TO, Kim BY, Baczenas JJ, Banerjee SM, Gunn TR, Donny AE, Given LA, Rice AR, Haase Cox SK, Weinstein ML, Cross R, Moran BM, Haber K, Haghani NB, Machin Kairuz JA, Gellert HR, Du K, Aguillon SM, Tudor MS, Gutiérrez-Rodríguez C, Rios-Cardenas O, Morris MR, Schartl M, Powell DL, Schumer M. Structural genomic variation and behavioral interactions underpin a balanced sexual mimicry polymorphism. Curr Biol 2024; 34:4662-4676.e9. [PMID: 39326413 DOI: 10.1016/j.cub.2024.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
How phenotypic diversity originates and persists within populations are classic puzzles in evolutionary biology. While balanced polymorphisms segregate within many species, it remains rare for both the genetic basis and the selective forces to be known, leading to an incomplete understanding of many classes of traits under balancing selection. Here, we uncover the genetic architecture of a balanced sexual mimicry polymorphism and identify behavioral mechanisms that may be involved in its maintenance in the swordtail fish Xiphophorus birchmanni. We find that ∼40% of X. birchmanni males develop a "false gravid spot," a melanic pigmentation pattern that mimics the "pregnancy spot" associated with sexual maturity in female live-bearing fish. Using genome-wide association mapping, we detect a single intergenic region associated with variation in the false gravid spot phenotype, which is upstream of kitlga, a melanophore patterning gene. By performing long-read sequencing within and across populations, we identify complex structural rearrangements between alternate alleles at this locus. The false gravid spot haplotype drives increased allele-specific expression of kitlga, which provides a mechanistic explanation for the increased melanophore abundance that causes the spot. By studying social interactions in the laboratory and in nature, we find that males with the false gravid spot experience less aggression; however, they also receive increased attention from other males and are disdained by females. These behavioral interactions may contribute to the maintenance of this phenotypic polymorphism in natural populations. We speculate that structural variants affecting gene regulation may be an underappreciated driver of balanced polymorphisms across diverse species.
Collapse
Affiliation(s)
- Tristram O Dodge
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México.
| | - Bernard Y Kim
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - John J Baczenas
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Shreya M Banerjee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, 475 Storer Mall, Davis, CA 95616, USA
| | - Theresa R Gunn
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Alex E Donny
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Lyle A Given
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Andreas R Rice
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Sophia K Haase Cox
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - M Luke Weinstein
- Department of Biological Sciences, Ohio University, 7 Depot St., Athens, OH 45701, USA
| | - Ryan Cross
- Department of Biological Sciences, Ohio University, 7 Depot St., Athens, OH 45701, USA
| | - Benjamin M Moran
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Kate Haber
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Berkeley High School, 1980 Allston Way, Berkeley, CA 94704, USA
| | - Nadia B Haghani
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | | | - Hannah R Gellert
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, 601 University Drive, San Marcos, TX 78666, USA
| | - Stepfanie M Aguillon
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - M Scarlett Tudor
- Cooperative Extension and Aquaculture Research Institute, University of Maine, 33 Salmon Farm Road, Franklin, ME 04634, USA
| | - Carla Gutiérrez-Rodríguez
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, México
| | - Oscar Rios-Cardenas
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, México
| | - Molly R Morris
- Department of Biological Sciences, Ohio University, 7 Depot St., Athens, OH 45701, USA
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, 601 University Drive, San Marcos, TX 78666, USA; Developmental Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Daniel L Powell
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Department of Biology, Louisiana State University, 202 Life Science Building, Baton Rouge, LA 70803, USA
| | - Molly Schumer
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Howard Hughes Medical Institute, 327 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Nikelski E, Rubtsov AS, Irwin D. A sex chromosome polymorphism maintains divergent plumage phenotypes between extensively hybridizing yellowhammers (Emberiza citrinella) and pine buntings (E. leucocephalos). Mol Ecol 2024; 33:e17526. [PMID: 39258972 DOI: 10.1111/mec.17526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
Under allopatric speciation, populations of a species become isolated by a geographic barrier and develop reproductive isolation through genetic differentiation. When populations meet in secondary contact, the strength of evolved reproductive barriers determines the extent of hybridization and whether the populations will continue to diverge or merge together. The yellowhammer (Emberiza citrinella) and pine bunting (E. leucocephalos) are avian sister species that diverged in allopatry on either side of Eurasia during the Pleistocene glaciations. Though they differ greatly in plumage and form distinct genetic clusters in allopatry, these taxa show negligible mitochondrial DNA differentiation and hybridize extensively where they overlap in central Siberia, lending uncertainty to the state of reproductive isolation in the system. To assess the strength of reproductive barriers between taxa, we examined genomic differentiation across the system. We found that extensive admixture has occurred in sympatry, indicating that reproductive barriers between taxa are weak. We also identified a putative Z chromosome inversion region that underlies plumage variation in the system, with the 'pine bunting' haplotype showing dominance over the 'yellowhammer' haplotype. Our results suggest that yellowhammers and pine buntings are currently at a crossroads and that evolutionary forces may push this system towards either continued differentiation or population merging. However, even if these taxa merge, recombination suppression between putative chromosome Z inversion haplotypes may maintain divergent plumage phenotypes within the system. In this way, our findings highlight the important role hybridization plays in increasing the genetic and phenotypic variation as well as the evolvability of a system.
Collapse
Affiliation(s)
- Ellen Nikelski
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Darren Irwin
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Flanagan SP, Alonzo SH. Supergenes are not necessary to explain the maintenance of complex alternative phenotypes. Proc Biol Sci 2024; 291:20241715. [PMID: 39406344 PMCID: PMC11479756 DOI: 10.1098/rspb.2024.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Evolutionary biology aims to explain the diversity seen in nature. Evolutionary theory provides frameworks to understand how simple polymorphisms or continuous variation are maintained, but phenotypes inherited as discrete suites of quantitative traits are difficult to fit into this framework. Supergenes have been proposed as a solution to this problem-if causal genes are co-located, they can be inherited as if a single gene, thus bridging the gap between simple polymorphisms and continuous traits. We develop models to ask: how are critical supergenes for maintaining phenotypic diversity? In our simplest model, without explicit genetic architectures, three alternative reproductive morphs are maintained in many of the parameter combinations we evaluated. For these same parameter values, models with demographic stochasticity, recombination and mutation (but without explicit genetic architecture) maintained only two of these three morphs, with stochasticity determining which morphs persisted. With explicit genetic architectures, regardless of whether causal loci were co-located in a supergene or distributed randomly, this stochasticity in which morphs are maintained was reduced. Even when phenotypic variation was lost, genetic diversity was maintained. Altogether, categorical traits with polygenic bases exhibited similar evolutionary dynamics to those determined by supergenes. Our work suggests that supergenes are not the only answer to the puzzle of how discrete polygenic phenotypic variation is maintained.
Collapse
Affiliation(s)
- Sarah P. Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
18
|
Potente G, Yousefi N, Keller B, Mora-Carrera E, Szövényi P, Conti E. The Primula edelbergii S-locus is an example of a jumping supergene. Mol Ecol Resour 2024; 24:e13988. [PMID: 38946153 DOI: 10.1111/1755-0998.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Research on supergenes, non-recombining genomic regions housing tightly linked genes that control complex phenotypes, has recently gained prominence in genomics. Heterostyly, a floral heteromorphism promoting outcrossing in several angiosperm families, is controlled by the S-locus supergene. The S-locus has been studied primarily in closely related Primula species and, more recently, in other groups that independently evolved heterostyly. However, it remains unknown whether genetic architecture and composition of the S-locus are maintained among species that share a common origin of heterostyly and subsequently diverged across larger time scales. To address this research gap, we present a chromosome-scale genome assembly of Primula edelbergii, a species that shares the same origin of heterostyly with Primula veris (whose S-locus has been characterized) but diverged from it 18 million years ago. Comparative genomic analyses between these two species allowed us to show, for the first time, that the S-locus can 'jump' (i.e. translocate) between chromosomes maintaining its function in controlling heterostyly. Additionally, we found that four S-locus genes were conserved but reshuffled within the supergene, seemingly without affecting their expression, thus we could not detect changes explaining the lack of self-incompatibility in P. edelbergii. Furthermore, we confirmed that the S-locus is not undergoing genetic degeneration. Finally, we investigated P. edelbergii evolutionary history within Ericales in terms of whole genome duplications and transposable element accumulation. In summary, our work provides a valuable resource for comparative analyses aimed at investigating the genetics of heterostyly and the pivotal role of supergenes in shaping the evolution of complex phenotypes.
Collapse
Affiliation(s)
- Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Dong J, Qiu L, Zhou X, Liu S. Drivers of genomic differentiation landscapes in populations of disparate ecological and geographical settings within mainland Apis cerana. Mol Ecol 2024; 33:e17414. [PMID: 38801184 DOI: 10.1111/mec.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Elucidating the evolutionary processes that drive population divergence can enhance our understanding of the early stages of speciation and inform conservation management decisions. The honeybee Apis cerana displays extensive population divergence, providing an informative natural system for exploring these processes. The mainland lineage A. cerana includes several peripheral subspecies with disparate ecological and geographical settings radiated from a central ancestor. Under this evolutionary framework, we can explore the patterns of genome differentiation and the evolutionary models that explain them. We can also elucidate the contribution of non-genomic spatiotemporal mechanisms (extrinsic features) and genomic mechanisms (intrinsic features) that influence these genomic differentiation landscapes. Based on 293 whole genomes, a small part of the genome is highly differentiated between central-peripheral subspecies pairs, while low and partial parallelism partly reflects idiosyncratic responses to environmental differences. Combined elements of recurrent selection and speciation-with-gene-flow models generate the heterogeneous genome landscapes. These elements weight differently between central-island and other central-peripheral subspecies pairs, influenced by glacial cycles superimposed on different geomorphologies. Although local recombination rates exert a significant influence on patterns of genomic differentiation, it is unlikely that low-recombination rates regions were generated by structural variation. In conclusion, complex factors including geographical isolation, divergent ecological selection and non-uniform genome features have acted concertedly in the evolution of reproductive barriers that could reduce gene flow in part of the genome and facilitate the persistence of distinct populations within mainland lineage of A. cerana.
Collapse
Affiliation(s)
- Jiangxing Dong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lifei Qiu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Knief U, Müller IA, Stryjewski KF, Metzler D, Sorenson MD, Wolf JBW. Evolution of Chromosomal Inversions across an Avian Radiation. Mol Biol Evol 2024; 41:msae092. [PMID: 38743589 PMCID: PMC11152452 DOI: 10.1093/molbev/msae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Chromosomal inversions are structural mutations that can play a prominent role in adaptation and speciation. Inversions segregating across species boundaries (trans-species inversions) are often taken as evidence for ancient balancing selection or adaptive introgression, but can also be due to incomplete lineage sorting. Using whole-genome resequencing data from 18 populations of 11 recognized munia species in the genus Lonchura (N = 176 individuals), we identify four large para- and pericentric inversions ranging in size from 4 to 20 Mb. All four inversions cosegregate across multiple species and predate the numerous speciation events associated with the rapid radiation of this clade across the prehistoric Sahul (Australia, New Guinea) and Bismarck Archipelago. Using coalescent theory, we infer that trans-specificity is improbable for neutrally segregating variation despite substantial incomplete lineage sorting characterizing this young radiation. Instead, the maintenance of all three autosomal inversions (chr1, chr5, and chr6) is best explained by selection acting along ecogeographic clines not observed for the collinear parts of the genome. In addition, the sex chromosome inversion largely aligns with species boundaries and shows signatures of repeated positive selection for both alleles. This study provides evidence for trans-species inversion polymorphisms involved in both adaptation and speciation. It further highlights the importance of informing selection inference using a null model of neutral evolution derived from the collinear part of the genome.
Collapse
Affiliation(s)
- Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Evolutionary Biology & Ecology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo A Müller
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 11418 Stockholm, Sweden
- Division of Systematics and Evolution, Department of Zoology, Stockholm University, 11418 Stockholm, Sweden
| | | | - Dirk Metzler
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | | | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
21
|
Recuerda M, Campagna L. How structural variants shape avian phenotypes: Lessons from model systems. Mol Ecol 2024; 33:e17364. [PMID: 38651830 DOI: 10.1111/mec.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Despite receiving significant recent attention, the relevance of structural variation (SV) in driving phenotypic diversity remains understudied, although recent advances in long-read sequencing, bioinformatics and pangenomic approaches have enhanced SV detection. We review the role of SVs in shaping phenotypes in avian model systems, and identify some general patterns in SV type, length and their associated traits. We found that most of the avian SVs so far identified are short indels in chickens, which are frequently associated with changes in body weight and plumage colouration. Overall, we found that relatively short SVs are more frequently detected, likely due to a combination of their prevalence compared to large SVs, and a detection bias, stemming primarily from the widespread use of short-read sequencing and associated analytical methods. SVs most commonly involve non-coding regions, especially introns, and when patterns of inheritance were reported, SVs associated primarily with dominant discrete traits. We summarise several examples of phenotypic convergence across different species, mediated by different SVs in the same or different genes and different types of changes in the same gene that can lead to various phenotypes. Complex rearrangements and supergenes, which can simultaneously affect and link several genes, tend to have pleiotropic phenotypic effects. Additionally, SVs commonly co-occur with single-nucleotide polymorphisms, highlighting the need to consider all types of genetic changes to understand the basis of phenotypic traits. We end by summarising expectations for when long-read technologies become commonly implemented in non-model birds, likely leading to an increase in SV discovery and characterisation. The growing interest in this subject suggests an increase in our understanding of the phenotypic effects of SVs in upcoming years.
Collapse
Affiliation(s)
- María Recuerda
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
22
|
Martin CA, Sheppard EC, Ali HAA, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic landscapes of divergence among island bird populations: Evidence of parallel adaptation but at different loci? Mol Ecol 2024; 33:e17365. [PMID: 38733214 DOI: 10.1111/mec.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2024] [Indexed: 05/13/2024]
Abstract
When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
23
|
De Gasperin O, Blacher P, Sarton-Lohéac S, Grasso G, Corliss MK, Nicole S, Chérasse S, Aron S, Chapuisat M. A supergene-controlling social structure in Alpine ants also affects the dispersal ability and fecundity of each sex. Proc Biol Sci 2024; 291:20240494. [PMID: 38864332 DOI: 10.1098/rspb.2024.0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Social organization, dispersal and fecundity coevolve, but whether they are genetically linked remains little known. Supergenes are prime candidates for coupling adaptive traits and mediating sex-specific trade-offs. Here, we test whether a supergene that controls social structure in Formica selysi also influences dispersal-related traits and fecundity within each sex. In this ant species, single-queen colonies contain only the ancestral supergene haplotype M and produce MM queens and M males, while multi-queen colonies contain the derived haplotype P and produce MP queens, PP queens and P males. By combining multiple experiments, we show that the M haplotype induces phenotypes with higher dispersal potential and higher fecundity in both sexes. Specifically, MM queens, MP queens and M males are more aerodynamic and more fecund than PP queens and P males, respectively. Differences between MP and PP queens from the same colonies reveal a direct genetic effect of the supergene on dispersal-related traits and fecundity. The derived haplotype P, associated with multi-queen colonies, produces queens and males with reduced dispersal abilities and lower fecundity. More broadly, similarities between the Formica and Solenopsis systems reveal that supergenes play a major role in linking behavioural, morphological and physiological traits associated with intraspecific social polymorphisms.
Collapse
Affiliation(s)
- Ornela De Gasperin
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
- Red de Ecoetología, Instituto de Ecología, A. C. , Xalapa, Veracruz 91073, Mexico
| | - Pierre Blacher
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| | - Solenn Sarton-Lohéac
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| | - Guglielmo Grasso
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
- University of Manchester , Manchester M13 9PL, UK
| | - Mia Kotur Corliss
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| | - Sidonie Nicole
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| | | | - Serge Aron
- Universite libre de Bruxelles , Brussels 1050, Belgium
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| |
Collapse
|
24
|
Semenov GA, Sonnenberg BR, Branch CL, Heinen VK, Welklin JF, Padula SR, Patel AM, Bridge ES, Pravosudov VV, Taylor SA. Genes and gene networks underlying spatial cognition in food-caching chickadees. Curr Biol 2024; 34:1930-1939.e4. [PMID: 38636515 DOI: 10.1016/j.cub.2024.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Substantial progress has been made in understanding the genetic architecture of phenotypes involved in a variety of evolutionary processes. Behavioral genetics remains, however, among the least understood. We explore the genetic architecture of spatial cognitive abilities in a wild passerine bird, the mountain chickadee (Poecile gambeli). Mountain chickadees cache thousands of seeds in the fall and require specialized spatial memory to recover these caches throughout the winter. We previously showed that variation in spatial cognition has a direct effect on fitness and has a genetic basis. It remains unknown which specific genes and developmental pathways are particularly important for shaping spatial cognition. To further dissect the genetic basis of spatial cognitive abilities, we combine experimental quantification of spatial cognition in wild chickadees with whole-genome sequencing of 162 individuals, a new chromosome-scale reference genome, and species-specific gene annotation. We have identified a set of genes and developmental pathways that play a key role in creating variation in spatial cognition and found that the mechanism shaping cognitive variation is consistent with selection against mildly deleterious non-coding mutations. Although some candidate genes were organized into connected gene networks, about half do not have shared regulation, highlighting that multiple independent developmental or physiological mechanisms contribute to variation in spatial cognitive abilities. A large proportion of the candidate genes we found are associated with synaptic plasticity, an intriguing result that leads to the hypothesis that certain genetic variants create antagonism between behavioral plasticity and long-term memory, each providing distinct benefits depending on ecological context.
Collapse
Affiliation(s)
- Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA.
| | - Benjamin R Sonnenberg
- Department of Biology and Evolution, Ecology Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Carrie L Branch
- Department of Psychology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Virginia K Heinen
- Department of Biology and Evolution, Ecology Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Joseph F Welklin
- Department of Biology and Evolution, Ecology Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Sara R Padula
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Ajay M Patel
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Eli S Bridge
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK 73019, USA
| | - Vladimir V Pravosudov
- Department of Biology and Evolution, Ecology Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO 80309, USA
| |
Collapse
|
25
|
Merondun J, Marques CI, Andrade P, Meshcheryagina S, Galván I, Afonso S, Alves JM, Araújo PM, Bachurin G, Balacco J, Bán M, Fedrigo O, Formenti G, Fossøy F, Fülöp A, Golovatin M, Granja S, Hewson C, Honza M, Howe K, Larson G, Marton A, Moskát C, Mountcastle J, Procházka P, Red’kin Y, Sims Y, Šulc M, Tracey A, Wood JMD, Jarvis ED, Hauber ME, Carneiro M, Wolf JBW. Evolution and genetic architecture of sex-limited polymorphism in cuckoos. SCIENCE ADVANCES 2024; 10:eadl5255. [PMID: 38657058 PMCID: PMC11042743 DOI: 10.1126/sciadv.adl5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.
Collapse
Affiliation(s)
- Justin Merondun
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Cristiana I. Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Swetlana Meshcheryagina
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ismael Galván
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Joel M. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | - Pedro M. Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Life Sciences, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
| | | | - Jennifer Balacco
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Miklós Bán
- HUN-REN-UD Behavioral Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Olivier Fedrigo
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Giulio Formenti
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Frode Fossøy
- Centre for Biodiversity Genetics, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Attila Fülöp
- HUN-REN-UD Behavioral Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- STAR-UBB Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Mikhail Golovatin
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Sofia Granja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | | | - Marcel Honza
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | - Attila Marton
- Evolutionary Ecology Group, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Csaba Moskát
- Hungarian Natural History Museum, Budapest, Hungary
| | | | - Petr Procházka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Ying Sims
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Michal Šulc
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Erich D. Jarvis
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Mark E. Hauber
- Advanced Science Research Center and Program in Psychology, Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Mirarab S, Rivas-González I, Feng S, Stiller J, Fang Q, Mai U, Hickey G, Chen G, Brajuka N, Fedrigo O, Formenti G, Wolf JBW, Howe K, Antunes A, Schierup MH, Paten B, Jarvis ED, Zhang G, Braun EL. A region of suppressed recombination misleads neoavian phylogenomics. Proc Natl Acad Sci U S A 2024; 121:e2319506121. [PMID: 38557186 PMCID: PMC11009670 DOI: 10.1073/pnas.2319506121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
Genomes are typically mosaics of regions with different evolutionary histories. When speciation events are closely spaced in time, recombination makes the regions sharing the same history small, and the evolutionary history changes rapidly as we move along the genome. When examining rapid radiations such as the early diversification of Neoaves 66 Mya, typically no consistent history is observed across segments exceeding kilobases of the genome. Here, we report an exception. We found that a 21-Mb region in avian genomes, mapped to chicken chromosome 4, shows an extremely strong and discordance-free signal for a history different from that of the inferred species tree. Such a strong discordance-free signal, indicative of suppressed recombination across many millions of base pairs, is not observed elsewhere in the genome for any deep avian relationships. Although long regions with suppressed recombination have been documented in recently diverged species, our results pertain to relationships dating circa 65 Mya. We provide evidence that this strong signal may be due to an ancient rearrangement that blocked recombination and remained polymorphic for several million years prior to fixation. We show that the presence of this region has misled previous phylogenomic efforts with lower taxon sampling, showing the interplay between taxon and locus sampling. We predict that similar ancient rearrangements may confound phylogenetic analyses in other clades, pointing to a need for new analytical models that incorporate the possibility of such events.
Collapse
Affiliation(s)
- Siavash Mirarab
- Electrical and Computer Engineering Department, University of California, San Diego, CA95032
| | | | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou311121, China
| | - Josefin Stiller
- Section for Ecology & Evolution, Department of Biology, University of Copenhagen, København2100, Denmark
| | - Qi Fang
- BGI-Research, Shenzhen518083, China
| | - Uyen Mai
- Electrical and Computer Engineering Department, University of California, San Diego, CA95032
| | - Glenn Hickey
- Genomics Institute, University of California, Santa Cruz, CA96064
| | - Guangji Chen
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou311121, China
| | - Nadolina Brajuka
- Vertebrate Genome Lab, Rockefeller University, New York, NY10065
| | - Olivier Fedrigo
- Vertebrate Genome Lab, Rockefeller University, New York, NY10065
| | - Giulio Formenti
- Vertebrate Genome Lab, Rockefeller University, New York, NY10065
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximillians-Universität, Munich82152, Germany
| | - Kerstin Howe
- Tree of Life Division, Wellcome Sanger Institute, CambridgeCB10 1RQ, United Kingdom
| | - Agostinho Antunes
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto4099-002, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto4099-002, Portugal
| | | | - Benedict Paten
- Genomics Institute, University of California, Santa Cruz, CA96064
| | - Erich D. Jarvis
- Vertebrate Genome Lab, Rockefeller University, New York, NY10065
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611
| |
Collapse
|
27
|
Benham PM, Cicero C, Escalona M, Beraut E, Fairbairn C, Marimuthu MPA, Nguyen O, Sahasrabudhe R, King BL, Thomas WK, Kovach AI, Nachman MW, Bowie RCK. Remarkably High Repeat Content in the Genomes of Sparrows: The Importance of Genome Assembly Completeness for Transposable Element Discovery. Genome Biol Evol 2024; 16:evae067. [PMID: 38566597 PMCID: PMC11088854 DOI: 10.1093/gbe/evae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into patterns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies (0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for Bell's sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-assemble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome evolution.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Miura I, Shams F, Ohki J, Tagami M, Fujita H, Kuwana C, Nanba C, Matsuo T, Ogata M, Mawaribuchi S, Shimizu N, Ezaz T. Multiple Transitions between Y Chromosome and Autosome in Tago's Brown Frog Species Complex. Genes (Basel) 2024; 15:300. [PMID: 38540359 PMCID: PMC10969965 DOI: 10.3390/genes15030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Sex chromosome turnover is the transition between sex chromosomes and autosomes. Although many cases have been reported in poikilothermic vertebrates, their evolutionary causes and genetic mechanisms remain unclear. In this study, we report multiple transitions between the Y chromosome and autosome in the Japanese Tago's brown frog complex. Using chromosome banding and molecular analyses (sex-linked and autosomal single nucleotide polymorphisms, SNPs, from the nuclear genome), we investigated the frogs of geographic populations ranging from northern to southern Japan of two species, Rana tagoi and Rana sakuraii (2n = 26). Particularly, the Chiba populations of East Japan and Akita populations of North Japan in R. tagoi have been, for the first time, investigated here. As a result, we identified three different sex chromosomes, namely chromosomes 3, 7, and 13, in the populations of the two species. Furthermore, we found that the transition between the Y chromosome (chromosome 7) and autosome was repeated through hybridization between two or three different populations belonging to the two species, followed by restricted chromosome introgression. These dynamic sex chromosome turnovers represent the first such findings in vertebrates and imply that speciation associated with inter- or intraspecific hybridization plays an important role in sex chromosome turnover in frogs.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Foyez Shams
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| | - Jun’ichi Ohki
- Natural History Museum and Institute, Chiba 260-8682, Japan;
| | - Masataka Tagami
- Gifu World Freshwater Aquarium, Kakamigahara, Gifu 501-6021, Japan;
| | - Hiroyuki Fujita
- Saitama Museum of Rivers, Yorii-Machi, Oosato-Gun, Saitama 369-1217, Japan;
| | - Chiao Kuwana
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Chiyo Nanba
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan; (C.K.); (C.N.)
| | - Takanori Matsuo
- Department of Preschool Education, Nagasaki Women’s Junior College, Nagasaki 850-0823, Japan;
| | - Mitsuaki Ogata
- Preservation and Research Center, City of Yokohama, Yokohama 241-0804, Japan;
| | - Shuuji Mawaribuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan;
| | - Norio Shimizu
- Hiroshima University Museum, Higashi-Hiroshima 739-8524, Japan;
| | - Tariq Ezaz
- Institute for Applied Ecology, Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (F.S.); (T.E.)
| |
Collapse
|
29
|
Benham PM, Walsh J, Bowie RCK. Spatial variation in population genomic responses to over a century of anthropogenic change within a tidal marsh songbird. GLOBAL CHANGE BIOLOGY 2024; 30:e17126. [PMID: 38273486 DOI: 10.1111/gcb.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Combating the current biodiversity crisis requires the accurate documentation of population responses to human-induced ecological change. However, our ability to pinpoint population responses to human activities is often limited to the analysis of populations studied well after the fact. Museum collections preserve a record of population responses to anthropogenic change that can provide critical baseline data on patterns of genetic diversity, connectivity, and population structure prior to the onset of human perturbation. Here, we leverage a spatially replicated time series of specimens to document population genomic responses to the destruction of nearly 90% of coastal habitats occupied by the Savannah sparrow (Passerculus sandwichensis) in California. We sequenced 219 sparrows collected from 1889 to 2017 across the state of California using an exome capture approach. Spatial-temporal analyses of genetic diversity found that the amount of habitat lost was not predictive of genetic diversity loss. Sparrow populations from southern California historically exhibited lower levels of genetic diversity and experienced the most significant temporal declines in genetic diversity. Despite experiencing the greatest levels of habitat loss, we found that genetic diversity in the San Francisco Bay area remained relatively high. This was potentially related to an observed increase in gene flow into the Bay Area from other populations. While gene flow may have minimized genetic diversity declines, we also found that immigration from inland freshwater-adapted populations into tidal marsh populations led to the erosion of divergence at loci associated with tidal marsh adaptation. Shifting patterns of gene flow through time in response to habitat loss may thus contribute to negative fitness consequences and outbreeding depression. Together, our results underscore the importance of tracing the genomic trajectories of multiple populations over time to address issues of fundamental conservation concern.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jennifer Walsh
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
30
|
Willink B, Tunström K, Nilén S, Chikhi R, Lemane T, Takahashi M, Takahashi Y, Svensson EI, Wheat CW. The genomics and evolution of inter-sexual mimicry and female-limited polymorphisms in damselflies. Nat Ecol Evol 2024; 8:83-97. [PMID: 37932383 PMCID: PMC10781644 DOI: 10.1038/s41559-023-02243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
Sex-limited morphs can provide profound insights into the evolution and genomic architecture of complex phenotypes. Inter-sexual mimicry is one particular type of sex-limited polymorphism in which a novel morph resembles the opposite sex. While inter-sexual mimics are known in both sexes and a diverse range of animals, their evolutionary origin is poorly understood. Here, we investigated the genomic basis of female-limited morphs and male mimicry in the common bluetail damselfly. Differential gene expression between morphs has been documented in damselflies, but no causal locus has been previously identified. We found that male mimicry originated in an ancestrally sexually dimorphic lineage in association with multiple structural changes, probably driven by transposable element activity. These changes resulted in ~900 kb of novel genomic content that is partly shared by male mimics in a close relative, indicating that male mimicry is a trans-species polymorphism. More recently, a third morph originated following the translocation of part of the male-mimicry sequence into a genomic position ~3.5 mb apart. We provide evidence of balancing selection maintaining male mimicry, in line with previous field population studies. Our results underscore how structural variants affecting a handful of potentially regulatory genes and morph-specific genes can give rise to novel and complex phenotypic polymorphisms.
Collapse
Affiliation(s)
- Beatriz Willink
- Department of Zoology, Stockholm University, Stockholm, Sweden.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sofie Nilén
- Department of Biology, Lund University, Lund, Sweden
| | - Rayan Chikhi
- Sequence Bioinformatics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Téo Lemane
- University of Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Michihiko Takahashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | | | | |
Collapse
|
31
|
Scarparo G, Palanchon M, Brelsford A, Purcell J. Social antagonism facilitates supergene expansion in ants. Curr Biol 2023; 33:5085-5095.e4. [PMID: 37979579 PMCID: PMC10860589 DOI: 10.1016/j.cub.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023]
Abstract
Antagonistic selection has long been considered a major driver of the formation and expansion of sex chromosomes. For example, sexually antagonistic variation on an autosome can select for suppressed recombination between that autosome and the sex chromosome, leading to a neo-sex chromosome. Autosomal supergenes, chromosomal regions containing tightly linked variants affecting the same complex trait, share similarities with sex chromosomes, raising the possibility that sex chromosome evolution models can explain the evolution of genome structure and recombination in other contexts. We tested this premise in a Formica ant species, wherein we identified four supergene haplotypes on chromosome 3 underlying colony social organization and sex ratio. We discovered a novel rearranged supergene variant (9r) on chromosome 9 underlying queen miniaturization. The 9r is in strong linkage disequilibrium with one chromosome 3 haplotype (P2) found in multi-queen (polygyne) colonies. We suggest that queen miniaturization is strongly disfavored in the single-queen (monogyne) background and is thus socially antagonistic. As such, divergent selection experienced by ants living in alternative social "environments" (monogyne and polygyne) may have contributed to the emergence of a genetic polymorphism on chromosome 9 and associated queen-size dimorphism. Consequently, an ancestral polygyne-associated haplotype may have expanded to include the polymorphism on chromosome 9, resulting in a larger region of suppressed recombination spanning two chromosomes. This process is analogous to the formation of neo-sex chromosomes and consistent with models of expanding regions of suppressed recombination. We propose that miniaturized queens, 16%-20% smaller than queens without 9r, could be incipient intraspecific social parasites.
Collapse
Affiliation(s)
- Giulia Scarparo
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg. Citrus Drive, Riverside, CA 92521, USA.
| | - Marie Palanchon
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 2710 Life Science Bldg., Riverside, CA 92521, USA
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 2710 Life Science Bldg., Riverside, CA 92521, USA
| | - Jessica Purcell
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg. Citrus Drive, Riverside, CA 92521, USA.
| |
Collapse
|
32
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
33
|
Ito S, Chiba S, Konuma J. Overcoming the congenitally disadvantageous mutation through adaptation to environmental UV exposure in land snails. Biol Lett 2023; 19:20230356. [PMID: 37990565 PMCID: PMC10663782 DOI: 10.1098/rsbl.2023.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
Congenital fitness-disadvantageous mutations are not maintained in the population; they are purged from the population through processes such as purifying selection. However, these mutations could persist in the population as polymorphisms when it is advantageous for the individuals carrying them in adapting to a specific external environment. We tested this hypothesis using the dimorphic land snail Euhadra peliomphala simodae in Japan; these snails have dark or bright coloured shells. The survival rate of dark snails at hatching was lower than that of the bright ones, as observed in the F1 progenies produced through crossing. Dark snails have a congenital fitness-disadvantageous mutation; however, they also have protection against ultraviolet radiation. They have a higher survival rate than the bright snails in a UV environment, as observed using the UV exposure experiments and UV transmittance measurements. This is a good example of a congenitally disadvantageous mutation that is advantageous for adapting to the external environment. These results explain the maintenance of polymorphism and highlight the genotypic and phenotypic diversity in the wild population.
Collapse
Affiliation(s)
- Shun Ito
- Izu Oshima Geopark Promotion Committee Office, Tokyo, Japan
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Satoshi Chiba
- Center for Northeast Asian Studies, Tohoku University, Miyagi, Japan
- Graduate School of Life Science, Tohoku University, Miyagi, Japan
| | - Junji Konuma
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
34
|
Enge S, Mérot C, Mozūraitis R, Apšegaitė V, Bernatchez L, Martens GA, Radžiutė S, Pavia H, Berdan EL. A supergene in seaweed flies modulates male traits and female perception. Proc Biol Sci 2023; 290:20231494. [PMID: 37817592 PMCID: PMC10565388 DOI: 10.1098/rspb.2023.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Supergenes, tightly linked sets of alleles, offer some of the most spectacular examples of polymorphism persisting under long-term balancing selection. However, we still do not understand their evolution and persistence, especially in the face of accumulation of deleterious elements. Here, we show that an overdominant supergene in seaweed flies, Coelopa frigida, modulates male traits, potentially facilitating disassortative mating and promoting intraspecific polymorphism. Across two continents, the Cf-Inv(1) supergene strongly affected the composition of male cuticular hydrocarbons (CHCs) but only weakly affected CHC composition in females. Using gas chromatography-electroantennographic detection, we show that females can sense male CHCs and that there may be differential perception between genotypes. Combining our phenotypic results with RNA-seq data, we show that candidate genes for CHC biosynthesis primarily show differential expression for Cf-Inv(1) in males but not females. Conversely, candidate genes for odorant detection were differentially expressed in both sexes but showed high levels of divergence between supergene haplotypes. We suggest that the reduced recombination between supergene haplotypes may have led to rapid divergence in mate preferences as well as increasing linkage between male traits, and overdominant loci. Together this probably helped to maintain the polymorphism despite deleterious effects in homozygotes.
Collapse
Affiliation(s)
- Swantje Enge
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Sweden
| | - Claire Mérot
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- CNRS UMR 6553 Ecobio, Université de Rennes, OSUR, Rennes, France
| | - Raimondas Mozūraitis
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Gerrit A. Martens
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Henrik Pavia
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Sweden
| | - Emma L. Berdan
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Sweden
| |
Collapse
|
35
|
McLaughlin JF, Brock KM, Gates I, Pethkar A, Piattoni M, Rossi A, Lipshutz SE. Multivariate Models of Animal Sex: Breaking Binaries Leads to a Better Understanding of Ecology and Evolution. Integr Comp Biol 2023; 63:891-906. [PMID: 37156506 PMCID: PMC10563656 DOI: 10.1093/icb/icad027] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
"Sex" is often used to describe a suite of phenotypic and genotypic traits of an organism related to reproduction. However, these traits-gamete type, chromosomal inheritance, physiology, morphology, behavior, etc.-are not necessarily coupled, and the rhetorical collapse of variation into a single term elides much of the complexity inherent in sexual phenotypes. We argue that consideration of "sex" as a constructed category operating at multiple biological levels opens up new avenues for inquiry in our study of biological variation. We apply this framework to three case studies that illustrate the diversity of sex variation, from decoupling sexual phenotypes to the evolutionary and ecological consequences of intrasexual polymorphisms. We argue that instead of assuming binary sex in these systems, some may be better categorized as multivariate and nonbinary. Finally, we conduct a meta-analysis of terms used to describe diversity in sexual phenotypes in the scientific literature to highlight how a multivariate model of sex can clarify, rather than cloud, studies of sexual diversity within and across species. We argue that such an expanded framework of "sex" better equips us to understand evolutionary processes, and that as biologists, it is incumbent upon us to push back against misunderstandings of the biology of sexual phenotypes that enact harm on marginalized communities.
Collapse
Affiliation(s)
- J F McLaughlin
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Kinsey M Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Isabella Gates
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Anisha Pethkar
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Marcus Piattoni
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Alexis Rossi
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sara E Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
36
|
Luna LW, Williams LM, Duren K, Tyl R, Toews DPL, Avery JD. Whole genome assessment of a declining game bird reveals cryptic genetic structure and insights for population management. Mol Ecol 2023; 32:5498-5513. [PMID: 37688483 DOI: 10.1111/mec.17129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Population genomics applied to game species conservation can help delineate management units, ensure appropriate harvest levels and identify populations needing genetic rescue to safeguard their adaptive potential. The ruffed grouse (Bonasa umbellus) is rapidly declining in much of the eastern USA due to a combination of forest maturation and habitat fragmentation. More recently, mortality from West Nile Virus may have affected connectivity of local populations; however, genetic approaches have never explicitly investigated this issue. In this study, we sequenced 54 individual low-coverage (~5X) grouse genomes to characterize population structure, assess migration rates across the landscape to detect potential barriers to gene flow and identify genomic regions with high differentiation. We identified two genomic clusters with no clear geographic correlation, with large blocks of genomic differentiation associated with chromosomes 4 and 20, likely due to chromosomal inversions. After excluding these putative inversions from the data set, we found weak but nonsignificant signals of population subdivision. Estimated gene flow revealed reduced rates of migration in areas with extensive habitat fragmentation and increased genetic connectivity in areas with less habitat fragmentation. Our findings provide a benchmark for wildlife managers to compare and scale the genetic diversity and structure of ruffed grouse populations in Pennsylvania and across the eastern USA, and we also reveal structural variation in the grouse genome that requires further study to understand its possible effects on individual fitness and population distribution.
Collapse
Affiliation(s)
- Leilton W Luna
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| | - Lisa M Williams
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, Pennsylvania, USA
| | - Kenneth Duren
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, Pennsylvania, USA
| | - Reina Tyl
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, Pennsylvania, USA
| | - David P L Toews
- Department of Biology, Penn State University, University Park, Pennsylvania, USA
| | - Julian D Avery
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
37
|
Mainwaring MC, Tobalske BW, Hartley IR. Born without a Silver Spoon: A Review of the Causes and Consequences of Adversity during Early Life. Integr Comp Biol 2023; 63:742-757. [PMID: 37280184 PMCID: PMC10805381 DOI: 10.1093/icb/icad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
A huge amount of research attention has focused on the evolution of life histories, but most research focuses on dominant individuals that acquire a disproportionate level of reproductive success, while the life histories and reproductive tactics of subordinate individuals have received less attention. Here, we review the links between early life adversity and performance during adulthood in birds, and highlight instances in which subordinate individuals outperform dominant conspecifics. Subordinate individuals are those from broods raised under high risk of predation, with low availability of food, and/or with many parasites. Meanwhile, the broods of many species hatch or are born asynchronously and mitigation of the asynchrony is generally lacking from variation in maternal effects such as egg size and hormone deposition or genetic effects such as offspring sex or parentage. Subordinate individuals employ patterns of differential growth to attempt to mitigate the adversity they experience during early life, yet they overwhelmingly fail to overcome their initial handicap. In terms of surviving through to adulthood, subordinate individuals employ other "suboptimal" tactics, such as adaptively timing foraging behaviors to avoid dominant individuals. During adulthood, meanwhile, subordinate individuals rely on "suboptimal" tactics, such as adaptive dispersal behaviors and competing for partners at optimal times, because they represent the best options available to them to acquire copulations whenever possible. We conclude that there is a gap in knowledge for direct links between early life adversity and subordination during adulthood, meaning that further research should test for links. There are instances, however, where subordinate individuals employ "suboptimal" tactics that allow them to outperform dominant conspecifics during adulthood.
Collapse
Affiliation(s)
- Mark C Mainwaring
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Bret W Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Ian R Hartley
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
38
|
Tunström K, Woronik A, Hanly JJ, Rastas P, Chichvarkhin A, Warren AD, Kawahara AY, Schoville SD, Ficarrotta V, Porter AH, Watt WB, Martin A, Wheat CW. Evidence for a single, ancient origin of a genus-wide alternative life history strategy. SCIENCE ADVANCES 2023; 9:eabq3713. [PMID: 36947619 PMCID: PMC10032607 DOI: 10.1126/sciadv.abq3713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Understanding the evolutionary origins and factors maintaining alternative life history strategies (ALHS) within species is a major goal of evolutionary research. While alternative alleles causing discrete ALHS are expected to purge or fix over time, one-third of the ~90 species of Colias butterflies are polymorphic for a female-limited ALHS called Alba. Whether Alba arose once, evolved in parallel, or has been exchanged among taxa is currently unknown. Using comparative genome-wide association study (GWAS) and population genomic analyses, we placed the genetic basis of Alba in time-calibrated phylogenomic framework, revealing that Alba evolved once near the base of the genus and has been subsequently maintained via introgression and balancing selection. CRISPR-Cas9 mutagenesis was then used to verify a putative cis-regulatory region of Alba, which we identified using phylogenetic foot printing. We hypothesize that this cis-regulatory region acts as a modular enhancer for the induction of the Alba ALHS, which has likely facilitated its long evolutionary persistence.
Collapse
Affiliation(s)
- Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Alyssa Woronik
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Anton Chichvarkhin
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Palchevskogo 17, Vladivostok 690022, Russia
| | - Andrew D. Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent Ficarrotta
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Adam H. Porter
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ward B. Watt
- Department of Biology, University of South Carolina, Columbia, SC 29208, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | |
Collapse
|
39
|
McLaughlin JF, Aguilar C, Bernstein JM, Navia-Gine WG, Cueto-Aparicio LE, Alarcon AC, Alarcon BD, Collier R, Takyar A, Vong SJ, López-Chong OG, Driver R, Loaiza JR, De León LF, Saltonstall K, Lipshutz SE, Arcila D, Brock KM, Miller MJ. Comparative phylogeography reveals widespread cryptic diversity driven by ecology in Panamanian birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36993716 DOI: 10.1101/2023.01.26.525769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
UNLABELLED Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated. LAY SUMMARY - What factors are common among bird species with cryptic diversity in Panama? What role do geography, ecology, phylogeographic history, and other factors play in generating bird diversity?- 19% of widely-sampled bird species form two or more distinct DNA barcode clades, suggesting widespread unrecognized diversity.- Traits associated with reduced dispersal ability, such as use of forest understory, high territoriality, low hand-wing index, and insectivory, were more common in taxa with cryptic diversity. Filogeografía comparada revela amplia diversidad críptica causada por la ecología en las aves de Panamá. RESUMEN Especies extendidas frecuentemente tiene diversidad genética no reconocida, y investigando los factores asociados con esta variación críptica puede ayudarnos a entender las fuerzas que impulsan la diversificación. Aquí, identificamos especies crípticas potenciales basadas en un conjunto de datos de códigos de barras de ADN mitocondrial de 2,333 individuos de aves de Panama en 429 especies, representando 391 (59%) de las 659 especies de aves terrestres residentes del país, además de algunas aves acuáticas muestreada de manera oportunista. Adicionalmente, complementamos estos datos con secuencias mitocondriales disponibles públicamente de otros loci, tal como ND2 o citocroma b, obtenidos de los genomas mitocondriales completos de 20 taxones. Utilizando los números de identificación de código de barras (en ingles: BINs), un sistema taxonómico numérico que proporcina una estimación imparcial de la diversidad potencial a nivel de especie, encontramos especies crípticas putativas en 19% de las especies de aves terrestres, lo que destaca la diversidad oculta en la avifauna bien descrita de Panamá. Aunque algunos de estos eventos de divergencia conciden con características geográficas que probablemente aislaron las poblaciones, la mayoría (74%) de la divergencia en las tierras bajas se encuentra entre las poblaciones orientales y occidentales. El tiempo de esta divergencia no coincidió entre los taxones, sugiriendo que eventos históricos tales como la formación del Istmo de Panamá y los ciclos climáticos del pleistoceno, no fueron los principales impulsores de la especiación. En cambio, observamos asociaciones fuertes entre las características ecológicas y la divergencia mitocondriale: las especies del bosque, sotobosque, con una dieta insectívora, y con territorialidad fuerte mostraton múltiple BINs probables. Adicionalmente, el índice mano-ala, que está asociado a la capacidad de dispersión, fue significativamente menor en las especies con BINs multiples, sugiriendo que la capacidad de dispersión tiene un rol importamente en la generación de la diversidad de las aves neotropicales. Estos resultos demonstran la necesidad de que estudios evolutivos de las comunidades de aves tropicales consideren los factores ecológicos en conjunto con las explicaciones geográficos. Palabras clave: biodiversidad tropical, biogeografía, códigos de barras, dispersión, especies crípticas.
Collapse
|
40
|
Lundberg M, Mackintosh A, Petri A, Bensch S. Inversions maintain differences between migratory phenotypes of a songbird. Nat Commun 2023; 14:452. [PMID: 36707538 PMCID: PMC9883250 DOI: 10.1038/s41467-023-36167-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Structural rearrangements have been shown to be important in local adaptation and speciation, but have been difficult to reliably identify and characterize in non-model species. Here we combine long reads, linked reads and optical mapping to characterize three divergent chromosome regions in the willow warbler Phylloscopus trochilus, of which two are associated with differences in migration and one with an environmental gradient. We show that there are inversions (0.4-13 Mb) in each of the regions and that the divergence times between inverted and non-inverted haplotypes are similar across the regions (~1.2 Myrs), which is compatible with a scenario where inversions arose in either of two allopatric populations that subsequently hybridized. The improved genomes allow us to detect additional functional differences in the divergent regions, providing candidate genes for migration and adaptations to environmental gradients.
Collapse
Affiliation(s)
- Max Lundberg
- Department of Biology, Lund University, Lund, Sweden.
| | | | - Anna Petri
- Science for Life Laboratory, Uppsala Genome Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
41
|
Harringmeyer OS, Hoekstra HE. Chromosomal inversion polymorphisms shape the genomic landscape of deer mice. Nat Ecol Evol 2022; 6:1965-1979. [PMID: 36253543 PMCID: PMC9715431 DOI: 10.1038/s41559-022-01890-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Chromosomal inversions are an important form of structural variation that can affect recombination, chromosome structure and fitness. However, because inversions can be challenging to detect, the prevalence and hence the significance of inversions segregating within species remains largely unknown, especially in natural populations of mammals. Here, by combining population-genomic and long-read sequencing analyses in a single, widespread species of deer mouse (Peromyscus maniculatus), we identified 21 polymorphic inversions that are large (1.5-43.8 Mb) and cause near-complete suppression of recombination when heterozygous (0-0.03 cM Mb-1). We found that inversion breakpoints frequently occur in centromeric and telomeric regions and are often flanked by long inverted repeats (0.5-50 kb), suggesting that they probably arose via ectopic recombination. By genotyping inversions in populations across the species' range, we found that the inversions are often widespread and do not harbour deleterious mutational loads, and many are likely to be maintained as polymorphisms by divergent selection. Comparisons of forest and prairie ecotypes of deer mice revealed 13 inversions that contribute to differentiation between populations, of which five exhibit significant associations with traits implicated in local adaptation. Taken together, these results show that inversion polymorphisms have a significant impact on recombination, genome structure and genetic diversity in deer mice and likely facilitate local adaptation across the widespread range of this species.
Collapse
Affiliation(s)
- Olivia S Harringmeyer
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Hopi E Hoekstra
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
42
|
Origin and persistence of polymorphism in loci targeted by disassortative preference: a general model. J Math Biol 2022; 86:4. [PMID: 36441252 DOI: 10.1007/s00285-022-01832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The emergence and persistence of polymorphism within populations generally requires specific regimes of natural or sexual selection. Here, we develop a unified theoretical framework to explore how polymorphism at targeted loci can be generated and maintained by either disassortative mating choice or balancing selection due to, for example, heterozygote advantage. To this aim, we model the dynamics of alleles at a single locus A in a population of haploid individuals, where reproductive success depends on the combination of alleles carried by the parents at locus A. Our theoretical study of the model confirms that the conditions for the persistence of a given level of allelic polymorphism depend on the relative reproductive advantages among pairs of individuals. Interestingly, equilibria with unbalanced allelic frequencies were shown to emerge from successive introduction of mutants. We then investigate the role of the function linking allelic divergence to reproductive advantage on the evolutionary fate of alleles within the population. Our results highlight the significance of the shape of this function for both the number of alleles maintained and their level of genetic divergence. Large number of alleles are maintained with substantial replacement of alleles, when disassortative advantage slowly increases with allelic differentiation . In contrast, few highly differentiated alleles are predicted to be maintained when genetic differentiation has a strong effect on disassortative advantage. These opposite effects predicted by our model explain how disassortative mate choice may lead to various levels of allelic differentiation and polymorphism, and shed light on the effect of mate preferences on the persistence of balanced and unbalanced polymorphism in natural population.
Collapse
|
43
|
Zhang S, Wu Z, Ma D, Zhai J, Han X, Jiang Z, Liu S, Xu J, Jiao P, Li Z. Chromosome-scale assemblies of the male and female Populus euphratica genomes reveal the molecular basis of sex determination and sexual dimorphism. Commun Biol 2022; 5:1186. [PMCID: PMC9636151 DOI: 10.1038/s42003-022-04145-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Reference-quality genomes of both sexes are essential for studying sex determination and sex-chromosome evolution, as their gene contents and expression profiles differ. Here, we present independent chromosome-level genome assemblies for the female (XX) and male (XY) genomes of desert poplar (Populus euphratica), resolving a 22.7-Mb X and 24.8-Mb Y chromosome. We also identified a relatively complete 761-kb sex-linked region (SLR) in the peritelomeric region on chromosome 14 (Y). Within the SLR, recombination around the partial repeats for the feminizing factor ARR17 (ARABIDOPSIS RESPONSE REGULATOR 17) was potentially suppressed by flanking palindromic arms and the dense accumulation of retrotransposons. The inverted small segments S1 and S2 of ARR17 exhibited relaxed selective pressure and triggered sex determination by generating 24-nt small interfering RNAs that induce male-specific hyper-methylation at the promoter of the autosomal targeted ARR17. We also detected two male-specific fusion genes encoding proteins with NB-ARC domains at the breakpoint region of an inversion in the SLR that may be responsible for the observed sexual dimorphism in immune responses. Our results show that the SLR appears to follow proposed evolutionary dynamics for sex chromosomes and advance our understanding of sex determination and the evolution of sex chromosomes in Populus. Reference-quality genomes of both sexes of the dioecious tree species, Populus euphratica, provide further insight into the evolution of Populus sex chromosomes and highlight male-specific fusion genes that may contribute to sexual dimorphism.
Collapse
Affiliation(s)
- Shanhe Zhang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhihua Wu
- grid.453534.00000 0001 2219 2654College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - De Ma
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Juntuan Zhai
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Xiaoli Han
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhenbo Jiang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Jingdong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Peipei Jiao
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhijun Li
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| |
Collapse
|
44
|
Prichard MR, Grogan KE, Merritt JR, Root J, Maney DL. Allele-specific cis-regulatory methylation of the gene for vasoactive intestinal peptide in white-throated sparrows. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12831. [PMID: 36220804 PMCID: PMC9744568 DOI: 10.1111/gbb.12831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
Abstract
White-throated sparrows (Zonotrichia albicollis) offer a unique opportunity to connect genotype with behavioral phenotype. In this species, a rearrangement of the second chromosome is linked with territorial aggression; birds with a copy of this "supergene" rearrangement are more aggressive than those without it. The supergene has captured the gene VIP, which encodes vasoactive intestinal peptide, a neuromodulator that drives aggression in other songbirds. In white-throated sparrows, VIP expression is higher in the anterior hypothalamus of birds with the supergene than those without it, and expression of VIP in this region predicts the level of territorial aggression regardless of genotype. Here, we aimed to identify epigenetic mechanisms that could contribute to differential expression of VIP both in breeding adults, which exhibit morph differences in territorial aggression, and in nestlings, before territorial behavior develops. We extracted and bisulfite-converted DNA from samples of the hypothalamus in wild-caught adults and nestlings and used high-throughput sequencing to measure DNA methylation of a region upstream of the VIP start site. We found that the allele inside the supergene was less methylated than the alternative allele in both adults and nestlings. The differential methylation was attributed primarily to CpG sites that were shared between the alleles, not to polymorphic sites, which suggests that epigenetic regulation is occurring independently of the genetic differentiation within the supergene. This work represents an initial step toward understanding how epigenetic differentiation inside chromosomal inversions leads to the development of alternative behavioral phenotypes.
Collapse
Affiliation(s)
| | - Kathleen E. Grogan
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
- Present address:
Departments of Anthropology and BiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Jennifer R. Merritt
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
- Present address:
Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Jessica Root
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
- Present address:
Department of Pharmacology and Chemical BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Donna L. Maney
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
45
|
Hollenbeck CM, Portnoy DS, Garcia de la Serrana D, Magnesen T, Matejusova I, Johnston IA. Temperature-associated selection linked to putative chromosomal inversions in king scallop ( Pecten maximus). Proc Biol Sci 2022; 289:20221573. [PMID: 36196545 PMCID: PMC9532988 DOI: 10.1098/rspb.2022.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The genomic landscape of divergence—the distribution of differences among populations or species across the genome—is increasingly characterized to understand the role that microevolutionary forces such as natural selection and recombination play in causing and maintaining genetic divergence. This line of inquiry has also revealed chromosome structure variation to be an important factor shaping the landscape of adaptive genetic variation. Owing to a high prevalence of chromosome structure variation and the strong pressure for local adaptation necessitated by their sessile nature, bivalve molluscs are an ideal taxon for exploring the relationship between chromosome structure variation and local adaptation. Here, we report a population genomic survey of king scallop (Pecten maximus) across its natural range in the northeastern Atlantic Ocean, using a recent chromosome-level genome assembly. We report the presence of at least three large (12–22 Mb), putative chromosomal inversions associated with sea surface temperature and whose frequencies are in contrast to neutral population structure. These results highlight a potentially large role for recombination-suppressing chromosomal inversions in local adaptation and suggest a hypothesis to explain the maintenance of differences in reproductive timing found at relatively small spatial scales across king scallop populations.
Collapse
Affiliation(s)
- Christopher M Hollenbeck
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.,Texas A&M AgriLife Research, College Station, TX, USA
| | - David S Portnoy
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Thorolf Magnesen
- Department of Biological Sciences, University of Bergen, Thormøhlensgt 53B, Bergen, Norway
| | - Iveta Matejusova
- Marine Science Scotland, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Xelect Ltd, Horizon House, Abbey Walk, St Andrews KY16 9LB, UK
| |
Collapse
|
46
|
Campagna L, Toews DP. The genomics of adaptation in birds. Curr Biol 2022; 32:R1173-R1186. [DOI: 10.1016/j.cub.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Jeong H, Baran NM, Sun D, Chatterjee P, Layman TS, Balakrishnan CN, Maney DL, Yi SV. Dynamic molecular evolution of a supergene with suppressed recombination in white-throated sparrows. eLife 2022; 11:e79387. [PMID: 36040313 PMCID: PMC9427109 DOI: 10.7554/elife.79387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/17/2022] [Indexed: 12/11/2022] Open
Abstract
In white-throated sparrows, two alternative morphs differing in plumage and behavior segregate with a large chromosomal rearrangement. As with sex chromosomes such as the mammalian Y, the rearranged version of chromosome two (ZAL2m) is in a near-constant state of heterozygosity, offering opportunities to investigate both degenerative and selective processes during the early evolutionary stages of 'supergenes.' Here, we generated, synthesized, and analyzed extensive genome-scale data to better understand the forces shaping the evolution of the ZAL2 and ZAL2m chromosomes in this species. We found that features of ZAL2m are consistent with substantially reduced recombination and low levels of degeneration. We also found evidence that selective sweeps took place both on ZAL2m and its standard counterpart, ZAL2, after the rearrangement event. Signatures of positive selection were associated with allelic bias in gene expression, suggesting that antagonistic selection has operated on gene regulation. Finally, we discovered a region exhibiting long-range haplotypes inside the rearrangement on ZAL2m. These haplotypes appear to have been maintained by balancing selection, retaining genetic diversity within the supergene. Together, our analyses illuminate mechanisms contributing to the evolution of a young chromosomal polymorphism, revealing complex selective processes acting concurrently with genetic degeneration to drive the evolution of supergenes.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Nicole M Baran
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Department of Psychology, Emory UniversityAtlantaUnited States
- Department of Ecology, Evolution, Marine Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Dan Sun
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Paramita Chatterjee
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Thomas S Layman
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | | | - Donna L Maney
- Department of Psychology, Emory UniversityAtlantaUnited States
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Department of Ecology, Evolution, Marine Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
48
|
Helleu Q, Roux C, Ross KG, Keller L. Radiation and hybridization underpin the spread of the fire ant social supergene. Proc Natl Acad Sci U S A 2022; 119:e2201040119. [PMID: 35969752 PMCID: PMC9407637 DOI: 10.1073/pnas.2201040119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Supergenes are clusters of tightly linked genes that jointly produce complex phenotypes. Although widespread in nature, how such genomic elements are formed and how they spread are in most cases unclear. In the fire ant Solenopsis invicta and closely related species, a "social supergene controls whether a colony maintains one or multiple queens. Here, we show that the three inversions constituting the Social b (Sb) supergene emerged sequentially during the separation of the ancestral lineages of S. invicta and Solenopsis richteri. The two first inversions arose in the ancestral population of both species, while the third one arose in the S. richteri lineage. Once completely assembled in the S. richteri lineage, the supergene first introgressed into S. invicta, and from there into the other species of the socially polymorphic group of South American fire ant species. Surprisingly, the introgression of this large and important genomic element occurred despite recent hybridization being uncommon between several of the species. These results highlight how supergenes can readily move across species boundaries, possibly because of fitness benefits they provide and/or expression of selfish properties favoring their transmission.
Collapse
Affiliation(s)
- Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Camille Roux
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Kenneth G. Ross
- Department of Entomology, University of Georgia, Athens, GA 30605
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Berdan EL, Flatt T, Kozak GM, Lotterhos KE, Wielstra B. Genomic architecture of supergenes: connecting form and function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210192. [PMID: 35694757 PMCID: PMC9189501 DOI: 10.1098/rstb.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Supergenes are tightly linked sets of loci that are inherited together and control complex phenotypes. While classical supergenes-governing traits such as wing patterns in Heliconius butterflies or heterostyly in Primula-have been studied since the Modern Synthesis, we still understand very little about how they evolve and persist in nature. The genetic architecture of supergenes is a critical factor affecting their evolutionary fate, as it can change key parameters such as recombination rate and effective population size, potentially redirecting molecular evolution of the supergene in addition to the surrounding genomic region. To understand supergene evolution, we must link genomic architecture with evolutionary patterns and processes. This is now becoming possible with recent advances in sequencing technology and powerful forward computer simulations. The present theme issue brings together theoretical and empirical papers, as well as opinion and synthesis papers, which showcase the architectural diversity of supergenes and connect this to critical processes in supergene evolution, such as polymorphism maintenance and mutation accumulation. Here, we summarize those insights to highlight new ideas and methods that illuminate the path forward for the study of supergenes in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Emma L Berdan
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, MA 02747, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
50
|
Kay T, Helleu Q, Keller L. Iterative evolution of supergene-based social polymorphism in ants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210196. [PMID: 35694755 PMCID: PMC9189498 DOI: 10.1098/rstb.2021.0196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
Species commonly exhibit alternative morphs, with individual fate being determined during development by either genetic factors, environmental cues or a combination thereof. Ants offer an interesting case study because many species are polymorphic in their social structure. Some colonies contain one queen while others contain many queens. This variation in queen number is generally associated with a suite of phenotypic and life-history traits, including mode of colony founding, queen lifespan, queen-worker dimorphism and colony size. The basis of this social polymorphism has been studied in five ant lineages, and remarkably social morph seems to be determined by a supergene in all cases. These 'social supergenes' tend to be large, having formed through serial inversions, and to comprise hundreds of linked genes. They have persisted over long evolutionary timescales, in multiple lineages following speciation events, and have spread between closely related species via introgression. Their evolutionary dynamics are unusually complex, combining recessive lethality, spatially variable selection, selfish genetic elements and non-random mating. Here, we synthesize the five cases of supergene-based social polymorphism in ants, highlighting interesting commonalities, idiosyncrasies and implications for the evolution of polymorphisms in general. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|