1
|
Ahmed DA, Sousa R, Bortolus A, Aldemir C, Angeli NF, Błońska D, Briski E, Britton JR, Cano‐Barbacil C, Clark‐Ginsberg A, Culic I, Cuthbert RN, Dick J, Dimarco RD, Essl F, Everts T, García‐Berthou E, Hauer M, Kouba A, Kourantidou M, Kutschera U, Mammola S, Martín‐Forés I, Morissette O, Nuñez MA, Olden JD, Pârvulescu L, Pergl J, Renault D, Rico‐Sánchez AE, Russell JC, Soto I, Serhan Tarkan A, Uysal TU, Verreycken H, Vilizzi L, Wasserman R, Wehi P, Haubrock PJ. Parallels and discrepancies between non-native species introductions and human migration. Biol Rev Camb Philos Soc 2025; 100:1365-1395. [PMID: 39980263 PMCID: PMC12120396 DOI: 10.1111/brv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Biological invasions and human migrations have increased globally due to socio-economic drivers and environmental factors that have enhanced cultural, economic, and geographic connectivity. Both processes involve the movement, establishment, and spread of species, yet unfold within fundamentally different philosophical, social and biological contexts. Hence, studying biological invasions (invasion science) and human migration (migration studies) presents complex parallels that are potentially fruitful to explore. Here, we examined nuanced parallels and differences between these two phenomena, integrating historical, socio-political, and ethical perspectives. Our review underscores the need for context-specific approaches in policymaking and governance to address effectively the challenges and opportunities of human migration and harm from biological invasions. We suggest that approaches to studying the drivers of biological invasions and human migration provide an excellent opportunity for transdisciplinary research; one that acknowledges the complexities and potential insights from both fields of study. Ultimately, integrating natural and social sciences offers a promising avenue for enriching the understanding of invasion biology and migration dynamics while pursuing just, equitable, and sustainable solutions. However, while human migration is a clear driver of biological invasions, drawing on principles from biological invasions to understand past and current human migration risks oversimplification and the potential for harmful generalisations that disregard the intrinsic rights and cultural dynamics of human migrations. By doing so, we provide insights and frameworks to support the development of context-specific policies that respect human dignity, foster cultural diversity, and address migration challenges in ways that promote global cooperation and justice. This interdisciplinary approach highlights the potential for transdisciplinary research that acknowledges complexities in both fields, ultimately enriching our understanding of invasion biology and migration dynamics while pursuing equitable and sustainable solutions.
Collapse
Affiliation(s)
- Danish A. Ahmed
- CAMB, Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural SciencesGulf University for Science and TechnologyMubarak Al‐Abdullah Area/West MishrefHawally32093Kuwait
| | - Ronaldo Sousa
- CBMA – Centre for Molecular and Environmental Biology/ARNET‐Aquatic Research Network/ IB‐S, Institute of Science and Innovation for Bio‐Sustainability, Department of BiologyUniversity of MinhoCampus GualtarBraga4710‐057Portugal
| | - Alejandro Bortolus
- Grupo de Ecología en Ambientes Costeros (GEAC), Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC‐CONICET)Puerto MadrynArgentina
| | - Ceray Aldemir
- Department of Public Administration, Faculty of Economics and Administrative SciencesMuğla Sıtkı Koçman UniversityMuğlaTürkiye
| | - Nicole F. Angeli
- Division of Fish and WildlifeGovernment of the Virgin IslandsFrederikstedVI0084USA
| | - Dagmara Błońska
- University of LodzFaculty of Biology and Environmental Protection, Department of Ecology and Vertebrate ZoologyLodz90‐237Poland
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleDorsetUK
| | - Elizabeta Briski
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung KielKiel24148Germany
| | - J. Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleDorsetUK
| | - Carlos Cano‐Barbacil
- Department of River Ecology and ConservationSenckenberg Research Institute and Natural HistoryFrankfurt am MainFrankfurt60325Germany
| | | | - Irina Culic
- Department of SociologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | - Ross N. Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University BelfastBelfastUK
| | - Jaimie Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University BelfastBelfastUK
| | - Romina D. Dimarco
- Department of Biology and BiochemistryUniversity of HoustonHoustonTX77204USA
- Grupo de Ecología de Poblaciones de Insectos, IFAB (INTA – CONICET)San Carlos de BarilocheRío NegroArgentina
| | - Franz Essl
- Division of BioInvasions, Global Change and Macroecology, Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14Vienna1030Austria
| | - Teun Everts
- Research Institute for Nature and ForestGenetic DiversityGeraardsbergenBelgium
- KU Leuven, Department of BiologyPlant Conservation and Population BiologyHeverleeBelgium
| | | | - Mathew Hauer
- Department of SociologyCenter for Demography and Population Health, Florida State University609 Bellamy Building, 113 Collegiate Loop TallahasseeFlorida32306‐2240USA
| | - Antonín Kouba
- Faculty of Fisheries and Protection of WatersSouth Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České BudějoviceVodňany389 25Czech Republic
| | - Melina Kourantidou
- Univ Brest, Ifremer, CNRS, IRD, UMR 6308, AMURE, IUEMPlouzaneF‐29280France
- Department of Sociology, Environmental and Business EconomicsUniversity of Southern DenmarkDegnevej 14Esbjerg6705Denmark
| | - Ulrich Kutschera
- I‐Cultiver, Inc.,Manteca, CA 95336, USA & AK EvolutionsbiologieFreiburg i. Br79104Germany
| | - Stefano Mammola
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Pallanza28922Italy
- NBFC, National Biodiversity Future CenterPalermo90133Italy
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiHelsinkiFinland
| | - Irene Martín‐Forés
- School of Biological Sciences, The University of AdelaideAdelaideSouth Australia5005Australia
| | - Olivier Morissette
- Chaire de recherche sur les espèces aquatiques exploitées, Université du Québec à ChicoutimiChicoutimiQuebecG7H 2B1Canada
| | - Martin A. Nuñez
- Department of Biology and BiochemistryUniversity of HoustonHoustonTX77204USA
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of WashingtonSeattleWA98195USA
| | - Lucian Pârvulescu
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of TimisoaraOituz 4Timisoara300086Romania
- Department of Biology, Faculty of Chemistry, Biology, GeographyWest University of TimisoaraPestalozzi 16ATimisoara300115Romania
| | - Jan Pergl
- Institute of Botany CASPrůhoniceCzech Republic
| | - David Renault
- UMR CNRS 6553 ECOBIO [Ecosystèmes, biodiversité, évolution], Université Rennesavenue Général LeclercRennes cedex35042France
| | | | - James C. Russell
- School of Biological Sciences, University of AucklandNew Zealand
| | - Ismael Soto
- Faculty of Fisheries and Protection of WatersSouth Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České BudějoviceVodňany389 25Czech Republic
| | - Ali Serhan Tarkan
- University of LodzFaculty of Biology and Environmental Protection, Department of Ecology and Vertebrate ZoologyLodz90‐237Poland
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleDorsetUK
- Department of Basic Sciences, Faculty of FisheriesMuğla Sıtkı Koçman UniversityMuğlaTürkiye
| | - Tuğba Uçma Uysal
- Department of International Trade and Finance, Faculty of Economics and Administrative SciencesMuğla Sıtkı Koçman UniversityMuğlaTürkiye
| | - Hugo Verreycken
- Research Institute for Nature and Forest, Monitoring and Restoration of Aquatic FaunaLinkebeekBelgium
| | - Lorenzo Vilizzi
- University of LodzFaculty of Biology and Environmental Protection, Department of Ecology and Vertebrate ZoologyLodz90‐237Poland
- Department of Biological SciencesCollege of Science, Research Center for the Natural and Applied Sciences, The Graduate School, University of Santo TomasManilaMetro Manila1008Philippines
| | - Ryan Wasserman
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Priscilla Wehi
- Centre for Sustainability, University of OtagoDunedinNew Zealand
| | - Phillip J. Haubrock
- Department of River Ecology and ConservationSenckenberg Research Institute and Natural HistoryFrankfurt am MainFrankfurt60325Germany
- Faculty of Fisheries and Protection of WatersSouth Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České BudějoviceVodňany389 25Czech Republic
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and TechnologyMubarak Al‐AbdullahKuwait
| |
Collapse
|
2
|
Bressan P. Why humans evolved blue eyes. Front Psychol 2025; 16:1442500. [PMID: 40309207 PMCID: PMC12041803 DOI: 10.3389/fpsyg.2025.1442500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/03/2025] [Indexed: 05/02/2025] Open
Abstract
A surprising number of humans are equipped with a subpar eye model-featuring pale, colorful irides that are nowhere as good as the original dark ones at guarding the retina from sunlight and do, in fact, raise one's risk of eye disease. Here I apply evolutionary theory to understand why. I propose that the allele for human blue eyes, which arose just once, managed to spread from one individual to millions at an astonishing speed because it is a greenbeard. "Greenbeards"-imaginary genes, or groups of genes, that produce both a green beard and a behavior that favors other bearers of a green beard-have been deemed exceedingly unlikely to show up in the real world. And yet, as individuals who prefer blue eyes are more inclined to mate with blue-eyed partners and invest in blue-eyed offspring, any blue-eye preference (whether random or arising from the bias for colorful stimuli shared by all recognition systems) becomes rapidly linked to the blue-eye trait. Thus, blue eyes gain an edge by working like a peacock's colorful tail and a nestling's colorful mouth: twice self-reinforcing, "double runaway" evolution via sexual and parental selection. The blue-eye ornament gene, by binding to a behavior that favors other bearers of the blue-eye ornament gene, is ultimately recognizing and helping copies of itself in both kin and strangers-and greatly prospering, just like theory predicts.
Collapse
Affiliation(s)
- Paola Bressan
- Dipartimento di Psicologia Generale, University of Padova, Padua, Italy
| |
Collapse
|
3
|
Sarabia C, Salado I, Fernández-Gil A, vonHoldt BM, Hofreiter M, Vilà C, Leonard JA. Potential Adaptive Introgression From Dogs in Iberian Grey Wolves (Canis lupus). Mol Ecol 2025:e17639. [PMID: 39791197 DOI: 10.1111/mec.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented. Grey wolves (Canis lupus) are widely distributed across the Holarctic and frequently coexist with their close relative, the domestic dog (C. familiaris). Despite ample opportunity, hybridization rarely occurs in most populations. Here we studied the geographically isolated grey wolves of the Iberian Peninsula, who have coexisted with a large population of loosely controlled dogs for thousands of years in a human-modified landscape. We assessed the extent and impact of dog introgression on the current Iberian grey wolf population by analysing 150 whole genomes of Iberian and other Eurasian grey wolves as well as dogs originating from across Europe and western Siberia. We identified almost no recent introgression and a small (< 5%) overall ancient dog ancestry. Using a combination of single scan statistics and ancestry enrichment estimates, we identified positive selection on six genes (DAPP1, NSMCE4A, MPPED2, PCDH9, MBTPS1, and CDH13) for which wild Iberian wolves carry alleles introgressed from dogs. The genes with introgressed and positively selected alleles include functions in immune response and brain functions, which may explain some of the unique behavioural phenotypes in Iberian wolves such as their reduced dispersal compared to other wolf populations.
Collapse
Affiliation(s)
- Carlos Sarabia
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Isabel Salado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Carles Vilà
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | |
Collapse
|
4
|
D'Amato ME, Ristow P, Livesey M, Heynes K, Huber N, Bravi C, Hansen AJ, Parson W. Persistence of Ancestral KhoeSan Mitochondrial Patterns in Contemporary South African Populations. Ann Hum Genet 2025:e12589. [PMID: 39775598 DOI: 10.1111/ahg.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Southern Africa has been inhabited by hunter-gatherers for at least 20,000 years and has received diverse immigration flows in the last 2000 years. The original inhabitants have interacted with the pastoralist migrants from Eastern Africa (∼2000 ybp), followed by the southern Bantu migration arriving some 1000 ybp, and more recently with the European and Asian settlers after the 17th century. Many of the original Khoekhoe and San inhabitants have either become extinct or have disappeared through admixture in South Africa (SA), in a sex-biased manner involving KhoeSan women. METHODS In this study, we generated mitochondrial DNA (mtDNA) control region (CR) sequences for 247 South African individuals. The sampling effort was concentrated in regions and populations with historical links to the KhoeSan population groups: admixed (Coloured, Griqua), Nama (Khoekhoe) and Bantu in three provinces. Here we evaluate the composition and extent of connectivity between population groups and regions, and to assess the distribution of haplotypes for the practical application of mtDNA CR data in forensic identifications. RESULTS The analysis of the newly generated sequences revealed 142 distinct haplotypes, of which 122 were unique. Haplogroup L0 was predominant (overall 71.7%). A high-frequency L0d2a haplotype dominated the pool of the admixed groups with 10%-12.5% incidence overall or per region. Comparative analysis with 545 extant mtDNA CR sequences from South African KhoeSan and admixed descendants revealed extensive population structure and high within-group haplotype sharing. CONCLUSION The observed population and regional variations, combined with the prevalence of high-frequency haplotypes, align with patterns of matrilocality. These findings highlight the limitations of using mtDNA control region analysis for forensic applications in South Africa.
Collapse
Affiliation(s)
- Maria Eugenia D'Amato
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Peter Ristow
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Michelle Livesey
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Kirsty Heynes
- Forensic DNA Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudio Bravi
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Anders J Hansen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Kobenhavn, Denmark
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
5
|
Gelabert P, Oberreiter V, Straus LG, Morales MRG, Sawyer S, Marín-Arroyo AB, Geiling JM, Exler F, Brueck F, Franz S, Cano FT, Szedlacsek S, Zelger E, Hämmerle M, Zagorc B, Llanos-Lizcano A, Cheronet O, Tejero JM, Rattei T, Kraemer SM, Pinhasi R. A sedimentary ancient DNA perspective on human and carnivore persistence through the Late Pleistocene in El Mirón Cave, Spain. Nat Commun 2025; 16:107. [PMID: 39747910 PMCID: PMC11696082 DOI: 10.1038/s41467-024-55740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Caves are primary sites for studying human and animal subsistence patterns and genetic ancestry throughout the Palaeolithic. Iberia served as a critical human and animal refugium in Europe during the Last Glacial Maximum (LGM), 26.5 to 19 thousand years before the present (cal kya). Therefore, it is a key location for understanding human and animal population dynamics during this event. We recover and analyse sedimentary ancient DNA (sedaDNA) data from the lower archaeological stratigraphic sequence of El Mirón Cave (Cantabria, Spain), encompassing the (1) Late Mousterian period, associated with Neanderthals, and (2) the Gravettian (c. 31.5 cal kya), Solutrean (c. 24.5-22 cal kya), and Initial Magdalenian (d. 21-20.5 cal kya) periods, associated with anatomically modern humans. We identify 28 animal taxa including humans. Fifteen of these taxa had not been identified from the archaeozoological (i.e., faunal) record, including the presence of hyenas in the Magdalenian. Additionally, we provide phylogenetic analyses on 70 sedaDNA mtDNA genomes of fauna including the densest Iberian Pleistocene sampling of C. lupus. Finally, we recover three human mtDNA sequences from the Solutrean levels. These sequences, along with published data, suggest mtDNA haplogroup continuity in Iberia throughout the Solutrean/Last Glacial Maximum period.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
- Grupo I+D+i EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Manuel Ramón González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (Universidad de Cantabria, Gobierno de Cantabria, Santander), Santander, Spain
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ana B Marín-Arroyo
- Grupo I+D+i EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Jeanne Marie Geiling
- Grupo I+D+i EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Florian Exler
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Florian Brueck
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Franz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Sophie Szedlacsek
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Michelle Hämmerle
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Alejandro Llanos-Lizcano
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - José-Miguel Tejero
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Seminari d'Estudis i Recerques Prehistòriques (SERP), University of Barcelona, Barcelona, Spain.
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan M Kraemer
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Yavuz OE, Oxilia G, Silvestrini S, Tassoni L, Reiter E, Drucker DG, Talamo S, Fontana F, Benazzi S, Posth C. Biomolecular analysis of the Epigravettian human remains from Riparo Tagliente in northern Italy. Commun Biol 2024; 7:1415. [PMID: 39478147 PMCID: PMC11526120 DOI: 10.1038/s42003-024-06979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
The Epigravettian human remains from Riparo Tagliente in northern Italy represent some of the earliest evidence of human occupation in the southern Alpine slopes after the Last Glacial Maximum. Genomic analyses of the 17,000-year-old Tagliente 2 mandible revealed the oldest presence of a genetic profile with affinities to the Near East in the Italian peninsula, which later became the most widespread hunter-gatherer ancestry across Europe. However, a comparable biomolecular characterization of the Tagliente 1 burial remains unavailable, preventing us from defining its biological relationships with Tagliente 2. Here, we apply paleogenomic, isotopic, and radiocarbon dating analyses on a femur fragment of Tagliente 1 and compare the reconstructed data with previously reported results from Tagliente 2. Despite their different isotopic signatures and non-overlapping radiocarbon dates, we reveal that the two human remains belong to the same male individual. We determine that the distinct isotopic values can be explained by different dietary practices during lifetime, whereas the non-overlapping radiocarbon dates can be caused by minimal radiocarbon contamination, possibly deriving from chemical treatments for conservation purposes. These findings highlight the importance of interdisciplinary biomolecular studies in offering new perspectives on the Palaeolithic fossil record and addressing long-standing bioarchaeological questions.
Collapse
Affiliation(s)
- Orhan Efe Yavuz
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany.
| | - Gregorio Oxilia
- Department of Translational Medicine for Romagna, University of Ferrara, Ferrara, Italy
| | - Sara Silvestrini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Laura Tassoni
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Ella Reiter
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Federica Fontana
- Dipartimento di Studi Umanistici - Sezione di Scienze Preistoriche e Antropologiche, University of Ferrara, Ferrara, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
7
|
Higgins OA, Modi A, Cannariato C, Diroma MA, Lugli F, Ricci S, Zaro V, Vai S, Vazzana A, Romandini M, Yu H, Boschin F, Magnone L, Rossini M, Di Domenico G, Baruffaldi F, Oxilia G, Bortolini E, Dellù E, Moroni A, Ronchitelli A, Talamo S, Müller W, Calattini M, Nava A, Posth C, Lari M, Bondioli L, Benazzi S, Caramelli D. Life history and ancestry of the late Upper Palaeolithic infant from Grotta delle Mura, Italy. Nat Commun 2024; 15:8248. [PMID: 39304646 PMCID: PMC11415373 DOI: 10.1038/s41467-024-51150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
The biological aspects of infancy within late Upper Palaeolithic populations and the role of southern refugia at the end of the Last Glacial Maximum are not yet fully understood. This study presents a multidisciplinary, high temporal resolution investigation of an Upper Palaeolithic infant from Grotta delle Mura (Apulia, southern Italy) combining palaeogenomics, dental palaeohistology, spatially-resolved geochemical analyses, direct radiocarbon dating, and traditional anthropological studies. The skeletal remains of the infant - Le Mura 1 - were directly dated to 17,320-16,910 cal BP. The results portray a biological history of the infant's development, early life, health and death (estimated at ~72 weeks). They identify, several phenotypic traits and a potential congenital disease in the infant, the mother's low mobility during gestation, and a high level of endogamy. Furthermore, the genomic data indicates an early spread of the Villabruna-like components along the Italian peninsula, confirming a population turnover around the time of the Last Glacial Maximum, and highlighting a general reduction in genetic variability from northern to southern Italy. Overall, Le Mura 1 contributes to our better understanding of the early stages of life and the genetic puzzle in the Italian peninsula at the end of the Last Glacial Maximum.
Collapse
Affiliation(s)
- Owen Alexander Higgins
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy.
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy.
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy.
| | | | | | - Federico Lugli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Stefano Ricci
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Valentina Zaro
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - He Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Francesco Boschin
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Luigi Magnone
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Matteo Rossini
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | | | - Fabio Baruffaldi
- Laboratory of Medical Technology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gregorio Oxilia
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Elena Dellù
- Institute Villa Adriana e Villa d'Este, Superintendence of Archeology, Fine Arts and Landscape for the metropolitan city of Bari - Ministry of Culture, Bari, Italy
| | - Adriana Moroni
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Annamaria Ronchitelli
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Müller
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Frankfurt am Main, Germany
| | - Mauro Calattini
- Department of History and Cultural Heritage, University of Siena, Siena, Italy
| | - Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Luca Bondioli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Department of Cultural Heritage, University of Padua, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Slimak L, Vimala T, Seguin-Orlando A, Metz L, Zanolli C, Joannes-Boyau R, Frouin M, Arnold LJ, Demuro M, Devièse T, Comeskey D, Buckley M, Camus H, Muth X, Lewis JE, Bocherens H, Yvorra P, Tenailleau C, Duployer B, Coqueugniot H, Dutour O, Higham T, Sikora M. Long genetic and social isolation in Neanderthals before their extinction. CELL GENOMICS 2024; 4:100593. [PMID: 39265525 PMCID: PMC11480857 DOI: 10.1016/j.xgen.2024.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/23/2023] [Accepted: 06/05/2024] [Indexed: 09/14/2024]
Abstract
Neanderthal genomes have been recovered from sites across Eurasia, painting an increasingly complex picture of their populations' structure that mostly indicates that late European Neanderthals belonged to a single metapopulation with no significant evidence of population structure. Here, we report the discovery of a late Neanderthal individual, nicknamed "Thorin," from Grotte Mandrin in Mediterranean France, and his genome. These dentognathic fossils, including a rare example of distomolars, are associated with a rich archeological record of Neanderthal final technological traditions in this region ∼50-42 thousand years ago. Thorin's genome reveals a relatively early divergence of ∼105 ka with other late Neanderthals. Thorin belonged to a population with a small group size that showed no genetic introgression with other known late European Neanderthals, revealing some 50 ka of genetic isolation of his lineage despite them living in neighboring regions. These results have important implications for resolving competing hypotheses about causes of the disappearance of the Neanderthals.
Collapse
Affiliation(s)
- Ludovic Slimak
- Centre d'Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Faculté de Santé, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France.
| | - Tharsika Vimala
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, 1350K Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Faculté de Santé, Bâtiment A, 37 allées Jules Guesde, 31000 Toulouse, France; Lundbeck Foundation GeoGenetics Center, University of Copenhagen, 1350K Copenhagen, Denmark
| | - Laure Metz
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l'Homme, BP 647, 5 rue du Château de l'Horloge, 13094 Aix-en-Provence Cedex 2, France; University of Connecticut, College of Liberal Arts and Sciences, 215 Glenbrook Road, U-4098, Storrs, CT 06269-4098, USA
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600 Pessac, France
| | - Renaud Joannes-Boyau
- Geoarchaeology & Archaeometry Research Group (GARG), Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| | - Marine Frouin
- Department of Geosciences, Stony Brook University, 255 Earth and Space Sciences Building, Stony Brook, NY 11794-2100, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Lee J Arnold
- School of Physical Sciences, Environment Institute, Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Martina Demuro
- School of Physical Sciences, Environment Institute, Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Thibaut Devièse
- CEREGE, Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Technopôle de l'Arbois, Aix-en-Provence, France
| | - Daniel Comeskey
- Syft Technologies Ltd., 3 Craft Place, Middleton, PO Box 28 149, Christchurch 8242, New Zealand
| | - Michael Buckley
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Hubert Camus
- PROTEE-EXPERT, 4 rue des Aspholdèles, 34750 Villeneuve-lès-Maguelone, France
| | - Xavier Muth
- Get in Situ, 1091 Bourg-en-Lavaux, Switzerland
| | - Jason E Lewis
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA; Chronicle Heritage, 319 E Palm Lane, Phoenix, AZ 85004, USA
| | - Hervé Bocherens
- Fachbereich Geowissenschaften Forschungsbereich Paläobiologie - Biogeologie Senckenberg, Centre for Human Evolution and Palaeoenvironment (SHEP), Universität Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Pascale Yvorra
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l'Homme, BP 647, 5 rue du Château de l'Horloge, 13094 Aix-en-Provence Cedex 2, France
| | - Christophe Tenailleau
- Centre Inter-Universitaire de Recherche et d'Ingénierie des Matériaux, UMR 5085 CNRS-Université de Toulouse (Paul Sabatier), 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Benjamin Duployer
- Centre Inter-Universitaire de Recherche et d'Ingénierie des Matériaux, UMR 5085 CNRS-Université de Toulouse (Paul Sabatier), 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Hélène Coqueugniot
- École Pratique des Hautes Études - Paris Sciences et Lettres University, 4-14 rue Ferrus, 75014 Paris, France; University of Bordeaux-Montaigne, CNRS, EPHE, Archéosciences, UMR 6034, 33607 Pessac, France
| | - Olivier Dutour
- École Pratique des Hautes Études - Paris Sciences et Lettres University, 4-14 rue Ferrus, 75014 Paris, France; University of Bordeaux-Montaigne, CNRS, EPHE, Archéosciences, UMR 6034, 33607 Pessac, France
| | - Thomas Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, Vienna 1090, Austria
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, 1350K Copenhagen, Denmark.
| |
Collapse
|
9
|
Rathmann H, Vizzari MT, Beier J, Bailey SE, Ghirotto S, Harvati K. Human population dynamics in Upper Paleolithic Europe inferred from fossil dental phenotypes. SCIENCE ADVANCES 2024; 10:eadn8129. [PMID: 39151011 PMCID: PMC11328903 DOI: 10.1126/sciadv.adn8129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/11/2024] [Indexed: 08/18/2024]
Abstract
Despite extensive archaeological research, our knowledge of the human population history of Upper Paleolithic Europe remains limited, primarily due to the scarce availability and poor molecular preservation of fossil remains. As teeth dominate the fossil record and preserve genetic signatures in their morphology, we compiled a large dataset of 450 dentitions dating between ~47 and 7 thousand years ago (ka), outnumbering existing skeletal and paleogenetic datasets. We tested a range of competing demographic scenarios using a coalescent-based machine learning Approximate Bayesian Computation (ABC) framework that we modified for use with phenotypic data. Mostly in agreement with but also challenging some of the hitherto available evidence, we identified a population turnover in western Europe at ~28 ka, isolates in western and eastern refugia between ~28 and 14.7 ka, and bottlenecks during the Last Glacial Maximum. Methodologically, this study marks the pioneering application of ABC to skeletal phenotypes, paving the way for exciting future research avenues.
Collapse
Affiliation(s)
- Hannes Rathmann
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
- Paleoanthropology Section, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Maria T Vizzari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Judith Beier
- Paleoanthropology Section, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools," University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Shara E Bailey
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Katerina Harvati
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
- Paleoanthropology Section, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools," University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| |
Collapse
|
10
|
Arzelier A, De Belvalet H, Pemonge MH, Garberi P, Binder D, Duday H, Deguilloux MF, Pruvost M. Ancient DNA sheds light on the funerary practices of late Neolithic collective burial in southern France. Proc Biol Sci 2024; 291:rspb20241215. [PMID: 39191285 PMCID: PMC11349438 DOI: 10.1098/rspb.2024.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The Aven de la Boucle (Corconne, Gard, southern France) is a karst shaft used as a collective burial between 3600 and 2800 cal BCE. The site encompasses the skeletal remains of approximately 75 individuals comprising a large majority of adult individuals, represented by scattered and commingled remains. To date, few studies have explored the potential of ancient DNA to tackle the documentation of Neolithic collective burials, and the funerary selection rules within such structures remain largely debated. In this study, we combine genomic analysis of 37 individuals with archaeo-anthropological data and Bayesian modelling of radiocarbon dates. Through this multidisciplinary approach, we aim to characterize the identity of the deceased and their relationships, as well as untangle the genetic diversity and funerary dynamics of this community. Genomic results identify 76% of male Neolithic individuals, suggesting a marked sex-biased selection. Available data emphasize the importance of biological relatedness and a male-mediated transmission of social status, as the affiliation to a specific male-lineage appears as a preponderant selection factor. The genomic results argue in favour of 'continuous' deposits between 3600 and 2800 BCE, carried out by the same community, despite cultural changes reflected by the ceramic material.
Collapse
Affiliation(s)
- Ana Arzelier
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Harmony De Belvalet
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-Hélène Pemonge
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Pauline Garberi
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Didier Binder
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Henri Duday
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-France Deguilloux
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Mélanie Pruvost
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| |
Collapse
|
11
|
Burt CH. Polygenic Indices (a.k.a. Polygenic Scores) in Social Science: A Guide for Interpretation and Evaluation. SOCIOLOGICAL METHODOLOGY 2024; 54:300-350. [PMID: 39091537 PMCID: PMC11293310 DOI: 10.1177/00811750241236482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Polygenic indices (PGI)-the new recommended label for polygenic scores (PGS) in social science-are genetic summary scales often used to represent an individual's liability for a disease, trait, or behavior based on the additive effects of measured genetic variants. Enthusiasm for linking genetic data with social outcomes and the inclusion of premade PGIs in social science datasets have facilitated increased uptake of PGIs in social science research-a trend that will likely continue. Yet, most social scientists lack the expertise to interpret and evaluate PGIs in social science research. Here, we provide a primer on PGIs for social scientists focusing on key concepts, unique statistical genetic considerations, and best practices in calculation, estimation, reporting, and interpretation. We summarize our recommended best practices as a checklist to aid social scientists in evaluating and interpreting studies with PGIs. We conclude by discussing the similarities between PGIs and standard social science scales and unique interpretative considerations.
Collapse
|
12
|
Ferreira RC, Rodrigues CR, Broach JR, Briones MRS. Convergent Mutations and Single Nucleotide Variants in Mitochondrial Genomes of Modern Humans and Neanderthals. Int J Mol Sci 2024; 25:3785. [PMID: 38612593 PMCID: PMC11012180 DOI: 10.3390/ijms25073785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
The genetic contributions of Neanderthals to the modern human genome have been evidenced by the comparison of present-day human genomes with paleogenomes. Neanderthal signatures in extant human genomes are attributed to intercrosses between Neanderthals and archaic anatomically modern humans (AMHs). Although Neanderthal signatures are well documented in the nuclear genome, it has been proposed that there is no contribution of Neanderthal mitochondrial DNA to contemporary human genomes. Here we show that modern human mitochondrial genomes contain 66 potential Neanderthal signatures, or Neanderthal single nucleotide variants (N-SNVs), of which 36 lie in coding regions and 7 result in nonsynonymous changes. Seven N-SNVs are associated with traits such as cycling vomiting syndrome, Alzheimer's disease and Parkinson's disease, and two N-SNVs are associated with intelligence quotient. Based on recombination tests, principal component analysis (PCA) and the complete absence of these N-SNVs in 41 archaic AMH mitogenomes, we conclude that convergent evolution, and not recombination, explains the presence of N-SNVs in present-day human mitogenomes.
Collapse
Affiliation(s)
- Renata C. Ferreira
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039032, SP, Brazil;
| | - Camila R. Rodrigues
- Graduate Program in Microbiology and Immunology, Federal University of São Paulo, São Paulo 04039032, SP, Brazil;
| | - James R. Broach
- Department of Biochemistry, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
| | - Marcelo R. S. Briones
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039032, SP, Brazil;
| |
Collapse
|
13
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
14
|
Allentoft ME, Sikora M, Refoyo-Martínez A, Irving-Pease EK, Fischer A, Barrie W, Ingason A, Stenderup J, Sjögren KG, Pearson A, Sousa da Mota B, Schulz Paulsson B, Halgren A, Macleod R, Jørkov MLS, Demeter F, Sørensen L, Nielsen PO, Henriksen RA, Vimala T, McColl H, Margaryan A, Ilardo M, Vaughn A, Fischer Mortensen M, Nielsen AB, Ulfeldt Hede M, Johannsen NN, Rasmussen P, Vinner L, Renaud G, Stern A, Jensen TZT, Scorrano G, Schroeder H, Lysdahl P, Ramsøe AD, Skorobogatov A, Schork AJ, Rosengren A, Ruter A, Outram A, Timoshenko AA, Buzhilova A, Coppa A, Zubova A, Silva AM, Hansen AJ, Gromov A, Logvin A, Gotfredsen AB, Henning Nielsen B, González-Rabanal B, Lalueza-Fox C, McKenzie CJ, Gaunitz C, Blasco C, Liesau C, Martinez-Labarga C, Pozdnyakov DV, Cuenca-Solana D, Lordkipanidze DO, En'shin D, Salazar-García DC, Price TD, Borić D, Kostyleva E, Veselovskaya EV, Usmanova ER, Cappellini E, Brinch Petersen E, Kannegaard E, Radina F, Eylem Yediay F, Duday H, Gutiérrez-Zugasti I, Merts I, Potekhina I, Shevnina I, Altinkaya I, Guilaine J, Hansen J, Aura Tortosa JE, Zilhão J, Vega J, Buck Pedersen K, Tunia K, Zhao L, Mylnikova LN, Larsson L, Metz L, Yepiskoposyan L, Pedersen L, Sarti L, Orlando L, Slimak L, Klassen L, Blank M, González-Morales M, Silvestrini M, et alAllentoft ME, Sikora M, Refoyo-Martínez A, Irving-Pease EK, Fischer A, Barrie W, Ingason A, Stenderup J, Sjögren KG, Pearson A, Sousa da Mota B, Schulz Paulsson B, Halgren A, Macleod R, Jørkov MLS, Demeter F, Sørensen L, Nielsen PO, Henriksen RA, Vimala T, McColl H, Margaryan A, Ilardo M, Vaughn A, Fischer Mortensen M, Nielsen AB, Ulfeldt Hede M, Johannsen NN, Rasmussen P, Vinner L, Renaud G, Stern A, Jensen TZT, Scorrano G, Schroeder H, Lysdahl P, Ramsøe AD, Skorobogatov A, Schork AJ, Rosengren A, Ruter A, Outram A, Timoshenko AA, Buzhilova A, Coppa A, Zubova A, Silva AM, Hansen AJ, Gromov A, Logvin A, Gotfredsen AB, Henning Nielsen B, González-Rabanal B, Lalueza-Fox C, McKenzie CJ, Gaunitz C, Blasco C, Liesau C, Martinez-Labarga C, Pozdnyakov DV, Cuenca-Solana D, Lordkipanidze DO, En'shin D, Salazar-García DC, Price TD, Borić D, Kostyleva E, Veselovskaya EV, Usmanova ER, Cappellini E, Brinch Petersen E, Kannegaard E, Radina F, Eylem Yediay F, Duday H, Gutiérrez-Zugasti I, Merts I, Potekhina I, Shevnina I, Altinkaya I, Guilaine J, Hansen J, Aura Tortosa JE, Zilhão J, Vega J, Buck Pedersen K, Tunia K, Zhao L, Mylnikova LN, Larsson L, Metz L, Yepiskoposyan L, Pedersen L, Sarti L, Orlando L, Slimak L, Klassen L, Blank M, González-Morales M, Silvestrini M, Vretemark M, Nesterova MS, Rykun M, Rolfo MF, Szmyt M, Przybyła M, Calattini M, Sablin M, Dobisíková M, Meldgaard M, Johansen M, Berezina N, Card N, Saveliev NA, Poshekhonova O, Rickards O, Lozovskaya OV, Gábor O, Uldum OC, Aurino P, Kosintsev P, Courtaud P, Ríos P, Mortensen P, Lotz P, Persson P, Bangsgaard P, de Barros Damgaard P, Vang Petersen P, Martinez PP, Włodarczak P, Smolyaninov RV, Maring R, Menduiña R, Badalyan R, Iversen R, Turin R, Vasilyev S, Wåhlin S, Borutskaya S, Skochina S, Sørensen SA, Andersen SH, Jørgensen T, Serikov YB, Molodin VI, Smrcka V, Merts V, Appadurai V, Moiseyev V, Magnusson Y, Kjær KH, Lynnerup N, Lawson DJ, Sudmant PH, Rasmussen S, Korneliussen TS, Durbin R, Nielsen R, Delaneau O, Werge T, Racimo F, Kristiansen K, Willerslev E. Population genomics of post-glacial western Eurasia. Nature 2024; 625:301-311. [PMID: 38200295 PMCID: PMC10781627 DOI: 10.1038/s41586-023-06865-0] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
Collapse
Affiliation(s)
- Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia.
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Alba Refoyo-Martínez
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Evan K Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders Fischer
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
- Sealand Archaeology, Kalundborg, Denmark
| | - William Barrie
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Andrés Ingason
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
| | - Jesper Stenderup
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Alice Pearson
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Bárbara Sousa da Mota
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | - Alma Halgren
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Ruairidh Macleod
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | | | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Musée de l'Homme, Paris, France
| | | | | | - Rasmus A Henriksen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tharsika Vimala
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Section for Evolutionary Genomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Melissa Ilardo
- Anthropology Department, University of Utah, Salt Lake City, UT, USA
| | - Andrew Vaughn
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | | | | | | | | | | | - Lasse Vinner
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gabriel Renaud
- Department of Health Technology, Section of Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aaron Stern
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | | | - Gabriele Scorrano
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schroeder
- Section for Evolutionary Genomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Per Lysdahl
- Vendsyssel Historiske Museum, Hjørring, Denmark
| | - Abigail Daisy Ramsøe
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrew Joseph Schork
- Department of Genetics, University of Cambridge, Cambridge, UK
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), Phoenix, AZ, USA
| | - Anders Rosengren
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Anthony Ruter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alan Outram
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Aleksey A Timoshenko
- Institute of Archeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexandra Buzhilova
- Department of Anthropology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alfredo Coppa
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Alisa Zubova
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Ana Maria Silva
- CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- UNIARQ, University of Lisbon, Lisbon, Portugal
| | - Anders J Hansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrey Gromov
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Andrey Logvin
- Kostanay Regional University A. Baitursynov, Kostanay, Kazakhstan
| | - Anne Birgitte Gotfredsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Borja González-Rabanal
- Grupo EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
- Natural Sciences Museum of Barcelona (MCNB), Barcelona, Spain
| | | | - Charleen Gaunitz
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Concepción Blasco
- Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Corina Liesau
- Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Dmitri V Pozdnyakov
- Institute of Archeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - David Cuenca-Solana
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Banco Santander, Gobierno de Cantabria, Santander, Spain
- Centre de Recherche en Archéologie, Archeosciences, Histoire (CReAAH), UMR-6869 CNRS, Rennes, France
| | - David O Lordkipanidze
- Georgian National Museum, Tbilisi, Georgia
- Tbilisi State University, Tbilisi, Georgia
| | - Dmitri En'shin
- IPND, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences, Tyumen, Russian Federation
| | - Domingo C Salazar-García
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - T Douglas Price
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
- Laboratory for Archaeological Chemistry, Department of Anthropology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dušan Borić
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- Department of Anthropology, New York University, New York, NY, USA
| | - Elena Kostyleva
- Institute of Humanities, Ivanovo State University, Ivanovo, Russian Federation
| | - Elizaveta V Veselovskaya
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Emma R Usmanova
- Saryarka Archaeological Institute, Buketov Karaganda University, Karaganda, Kazakhstan
- South Ural State University, Chelyabinsk, Russia
- A. Kh. Khalikov Institute of Archeology of the Academy of Sciences of the Republic of Tatarstan, Kazan, Russia
- Margulan Institute of Archaeology, Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan, Almaty, Kazakhstan
| | - Enrico Cappellini
- Section for Evolutionary Genomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Francesca Radina
- Soprintendenza Archeologia Belle Arti e Paesaggio per la Città Metropolitana di Bari, Bari, Italy
| | - Fulya Eylem Yediay
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Henri Duday
- UMR 5199 PACEA, CNRS, Université de Bordeaux, Pessac, France
| | - Igor Gutiérrez-Zugasti
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Banco Santander, Gobierno de Cantabria, Santander, Spain
| | - Ilya Merts
- A.Kh. Margulan Institute of Archaeology, Almaty, Kazakhstan
| | - Inna Potekhina
- Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Irina Shevnina
- Kostanay Regional University A. Baitursynov, Kostanay, Kazakhstan
| | - Isin Altinkaya
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Joan Emili Aura Tortosa
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
| | - João Zilhão
- UNIARQ, University of Lisbon, Lisbon, Portugal
- ICREA, University of Barcelona, Barcelona, Spain
| | | | | | - Krzysztof Tunia
- Institute of Archaeology and Ethnology, Polish Academy of Sciences, Kraków, Poland
| | - Lei Zhao
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Liudmila N Mylnikova
- Institute of Archeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Lars Larsson
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden
| | - Laure Metz
- Aix-Marseille Université, CNRS, Min. Culture, UMR 7269, LAMPEA, Maison Méditerranéenne des Sciences de l'Homme, Aix-en-Provence, France
| | - Levon Yepiskoposyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| | | | - Lucia Sarti
- Department of History and Cultural Heritage, University of Siena, Siena, Italy
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5500, Université Paul Sabatier, Toulouse, France
| | - Ludovic Slimak
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5500, Université Paul Sabatier, Toulouse, France
| | | | - Malou Blank
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Manuel González-Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Banco Santander, Gobierno de Cantabria, Santander, Spain
| | - Mara Silvestrini
- Soprintendenza per i Beni Archeologici delle Marche, Ancona, Italy
| | | | - Marina S Nesterova
- Institute of Archeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Marina Rykun
- Cabinet of Anthropology, Tomsk State University, Tomsk, Russian Federation
| | - Mario Federico Rolfo
- Department of History, Humanities and Society, University of Rome Tor Vergata, Rome, Italy
| | - Marzena Szmyt
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Marcin Przybyła
- Institute of Archaeology, Jagiellonian University, Kraków, Poland
| | - Mauro Calattini
- Department of History and Cultural Heritage, University of Siena, Siena, Italy
| | - Mikhail Sablin
- Zoological Institute of Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Miluše Dobisíková
- Department of Anthropology, Czech National Museum, Prague, Czech Republic
| | - Morten Meldgaard
- Department of Health and Nature, University of Greenland, Nuuk, Greenland
| | | | - Natalia Berezina
- Department of Anthropology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nick Card
- Archaeology Institute, University of Highlands and Islands, Orkney, UK
| | - Nikolai A Saveliev
- Scientific Research Center "Baikal region", Irkutsk State University, Irkutsk, Russian Federation
| | - Olga Poshekhonova
- IPND, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences, Tyumen, Russian Federation
| | - Olga Rickards
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Olga V Lozovskaya
- Laboratory for Experimental Traceology, Institute for the History of Material Culture of the Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | | | | | - Paola Aurino
- Soprintendenza Archeologia, Belle Arti e Paesaggio per la provincia di Cosenza, Cosenza, Italy
| | - Pavel Kosintsev
- Paleoecology Laboratory, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
- Department of History of the Institute of Humanities, Ural Federal University, Ekaterinburg, Russian Federation
| | | | - Patricia Ríos
- Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Peder Mortensen
- Centre for the Study of Early Agricultural Societies, Department of Cross-Cultural and Regional Studies, University of Copenhagen, Copenhagen, Denmark
| | - Per Lotz
- Museum Nordsjælland, Hillerød, Denmark
- Museum Vestsjælland, Holbæk, Denmark
| | - Per Persson
- Museum of Cultural History, University of Oslo, Oslo, Norway
| | - Pernille Bangsgaard
- ArchaeoScience, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Peter de Barros Damgaard
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Pilar Prieto Martinez
- Department of History, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Piotr Włodarczak
- Institute of Archaeology and Ethnology, Polish Academy of Sciences, Kraków, Poland
| | - Roman V Smolyaninov
- Lipetsk Regional Scientific Public Organisation "Archaeological Research", Lipetsk, Russian Federation
| | - Rikke Maring
- Department of Health Technology, Section of Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
- Museum Østjylland, Randers, Denmark
| | | | - Ruben Badalyan
- Institute of Archaeology and Ethnography, National Academy of Sciences, Yerevan, Armenia
| | - Rune Iversen
- The Saxo Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Sergey Vasilyev
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Egyptological Studies, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Svetlana Borutskaya
- Department of Anthropology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Svetlana Skochina
- IPND, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences, Tyumen, Russian Federation
| | | | | | | | - Yuri B Serikov
- Nizhny Tagil State Socio-Pedagogical Institute, Nizhny Tagil, Russia
| | - Vyacheslav I Molodin
- Institute of Archeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Vaclav Smrcka
- Institute for History of Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Victor Merts
- Centre for Archaeological Research, Toraighyrov University, Pavlodar, Kazakhstan
| | - Vivek Appadurai
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | | | - Kurt H Kjær
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Niels Lynnerup
- Laboratory of Biological Anthropology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel J Lawson
- Institute of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Simon Rasmussen
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Rasmus Nielsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Thomas Werge
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
- MARUM Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
15
|
Abrams G, Devièse T, Pirson S, De Groote I, Flas D, Jungels C, Jadin I, Cattelain P, Bonjean D, Mathys A, Semal P, Higham T, Di Modica K. Investigating the co-occurrence of Neanderthals and modern humans in Belgium through direct radiocarbon dating of bone implements. J Hum Evol 2024; 186:103471. [PMID: 38043357 DOI: 10.1016/j.jhevol.2023.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Affiliation(s)
- Grégory Abrams
- Department of Archaeology, Ghent University, B-9000, Gent, Belgium; Scientific Department, Espace Muséal d'Andenne, B-5300, Andenne, Belgium; Faculty of Archaeology, Archaeological Sciences, Bio-Archaeology, Leiden University, 2333 CC, Leiden, the Netherlands.
| | - Thibaut Devièse
- Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, Aix-Marseille Université, CNRS, IRD, INRAE, BP80-13545, Aix-en-Provence, cedex 4, France.
| | - Stéphane Pirson
- Direction scientifique et technique, Agence wallonne du Patrimoine, B-5100, Namur, Belgium
| | - Isabelle De Groote
- Department of Archaeology, Ghent University, B-9000, Gent, Belgium; School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Damien Flas
- Laboratoire Méditerranéen de Préhistoire Europe Afrique, Aix-Marseille University, CNRS, 13097, Aix-en-Provence, cedex 2, France; Department of Prehistory, University of Liège, B-4000, Liège, Belgium
| | - Cécile Jungels
- Scientific Department, Préhistomuseum, B-4400, Flémalle, Belgium; Les Chercheurs de la Wallonie, B-4400, Flémalle, Belgium
| | - Ivan Jadin
- Operational Direction Earth and History of Life, Quaternary Environments & Humans, Anthropology & Prehistory, Royal Belgium Institute of Natural Sciences, B-1000, Brussels, Belgium
| | - Pierre Cattelain
- Department of Prehistory, University of Liège, B-4000, Liège, Belgium; Cedarc-Musée du Malgré-Tout, B-5670, Belgium; Centre de Recherches en Archéologie et Patrimoine, Université Libre de Bruxelles, B-1150, Brussels, Belgium
| | - Dominique Bonjean
- Scientific Department, Espace Muséal d'Andenne, B-5300, Andenne, Belgium
| | - Aurore Mathys
- Biological Collection and Data Management, Royal Museum for Central Africa, B-3080, Tervuren, Belgium; Scientific Heritage Service, Royal Belgian Institute of Natural Sciences, B-1000, Brussels, Belgium; Art, Archaeology and Heritage Unit, University of Liège, B-4000, Liège, Belgium
| | - Patrick Semal
- Scientific Heritage Service, Royal Belgian Institute of Natural Sciences, B-1000, Brussels, Belgium
| | - Thomas Higham
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, A-1030, Vienna, Austria
| | - Kévin Di Modica
- Scientific Department, Espace Muséal d'Andenne, B-5300, Andenne, Belgium
| |
Collapse
|
16
|
Coqueugniot H, Pálfi G, Gély B, Dutour O. Upper Paleolithic tuberculosis: A probable case illustrated by paleoimaging methods (Azilian site of Les Iboussières, France). Tuberculosis (Edinb) 2023; 143S:102373. [PMID: 38012932 DOI: 10.1016/j.tube.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 11/29/2023]
Abstract
The aim of this paper is to present the results of μCT-scan and 3D imaging analyses of two skeletal lesions observed on human remains of one of the last European hunter-gatherers from the late Paleolithic (Azilian period): a sacroiliac osteoarthritis and a femoral lesion suggestive of a soft tissue abscess imprint. These two skeletal elements (fused left sacrum and coxal bone, and right femur) displayed osteometric criteria indicating that they belonged to the same individual. These two associated lesions are consistent with a low-grade osteoarticular infection, and suggest a diagnosis of pelvic tuberculosis with a cold abscess of the thigh. If molecular confirmation is obtained, this case would be the first evidence of tuberculosis among Upper Palaeolithic populations.
Collapse
Affiliation(s)
- Hélène Coqueugniot
- UMR 5199 PACEA, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France; Ecole Pratique des Hautes Etudes, PSL Université Paris, 4-14 rue Ferrus, 75015, Paris, France.
| | - György Pálfi
- Department of Anthropology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Bernard Gély
- Ministère de la Culture DRAC Auvergne-Rhône-Alpes, Le Grenier d'abondance, 6 quai Saint-Vincent, 69283, Lyon Cedex 01, France
| | - Olivier Dutour
- UMR 5199 PACEA, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, France; Ecole Pratique des Hautes Etudes, PSL Université Paris, 4-14 rue Ferrus, 75015, Paris, France
| |
Collapse
|
17
|
Dutour O. The paleopathology and paleoepidemiology of Upper paleolithic tuberculosis: Review of evidence and hypotheses. Tuberculosis (Edinb) 2023; 143S:102348. [PMID: 38012915 DOI: 10.1016/j.tube.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/02/2023] [Indexed: 11/29/2023]
Abstract
Molecular phylogeny work has shown that tuberculosis is ancient human-adapted infection predating the Neolithic period. They also show that the Upper Paleolithic is a key period of emergence of the MTB complex strains, contemporary with the exit of modern man from Africa. Despite the richness of Upper Paleolithic sites in Eurasia and the relative abundance of human remains, the only proven case of Paleolithic tuberculosis has been described so far date from the Azilian, a culture of the European Final Paleolithic, which is more recent than the ancient Neolithic sites of the Near East, area that currently hold the record for the oldest paleopathological evidence of tuberculosis. The purpose of this review is to present evidence for the existence of tuberculosis in the Paleolithic and to list hypotheses explaining the weak demonstrative contribution of paleopathology for pre-Neolithic periods.
Collapse
Affiliation(s)
- Olivier Dutour
- Ecole Pratique des Haute Etudes, PSL University Paris, France; UMR 5199 PACEA (Université de Bordeaux-Centre National de la Recherche Scientifique), France.
| |
Collapse
|
18
|
Jaisamut K, Pitiwararom R, Sukawutthiya P, Sathirapatya T, Noh H, Worrapitirungsi W, Vongpaisarnsin K. Unraveling the mitochondrial phylogenetic landscape of Thailand reveals complex admixture and demographic dynamics. Sci Rep 2023; 13:20396. [PMID: 37990137 PMCID: PMC10663463 DOI: 10.1038/s41598-023-47762-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
The evolutionary dynamics of mitochondrial DNA within the Thai population were comprehensively explored with a specific focus on the influence of South Asian admixture. A total of 166 samples were collected through randomized sampling, ensuring a diverse representation. Our findings unveil substantial genetic and haplogroup diversity within the Thai population. We have identified 164 haplotypes categorized into 97 haplogroups, with a notable inclusion of 20 novel haplogroups. The distribution of haplogroups exhibited variations across different populations and countries. The central Thai population displayed a high diversity of haplogroups from both the M and N clades. Maternal lineage affinities were discerned between several Mainland Southeast Asia (MSEA) and South Asian populations, implying ancestral genetic connections and a substantial influence of South Asian women in establishing these relationships. f4-statistics indicates the presence of a Tibeto-Burman genetic component within the Mon population from Thailand. New findings demonstrate two phases of population expansion occurring 22,000-26,000 and 2500-3800 years ago, coinciding with the Last Glacial Maximum, and Neolithic demographic transition, respectively. This research significantly enhances our understanding of the maternal genetic history of Thailand and MSEA, emphasizing the influence of South Asian admixture. Moreover, it underscores the critical role of prior information, such as mutation rates, within the Bayesian framework for accurate estimation of coalescence times and inferring demographic history.
Collapse
Affiliation(s)
- Kitipong Jaisamut
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rachtipan Pitiwararom
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hasnee Noh
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wikanda Worrapitirungsi
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Forensic Genetics Research Unit, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
19
|
Dalén L, Heintzman PD, Kapp JD, Shapiro B. Deep-time paleogenomics and the limits of DNA survival. Science 2023; 382:48-53. [PMID: 37797036 PMCID: PMC10586222 DOI: 10.1126/science.adh7943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Although most ancient DNA studies have focused on the last 50,000 years, paleogenomic approaches can now reach into the early Pleistocene, an epoch of repeated environmental changes that shaped present-day biodiversity. Emerging deep-time genomic transects, including from DNA preserved in sediments, will enable inference of adaptive evolution, discovery of unrecognized species, and exploration of how glaciations, volcanism, and paleomagnetic reversals shaped demography and community composition. In this Review, we explore the state-of-the-art in paleogenomics and discuss key challenges, including technical limitations, evolutionary divergence and associated biases, and the need for more precise dating of remains and sediments. We conclude that with improvements in laboratory and computational methods, the emerging field of deep-time paleogenomics will expand the range of questions addressable using ancient DNA.
Collapse
Affiliation(s)
- Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE- 10405 Stockholm, Sweden
| | - Peter D. Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| | - Joshua D. Kapp
- Department of Biomolecular Engineering, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| |
Collapse
|
20
|
Hussain ST, Riede F, Matzig DN, Biard M, Crombé P, Fernández-Lopéz de Pablo J, Fontana F, Groß D, Hess T, Langlais M, Mevel L, Mills W, Moník M, Naudinot N, Posch C, Rimkus T, Stefański D, Vandendriessche H. A pan-European dataset revealing variability in lithic technology, toolkits, and artefact shapes ~15-11 kya. Sci Data 2023; 10:593. [PMID: 37679390 PMCID: PMC10484899 DOI: 10.1038/s41597-023-02500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Comparative macro-archaeological investigations of the human deep past rely on the availability of unified, quality-checked datasets integrating different layers of observation. Information on the durable and ubiquitous record of Paleolithic stone artefacts and technological choices are especially pertinent to this endeavour. We here present a large expert-sourced collaborative dataset for the study of stone tool technology and artefact shape evolution across Europe between ~15.000 and 11.000 years before present. The dataset contains a compendium of key sites from the study period, and data on lithic technology and toolkit composition at the level of the cultural taxa represented by those sites. The dataset further encompasses 2D shapes of selected lithic artefact groups (armatures, endscrapers, and borers/perforators) shared between cultural taxa. These data offer novel possibilities to explore between-regional patterns of material culture change to reveal scale-dependent processes of long-term technological evolution in mobile hunter-gatherer societies at the end of the Pleistocene. Our dataset facilitates state-of-the-art quantitative analyses and showcases the benefits of collaborative data collation and synthesis.
Collapse
Affiliation(s)
- Shumon T Hussain
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270, Højbjerg, Denmark.
| | - Felix Riede
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270, Højbjerg, Denmark
| | - David N Matzig
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270, Højbjerg, Denmark
| | - Miguel Biard
- INRAP, Centre Île-de-France, Institut National de Recherches Archéologiques Préventives, 18 rue Chapelle, 89510 PASSY/UMR 8068 TEMPS, Technologie et Ethnologie des Mondes Préhistoriques, Paris, Nanterre, France
| | - Philippe Crombé
- Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000, Ghent, Belgium
| | | | - Federica Fontana
- Dipartimento di Studi Umanistici - Sezione di Scienze Preistoriche e Antropologiche, University of Ferrara, Ferrara, Italy
| | - Daniel Groß
- Museum Lolland-Falster, Frisegade 40, 4800, Nykøbing F, Denmark
| | - Thomas Hess
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270, Højbjerg, Denmark
| | | | | | - William Mills
- ZSBA, Schloß Gottdorf, Schloßinsel 1, 24837, Schleswig, Germany
| | - Martin Moník
- Department of Geology, Faculty of Science, Palacky University Olomouc, Olomouc, Czech Republic
| | | | - Caroline Posch
- Natural History Museum Vienna, Burgring 7, 1010, Vienna, Austria
| | - Tomas Rimkus
- Institute of Baltic Region History and Archaeology, Klaipėda University, Klaipėda, Lithuania
| | | | - Hans Vandendriessche
- Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
21
|
Freidline SE, Westaway KE, Joannes-Boyau R, Duringer P, Ponche JL, Morley MW, Hernandez VC, McAllister-Hayward MS, McColl H, Zanolli C, Gunz P, Bergmann I, Sichanthongtip P, Sihanam D, Boualaphane S, Luangkhoth T, Souksavatdy V, Dosseto A, Boesch Q, Patole-Edoumba E, Aubaile F, Crozier F, Suzzoni E, Frangeul S, Bourgon N, Zachwieja A, Dunn TE, Bacon AM, Hublin JJ, Shackelford L, Demeter F. Early presence of Homo sapiens in Southeast Asia by 86-68 kyr at Tam Pà Ling, Northern Laos. Nat Commun 2023; 14:3193. [PMID: 37311788 DOI: 10.1038/s41467-023-38715-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
The timing of the first arrival of Homo sapiens in East Asia from Africa and the degree to which they interbred with or replaced local archaic populations is controversial. Previous discoveries from Tam Pà Ling cave (Laos) identified H. sapiens in Southeast Asia by at least 46 kyr. We report on a recently discovered frontal bone (TPL 6) and tibial fragment (TPL 7) found in the deepest layers of TPL. Bayesian modeling of luminescence dating of sediments and U-series and combined U-series-ESR dating of mammalian teeth reveals a depositional sequence spanning ~86 kyr. TPL 6 confirms the presence of H. sapiens by 70 ± 3 kyr, and TPL 7 extends this range to 77 ± 9 kyr, supporting an early dispersal of H. sapiens into Southeast Asia. Geometric morphometric analyses of TPL 6 suggest descent from a gracile immigrant population rather than evolution from or admixture with local archaic populations.
Collapse
Affiliation(s)
- Sarah E Freidline
- Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Howard Phillips Hall, Orlando, FL, USA
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Kira E Westaway
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Renaud Joannes-Boyau
- Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross University, Lismore, NSW, Australia
- Centre for Anthropological Research, University of Johannesburg, Johannesburg, Gauteng Province, South Africa
| | - Philippe Duringer
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- Université de Strasbourg, Laboratoire Image, Ville Environnement, UMR, 7362, UdS CNRS, Strasbourg, France
| | - Mike W Morley
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Vito C Hernandez
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Meghan S McAllister-Hayward
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600, Pessac, France
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Inga Bergmann
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | | | - Daovee Sihanam
- Ministry of Information, Culture and Tourism, Vientiane, PDR, Laos
| | | | | | | | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric & Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Quentin Boesch
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Françoise Aubaile
- Eco-anthropologie (EA), Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France
| | | | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Nicolas Bourgon
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Alexandra Zachwieja
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Tyler E Dunn
- Anatomical Sciences Education Center, Oregon Health & Sciences University, Portland, OR, USA
| | | | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France. 11, Place Marcelin-Berthelot, 75231, Paris, Cedex 05, France
| | - Laura Shackelford
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Eco-anthropologie (EA), Dpt ABBA, Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France.
| |
Collapse
|
22
|
Petersen J, Englmaier L, Artemov AV, Poverennaya I, Mahmoud R, Bouderlique T, Tesarova M, Deviatiiarov R, Szilvásy-Szabó A, Akkuratov EE, Pajuelo Reguera D, Zeberg H, Kaucka M, Kastriti ME, Krivanek J, Radaszkiewicz T, Gömöryová K, Knauth S, Potesil D, Zdrahal Z, Ganji RS, Grabowski A, Buhl ME, Zikmund T, Kavkova M, Axelson H, Lindgren D, Kramann R, Kuppe C, Erdélyi F, Máté Z, Szabó G, Koehne T, Harkany T, Fried K, Kaiser J, Boor P, Fekete C, Rozman J, Kasparek P, Prochazka J, Sedlacek R, Bryja V, Gusev O, Adameyko I. A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology. Nat Commun 2023; 14:3092. [PMID: 37248239 PMCID: PMC10226981 DOI: 10.1038/s41467-023-38663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.
Collapse
Affiliation(s)
- Julian Petersen
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany.
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Irina Poverennaya
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Ruba Mahmoud
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany
| | - Thibault Bouderlique
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Evgeny E Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65, Stockholm, Sweden
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, OX3 9DS, UK
| | - David Pajuelo Reguera
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Hugo Zeberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| | - Maria Eleni Kastriti
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomasz Radaszkiewicz
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristína Gömöryová
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sarah Knauth
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ranjani Sri Ganji
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Anna Grabowski
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Miriam E Buhl
- Institute of Pathology & Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Håkan Axelson
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Scheelevägen 2, Lund, Sweden
| | - David Lindgren
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Scheelevägen 2, Lund, Sweden
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Máté
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Till Koehne
- Department of Orthodontics, University Leipzig Medical Center, Leipzig, Germany
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Kaj Fried
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Peter Boor
- Institute of Pathology & Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Jan Rozman
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, 4367, Belvaux, Luxembourg
| | - Petr Kasparek
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the Czech Academy of Science, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Vitezslav Bryja
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Villalba-Mouco V, van de Loosdrecht MS, Rohrlach AB, Fewlass H, Talamo S, Yu H, Aron F, Lalueza-Fox C, Cabello L, Cantalejo Duarte P, Ramos-Muñoz J, Posth C, Krause J, Weniger GC, Haak W. A 23,000-year-old southern Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum. Nat Ecol Evol 2023; 7:597-609. [PMID: 36859553 PMCID: PMC10089921 DOI: 10.1038/s41559-023-01987-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023]
Abstract
Human populations underwent range contractions during the Last Glacial Maximum (LGM) which had lasting and dramatic effects on their genetic variation. The genetic ancestry of individuals associated with the post-LGM Magdalenian technocomplex has been interpreted as being derived from groups associated with the pre-LGM Aurignacian. However, both these ancestries differ from that of central European individuals associated with the chronologically intermediate Gravettian. Thus, the genomic transition from pre- to post-LGM remains unclear also in western Europe, where we lack genomic data associated with the intermediate Solutrean, which spans the height of the LGM. Here we present genome-wide data from sites in Andalusia in southern Spain, including from a Solutrean-associated individual from Cueva del Malalmuerzo, directly dated to ~23,000 cal yr BP. The Malalmuerzo individual carried genetic ancestry that directly connects earlier Aurignacian-associated individuals with post-LGM Magdalenian-associated ancestry in western Europe. This scenario differs from Italy, where individuals associated with the transition from pre- and post-LGM carry different genetic ancestries. This suggests different dynamics in the proposed southern refugia of Ice Age Europe and posits Iberia as a potential refugium for western European pre-LGM ancestry. More, individuals from Cueva Ardales, which were thought to be of Palaeolithic origin, date younger than expected and, together with individuals from the Andalusian sites Caserones and Aguilillas, fall within the genetic variation of the Neolithic, Chalcolithic and Bronze Age individuals from southern Iberia.
Collapse
Affiliation(s)
- Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Zaragoza, Spain.
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Marieke S van de Loosdrecht
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - He Yu
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
- Natural Sciences Museum of Barcelona (MCNB), Barcelona, Spain
| | - Lidia Cabello
- University of Málaga and Grupo HUM-440 University of Cádiz, Cádiz, Spain
| | | | - José Ramos-Muñoz
- Departamento de Historia, Geografía y Filosofía, Universidad de Cádiz, Cádiz, Spain
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
24
|
Posth C, Yu H, Ghalichi A, Rougier H, Crevecoeur I, Huang Y, Ringbauer H, Rohrlach AB, Nägele K, Villalba-Mouco V, Radzeviciute R, Ferraz T, Stoessel A, Tukhbatova R, Drucker DG, Lari M, Modi A, Vai S, Saupe T, Scheib CL, Catalano G, Pagani L, Talamo S, Fewlass H, Klaric L, Morala A, Rué M, Madelaine S, Crépin L, Caverne JB, Bocaege E, Ricci S, Boschin F, Bayle P, Maureille B, Le Brun-Ricalens F, Bordes JG, Oxilia G, Bortolini E, Bignon-Lau O, Debout G, Orliac M, Zazzo A, Sparacello V, Starnini E, Sineo L, van der Plicht J, Pecqueur L, Merceron G, Garcia G, Leuvrey JM, Garcia CB, Gómez-Olivencia A, Połtowicz-Bobak M, Bobak D, Le Luyer M, Storm P, Hoffmann C, Kabaciński J, Filimonova T, Shnaider S, Berezina N, González-Rabanal B, González Morales MR, Marín-Arroyo AB, López B, Alonso-Llamazares C, Ronchitelli A, Polet C, Jadin I, Cauwe N, Soler J, Coromina N, Rufí I, Cottiaux R, Clark G, Straus LG, Julien MA, Renhart S, Talaa D, Benazzi S, Romandini M, Amkreutz L, Bocherens H, Wißing C, Villotte S, de Pablo JFL, Gómez-Puche M, Esquembre-Bebia MA, Bodu P, Smits L, Souffi B, Jankauskas R, Kozakaitė J, Cupillard C, Benthien H, Wehrberger K, Schmitz RW, Feine SC, Schüler T, et alPosth C, Yu H, Ghalichi A, Rougier H, Crevecoeur I, Huang Y, Ringbauer H, Rohrlach AB, Nägele K, Villalba-Mouco V, Radzeviciute R, Ferraz T, Stoessel A, Tukhbatova R, Drucker DG, Lari M, Modi A, Vai S, Saupe T, Scheib CL, Catalano G, Pagani L, Talamo S, Fewlass H, Klaric L, Morala A, Rué M, Madelaine S, Crépin L, Caverne JB, Bocaege E, Ricci S, Boschin F, Bayle P, Maureille B, Le Brun-Ricalens F, Bordes JG, Oxilia G, Bortolini E, Bignon-Lau O, Debout G, Orliac M, Zazzo A, Sparacello V, Starnini E, Sineo L, van der Plicht J, Pecqueur L, Merceron G, Garcia G, Leuvrey JM, Garcia CB, Gómez-Olivencia A, Połtowicz-Bobak M, Bobak D, Le Luyer M, Storm P, Hoffmann C, Kabaciński J, Filimonova T, Shnaider S, Berezina N, González-Rabanal B, González Morales MR, Marín-Arroyo AB, López B, Alonso-Llamazares C, Ronchitelli A, Polet C, Jadin I, Cauwe N, Soler J, Coromina N, Rufí I, Cottiaux R, Clark G, Straus LG, Julien MA, Renhart S, Talaa D, Benazzi S, Romandini M, Amkreutz L, Bocherens H, Wißing C, Villotte S, de Pablo JFL, Gómez-Puche M, Esquembre-Bebia MA, Bodu P, Smits L, Souffi B, Jankauskas R, Kozakaitė J, Cupillard C, Benthien H, Wehrberger K, Schmitz RW, Feine SC, Schüler T, Thevenet C, Grigorescu D, Lüth F, Kotula A, Piezonka H, Schopper F, Svoboda J, Sázelová S, Chizhevsky A, Khokhlov A, Conard NJ, Valentin F, Harvati K, Semal P, Jungklaus B, Suvorov A, Schulting R, Moiseyev V, Mannermaa K, Buzhilova A, Terberger T, Caramelli D, Altena E, Haak W, Krause J. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 2023; 615:117-126. [PMID: 36859578 PMCID: PMC9977688 DOI: 10.1038/s41586-023-05726-0] [Show More Authors] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/12/2023] [Indexed: 03/03/2023]
Abstract
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.
Collapse
Affiliation(s)
- Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - He Yu
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| | - Ayshin Ghalichi
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hélène Rougier
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
| | | | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Zaragoza, Spain
| | - Rita Radzeviciute
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Tiago Ferraz
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Stoessel
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Zoology and Evolutionary Research, University of Jena, Jena, Germany
| | - Rezeda Tukhbatova
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center of Excellence 'Archaeometry', Kazan Federal University, Kazan, Russia
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John's College, University of Cambridge, Cambridge, UK
| | - Giulio Catalano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Laurent Klaric
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - André Morala
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Musée National de Préhistoire, Les Eyzies de Tayac, France
| | - Mathieu Rué
- Paléotime, Villard-de-Lans, France
- UMR 5140 CNRS, Archéologie des Sociétés Méditerranéennes, Université Paul-Valéry, Montpellier, France
| | - Stéphane Madelaine
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Musée National de Préhistoire, Les Eyzies de Tayac, France
| | - Laurent Crépin
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, UPVD, Paris, France
| | - Jean-Baptiste Caverne
- Association APRAGE (Approches pluridisciplinaires de recherche archéologique du Grand-Est), Besançon, France
- Inrap GE, Metz, France
| | - Emmy Bocaege
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
- Accademia dei Fisiocritici, Siena, Italy
| | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
- Accademia dei Fisiocritici, Siena, Italy
- Centro Studi sul Quaternario ODV, Sansepolcro, Italy
| | - Priscilla Bayle
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
| | - Bruno Maureille
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
| | | | | | - Gregorio Oxilia
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Human Ecology and Archaeology (HUMANE), Department of Archaeology and Anthropology, Institució Milà i Fontanals de Investigación en Humanidades, Consejo Superior de Investigaciones Científicas (IMF - CSIC), Barcelona, Spain
| | - Olivier Bignon-Lau
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Grégory Debout
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Michel Orliac
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Antoine Zazzo
- UMR 7209-Archéozoologie et Archéobotanique-Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris, France
| | - Vitale Sparacello
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Sezione di Neuroscienze e Antropologia, Università Degli Studi di Cagliari, Cittadella Monserrato, Cagliari, Italy
| | | | - Luca Sineo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | - Laure Pecqueur
- Inrap CIF, Croissy-Beaubourg, France
- UMR 7206 Éco-Anthropologie, Équipe ABBA. CNRS, MNHN, Université de Paris Cité, Musée de l'Homme, Paris, France
| | - Gildas Merceron
- PALEVOPRIM Lab UMR 7262 CNRS-INEE, University of Poitiers, Poitiers, France
| | - Géraldine Garcia
- PALEVOPRIM Lab UMR 7262 CNRS-INEE, University of Poitiers, Poitiers, France
- Centre de Valorisation des Collections Scientifiques, Université de Poitiers, Mignaloux Beauvoir, France
| | | | | | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- Sociedad de Ciencias Aranzadi, Donostia-San Sebastian, Spain
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | | | - Dariusz Bobak
- Foundation for Rzeszów Archaeological Centre, Rzeszów, Poland
| | - Mona Le Luyer
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paul Storm
- Groninger Instituut voor Archeologie, Groningen University, Groningen, The Netherlands
| | | | - Jacek Kabaciński
- Institute of Archaeology and Ethnology, Polish Academy of Science, Poznań, Poland
| | | | - Svetlana Shnaider
- ArchaeoZOOlogy in Siberia and Central Asia-ZooSCAn, CNRS-IAET SB RAS International Research Laboratory, IRL 2013, Institute of Archaeology SB RAS, Novosibirsk, Russia
| | - Natalia Berezina
- Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Borja González-Rabanal
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Manuel R González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC), Universidad de Cantabria-Gobierno de Cantabria-Banco Santander, Santander, Spain
| | - Ana B Marín-Arroyo
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Belén López
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
| | - Caroline Polet
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Ivan Jadin
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Nicolas Cauwe
- Musées Royaux d'Art et d'Histoire, Bruxelles, Belgium
| | - Joaquim Soler
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | - Neus Coromina
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | - Isaac Rufí
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | | | - Geoffrey Clark
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Lawrence G Straus
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Marie-Anne Julien
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, UPVD, Paris, France
- GéoArchPal-GéoArchÉon, Viéville sous-les-Cotes, France
| | - Silvia Renhart
- Archäologie & Münzkabinett, Universalmuseum Joanneum, Graz, Austria
| | - Dorothea Talaa
- Museum 'Das Dorf des Welan', Wöllersdorf-Steinabrückl, Austria
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Pradis Cave Museum, Clauzetto, Italy
- Department of Humanities, University of Ferrara, Ferrara, Italy
| | - Luc Amkreutz
- National Museum of Antiquities, Leiden, The Netherlands
- Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Christoph Wißing
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Sébastien Villotte
- UMR 7206 Éco-Anthropologie, Équipe ABBA. CNRS, MNHN, Université de Paris Cité, Musée de l'Homme, Paris, France
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Unité de Recherches Art, Archéologie Patrimoine, Université de Liège, Liège, Belgium
| | - Javier Fernández-López de Pablo
- I.U. de Investigación en Arqueología y Patrimonio Histórico, University of Alicante, Sant Vicent del Raspeig, Alicante, Spain
| | - Magdalena Gómez-Puche
- I.U. de Investigación en Arqueología y Patrimonio Histórico, University of Alicante, Sant Vicent del Raspeig, Alicante, Spain
| | | | - Pierre Bodu
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Liesbeth Smits
- Amsterdam Centre of Ancient Studies and Archaeology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bénédicte Souffi
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
- Inrap CIF, Croissy-Beaubourg, France
| | - Rimantas Jankauskas
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Justina Kozakaitė
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Christophe Cupillard
- Service Régional de l'Archéologie de Bourgogne-Franche-Comté, Besançon Cedex, France
- Laboratoire de Chrono-Environnement, UMR 6249 du CNRS, UFR des Sciences et Techniques, Besançon Cedex, France
| | | | | | | | - Susanne C Feine
- LVR-LandesMuseum Bonn, Bonn, Germany
- Institute of Pre- and Protohistory, University of Tübingen, Tübingen, Germany
| | - Tim Schüler
- Department of Archeological Sciences, Thuringian State Office for Monuments Preservation and Archeology, Weimar, Germany
| | | | - Dan Grigorescu
- University of Bucharest, Faculty of Geology and Geophysics, Department of Geology, Bucharest, Romania
- Institute for Advanced Studies in Levant Culture and Civilization, Bucharest, Romania
| | | | - Andreas Kotula
- Brandenburg Authorities for Heritage Management and Archaeological State Museum, Zossen, Germany
| | - Henny Piezonka
- Institute for Pre- and Protohistory, Kiel University, Kiel, Germany
| | - Franz Schopper
- Brandenburg Authorities for Heritage Management and Archaeological State Museum, Zossen, Germany
| | - Jiří Svoboda
- Institute of Archeology at Brno, Czech Academy of Sciences, Centre for Palaeolithic and Paleoanthropology, Brno, Czechia
| | - Sandra Sázelová
- Institute of Archeology at Brno, Czech Academy of Sciences, Centre for Palaeolithic and Paleoanthropology, Brno, Czechia
| | - Andrey Chizhevsky
- Institute of Archaeology, Academy of Sciences of the Republic of Tatarstan, Kazan, Russia
| | - Aleksandr Khokhlov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Nicholas J Conard
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Frédérique Valentin
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Katerina Harvati
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Paleoanthropology, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', University of Tübingen, Tübingen, Germany
| | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | | | - Alexander Suvorov
- Institute of Archaeology Russian, Academy of Sciences, Moscow, Russia
| | | | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Thomas Terberger
- Seminar for Pre- and Protohistory, Göttingen University, Göttingen, Germany
- Lower Saxony State Service for Cultural Heritage, Hannover, Germany
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| | - Eveline Altena
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
25
|
Baales M, Heuschen W, Kehl M, Manz A, Nolde N, Riemenschneider D, Rittweger H, Orschiedt J. Western visitors at the Blätterhöhle (city of Hagen, southern Westphalia) during the Younger Dryas? A new final palaeolithic assemblage type in western Germany. PLoS One 2023; 18:e0284479. [PMID: 37134047 PMCID: PMC10156063 DOI: 10.1371/journal.pone.0284479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/31/2023] [Indexed: 05/04/2023] Open
Abstract
Until now, it was considered certain that the last reindeer hunters of the Ahrensburgian (tanged point groups) existed exclusively in northwestern Central Europe during the Younger Dryas Cold Period (~ Greenland Stadial 1). The excavations carried out since 2006 on the forecourt (Vorplatz) of the small Blätterhöhle in Hagen on the northern edge of the Sauerland uplands of southern Westphalia (North Rhine-Westphalia, western Germany) have now changed this view. Beneath a surprisingly extensive sequence of Mesolithic find horizons, Pleistocene sediments could be reached whose excavations yielded a Final Palaeolithic lithic ensemble of the Younger Dryas, unusual for the region and beyond. It is characterised by numerous backed lithic projectile points of high variability. Comparisons suggest a typological-technological connection with the Western European Laborian / Late Laborian. Neither in the nearer nor in the wider surroundings has a comparable lithic find ensemble been found so far. In addition, there is a lack of clear evidence for the reindeer in the fauna. Surprisingly, the vast majority of radiocarbon dates of bones and charcoals from the investigated archaeological horizon of the Final Pleistocene proved to be significantly older than expected from their stratigraphic position. This phenomenon has not yet been clarified.
Collapse
Affiliation(s)
- Michael Baales
- Department Olpe, LWL-Archaeology for Westphalia (State Office for Archaeology Westphalia), Olpe, Germany
- Institute of Pre- and Protohistory, Department of Archaeological Sciences, Ruhr-University Bochum, Bochum, Germany
| | - Wolfgang Heuschen
- Institute of Pre- and Protohistory, Department of Archaeological Sciences, Ruhr-University Bochum, Bochum, Germany
- City Office for Preservation of Monuments and Archaeology, Hagen, Germany
| | - Martin Kehl
- Institute of Geography, University of Cologne, Cologne, Germany
| | - Annika Manz
- Institute of Pre- and Protohistory, Department of Archaeological Sciences, Ruhr-University Bochum, Bochum, Germany
| | - Nadine Nolde
- Institute of Pre- and Protohistory, University of Cologne, Cologne, Germany
| | - Daniel Riemenschneider
- Department Olpe, LWL-Archaeology for Westphalia (State Office for Archaeology Westphalia), Olpe, Germany
| | - Holger Rittweger
- MObiles LAndschaftsMUseum, Office for Landscape- and Palaeo-Ecology, Waldbrunn, Germany
| | - Jörg Orschiedt
- State Office for Preservation of Monuments and Archaeology Saxony-Anhalt, Halle (Saale), Germany
- Institute of Prehistoric Archaeology, Department of History and Cultural Studies, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Barbieri A, Maier A, Lauer T, Mischka C, Hattermann M, Uthmeier T. Post-LGM environments and foragers on the move: New data from the lower Altmühl Valley (Franconian Jura, SE Germany). J Hum Evol 2022; 173:103267. [PMID: 36308903 DOI: 10.1016/j.jhevol.2022.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
After the Last Glacial Maximum, the Swabian and Franconian Jura (in SW and SE Germany, respectively) were repopulated by Magdalenian hunter-gatherers within the same communication network. However, while the Magdalenian settlement of the Swabian Jura dates to 17-14 ka cal BP, permanent Magdalenian occupations in the Franconian Jura date to 15-14 ka cal BP. In comparison with its western counterpart, the Franconian Jura was mostly excavated in the early days of archaeological research. Does this different chronology reflect the different history of research? Why did Magdalenian foragers establish permanent occupation in the Franconian Jura nearly 2 millennia after settling in Swabia, despite the fact these regions are only 150 km apart? To address these questions, we reinvestigated two sites in the Altmühl Valley with micromorphology and luminescence dating, namely Felsenhäusl-Kellerhöhle and Klausennische. Our data show that both sites have intact Pleistocene deposits. Among these, we identified sediments dating between 17 and 15 ka that show only rare lithic artifacts and microfeatures indicative of cold and arid conditions. Our work and published data suggest that the steady settlement of Magdalenian foragers in the Altmühl Valley starting 15 ka cal BP coincides with the end of this harsh period and the onset of cool and wetter environments. Data from the Swabian Jura demonstrated that in the Lone Valley, similar environments and Magdalenian occupations commenced earlier, starting 17 ka cal BP. Therefore, we propose that regional environments acted as a barrier against the dispersal of foragers in the Franconian Jura and determined its later Magdalenian occupation. Our research highlighted that different environments, taphonomic processes, and site uses probably coexisted across the German Jura. Therefore, it remains fundamental to expand the multisite data set proposed in this article to further test hypotheses about human/environment interaction in this region.
Collapse
Affiliation(s)
- Alvise Barbieri
- Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour (ICArEHB), FCHS, University of the Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Andreas Maier
- Institute of Prehistoric Archaeology, University of Cologne, Bernhard-Feilchenfeld-Str. 11, 50969 Cologne, Germany
| | - Tobias Lauer
- Max Planck Institute for Evolutionary Anthropology - Department of Human Evolution, Deutscher Platz 6, 04103 Leipzig, Germany; Terrestrial Sedimentology, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Carsten Mischka
- Institute for Pre- and Protohistory, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kochstrasse 4/18, 91054 Erlangen, Germany
| | - Merlin Hattermann
- Institute for Pre- and Protohistory, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kochstrasse 4/18, 91054 Erlangen, Germany
| | - Thorsten Uthmeier
- Institute for Pre- and Protohistory, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kochstrasse 4/18, 91054 Erlangen, Germany
| |
Collapse
|
27
|
Quagliariello A, Modi A, Innocenti G, Zaro V, Conati Barbaro C, Ronchitelli A, Boschin F, Cavazzuti C, Dellù E, Radina F, Sperduti A, Bondioli L, Ricci S, Lognoli M, Belcastro MG, Mariotti V, Caramelli D, Mariotti Lippi M, Cristiani E, Martino ME, Muntoni IM, Lari M. Ancient oral microbiomes support gradual Neolithic dietary shifts towards agriculture. Nat Commun 2022; 13:6927. [PMID: 36414613 PMCID: PMC9681849 DOI: 10.1038/s41467-022-34416-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The human microbiome has recently become a valuable source of information about host life and health. To date little is known about how it may have evolved during key phases along our history, such as the Neolithic transition towards agriculture. Here, we shed light on the evolution experienced by the oral microbiome during this transition, comparing Palaeolithic hunter-gatherers with Neolithic and Copper Age farmers that populated a same restricted area in Italy. We integrate the analysis of 76 dental calculus oral microbiomes with the dietary information derived from the identification of embedded plant remains. We detect a stronger deviation from the hunter-gatherer microbiome composition in the last part of the Neolithic, while to a lesser extent in the early phases of the transition. Our findings demonstrate that the introduction of agriculture affected host microbiome, supporting the hypothesis of a gradual transition within the investigated populations.
Collapse
Affiliation(s)
- Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020, Italy.
| | - Alessandra Modi
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy.
| | - Gabriel Innocenti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020, Italy
| | - Valentina Zaro
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy
| | - Cecilia Conati Barbaro
- Dipartimento di Scienze dell'Antichita, "Sapienza" University of Rome, Rome, 00185, Italy
| | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, University of Siena, Siena, 53100, Italy
| | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, University of Siena, Siena, 53100, Italy
| | - Claudio Cavazzuti
- Dipartimento di Storia Culture Civiltà, University of Bologna, Bologna, 40126, Italy
| | - Elena Dellù
- Soprintendenza ABAP per la Città Metropolitana di Bari, Bari, 70121, Italy
| | - Francesca Radina
- Soprintendenza ABAP per la Città Metropolitana di Bari, Bari, 70121, Italy
| | - Alessandra Sperduti
- Sezione di Bioarcheologia - Museo delle Civiltà, Roma, 00144, Italy
- Dipartimento Asia, Africa e Mediterraneo, "L'Orientale" University of Neaples, Neaples, Italy
| | - Luca Bondioli
- Sezione di Bioarcheologia - Museo delle Civiltà, Roma, 00144, Italy
- Dipartimento dei Beni Culturali, University of Padua, Padova, 35139, Italy
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, University of Siena, Siena, 53100, Italy
| | - Miriam Lognoli
- Department of Biology, Laboratory of Palynology, University of Florence, Florence, 50121, Italy
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Valentina Mariotti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - David Caramelli
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy
| | - Marta Mariotti Lippi
- Department of Biology, Laboratory of Palynology, University of Florence, Florence, 50121, Italy
| | - Emanuela Cristiani
- DANTE - Diet and ANcient TEchnology laboratory, Department of Maxillo-Facial Sciences, "Sapienza" University of Rome, Rome, 00161, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020, Italy
| | - Italo Maria Muntoni
- Soprintendenza Archeologia, Belle Arti e Paesaggio per le Province di Barletta - Andria - Trani e Foggia, Foggia, 71121, Italy
| | - Martina Lari
- Department of Biology, Laboratory of Molecular Anthropology and Paleogenetics, University of Florence, Florence, 50122, Italy
| |
Collapse
|
28
|
Genomic ancestry, diet and microbiomes of Upper Palaeolithic hunter-gatherers from San Teodoro cave. Commun Biol 2022; 5:1262. [DOI: 10.1038/s42003-022-04190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractRecent improvements in the analysis of ancient biomolecules from human remains and associated dental calculus have provided new insights into the prehistoric diet and genetic diversity of our species. Here we present a multi-omics study, integrating metagenomic and proteomic analyses of dental calculus, and human ancient DNA analysis of the petrous bones of two post-Last Glacial Maximum (LGM) individuals from San Teodoro cave (Italy), to reconstruct their lifestyle and the post-LGM resettlement of Europe. Our analyses show genetic homogeneity in Sicily during the Palaeolithic, representing a hitherto unknown Italian genetic lineage within the previously identified Villabruna cluster. We argue that this lineage took refuge in Italy during the LGM, followed by a subsequent spread to central-western Europe. Analysis of dental calculus showed a diet rich in animal proteins which is also reflected on the oral microbiome composition. Our results demonstrate the power of this approach in the study of prehistoric humans and will enable future research to reach a more holistic understanding of the population dynamics and ecology.
Collapse
|
29
|
Leonardi M, Boschin F, Boscato P, Manica A. Following the niche: the differential impact of the last glacial maximum on four European ungulates. Commun Biol 2022; 5:1038. [PMID: 36175492 PMCID: PMC9523052 DOI: 10.1038/s42003-022-03993-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Predicting the effects of future global changes on species requires a better understanding of the ecological niche dynamics in response to climate; the large climatic fluctuations of the last 50,000 years can be used as a natural experiment to that aim. Here we test whether the realized niche of horse, aurochs, red deer, and wild boar changed between 47,000 and 7500 years ago using paleoecological modelling over an extensive archaeological database. We show that they all changed their niche, with species-specific responses to climate fluctuations. We also suggest that they survived the climatic turnovers thanks to their flexibility and by expanding their niche in response to the extinction of competitors and predators. Irrespective of the mechanism behind such processes, the fact that species with long generation times can change their niche over thousands of years cautions against assuming it to stay constant both when reconstructing the past and predicting the future. European megafaunal ungulates living in open habitats over the last 50,000 years showed evidence for niche change, possibly driven by climatic change and extinction of competitors and predators
Collapse
Affiliation(s)
- Michela Leonardi
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Francesco Boschin
- U.R. Preistoria e Antropologia, Dipartimento di Scienze Fisiche della Terra e dell'Ambiente, Università degli Studi di Siena, Via Laterina 8, 53100, Siena, Italy.
| | - Paolo Boscato
- U.R. Preistoria e Antropologia, Dipartimento di Scienze Fisiche della Terra e dell'Ambiente, Università degli Studi di Siena, Via Laterina 8, 53100, Siena, Italy
| | - Andrea Manica
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
30
|
Havens JL, Calvignac-Spencer S, Merkel K, Burrel S, Boutolleau D, Wertheim JO. Phylogeographic analysis reveals an ancient East African origin of human herpes simplex virus 2 dispersal out-of-Africa. Nat Commun 2022; 13:5477. [PMID: 36115862 PMCID: PMC9482657 DOI: 10.1038/s41467-022-33214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Human herpes simplex virus 2 (HSV-2) is a ubiquitous, slowly evolving DNA virus. HSV-2 has two primary lineages, one found in West and Central Africa and the other found worldwide. Competing hypotheses have been proposed to explain how HSV-2 migrated out-of-Africa (i)HSV-2 followed human migration out-of-Africa 50-100 thousand years ago, or (ii)HSV-2 migrated via the trans-Atlantic slave trade 150-500 years ago. Limited geographic sampling and lack of molecular clock signal has precluded robust comparison. Here, we analyze newly sequenced HSV-2 genomes from Africa to resolve geography and timing of divergence events within HSV-2. Phylogeographic analysis consistently places the ancestor of worldwide dispersal in East Africa, though molecular clock is too slow to be detected using available data. Rates 4.2 × 10-8-5.6 × 10-8 substitutions/site/year, consistent with previous age estimates, suggest a worldwide dispersal 22-29 thousand years ago. Thus, HSV-2 likely migrated with humans from East Africa and dispersed after the Last Glacial Maximum.
Collapse
Affiliation(s)
- Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA.
| | | | - Kevin Merkel
- Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - Sonia Burrel
- Virology Department, National Reference Center for Herperviruses (Associated Laboratory), AP-HP-Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - David Boutolleau
- Virology Department, National Reference Center for Herperviruses (Associated Laboratory), AP-HP-Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne University, INSERM UMR-S 1136, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Paris, France
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Aurignacian dynamics in Southeastern Europe based on spatial analysis, sediment geochemistry, raw materials, lithic analysis, and use-wear from Românești-Dumbrăvița. Sci Rep 2022; 12:14152. [PMID: 35986053 PMCID: PMC9391429 DOI: 10.1038/s41598-022-15544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
The Aurignacian is one of the first cultural-technological traditions commonly associated with the expansion of Homo sapiens in Europe. Early Homo sapiens demographics across the continent are therefore typically inferred using the distribution of Aurignacian assemblages. Western Romania has been used as a tie-point to connect the well-researched lithic assemblages from the eastern Mediterranean and Western Europe through its early Homo sapiens fossils. However, Romania’s archeological record remains underexplored thereby hindering our ability to directly connect better understood regions through time and space. Here we report on excavations from the open-air Middle/Upper Paleolithic site of Românești-Dumbrăvița I in southwestern Romania. Three stratified Paleolithic assemblages were extensively excavated within a 1-m-thick eolian-deposited sequence. Spatial, geochemical, raw material, techno-typological, and use-wear analysis of the site reveal patterns of artifact configuration, resource exploitation, fire history, knapping objectives, and functionality. Taken together, Românești-Dumbrăvița I is the first well-contextualized archeological site in close spatiotemporal proximity to many early, well-preserved human fossils and in East-Central Europe.
Collapse
|
32
|
Su YJ, Huang JY, Chu CQ, Wei JCC. Sulfonylureas or biguanides is associated with a lower risk of rheumatoid arthritis in patients with diabetes: A nationwide cohort study. Front Med (Lausanne) 2022; 9:934184. [PMID: 35966856 PMCID: PMC9363881 DOI: 10.3389/fmed.2022.934184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDiabetes mellitus (DM) is associated with immune dysregulation, while sulfonylureas or biguanides have been linked to anti-inflammatory mechanisms. In this study, we aimed to examine the occurrence rate of rheumatoid arthritis (RA) among DM patients and its incidence rate between different treatments.MethodsThis cohort study used the Taiwan National Health Insurance Research Database between 1997 and 2013 to evaluate the primary outcomes of the preventive role of sulfonylureas or biguanides in the development of RA. We used the Chi-square test for categorical variables and Cox proportional hazard regression and log-rank test to explore the time for development of RA in DM patients. Logistic regression was adopted to estimate the odds ratio of RA in different dosages of medication exposure.ResultsOur cohort study included 94,141 DM cases. The risk of RA development of non-sulfonylureas/biguanides users among the DM group in each analysis was set as the reference, and the adjusted hazard ratio of RA in DM patients who were using sulfonylureas or biguanides was 0.73 (95% confidence interval 0.60–0.90). Within 1 year before the index date, compared with no-biguanides users, patients with more than 180 days of prescription of biguanides had a significantly lower RA risk. Similarly, the significantly lower risk of RA was still observed in DM patients who had more than 365 days of prescription of sulfonylurea within 2 or 3 years before the index date of first RA visit (all p < 0.05).ConclusionOur data suggest that sulfonylureas or biguanides are associated with a lower rate of RA development in patients with DM; the effect of biguanides appeared more rapid than that of sulfonylureas, but the sulfonylureas might have a longer effect on lowering RA development incidence.
Collapse
Affiliation(s)
- Yu-Jih Su
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jing-Yang Huang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health and Science University and VA Portland Health Care System, Portland, OR, United States
- *Correspondence: Cong-Qiu Chu
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- James Cheng-Chung Wei
| |
Collapse
|
33
|
Översti S, Palo JU. Variation in the substitution rates among the human mitochondrial haplogroup U sublineages. Genome Biol Evol 2022; 14:6613373. [PMID: 35731946 PMCID: PMC9250076 DOI: 10.1093/gbe/evac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Resolving the absolute timescale of phylogenetic trees stipulates reliable estimates for the rate of DNA sequence evolution. For this end, various calibration methods have been developed and studied intensively. Intraspecific rate variation among distinct genetic lineages, however, has gained less attention. Here, we have assessed lineage-specific molecular rates of human mitochondrial DNA (mtDNA) by performing tip-calibrated Bayesian phylogenetic analyses. Tip-calibration, as opposed to traditional nodal time stamps from dated fossil evidence or geological events, is based on sample ages and becoming ever more feasible as ancient DNA data from radiocarbon-dated samples accumulate. We focus on subhaplogroups U2, U4, U5a, and U5b, the data including ancient mtDNA genomes from 14C-dated samples (n = 234), contemporary genomes (n = 301), and two outgroup sequences from haplogroup R. The obtained molecular rates depended on the data sets (with or without contemporary sequences), suggesting time-dependency. More notable was the rate variation between haplogroups: U4 and U5a stand out having a substantially higher rate than U5b. This is also reflected in the divergence times obtained (U5a: 17,700 years and U5b: 29,700 years), a disparity not reported previously. After ruling out various alternative causes (e.g., selection, sampling, and sequence quality), we propose that the substitution rates have been influenced by demographic histories, widely different among populations where U4/U5a or U5b are frequent. As with the Y-chromosomal subhaplogroup R1b, the mitochondrial U4 and U5a have been associated with remarkable range extensions of the Yamnaya culture in the Bronze Age.
Collapse
Affiliation(s)
- Sanni Översti
- Transmission, Infection, Diversification and Evolution Group, Max-Planck Institute for the Science of Human History, Jena, Germany Kahlaische Straße 10, 07745, Jena, Germany.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological Sciences, University of Helsinki, Helsinki, Finland P.O. Box 56, FI-00014, Helsinki, Finland
| | - Jukka U Palo
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland P.O. Box 40, FI-00014, Helsinki, Finland.,Forensic Chemistry Unit, Forensic Genetics Team, Finnish Institute for Health and Welfare, Helsinki, Finland P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
34
|
Tracing the mobility of a Late Epigravettian (~ 13 ka) male infant from Grotte di Pradis (Northeastern Italian Prealps) at high-temporal resolution. Sci Rep 2022; 12:8104. [PMID: 35577834 PMCID: PMC9110381 DOI: 10.1038/s41598-022-12193-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
We present the results of a multi-disciplinary investigation on a deciduous human tooth (Pradis 1), recently recovered from the Epigravettian layers of the Grotte di Pradis archaeological site (Northeastern Italian Prealps). Pradis 1 is an exfoliated deciduous molar (Rdm2), lost during life by an 11–12-year-old child. A direct radiocarbon date provided an age of 13,088–12,897 cal BP (95% probability, IntCal20). Amelogenin peptides extracted from tooth enamel and analysed through LC–MS/MS indicate that Pradis 1 likely belonged to a male. Time-resolved 87Sr/86Sr analyses by laser ablation mass spectrometry (LA-MC-ICPMS), combined with dental histology, were able to resolve his movements during the first year of life (i.e. the enamel mineralization interval). Specifically, the Sr isotope ratio of the tooth enamel differs from the local baseline value, suggesting that the child likely spent his first year of life far from Grotte di Pradis. Sr isotopes are also suggestive of a cyclical/seasonal mobility pattern exploited by the Epigravettian human group. The exploitation of Grotte di Pradis on a seasonal, i.e. summer, basis is also indicated by the faunal spectra. Indeed, the nearly 100% occurrence of marmot remains in the entire archaeozoological collection indicates the use of Pradis as a specialized marmot hunting or butchering site. This work represents the first direct assessment of sub-annual movements observed in an Epigravettian hunter-gatherer group from Northern Italy.
Collapse
|
35
|
Kristjansson D, Bohlin J, Nguyen TT, Jugessur A, Schurr TG. Evolution and dispersal of mitochondrial DNA haplogroup U5 in Northern Europe: insights from an unsupervised learning approach to phylogeography. BMC Genomics 2022; 23:354. [PMID: 35525961 PMCID: PMC9080151 DOI: 10.1186/s12864-022-08572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background We combined an unsupervised learning methodology for analyzing mitogenome sequences with maximum likelihood (ML) phylogenetics to make detailed inferences about the evolution and diversification of mitochondrial DNA (mtDNA) haplogroup U5, which appears at high frequencies in northern Europe. Methods Haplogroup U5 mitogenome sequences were gathered from GenBank. The hierarchal Bayesian Analysis of Population Structure (hierBAPS) method was used to generate groups of sequences that were then projected onto a rooted maximum likelihood (ML) phylogenetic tree to visualize the pattern of clustering. The haplogroup statuses of the individual sequences were assessed using Haplogrep2. Results A total of 23 hierBAPS groups were identified, all of which corresponded to subclades defined in Phylotree, v.17. The hierBAPS groups projected onto the ML phylogeny accurately clustered all haplotypes belonging to a specific haplogroup in accordance with Haplogrep2. By incorporating the geographic source of each sequence and subclade age estimates into this framework, inferences about the diversification of U5 mtDNAs were made. Haplogroup U5 has been present in northern Europe since the Mesolithic, and spread in both eastern and western directions, undergoing significant diversification within Scandinavia. A review of historical and archeological evidence attests to some of the population interactions contributing to this pattern. Conclusions The hierBAPS algorithm accurately grouped mitogenome sequences into subclades in a phylogenetically robust manner. This analysis provided new insights into the phylogeographic structure of haplogroup U5 diversity in northern Europe, revealing a detailed perspective on the diversity of subclades in this region and their distribution in Scandinavian populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08572-y.
Collapse
Affiliation(s)
- Dana Kristjansson
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Jon Bohlin
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | - Truc Trung Nguyen
- IT Systems Bergen, Norwegian Institute of Public Health, Bergen, Norway
| | - Astanand Jugessur
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. iScience 2022; 25:104244. [PMID: 35494246 PMCID: PMC9051636 DOI: 10.1016/j.isci.2022.104244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Sicily is a key region for understanding the agricultural transition in the Mediterranean because of its central position. Here, we present genomic and stable isotopic data for 19 prehistoric Sicilians covering the Mesolithic to Bronze Age periods (10,700–4,100 yBP). We find that Early Mesolithic hunter-gatherers (HGs) from Sicily are a highly drifted lineage of the Early Holocene western European HGs, whereas Late Mesolithic HGs carry ∼20% ancestry related to northern and (south) eastern European HGs, indicating substantial gene flow. Early Neolithic farmers are genetically most similar to farmers from the Balkans and Greece, with only ∼7% of ancestry from local Mesolithic HGs. The genetic discontinuities during the Mesolithic and Early Neolithic match the changes in material culture and diet. Three outlying individuals dated to ∼8,000 yBP; however, suggest that hunter-gatherers interacted with incoming farmers at Grotta dell’Uzzo, resulting in a mixed economy and diet for a brief interlude at the Mesolithic-Neolithic transition. Genetic transition between Early Mesolithic and Late Mesolithic hunter-gatherers A near-complete genetic turnover during the Mesolithic-Neolithic transition Exchange of subsistence practices between hunter-gatherers and early farmers
Collapse
|
37
|
Heraclides A, Fernández-Domínguez E. Mitochondrial DNA Consensus Calling and Quality Filtering for Constructing Ancient Human Mitogenomes: Comparison of Two Widely Applied Methods. Int J Mol Sci 2022; 23:4651. [PMID: 35563041 PMCID: PMC9104972 DOI: 10.3390/ijms23094651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Retrieving high-quality endogenous ancient DNA (aDNA) poses several challenges, including low molecular copy number, high rates of fragmentation, damage at read termini, and potential presence of exogenous contaminant DNA. All these factors complicate a reliable reconstruction of consensus aDNA sequences in reads from high-throughput sequencing platforms. Here, we report findings from a thorough evaluation of two alternative tools (ANGSD and schmutzi) aimed at overcoming these issues and constructing high-quality ancient mitogenomes. Raw genomic data (BAM/FASTQ) from a total of 17 previously published whole ancient human genomes ranging from the 14th to the 7th millennium BCE were retrieved and mitochondrial consensus sequences were reconstructed using different quality filters, with their accuracy measured and compared. Moreover, the influence of different sequence parameters (number of reads, sequenced bases, mean coverage, and rate of deamination and contamination) as predictors of derived sequence quality was evaluated. Complete mitogenomes were successfully reconstructed for all ancient samples, and for the majority of them, filtering substantially improved mtDNA consensus calling and haplogroup prediction. Overall, the schmutzi pipeline, which estimates and takes into consideration exogenous contamination, appeared to have the edge over the much faster and user-friendly alternative method (ANGSD) in moderate to high coverage samples (>1,000,000 reads). ANGSD, however, through its read termini trimming filter, showed better capabilities in calling the consensus sequence from low-quality samples. Among all the predictors of overall sample quality examined, the strongest correlation was found for the available number of sequence reads and bases. In the process, we report a previously unassigned haplogroup (U3b) for an Early Chalcolithic individual from Southern Anatolia/Northern Levant.
Collapse
Affiliation(s)
- Alexandros Heraclides
- Department of Health Sciences, European University Cyprus, Diogenis Str. 6, Nicosia 2404, Cyprus
| | | |
Collapse
|
38
|
Cardinali I, Bodner M, Capodiferro MR, Amory C, Rambaldi Migliore N, Gomez EJ, Myagmar E, Dashzeveg T, Carano F, Woodward SR, Parson W, Perego UA, Lancioni H, Achilli A. Mitochondrial DNA Footprints from Western Eurasia in Modern Mongolia. Front Genet 2022; 12:819337. [PMID: 35069708 PMCID: PMC8773455 DOI: 10.3389/fgene.2021.819337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Mongolia is located in a strategic position at the eastern edge of the Eurasian Steppe. Nomadic populations moved across this wide area for millennia before developing more sedentary communities, extended empires, and complex trading networks, which connected western Eurasia and eastern Asia until the late Medieval period. We provided a fine-grained portrait of the mitochondrial DNA (mtDNA) variation observed in present-day Mongolians and capable of revealing gene flows and other demographic processes that took place in Inner Asia, as well as in western Eurasia. The analyses of a novel dataset (N = 2,420) of mtDNAs highlighted a clear matrilineal differentiation within the country due to a mixture of haplotypes with eastern Asian (EAs) and western Eurasian (WEu) origins, which were differentially lost and preserved. In a wider genetic context, the prevalent EAs contribution, larger in eastern and central Mongolian regions, revealed continuous connections with neighboring Asian populations until recent times, as attested by the geographically restricted haplotype-sharing likely facilitated by the Genghis Khan’s so-called Pax Mongolica. The genetic history beyond the WEu haplogroups, notably detectable on both sides of Mongolia, was more difficult to explain. For this reason, we moved to the analysis of entire mitogenomes (N = 147). Although it was not completely possible to identify specific lineages that evolved in situ, two major changes in the effective (female) population size were reconstructed. The more recent one, which began during the late Pleistocene glacial period and became steeper in the early Holocene, was probably the outcome of demographic events connected to western Eurasia. The Neolithic growth could be easily explained by the diffusion of dairy pastoralism, as already proposed, while the late glacial increase indicates, for the first time, a genetic connection with western Eurasian refuges, as supported by the unusual high frequency and internal sub-structure in Mongolia of haplogroup H1, a well-known post-glacial marker in Europe. Bronze Age events, without a significant demographic impact, might explain the age of some mtDNA haplogroups. Finally, a diachronic comparison with available ancient mtDNAs made it possible to link six mitochondrial lineages of present-day Mongolians to the timeframe and geographic path of the Silk Route.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Edgar J Gomez
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,FamilySearch Int., Salt Lake City, UT, United States
| | - Erdene Myagmar
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tumen Dashzeveg
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Francesco Carano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Scott R Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, State College, PA, United States
| | - Ugo A Perego
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,Department of Math and Science, Southeastern Community College, Burlington, IA, United States
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
39
|
Kaifu Y, Kurniawan I, Yurnaldi D, Setiawan R, Setiyabudi E, Insani H, Takai M, Nishioka Y, Takahashi A, Aziz F, Yoneda M. Modern human teeth unearthed from below the ∼128,000-year-old level at Punung, Java: A case highlighting the problem of recent intrusion in cave sediments. J Hum Evol 2022; 163:103122. [PMID: 35016125 DOI: 10.1016/j.jhevol.2021.103122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
The emergence of modern humans in the eastern edge of the Eurasian Continent is debated between two major models: early (∼130-70 ka) and late (∼50 ka) dispersal models. The former view is grounded mainly on the claims that several cave sites in Southeast Asia and southern China yielded modern human fossils of those early ages, but such reports have been disputed for the lack of direct dating of the human remains and insufficient documentation of stratigraphy and taphonomy. By tracing possible burial process and conducting direct dating for an early Late Pleistocene paleontological site of Punung III, East Java, we here report a case that demonstrates how unexpected intrusion of recent human remains into older stratigraphic levels could occur in cave sediments. This further highlights the need of direct dating and taphonomic assessment before accepting either model. We also emphasize that the state of fossilization of bones and teeth is a useful guide for initial screening of recent intrusion and should be reported particularly when direct dating is unavailable. Additionally, we provide a revised stratigraphy and faunal list of Punung III, a key site that defines the tropical rainforest Punung Fauna during the early Late Pleistocene of the region.
Collapse
Affiliation(s)
- Yousuke Kaifu
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan.
| | - Iwan Kurniawan
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Dida Yurnaldi
- Geological Survey Institute, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java 40122, Indonesia
| | - Ruly Setiawan
- Geological Survey Institute, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java 40122, Indonesia
| | - Erick Setiyabudi
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Halmi Insani
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Masanaru Takai
- Systematics and Phylogeny Section, Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi, Japan
| | - Yuichiro Nishioka
- Museum of Natural and Environmental History, Shizuoka, 5762 Oya, Suruga-ku, Shizuoka City, Shizuoka, Japan
| | - Akio Takahashi
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Ridaicho 1-1, Kitaku, Okayama, Japan
| | - Fachroel Aziz
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
40
|
An infant burial from Arma Veirana in northwestern Italy provides insights into funerary practices and female personhood in early Mesolithic Europe. Sci Rep 2021; 11:23735. [PMID: 34907203 PMCID: PMC8671481 DOI: 10.1038/s41598-021-02804-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
The evolution and development of human mortuary behaviors is of enormous cultural significance. Here we report a richly-decorated young infant burial (AVH-1) from Arma Veirana (Liguria, northwestern Italy) that is directly dated to 10,211-9910 cal BP (95.4% probability), placing it within the early Holocene and therefore attributable to the early Mesolithic, a cultural period from which well-documented burials are exceedingly rare. Virtual dental histology, proteomics, and aDNA indicate that the infant was a 40-50 days old female. Associated artifacts indicate significant material and emotional investment in the child's interment. The detailed biological profile of AVH-1 establishes the child as the earliest European near-neonate documented to be female. The Arma Veirana burial thus provides insight into sex/gender-based social status, funerary treatment, and the attribution of personhood to the youngest individuals among prehistoric hunter-gatherer groups and adds substantially to the scant data on mortuary practices from an important period in prehistory shortly following the end of the last Ice Age.
Collapse
|
41
|
Bacon AM, Bourgon N, Welker F, Cappellini E, Fiorillo D, Tombret O, Thi Mai Huong N, Anh Tuan N, Sayavonkhamdy T, Souksavatdy V, Sichanthongtip P, Antoine PO, Duringer P, Ponche JL, Westaway K, Joannes-Boyau R, Boesch Q, Suzzoni E, Frangeul S, Patole-Edoumba E, Zachwieja A, Shackelford L, Demeter F, Hublin JJ, Dufour É. A multi-proxy approach to exploring Homo sapiens' arrival, environments and adaptations in Southeast Asia. Sci Rep 2021; 11:21080. [PMID: 34702921 PMCID: PMC8548499 DOI: 10.1038/s41598-021-99931-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/05/2021] [Indexed: 01/29/2023] Open
Abstract
The capability of Pleistocene hominins to successfully adapt to different types of tropical forested environments has long been debated. In order to investigate environmental changes in Southeast Asia during a critical period for the turnover of hominin species, we analysed palaeoenvironmental proxies from five late Middle to Late Pleistocene faunas. Human teeth discoveries have been reported at Duoi U'Oi, Vietnam (70-60 ka) and Nam Lot, Laos (86-72 ka). However, the use of palaeoproteomics allowed us to discard the latter, and, to date, no human remains older than ~ 70 ka are documented in the area. Our findings indicate that tropical rainforests were highly sensitive to climatic changes over that period, with significant fluctuations of the canopy forests. Locally, large-bodied faunas were resilient to these fluctuations until the cooling period of the Marine Isotope Stage 4 (MIS 4; 74-59 ka) that transformed the overall biotope. Then, under strong selective pressures, populations with new phenotypic characteristics emerged while some other species disappeared. We argue that this climate-driven shift offered new foraging opportunities for hominins in a novel rainforest environment and was most likely a key factor in the settlement and dispersal of our species during MIS 4 in SE Asia.
Collapse
Affiliation(s)
- Anne-Marie Bacon
- grid.508487.60000 0004 7885 7602UMR 8045 BABEL, CNRS, Université de Paris, Faculté de Chirurgie dentaire, 1 rue Maurice Arnoux, 92120 Montrouge, France
| | - Nicolas Bourgon
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.5802.f0000 0001 1941 7111Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
| | - Frido Welker
- grid.5254.60000 0001 0674 042XSection for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- grid.5254.60000 0001 0674 042XSection for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Denis Fiorillo
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Olivier Tombret
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Nguyen Thi Mai Huong
- Anthropological and Palaeoenvironmental Department, Institute of Archaeology, Hoan Kiem District, Ha Noi, Vietnam
| | - Nguyen Anh Tuan
- Anthropological and Palaeoenvironmental Department, Institute of Archaeology, Hoan Kiem District, Ha Noi, Vietnam
| | - Thongsa Sayavonkhamdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Laos
| | - Viengkeo Souksavatdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Laos
| | | | - Pierre-Olivier Antoine
- grid.121334.60000 0001 2097 0141Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Duringer
- grid.11843.3f0000 0001 2157 9291Ecole et Observatoire des Sciences de la Terre (EOST Géologie), Institut de Physique du Globe de Strasbourg (IPGS) (CNRS/UMR 7516), Institut de Géologie, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- grid.463965.b0000 0004 0452 6077UMR 7362 Laboratoire Image Ville et Environnement, Institut de Géologie, Strasbourg, France
| | - Kira Westaway
- grid.1004.50000 0001 2158 5405Department of Earth and Environmental Sciences, Traps’ MQ Luminescence Dating Facility, Macquarie University, Sydney, Australia
| | - Renaud Joannes-Boyau
- grid.1031.30000000121532610Geoarchaeology & Archaeometry Research Group, Southern Cross University, Lismore, Australia ,grid.458456.e0000 0000 9404 3263Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences, Beijing, China
| | - Quentin Boesch
- grid.11843.3f0000 0001 2157 9291Ecole et Observatoire des Sciences de la Terre (EOST Géologie), Institut de Physique du Globe de Strasbourg (IPGS) (CNRS/UMR 7516), Institut de Géologie, Université de Strasbourg, Strasbourg, France
| | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle-en-Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle-en-Vercors, France
| | - Elise Patole-Edoumba
- grid.410350.30000 0001 2174 9334Muséum d’Histoire Naturelle, La Rochelle, France
| | - Alexandra Zachwieja
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN USA
| | - Laura Shackelford
- grid.35403.310000 0004 1936 9991Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Fabrice Demeter
- grid.452548.a0000 0000 9817 5300Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, Copenhagen, Denmark ,UMR 7206 Eco-Anthropologie, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Jean-Jacques Hublin
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.410533.00000 0001 2179 2236Collège de France, Chaire de Paléoanthropologie, Paris, France
| | - Élise Dufour
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
42
|
García-Olivares V, Muñoz-Barrera A, Lorenzo-Salazar JM, Zaragoza-Trello C, Rubio-Rodríguez LA, Díaz-de Usera A, Jáspez D, Iñigo-Campos A, González-Montelongo R, Flores C. A benchmarking of human mitochondrial DNA haplogroup classifiers from whole-genome and whole-exome sequence data. Sci Rep 2021; 11:20510. [PMID: 34654896 PMCID: PMC8519921 DOI: 10.1038/s41598-021-99895-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial genome (mtDNA) is of interest for a range of fields including evolutionary, forensic, and medical genetics. Human mitogenomes can be classified into evolutionary related haplogroups that provide ancestral information and pedigree relationships. Because of this and the advent of high-throughput sequencing (HTS) technology, there is a diversity of bioinformatic tools for haplogroup classification. We present a benchmarking of the 11 most salient tools for human mtDNA classification using empirical whole-genome (WGS) and whole-exome (WES) short-read sequencing data from 36 unrelated donors. We also assessed the best performing tool in third-generation long noisy read WGS data obtained with nanopore technology for a subset of the donors. We found that, for short-read WGS, most of the tools exhibit high accuracy for haplogroup classification irrespective of the input file used for the analysis. However, for short-read WES, Haplocheck and MixEmt were the most accurate tools. Based on the performance shown for WGS and WES, and the accompanying qualitative assessment, Haplocheck stands out as the most complete tool. For third-generation HTS data, we also showed that Haplocheck was able to accurately retrieve mtDNA haplogroups for all samples assessed, although only after following assembly-based approaches (either based on a referenced-based assembly or a hybrid de novo assembly). Taken together, our results provide guidance for researchers to select the most suitable tool to conduct the mtDNA analyses from HTS data.
Collapse
Affiliation(s)
- Víctor García-Olivares
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - Luis A Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Antonio Iñigo-Campos
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
43
|
Liu Y, Mao X, Krause J, Fu Q. Insights into human history from the first decade of ancient human genomics. Science 2021; 373:1479-1484. [PMID: 34554811 DOI: 10.1126/science.abi8202] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Caramelli D, Posth C, Rickards O. Reconstruction of the human peopling of Europe: a genetic insight. Ann Hum Biol 2021; 48:175-178. [PMID: 34459346 DOI: 10.1080/03014460.2021.1955472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| | - Cosimo Posth
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Olga Rickards
- Department of Biology, Centre of Molecular Anthropology for Ancient DNA Studies, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
45
|
Scorrano G, Yediay FE, Pinotti T, Feizabadifarahani M, Kristiansen K. The genetic and cultural impact of the Steppe migration into Europe. Ann Hum Biol 2021; 48:223-233. [PMID: 34459341 DOI: 10.1080/03014460.2021.1942984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND During the early 3rd millennium BCE migration from Pontic Steppe, mainly related to Yamnaya culture, has affected European populations both culturally and genetically, however, it has long been debated to what extent this migration was male-driven, and how this replacement process took place which eliminated partially/largely Neolithic male lines over time. AIM This paper aims to evaluate the influence of the Steppe migration on European Bronze Age populations by calculating both male and female genetic contributions of the Steppe-related ancestry to the European Bronze Age populations. With this approach, we will be able to clarify the hypotheses on whether it was male-biased migration or not. SUBJECTS AND METHODS To evaluate the genetic impact and the proportion of the Steppe-related ancestry to the European Bronze Age populations, we performed PCA and qpAdm analyses by using published genome-wide data. In addition, we quantified male and female genetic contribution into Europe by using the analysis of uniparental markers and the X-chromosome. RESULTS The Steppe migration had a considerable impact on the genetic makeup of the Bronze Age European populations. The data suggest that the Steppe-related ancestry arriving into Central Europe was male-driven, dominantly in the Corded Ware culture populations and lesser in the Bell Beaker populations. In fact, there is no evidence that this migration had a significant input on the mitochondrial genetic pool of all European Bronze Age populations. CONCLUSIONS Our analyses suggest that the Steppe-related ancestry had genetic impact on mainly Central-Eastern Europe. Moreover, this migration was male-driven for most of the Central European populations belonging to the Corded Ware groups, and to a lesser extent for the Bell Beaker groups.
Collapse
Affiliation(s)
- Gabriele Scorrano
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Fulya Eylem Yediay
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thomaz Pinotti
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.,Laboratório de Biodiversidade e Evolução Molecular (LBEM), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Modi A, Vai S, Posth C, Vergata C, Zaro V, Diroma MA, Boschin F, Capecchi G, Ricci S, Ronchitelli A, Catalano G, Lauria G, D'Amore G, Sineo L, Caramelli D, Lari M. More data on ancient human mitogenome variability in Italy: new mitochondrial genome sequences from three Upper Palaeolithic burials. Ann Hum Biol 2021; 48:213-222. [PMID: 34459344 DOI: 10.1080/03014460.2021.1942549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recently, the study of mitochondrial variability in ancient humans has allowed the definition of population dynamics that characterised Europe in the Late Pleistocene and Early Holocene. Despite the abundance of sites and skeletal remains few data are available for Italy. AIM We reconstructed the mitochondrial genomes of three Upper Palaeolithic individuals for some of the most important Italian archaeological contexts: Paglicci (South-Eastern Italy), San Teodoro (South-Western Italy) and Arene Candide (North-Western Italy) caves. SUBJECTS AND METHODS We explored the phylogenetic relationships of the three mitogenomes in the context of Western Eurasian ancient and modern variability. RESULTS Paglicci 12 belongs to sub-haplogroup U8c, described in only two other Gravettian individuals; San Teodoro 2 harbours a U2'3'4'7'8'9 sequence, the only lineage found in Sicily during the Late Pleistocene and Early Holocene; Arene Candide 16 displays an ancestral U5b1 haplotype already detected in other Late Pleistocene hunter-gatherers from Central Europe. CONCLUSION Regional genetic continuity is highlighted in the Gravettian groups that succeeded in Paglicci. Data from one of the oldest human remains from Sicily reinforce the hypothesis that Epigravettian groups carrying U2'3'4'7'8'9 could be the first inhabitants of the island. The first pre-Neolithic mitogenome from North-Western Italy, sequenced here, shows more affinity with continental Europe than with the Italian peninsula.
Collapse
Affiliation(s)
- Alessandra Modi
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Chiara Vergata
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Valentina Zaro
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | | | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Giulia Capecchi
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Giulio Catalano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Gabriele Lauria
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy.,Departamento de Ciencia Animal, Universitat Politecnica de Valencia, Valencia, Spain
| | - Giuseppe D'Amore
- Istituto di Studi Archeo-antropologici - I.S.A, Scandicci, Italy
| | - Luca Sineo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - David Caramelli
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| |
Collapse
|
47
|
Aneli S, Caldon M, Saupe T, Montinaro F, Pagani L. Through 40,000 years of human presence in Southern Europe: the Italian case study. Hum Genet 2021; 140:1417-1431. [PMID: 34410492 PMCID: PMC8460580 DOI: 10.1007/s00439-021-02328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
The Italian Peninsula, a natural pier across the Mediterranean Sea, witnessed intricate population events since the very beginning of the human occupation in Europe. In the last few years, an increasing number of modern and ancient genomes from the area have been published by the international research community. This genomic perspective started unveiling the relevance of Italy to understand the post-Last Glacial Maximum (LGM) re-peopling of Europe, the earlier phase of the Neolithic westward migrations, and its linking role between Eastern and Western Mediterranean areas after the Iron Age. However, many open questions are still waiting for more data to be addressed in full. With this review, we summarize the current knowledge emerging from the available ancient Italian individuals and, by re-analysing them all at once, we try to shed light on the avenues future research in the area should cover. In particular, open questions concern (1) the fate of pre-Villabruna Europeans and to what extent their genomic components were absorbed by the post-LGM hunter-gatherers; (2) the role of Sicily and Sardinia before LGM; (3) to what degree the documented genetic structure within the Early Neolithic settlers can be described as two separate migrations; (4) what are the population events behind the marked presence of an Iranian Neolithic-like component in Bronze Age and Iron Age Italian and Southern European samples.
Collapse
Affiliation(s)
- Serena Aneli
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.
| | - Matteo Caldon
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.,Department of Biology-Genetics, University of Bari, Via Edoardo Orabona 4, 70125, Bari, Italy
| | - Luca Pagani
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.,Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| |
Collapse
|
48
|
Rohrlach AB, Papac L, Childebayeva A, Rivollat M, Villalba-Mouco V, Neumann GU, Penske S, Skourtanioti E, van de Loosdrecht M, Akar M, Boyadzhiev K, Boyadzhiev Y, Deguilloux MF, Dobeš M, Erdal YS, Ernée M, Frangipane M, Furmanek M, Friederich S, Ghesquière E, Hałuszko A, Hansen S, Küßner M, Mannino M, Özbal R, Reinhold S, Rottier S, Salazar-García DC, Diaz JS, Stockhammer PW, de Togores Muñoz CR, Yener KA, Posth C, Krause J, Herbig A, Haak W. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci Rep 2021; 11:15005. [PMID: 34294811 PMCID: PMC8298398 DOI: 10.1038/s41598-021-94491-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective. Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture assays such as the 1240 k, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield. Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the "mappable" regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240 k capture, YMCA significantly improves the mean coverage and number of sites covered on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants. To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.
Collapse
Affiliation(s)
- Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany. .,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Luka Papac
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Maïté Rivollat
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Université de Bordeaux, CNRS, PACEA-UMR 5199, 33615, Pessac, France
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Marieke van de Loosdrecht
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Murat Akar
- Department of Archaeology, Mustafa Kemal University, 31060, Alahan-Antakya, Hatay, Turkey
| | - Kamen Boyadzhiev
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 1000, Sofia, Bulgaria
| | - Yavor Boyadzhiev
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, 1000, Sofia, Bulgaria
| | | | - Miroslav Dobeš
- Department of Prehistory, Institute of Archaeology CAS, Prague, Czech Republic
| | - Yilmaz S Erdal
- Department of Anthropology, Hacettepe University, 06800, Ankara, Turkey
| | - Michal Ernée
- Department of Prehistory, Institute of Archaeology CAS, Prague, Czech Republic
| | | | | | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, Halle, Germany
| | - Emmanuel Ghesquière
- Inrap Grand Ouest, Bourguébus, France.,Université de Rennes 1, CNRS, CReAAH-UMR, 6566, Rennes, France
| | - Agata Hałuszko
- Institute of Archaeology, University of Wrocław, Wrocław, Poland.,Archeolodzy.org Foundation, Wrocław, Poland
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archeology, Weimar, Germany
| | - Marcello Mannino
- Department of Archaeology, School of Culture and Society, Aarhus University, 8270, Højbjerg, Denmark
| | - Rana Özbal
- Department of Archaeology and History of Art, Koç University, 34450, Istanbul, Turkey
| | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Stéphane Rottier
- Université de Bordeaux, CNRS, PACEA-UMR 5199, 33615, Pessac, France
| | - Domingo Carlos Salazar-García
- Grupo de Investigación en Prehistoria IT-1223-19 (UPV-EHU)/IKERBASQUE-Basque Foundation for Science, Vitoria, Spain.,Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, Valencia, Spain.,Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Ludwig Maximilian University Munich, 80799, Munich, Germany
| | | | - K Aslihan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY, 10028, USA
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.,Archaeo- and Palaeogenetics Group, Institute for Archaeological Sciences Eberhard Karls University Tübingen, 72070, Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745, Jena, Germany. .,School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
49
|
Gelabert P, Sawyer S, Bergström A, Margaryan A, Collin TC, Meshveliani T, Belfer-Cohen A, Lordkipanidze D, Jakeli N, Matskevich Z, Bar-Oz G, Fernandes DM, Cheronet O, Özdoğan KT, Oberreiter V, Feeney RNM, Stahlschmidt MC, Skoglund P, Pinhasi R. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr Biol 2021; 31:3564-3574.e9. [PMID: 34256019 PMCID: PMC8409484 DOI: 10.1016/j.cub.2021.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
Cave sediments have been shown to preserve ancient DNA but so far have not yielded the genome-scale information of skeletal remains. We retrieved and analyzed human and mammalian nuclear and mitochondrial environmental "shotgun" genomes from a single 25,000-year-old Upper Paleolithic sediment sample from Satsurblia cave, western Georgia:first, a human environmental genome with substantial basal Eurasian ancestry, which was an ancestral component of the majority of post-Ice Age people in the Near East, North Africa, and parts of Europe; second, a wolf environmental genome that is basal to extant Eurasian wolves and dogs and represents a previously unknown, likely extinct, Caucasian lineage; and third, a European bison environmental genome that is basal to present-day populations, suggesting that population structure has been substantially reshaped since the Last Glacial Maximum. Our results provide new insights into the Late Pleistocene genetic histories of these three species and demonstrate that direct shotgun sequencing of sediment DNA, without target enrichment methods, can yield genome-wide data informative of ancestry and phylogenetic relationships.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ashot Margaryan
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Tengiz Meshveliani
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Anna Belfer-Cohen
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lordkipanidze
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Nino Jakeli
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | | | - Guy Bar-Oz
- Zinman Institute of Archaeology, University of Haifa, Haifa, Israel
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Mareike C Stahlschmidt
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| |
Collapse
|
50
|
Jablonski NG. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment Cell Melanoma Res 2021; 34:707-729. [PMID: 33825328 PMCID: PMC8359960 DOI: 10.1111/pcmr.12976] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
The primary biological role of human skin pigmentation is as a mediator of penetration of ultraviolet radiation (UVR) into the deep layers of skin and the cutaneous circulation. Since the origin of Homo sapiens, dark, protective constitutive pigmentation and strong tanning abilities have been favored under conditions of high UVR and represent the baseline condition for modern humans. The evolution of partly depigmented skin and variable tanning abilities has occurred multiple times in prehistory, as populations have dispersed into environments with lower and more seasonal UVR regimes, with unique complements of genes and cultural practices. The evolution of extremes of dark pigmentation and depigmentation has been rare and occurred only under conditions of extremely high or low environmental UVR, promoted by positive selection on variant pigmentation genes followed by limited gene flow. Over time, the evolution of human skin pigmentation has been influenced by the nature and course of human dispersals and modifications of cultural practices, which have modified the nature and actions of skin pigmentation genes. Throughout most of prehistory and history, the evolution of human skin pigmentation has been a contingent and non-deterministic process.
Collapse
Affiliation(s)
- Nina G. Jablonski
- Department of AnthropologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|