1
|
Jin X, Mizukami AG, Okuda S, Higashiyama T. Investigating vesicle-mediated regulation of pollen tube growth through BFA inhibition and AS-ODN targeting of TfRABA4D in Torenia fournieri. HORTICULTURE RESEARCH 2025; 12:uhaf018. [PMID: 40093377 PMCID: PMC11908828 DOI: 10.1093/hr/uhaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
In flowering plants, pollen tube growth is essential for delivering immotile sperm cells during double fertilization, directly influencing seed yield. This process relies on vesicle-mediated trafficking to sustain tip growth and fertility. However, investigating pollen tube growth is challenging in non-model plants due to the lack of transgenic tools. Here, we developed a method to transiently inhibit vesicle activity in pollen tubes of the wishbone flower (Torenia fournieri), a classic plant for sexual reproduction studies, using brefeldin A (BFA) and antisense oligodeoxynucleotides (AS-ODNs) targeting key genes. BFA broadly disrupted vesicle gradient homeostasis in T. fournieri pollen tubes, leading to widespread changes in cell wall deposition, ROS distribution, and pollen tube morphology. To assess the role of specific genes, we designed AS-ODNs against TfANX, the sole ANXUR homolog in T. fournieri, which successfully penetrated cell membranes and suppressed TfANX expression. This inhibition impaired pollen tube tip growth, causing pollen tube leakage at the shank region and, in some cases, multiple leakages. Similarly, AS-ODN targeting TfRABA4D, a pollen-specific vesicle regulator, induced a bulging phenotype and disrupted pectin deposition and reduced ROS distribution, mirroring BFA effects. These findings elucidate vesicle-mediated regulation in pollen tube tip growth and introduce an accessible method for genetic manipulation in reproductive research of non-model plants.
Collapse
Affiliation(s)
- Xingyue Jin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Faculty of Science Building 2, The University of Tokyo, Hongo Campus 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akane G Mizukami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Faculty of Science Building 2, The University of Tokyo, Hongo Campus 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Liberal Arts and Sciences, Aichi Gakuin University, 1-100 Kusumoto, Nisshin, Japan
| | - Satohiro Okuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Faculty of Science Building 2, The University of Tokyo, Hongo Campus 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Faculty of Science Building 2, The University of Tokyo, Hongo Campus 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Sawada H, Saito T, Shimada Y, Nishimura H. Fertilization mechanisms in hermaphroditic ascidians and nematodes: Common mechanisms with mammals and plants. Curr Top Dev Biol 2025; 162:55-114. [PMID: 40180517 DOI: 10.1016/bs.ctdb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Most animals have male and female, whereas flowering plants are hermaphrodites. Exceptionally, a small population of invertebrates, including ascidians and nematodes, has hermaphrodite in reproductive strategies. Several ascidians exhibit strict self-sterility (or self-incompatibility), similar to flowering plants. Such a self-incompatibility mechanism in ascidian has been revealed to be very similar to those of flowering plants. Here, we describe the mechanisms of ascidian fertilization shared with invertebrates and mammals, as well as with plants. In the nematode Caenorhabditis elegans, having self-fertile hermaphrodite and male, several genes responsible for fertilization are homologous to those of mammals. Thus, novel proteins responsible for fertilization will be easily disclosed by the analyses of sterile mutants. In this review, we focus on the same or similar reproductive strategies by shedding lights on the common mechanisms of fertilization, particularly in hermaphrodites.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | - Yoshihiro Shimada
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
3
|
Moreira D, Kaur D, Fourbert-Mendes S, Showalter AM, Coimbra S, Pereira AM. Eight hydroxyproline-O-galactosyltransferases play essential roles in female reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112231. [PMID: 39154893 DOI: 10.1016/j.plantsci.2024.112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sara Fourbert-Mendes
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701-2979, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701-2979, USA
| | - Sílvia Coimbra
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Ana Marta Pereira
- LAQV Requimte, Sustainable Chemistry, Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
4
|
Hao GJ, Ying J, Li LS, Yu F, Dun SS, Su LY, Zhao XY, Li S, Zhang Y. Two functionally interchangeable Vps9 isoforms mediate pollen tube penetration of style. THE NEW PHYTOLOGIST 2024; 244:840-854. [PMID: 39262026 DOI: 10.1111/nph.20088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Style penetration by pollen tubes is essential for reproductive success, a process requiring canonical Rab5s in Arabidopsis. However, functional loss of Arabidopsis Vps9a, the gene encoding for guanine nucleotide exchange factor (GEF) of Rab5s, did not affect male transmission, implying the presence of a compensation program or redundancy. By combining genetic, cytological, and molecular approaches, we report that Arabidopsis Vps9b is a pollen-preferential gene, redundantly mediating pollen tube penetration of style with Vps9a. Vps9b is functionally interchangeable with Vps9a, whose functional distinction results from distinct expression profiles. Functional loss of Vps9a and Vps9b results in the mis-targeting of Rab5-dependent tonoplast proteins, defective vacuolar biogenesis, disturbed distribution of post-Golgi vesicles, increased cellular turgor, cytosolic acidification, and disrupted organization of actin microfilaments (MF) in pollen tubes, which collectively lead to the failure of pollen tubes to grow through style.
Collapse
Affiliation(s)
- Guang-Jiu Hao
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Jun Ying
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu-Shen Li
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| | - Fei Yu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shan-Shan Dun
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Le-Yan Su
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin-Ying Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tian'jin, 300017, China
| |
Collapse
|
5
|
Zheng S, Wang F, Liu Z, Zhang H, Zhang L, Chen D. The Role of Female and Male Genes in Regulating Pollen Tube Guidance in Flowering Plants. Genes (Basel) 2024; 15:1367. [PMID: 39596567 PMCID: PMC11593715 DOI: 10.3390/genes15111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, fertilization is a complex process governed by precise communication between the male and female gametophytes. This review focuses on the roles of various female gametophyte cells-synergid, central, and egg cells-in facilitating pollen tube guidance and ensuring successful fertilization. Synergid cells play a crucial role in attracting the pollen tube, while the central cell influences the direction of pollen tube growth, and the egg cell is responsible for preventing polyspermy, ensuring correct fertilization. The review also examines the role of the pollen tube in this communication, highlighting the mechanisms involved in its growth regulation, including the importance of pollen tube receptors, signal transduction pathways, cell wall dynamics, and ion homeostasis. The Ca2+ concentration gradient is identified as a key factor in guiding pollen tube growth toward the ovule. Moreover, the review briefly compares these communication processes in angiosperms with those in non-flowering plants, such as mosses, ferns, and early gymnosperms, providing evolutionary insights into gametophytic signaling. Overall, this review synthesizes the current understanding of male-female gametophyte interactions and outlines future directions for research in plant reproductive biology.
Collapse
Affiliation(s)
- Siyuan Zheng
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Feng Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zehui Liu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| | - Hongbin Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
| | - Liangsheng Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Dan Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| |
Collapse
|
6
|
Figueiredo R, Costa M, Moreira D, Moreira M, Noble J, Pereira LG, Melo P, Palanivelu R, Coimbra S, Pereira AM. JAGGER localization and function are dependent on GPI anchor addition. PLANT REPRODUCTION 2024; 37:341-353. [PMID: 38294499 PMCID: PMC11377618 DOI: 10.1007/s00497-024-00495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
KEY MESSAGE GPI anchor addition is important for JAGGER localization and in vivo function. Loss of correct GPI anchor addition in JAGGER, negatively affects its localization and function. In flowering plants, successful double fertilization requires the correct delivery of two sperm cells to the female gametophyte inside the ovule. The delivery of a single pair of sperm cells is achieved by the entrance of a single pollen tube into one female gametophyte. To prevent polyspermy, Arabidopsis ovules avoid the attraction of multiple pollen tubes to one ovule-polytubey block. In Arabidopsis jagger mutants, a significant number of ovules attract more than one pollen tube to an ovule due to an impairment in synergid degeneration. JAGGER encodes a putative arabinogalactan protein which is predicted to be anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Here, we show that JAGGER fused to citrine yellow fluorescent protein (JAGGER-cYFP) is functional and localizes mostly to the periphery of ovule integuments and transmitting tract cells. We further investigated the importance of GPI-anchor addition domains for JAGGER localization and function. Different JAGGER proteins with deletions in predicted ω-site regions and GPI attachment signal domain, expected to compromise the addition of the GPI anchor, led to disruption of JAGGER localization in the cell periphery. All JAGGER proteins with disrupted localization were also not able to rescue the polytubey phenotype, pointing to the importance of GPI-anchor addition to in vivo function of the JAGGER protein.
Collapse
Affiliation(s)
- Raquel Figueiredo
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mónica Costa
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Diana Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Miguel Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Jennifer Noble
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Luís Gustavo Pereira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Paula Melo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | | | - Sílvia Coimbra
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ana Marta Pereira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
7
|
Mizukami AG, Kusano S, Matsuura-Tokita K, Hagihara S, Higashiyama T. Cluster effect through the oligomerisation of bioactive disaccharide AMOR on pollen tube capacitation in Torenia fournieri. RSC Chem Biol 2024; 5:745-750. [PMID: 39092441 PMCID: PMC11289873 DOI: 10.1039/d4cb00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
Arabinogalactan proteins (AGPs) are plant-specific glycoproteins involved in cellular mechanics and signal transduction. There has been major progress in understanding the structure, synthesis, and molecular functions of their carbohydrate chains; however, the mechanisms by which they function as signalling molecules remain unclear. Here, methyl-glucuronosyl arabinogalactan (AMOR; Me-GlcA-β(1,6)-Gal), a disaccharide structure at the end of AGP carbohydrate chains, was oligomerised via chemical synthesis. The biological activity of AMOR oligomers was enhanced via clustering of the carbohydrate chains. Furthermore, AMOR oligomers yielded a pollen tube morphology (i.e., callose plug formation) similar to that when cultured with native AMOR, suggesting it may be functionally similar to native AMOR.
Collapse
Affiliation(s)
- Akane G Mizukami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Kumi Matsuura-Tokita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Shinya Hagihara
- RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
8
|
Mizuta Y, Sakakibara D, Nagahara S, Kaneshiro I, Nagae TT, Kurihara D, Higashiyama T. Deep imaging reveals dynamics and signaling in one-to-one pollen tube guidance. EMBO Rep 2024; 25:2529-2549. [PMID: 38773320 PMCID: PMC11169409 DOI: 10.1038/s44319-024-00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024] Open
Abstract
In the pistil of flowering plants, each ovule usually associates with a single pollen tube for fertilization. This one-to-one pollen tube guidance, which contributes to polyspermy blocking and efficient seed production, is largely different from animal chemotaxis of many sperms to one egg. However, the functional mechanisms underlying the directional cues and polytubey blocks in the depths of the pistil remain unknown. Here, we develop a two-photon live imaging method to directly observe pollen tube guidance in the pistil of Arabidopsis thaliana, clarifying signaling and cellular behaviors in the one-to-one guidance. Ovules are suggested to emit multiple signals for pollen tubes, including an integument-dependent directional signal that reaches the inner surface of the septum and adhesion signals for emerged pollen tubes on the septum. Not only FERONIA in the septum but ovular gametophytic FERONIA and LORELEI, as well as FERONIA- and LORELEI-independent repulsion signal, are involved in polytubey blocks on the ovular funiculus. However, these funicular blocks are not strictly maintained in the first 45 min, explaining previous reports of polyspermy in flowering plants.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| | - Daigo Sakakibara
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Ikuma Kaneshiro
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Takuya T Nagae
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Kurihara
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bukyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Luo C, Akhtar M, Min W, Bai X, Ma T, Liu C. Domain of unknown function (DUF) proteins in plants: function and perspective. PROTOPLASMA 2024; 261:397-410. [PMID: 38158398 DOI: 10.1007/s00709-023-01917-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Domains of unknown function (DUFs), which are deposited in the protein family database (Pfam), are protein domains with conserved amino acid sequences and uncharacterized functions. Proteins with the same DUF were classified as DUF families. Although DUF families are generally not essential for the survival of plants, they play roles in plant development and adaptation. Characterizing the functions of DUFs is important for deciphering biological puzzles. DUFs were generally studied through forward and reverse genetics. Some novelty approaches, especially the determination of crystal structures and interaction partners of the DUFs, should attract more attention. This review described the identification of DUF genes by genome-wide and transcriptome-wide analyses, summarized the function of DUF-containing proteins, and addressed the prospects for future studies in DUFs in plants.
Collapse
Affiliation(s)
- Chengke Luo
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Maryam Akhtar
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Weifang Min
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xiaorong Bai
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Tianli Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
10
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Ma Y, Johnson K. Arabinogalactan proteins - Multifunctional glycoproteins of the plant cell wall. Cell Surf 2023; 9:100102. [PMID: 36873729 PMCID: PMC9974416 DOI: 10.1016/j.tcsw.2023.100102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Arabinogalactan-proteins (AGPs) are cell wall glycoproteins that make up a relatively small component of the extracellular matrix of plants yet have significant influence on wall mechanics and signalling. Present in walls of algae, bryophytes and angiosperms, AGPs have a wide range of functional roles, from signalling, cell expansion and division, embryogenesis, responses to abiotic and biotic stress, plant growth and development. AGPs interact with and influence wall matrix components and plasma membrane proteins to regulate developmental pathways and growth responses, yet the exact mechanisms remain elusive. Comprising a large gene family that is highly diverse, from minimally to highly glycosylated members, varying in their glycan heterogeneity, can be plasma membrane bound or secreted into the extracellular matrix, have members that are highly tissue specific to those with constitutive expression; all these factors have made it extremely challenging to categorise AGPs many qualities and roles. Here we attempt to define some key features of AGPs and their biological functions.
Collapse
Affiliation(s)
- Yingxuan Ma
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Kim Johnson
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Sciences, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
13
|
Su S, Zhou X, Higashiyama T. Whole-mount RNA in situ hybridization technique in Torenia ovules. PLANT REPRODUCTION 2023; 36:139-146. [PMID: 36543964 DOI: 10.1007/s00497-022-00455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/12/2022] [Indexed: 06/09/2023]
Abstract
The expression pattern of an interested gene at a cellular level provides strong evidence for its functions. RNA in situ hybridization has been proved to be a powerful tool in detecting the spatial-temporal expression pattern of a gene in various organisms. However, classical RNA in situ hybridization (ISH) technique is time-consuming and requires sophisticated sectioning skills. Therefore, we developed a method for whole-mount in situ hybridization (WISH) on ovules of Torenia fournieri, which is a model species in the study of plant reproduction. T. fournieri possesses ovules with protruding embryo sacs, making it easy to be observed and imaged through simple manipulation. To determine the effect of classical ISH and our newly established WISH, we detected the expression of a D-class gene, TfSTK3, using both methods. The expression patterns of TfSTK3 are similar in classical ISH and WISH, confirming reliability of the WISH method. Compared with WISH, classical ISH always leads to distorted embryo sacs, hence difficult to distinguish signals within the female gametophyte. To understand whether our WISH protocol also works well in detecting genes expressed within embryo sacs, we further examined the expression of a synergid-enriched candidate, TfPMEI1, and clearly observed specific signals within two synergid cells. To summarize, our WISH technique allows to visualize gene expression patterns in ovules of T. fournieri within one week and will benefit the field of plant reproduction in the future.
Collapse
Affiliation(s)
- Shihao Su
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xuan Zhou
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bukyo-Ku, Tokyo, 113-0033, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
14
|
Ma Y, Shafee T, Mudiyanselage AM, Ratcliffe J, MacMillan CP, Mansfield SD, Bacic A, Johnson KL. Distinct functions of FASCILIN-LIKE ARABINOGALACTAN PROTEINS relate to domain structure. PLANT PHYSIOLOGY 2023; 192:119-132. [PMID: 36797772 PMCID: PMC10152678 DOI: 10.1093/plphys/kiad097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
The role of glycoproteins as key cell surface molecules during development and stress is well established; yet, the relationship between their structural features and functional mechanisms is poorly defined. FASCICLIN-LIKE ARABINOGALACTAN PROTEINs (FLAs), which impact plant growth and development, are an excellent example of a glycoprotein family with a complex multidomain structure. FLAs combine globular fasciclin-like (FAS1) domains with regions that are intrinsically disordered and contain glycomotifs for directing the addition of O-linked arabinogalactan (AG) glycans. Additional posttranslational modifications on FLAs include N-linked glycans in the FAS1 domains, a cleaved signal peptide at the N terminus, and often a glycosylphosphatidylinositol (GPI) anchor signal sequence at the C terminus. The roles of glycosylation, the GPI anchor, and FAS1 domain functions in the polysaccharide-rich extracellular matrix of plants remain unclear, as do the relationships between them. In this study, we examined sequence-structure-function relationships of Arabidopsis (Arabidopsis thaliana) FLA11, demonstrated to have roles in secondary cell wall (SCW) development, by introducing domain mutations and functional specialization through domain swaps with FLA3 and FLA12. We identified FAS1 domains as essential for FLA function, differentiating FLA11/FLA12, with roles in SCW development, from FLA3, specific to flowers and involved in pollen development. The GPI anchor and AG glycosylation co-regulate the cell surface location and release of FLAs into cell walls. The AG glycomotif sequence closest to the GPI anchor (AG2) is a major feature differentiating FLA11 from FLA12. The results of our study show that the multidomain structure of different FLAs influences their subcellular location and biological functions during plant development.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Thomas Shafee
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Asha M Mudiyanselage
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Colleen P MacMillan
- CSIRO, Agriculture and Food, CSIRO Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China
| | - Kim L Johnson
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China
| |
Collapse
|
15
|
Ramming A, Kappel C, Kanaoka MM, Higashiyama T, Lenhard M. Poly(A) polymerase 1 contributes to competence acquisition of pollen tubes growing through the style in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:651-667. [PMID: 36811355 DOI: 10.1111/tpj.16162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.
Collapse
Affiliation(s)
- Anna Ramming
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Christian Kappel
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Masahiro M Kanaoka
- Prefectural University of Hiroshima, Faculty of Life and Environmental Sciences, Faculty of Bioresource Sciences, Shobara, Hiroshima, Japan
| | - Tetsuya Higashiyama
- The University of Tokyo Graduate School of Science, Faculty of Science, Bunkyo-ku, Tokyo, Japan
| | - Michael Lenhard
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
16
|
Moreira D, Kaur D, Pereira AM, Held MA, Showalter AM, Coimbra S. Type II arabinogalactans initiated by hydroxyproline-O-galactosyltransferases play important roles in pollen-pistil interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:371-389. [PMID: 36775989 DOI: 10.1111/tpj.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Ana Marta Pereira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Michael A Held
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
17
|
Pollen tube emergence is mediated by ovary-expressed ALCATRAZ in cucumber. Nat Commun 2023; 14:258. [PMID: 36650145 PMCID: PMC9845374 DOI: 10.1038/s41467-023-35936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Pollen tube guidance within female tissues of flowering plants can be divided into preovular guidance, ovular guidance and a connecting stage called pollen tube emergence. As yet, no female factor has been identified to positively regulate this transition process. In this study, we show that an ovary-expressed bHLH transcription factor Cucumis sativus ALCATRAZ (CsALC) functions in pollen tube emergence in cucumber. CsALC knockout mutants showed diminished pollen tube emergence, extremely reduced entry into ovules, and a 95% reduction in female fertility. Further examination showed two rapid alkalinization factors CsRALF4 and CsRALF19 were less expressed in Csalc ovaries compared to WT. Besides the loss of male fertility derived from precocious pollen tube rupture as in Arabidopsis, Csralf4 Csralf19 double mutants exhibited a 60% decrease in female fertility due to reduced pollen tube distribution and decreased ovule targeting efficiency. In brief, CsALC regulates female fertility and promotes CsRALF4/19 expression in the ovary during pollen tube guidance in cucumber.
Collapse
|
18
|
Yu TY, Xu CX, Li WJ, Wang B. Peptides/receptors signaling during plant fertilization. FRONTIERS IN PLANT SCIENCE 2022; 13:1090836. [PMID: 36589119 PMCID: PMC9797866 DOI: 10.3389/fpls.2022.1090836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Double fertilization is a unique and particularly complicated process for the generation alternation of angiosperms. Sperm cells of angiosperms lose the motility compared with that of gymnosperms. The sperm cells are passively carried and transported by the pollen tube for a long journey before targeting the ovule. Two sperm cells are released at the cleft between the egg and the central cell and fused with two female gametes to produce a zygote and endosperm, respectively, to accomplish the so-called double fertilization process. In this process, extensive communication and interaction occur between the male (pollen or pollen tube) and the female (ovule). It is suggested that small peptides and receptor kinases play critical roles in orchestrating this cell-cell communication. Here, we illuminate the understanding of phases in the process, such as pollen-stigma recognition, the hydration and germination of pollen grains, the growth, guidance, and rupture of tubes, the release of sperm cells, and the fusion of gametes, by reviewing increasing data recently. The roles of peptides and receptor kinases in signaling mechanisms underlying cell-cell communication were focused on, and directions of future studies were perspected in this review.
Collapse
|
19
|
Moreira D, Lopes AL, Silva J, Ferreira MJ, Pinto SC, Mendes S, Pereira LG, Coimbra S, Pereira AM. New insights on the expression patterns of specific Arabinogalactan proteins in reproductive tissues of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1083098. [PMID: 36531351 PMCID: PMC9755587 DOI: 10.3389/fpls.2022.1083098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 05/25/2023]
Abstract
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high proportion of carbohydrates, widely distributed in the plant kingdom and ubiquitously present in land plants. AGPs have long been suggested to play important roles in plant reproduction and there is already evidence that specific glycoproteins are essential for male and female gametophyte development, pollen tube growth and guidance, and successful fertilization. However, the functions of many of these proteins have yet to be uncovered, mainly due to the difficulty to study individual AGPs. In this work, we generated molecular tools to analyze the expression patterns of a subgroup of individual AGPs in different Arabidopsis tissues, focusing on reproductive processes. This study focused on six AGPs: four classical AGPs (AGP7, AGP25, AGP26, AGP27), one AG peptide (AGP24) and one chimeric AGP (AGP31). These AGPs were first selected based on their predicted expression patterns along the reproductive tissues from available RNA-seq data. Promoter analysis using β-glucuronidase fusions and qPCR in different Arabidopsis tissues allowed to confirm these predictions. AGP7 was mainly expressed in female reproductive tissues, more precisely in the style, funiculus, and integuments near the micropyle region. AGP25 was found to be expressed in the style, septum and ovules with higher expression in the chalaza and funiculus tissues. AGP26 was present in the ovules and pistil valves. AGP27 was expressed in the transmitting tissue, septum and funiculus during seed development. AGP24 was expressed in pollen grains, in mature embryo sacs, with highest expression at the chalazal pole and in the micropyle. AGP31 was expressed in the mature embryo sac with highest expression at the chalaza and, occasionally, in the micropyle. For all these AGPs a co-expression analysis was performed providing new hints on its possible functions. This work confirmed the detection in Arabidopsis male and female tissues of six AGPs never studied before regarding the reproductive process. These results provide novel evidence on the possible involvement of specific AGPs in plant reproduction, as strong candidates to participate in pollen-pistil interactions in an active way, which is significant for this field of study.
Collapse
Affiliation(s)
- Diana Moreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Lúcia Lopes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute – BioISI, Porto, Portugal
| | - Jessy Silva
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
- Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria João Ferreira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Cristina Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Sara Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Luís Gustavo Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- GreenUPorto - Sustainable Agrifood Production Research Centre, Universidade do Porto, Porto, Portugal
| | - Sílvia Coimbra
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Ana Marta Pereira
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Laboratório Associado para a Química Verde (LAQV) Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Kikuchi A, Hara K, Yoshimi Y, Soga K, Takahashi D, Kotake T. In vivo structural modification of type II arabinogalactans with fungal endo-β-1, 6-galactanase in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1010492. [PMID: 36438144 PMCID: PMC9682044 DOI: 10.3389/fpls.2022.1010492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Arabinogalactan-proteins (AGPs) are mysterious extracellular glycoproteins in plants. Although AGPs are highly conserved, their molecular functions remain obscure. The physiological importance of AGPs has been extensively demonstrated with β-Yariv reagent, which specifically binds to AGPs and upon introduction into cells, causes various deleterious effects including growth inhibition and programmed cell death. However, structural features of AGPs that determine their functions have not been identified with β-Yariv reagent. It is known that AGPs are decorated with large type II arabinogalactans (AGs), which are necessary for their functions. Type II AGs consist of a β-1,3-galactan main chain and β-1,6-galactan side chains with auxiliary sugar residues such as L-arabinose and 4-O-methyl-glucuronic acid. While most side chains are short, long side chains such as β-1,6-galactohexaose (β-1,6-Gal6) also exist in type II AGs. To gain insight into the structures important for AGP functions, in vivo structural modification of β-1,6-galactan side chains was performed in Arabidopsis. We generated transgenic Arabidopsis plants expressing a fungal endo-β-1,6-galactanase, Tv6GAL, that degrades long side chains specifically under the control of dexamethasone (Dex). Two of 6 transgenic lines obtained showed more than 40 times activity of endo-β-1,6-galactanase when treated with Dex. Structural analysis indicated that long side chains such as β-1,6-Gal5 and β-1,6-Gal6 were significantly reduced compared to wild-type plants. Tv6GAL induction caused retarded growth of seedlings, which had a reduced amount of cellulose in cell walls. These results suggest that long β-1,6-galactan side chains are necessary for normal cellulose synthesis and/or deposition as their defect affects cell growth in plants.
Collapse
Affiliation(s)
- Aina Kikuchi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Katsuya Hara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yoshihisa Yoshimi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kouichi Soga
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Green Bioscience Research Center, Saitama University, Saitama, Japan
| |
Collapse
|
21
|
Přerovská T, Jindřichová B, Henke S, Yvin JC, Ferrieres V, Burketová L, Lipovová P, Nguema-Ona E. Arabinogalactan Protein-Like Proteins From Ulva lactuca Activate Immune Responses and Plant Resistance in an Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:893858. [PMID: 35668790 PMCID: PMC9164130 DOI: 10.3389/fpls.2022.893858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.
Collapse
Affiliation(s)
- Tereza Přerovská
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Barbora Jindřichová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Svatopluk Henke
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jean-Claude Yvin
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| | - Vincent Ferrieres
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Eric Nguema-Ona
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| |
Collapse
|
22
|
ROS homeostasis mediated by MPK4 and SUMM2 determines synergid cell death. Nat Commun 2022; 13:1746. [PMID: 35365652 PMCID: PMC8976062 DOI: 10.1038/s41467-022-29373-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
Sexual plant reproduction depends on the attraction of sperm-cell delivering pollen tubes (PT) by two synergids, followed by their programmed cell death (PCD) in Arabidopsis. Disruption of the mitogen-activated protein kinase 4 (MPK4) by pathogenic effectors activates the resistance protein (R) SUMM2-mediated immunity and cell death. Here we show that synergid preservation and reactive oxygen species (ROS) homeostasis are intimately linked and maintained by MPK4. In mpk4, ROS levels are increased and synergids prematurely undergo PCD before PT-reception. However, ROS scavengers and the disruption of SUMM2, in mpk4, restore ROS homeostasis, synergid maintenance and PT perception, demonstrating that the guardian of MPK4, SUMM2, triggers synergid-PCD. In mpk4/summ2, PTs show a feronia-like overgrowth phenotype. Our results show that immunity-associated PCD and synergid cell death during plant reproduction are regulated by MPK4 underscoring an underlying molecular mechanism for the suppression of plant reproduction during systemic R-mediated immunity. Synergid cells undergo programmed cell death following pollen tube reception and successful fertilization. Here the authors show that premature synergid cell death is prevented by the mitogen activated protein kinase MPK4 and the R protein SUMM2 which maintain ROS homeostasis in Arabidopsis.
Collapse
|
23
|
Ruprecht C, Pfrengle F. Synthetic Plant Glycan Microarrays as Tools for Plant Biology. Methods Mol Biol 2022; 2460:115-125. [PMID: 34972933 DOI: 10.1007/978-1-0716-2148-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemically synthesized plant oligosaccharides have recently evolved as powerful molecular tools for plant cell wall biology. Synthetic plant glycan microarrays equipped with these oligosaccharides enable high-throughput analyses of glycan-binding proteins and carbohydrate-active enzymes. To produce these glycan microarrays, small amounts of glycan solution are printed on suitable surfaces for covalent or non-covalent immobilization. Synthetic plant glycan microarrays have been used for example to map the epitopes of plant cell wall-directed antibodies, to characterize glycosyl hydrolases and glycosyl transferases, and to analyze lectin binding. In this chapter, detailed experimental procedures for the production of synthetic glycan microarrays and their use for the characterization of cell wall glycan-directed antibodies are described.
Collapse
Affiliation(s)
- Colin Ruprecht
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Identification and Analysis of Genes Involved in Double Fertilization in Rice. Int J Mol Sci 2021; 22:ijms222312850. [PMID: 34884656 PMCID: PMC8657449 DOI: 10.3390/ijms222312850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Double fertilization is a key determinant of grain yield, and the failure of fertilization during hybridization is one important reason for reproductive isolation. Therefore, fertilization has a very important role in the production of high-yield and well-quality hybrid of rice. Here, we used RNA sequencing technology to study the change of the transcriptome during double fertilization with the help of the mutant fertilization barrier (feb) that failed to finish fertilization process and led to seed abortion. The results showed that 1669 genes were related to the guided growth of pollen tubes, 332 genes were involved in the recognition and fusion of the male–female gametes, and 430 genes were associated with zygote formation and early free endosperm nuclear division. Among them, the genes related to carbohydrate metabolism; signal transduction pathways were enriched in the guided growth of pollen tubes, the genes involved in the photosynthesis; fatty acid synthesis pathways were activated by the recognition and fusion of the male–female gametes; and the cell cycle-related genes might play an essential role in zygote formation and early endosperm nuclear division. Furthermore, among the 1669 pollen tube-related genes, it was found that 7 arabinogalactan proteins (AGPs), 1 cysteine-rich peptide (CRP), and 15 receptor-like kinases (RLKs) were specifically expressed in anther, while 2 AGPs, 7 CRPs, and 5 RLKs in pistil, showing obvious unequal distribution which implied they might play different roles in anther and pistil during fertilization. These studies laid a solid foundation for revealing double fertilization mechanism of rice and for the follow-up investigation.
Collapse
|
25
|
Signaling at Physical Barriers during Pollen-Pistil Interactions. Int J Mol Sci 2021; 22:ijms222212230. [PMID: 34830110 PMCID: PMC8622735 DOI: 10.3390/ijms222212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.
Collapse
|
26
|
Yanagisawa N, Kozgunova E, Grossmann G, Geitmann A, Higashiyama T. Microfluidics-Based Bioassays and Imaging of Plant Cells. PLANT & CELL PHYSIOLOGY 2021; 62:1239-1250. [PMID: 34027549 PMCID: PMC8579190 DOI: 10.1093/pcp/pcab067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 05/23/2021] [Indexed: 05/03/2023]
Abstract
Many plant processes occur in the context of and in interaction with a surrounding matrix such as soil (e.g. root growth and root-microbe interactions) or surrounding tissues (e.g. pollen tube growth through the pistil), making it difficult to study them with high-resolution optical microscopy. Over the past decade, microfabrication techniques have been developed to produce experimental systems that allow researchers to examine cell behavior in microstructured environments that mimic geometrical, physical and/or chemical aspects of the natural growth matrices and that cannot be generated using traditional agar plate assays. These microfabricated environments offer considerable design flexibility as well as the transparency required for high-resolution, light-based microscopy. In addition, microfluidic platforms have been used for various types of bioassays, including cellular force assays, chemoattraction assays and electrotropism assays. Here, we review the recent use of microfluidic devices to study plant cells and organs, including plant roots, root hairs, moss protonemata and pollen tubes. The increasing adoption of microfabrication techniques by the plant science community may transform our approaches to investigating how individual plant cells sense and respond to changes in the physical and chemical environment.
Collapse
Affiliation(s)
- Naoki Yanagisawa
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Elena Kozgunova
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Schänzlestr. 1, Freiburg, Baden-Württemberg 79104, Germany
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Québec H9X 3V9, Canada
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Laggoun F, Ali N, Tourneur S, Prudent G, Gügi B, Kiefer-Meyer MC, Mareck A, Cruz F, Yvin JC, Nguema-Ona E, Mollet JC, Jamois F, Lehner A. Two Carbohydrate-Based Natural Extracts Stimulate in vitro Pollen Germination and Pollen Tube Growth of Tomato Under Cold Temperatures. FRONTIERS IN PLANT SCIENCE 2021; 12:552515. [PMID: 34691089 PMCID: PMC8529017 DOI: 10.3389/fpls.2021.552515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
To date, it is widely accepted by the scientific community that many agricultural regions will experience more extreme temperature fluctuations. These stresses will undoubtedly impact crop production, particularly fruit and seed yields. In fact, pollination is considered as one of the most temperature-sensitive phases of plant development and until now, except for the time-consuming and costly processes of genetic breeding, there is no immediate alternative to address this issue. In this work, we used a multidisciplinary approach using physiological, biochemical, and molecular techniques for studying the effects of two carbohydrate-based natural activators on in vitro tomato pollen germination and pollen tube growth cultured in vitro under cold conditions. Under mild and strong cold temperatures, these two carbohydrate-based compounds significantly enhanced pollen germination and pollen tube growth. The two biostimulants did not induce significant changes in the classical molecular markers implicated in pollen tube growth. Neither the number of callose plugs nor the CALLOSE SYNTHASE genes expression were significantly different between the control and the biostimulated pollen tubes when pollens were cultivated under cold conditions. PECTIN METHYLESTERASE (PME) activities were also similar but a basic PME isoform was not produced or inactive in pollen grown at 8°C. Nevertheless, NADPH oxidase (RBOH) gene expression was correlated with a higher number of viable pollen tubes in biostimulated pollen tubes compared to the control. Our results showed that the two carbohydrate-based products were able to reduce in vitro the effect of cold temperatures on tomato pollen tube growth and at least for one of them to modulate reactive oxygen species production.
Collapse
Affiliation(s)
- Ferdousse Laggoun
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
- Sanofi Pasteur, Val-de-Reuil, France
| | - Nusrat Ali
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Sabine Tourneur
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
- Laboratoire de Biologie et Pathologie Végétales, Université de Nantes, Université Bretagne Loire, Nantes, France
| | - Grégoire Prudent
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Bruno Gügi
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Marie-Christine Kiefer-Meyer
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Alain Mareck
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Florence Cruz
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Jean-Claude Yvin
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Eric Nguema-Ona
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Jean-Claude Mollet
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| | - Frank Jamois
- Centre Mondial de l’Innovation, Laboratoire Nutrition Végétale, Groupe Roullier, Saint-Malo, France
| | - Arnaud Lehner
- UNIROUEN, Normandie Université, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, SFR NORVEGE FED 4277, Carnot I2C, IRIB, Rouen, France
| |
Collapse
|
28
|
Sinha R, Fritschi FB, Zandalinas SI, Mittler R. The impact of stress combination on reproductive processes in crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111007. [PMID: 34482910 DOI: 10.1016/j.plantsci.2021.111007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Historically, extended droughts combined with heat waves caused severe reductions in crop yields estimated at billions of dollars annually. Because global warming and climate change are driving an increase in the frequency and intensity of combined water-deficit and heat stress episodes, understanding how these episodes impact yield is critical for our efforts to develop climate change-resilient crops. Recent studies demonstrated that a combination of water-deficit and heat stress exacerbates the impacts of water-deficit or heat stress on reproductive processes of different cereals and legumes, directly impacting grain production. These studies identified several different mechanisms potentially underlying the effects of stress combination on anthers, pollen, and stigma development and function, as well as fertilization. Here we review some of these findings focusing on unbalanced reactive oxygen accumulation, altered sugar concentrations, and conflicting functions of different hormones, as contributing to the reduction in yield during a combination of water-deficit and heat stress. Future studies focused on the effects of water-deficit and heat stress combination on reproduction of different crops are likely to unravel additional mechanisms, as well as reveal novel ways to develop stress combination-resilient crops. These could mitigate some of the potentially devastating impacts of this stress combination on agriculture.
Collapse
Affiliation(s)
- Ranjita Sinha
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Felix B Fritschi
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA.
| |
Collapse
|
29
|
Kiyono H, Katano K, Suzuki N. Links between Regulatory Systems of ROS and Carbohydrates in Reproductive Development. PLANTS 2021; 10:plants10081652. [PMID: 34451697 PMCID: PMC8401158 DOI: 10.3390/plants10081652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022]
Abstract
To thrive on the earth, highly sophisticated systems to finely control reproductive development have been evolved in plants. In addition, deciphering the mechanisms underlying the reproductive development has been considered as a main research avenue because it leads to the improvement of the crop yields to fulfill the huge demand of foods for the growing world population. Numerous studies revealed the significance of ROS regulatory systems and carbohydrate transports and metabolisms in the regulation of various processes of reproductive development. However, it is poorly understood how these mechanisms function together in reproductive tissues. In this review, we discuss mode of coordination and integration between ROS regulatory systems and carbohydrate transports and metabolisms underlying reproductive development based on the hitherto findings. We then propose three mechanisms as key players that integrate ROS and carbohydrate regulatory systems. These include ROS-dependent programmed cell death (PCD), mitochondrial and respiratory metabolisms as sources of ROS and energy, and functions of arabinogalactan proteins (AGPs). It is likely that these key mechanisms govern the various signals involved in the sequential events required for proper seed production.
Collapse
Affiliation(s)
- Hanako Kiyono
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
| | - Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Correspondence: ; Tel.: +81-3-3238-3884
| |
Collapse
|
30
|
Takeuchi H. The role of diverse LURE-type cysteine-rich peptides as signaling molecules in plant reproduction. Peptides 2021; 142:170572. [PMID: 34004266 DOI: 10.1016/j.peptides.2021.170572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023]
Abstract
In angiosperm sexual reproduction, the male pollen tube undergoes a series of interactions with female tissues. For efficient growth and precise guidance, the pollen tube perceives extracellular ligands. In recent decades, various types of secreted cysteine-rich peptides (CRPs) have been identified as peptide ligands that regulate diverse angiosperm reproduction processes, including pollen tube germination, growth, guidance, and rupture. Notably, in two distant core eudicot plants, multiple LURE-type CRPs were found to be secreted from egg-accompanying synergid cells, and these CRPs act as a cocktail of pollen tube attractants for the final step of pollen tube guidance. LURE-type CRPs have species-preferential activity, even among close relatives, and exhibit remarkably divergent molecular evolution with conserved cysteine frameworks, demonstrating that they play a key role in species recognition in pollen tube guidance. In this review, I focus on "reproductive CRPs," particularly LURE-type CRPs, which underlie common but species-specific mechanisms in angiosperm sexual reproduction, and discuss their action, functional regulation, receptors, and evolution.
Collapse
Affiliation(s)
- Hidenori Takeuchi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
31
|
Tsai AYL, Iwamoto Y, Tsumuraya Y, Oota M, Konishi T, Ito S, Kotake T, Ishikawa H, Sawa S. Root-knot nematode chemotaxis is positively regulated by l-galactose sidechains of mucilage carbohydrate rhamnogalacturonan-I. SCIENCE ADVANCES 2021; 7:eabh4182. [PMID: 34215589 PMCID: PMC11060035 DOI: 10.1126/sciadv.abh4182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Root-knot nematodes (RKNs) are plant parasites and major agricultural pests. RKNs are thought to locate hosts through chemotaxis by sensing host-secreted chemoattractants; however, the structures and properties of these attractants are not well understood. Here, we describe a previously unknown RKN attractant from flaxseed mucilage that enhances infection of Arabidopsis and tomato, which resembles the pectic polysaccharide rhamnogalacturonan-I (RG-I). Fucose and galactose sidechains of the purified attractant were found to be required for attractant activity. Furthermore, the disaccharide α-l-galactosyl-1,3-l-rhamnose, which forms the linkage between the RG-I backbone and galactose sidechains of the purified attractant, was sufficient to attract RKN. These results show that the α-l-galactosyl-1,3-l-rhamnose linkage in the purified attractant from flaxseed mucilage is essential for RKN attraction. The present work also suggests that nematodes can detect environmental chemicals with high specificity, such as the presence of chiral centers and hydroxyl groups.
Collapse
Affiliation(s)
- Allen Yi-Lun Tsai
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Center for Agricultural and Environmental Biology, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yuka Iwamoto
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Morihiro Oota
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Teruko Konishi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Hayato Ishikawa
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinichiro Sawa
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.
- International Research Center for Agricultural and Environmental Biology, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
32
|
Ajayi OO, Held MA, Showalter AM. Three β-Glucuronosyltransferase Genes Involved in Arabinogalactan Biosynthesis Function in Arabidopsis Growth and Development. PLANTS 2021; 10:plants10061172. [PMID: 34207602 PMCID: PMC8227792 DOI: 10.3390/plants10061172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
Arabinogalactan proteins (AGPs) contain arabinogalactan (AG) polysaccharides that are biologically relevant to plant growth processes. Here, the biochemical and physiological roles of three Golgi localized β-glucuronosyltransferase genes (GLCAT14A, GLCAT14B and GLCAT14C) in Arabidopsis thaliana, responsible for the addition of glucuronic acid to AG chains, were further investigated using single, double and triple glcat14 mutant plants. These proteins were localized to the Golgi apparatus when transiently expressed in Nicotiana benthamiana. Sugar analysis of AGP extracts from Arabidopsis stem, leaf and siliques showed a consistent reduction in glucuronic acid in glcat14 mutants relative to wild type, with concomitant effects resulting in tissue-specific alterations, especially in arabinose and galactose sugars. Although we observed defects in trichome branching in glca14a/b and glca14a/b/c mutants, scanning electron microscope analysis/energy dispersive microanalysis (SEM/EDX) showed no difference in the calcium content of trichomes in these mutants relative to wild type. Immunoblot analyses of the stem and leaf showed a reduction in AGPs as detected with the LM2 antibody in glcat14a/b and glcat14a/b/c mutants relative to wild type. The current work exemplifies the possibility of conducting structure-function assessment of cell wall biosynthetic genes to identify their physiological roles in plant growth and development.
Collapse
Affiliation(s)
- Oyeyemi O. Ajayi
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA;
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA;
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA;
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA;
- Correspondence:
| |
Collapse
|
33
|
Yao H, Scornet D, Jam M, Hervé C, Potin P, Oliveira Correia L, Coelho SM, Cock JM. Biochemical characteristics of a diffusible factor that induces gametophyte to sporophyte switching in the brown alga Ectocarpus. JOURNAL OF PHYCOLOGY 2021; 57:742-753. [PMID: 33432598 DOI: 10.1111/jpy.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The haploid-diploid life cycle of the filamentous brown alga Ectocarpus involves alternation between two independent and morphologically distinct multicellular generations, the sporophyte and the gametophyte. Deployment of the sporophyte developmental program requires two TALE homeodomain transcription factors OUROBOROS and SAMSARA. In addition, the sporophyte generation has been shown to secrete a diffusible factor that can induce uni-spores to switch from the gametophyte to the sporophyte developmental program. Here, we determine optimal conditions for production, storage, and detection of this diffusible factor and show that it is a heat-resistant, high molecular weight molecule. Based on a combined approach involving proteomic analysis of sporophyte-conditioned medium and the use of biochemical tools to characterize arabinogalactan proteins, we present evidence that sporophyte-conditioned medium contains AGP epitopes and suggest that the diffusible factor may belong to this family of glycoproteins.
Collapse
Affiliation(s)
- Haiqin Yao
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Delphine Scornet
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Murielle Jam
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Marine Glycobiology, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Cécile Hervé
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Marine Glycobiology, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Philippe Potin
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Algal Biology and Environmental Interactions, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Lydie Oliveira Correia
- PAPPSO, INRA, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Susana M Coelho
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
34
|
Lara-Mondragón CM, MacAlister CA. Arabinogalactan glycoprotein dynamics during the progamic phase in the tomato pistil. PLANT REPRODUCTION 2021; 34:131-148. [PMID: 33860833 DOI: 10.1007/s00497-021-00408-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pistil AGPs display dynamic localization patterns in response to fertilization in tomato. SlyFLA9 (Solyc07g065540.1) is a chimeric Fasciclin-like AGP with enriched expression in the ovary, suggesting a potential function during pollen-pistil interaction. During fertilization, the male gametes are delivered by pollen tubes to receptive ovules, deeply embedded in the sporophytic tissues of the pistil. Arabinogalactan glycoproteins (AGPs) are a diverse family of highly glycosylated, secreted proteins which have been widely implicated in plant reproduction, particularly within the pistil. Though tomato (Solanum lycopersicum) is an important crop requiring successful fertilization for production, the molecular basis of this event remains understudied. Here we explore the spatiotemporal localization of AGPs in the mature tomato pistil before and after fertilization. Using histological techniques to detect AGP sugar moieties, we found that accumulation of AGPs correlated with the maturation of the stigma and we identified an AGP subpopulation restricted to the micropyle that was no longer visible upon fertilization. To identify candidate pistil AGP genes, we used an RNA-sequencing approach to catalog gene expression in functionally distinct subsections of the mature tomato pistil (the stigma, apical and basal style and ovary) as well as pollen and pollen tubes. Of 161 predicted AGP and AGP-like proteins encoded in the tomato genome, we identified four genes with specifically enriched expression in reproductive tissues. We further validated expression of two of these, a Fasciclin-like AGP (SlyFLA9, Solyc07g065540.1) and a novel hybrid AGP (SlyHAE, Solyc09g075580.1). Using in situ hybridization, we also found SlyFLA9 was expressed in the integuments of the ovule and the pericarp. Additionally, differential expression analyses of the pistil transcriptome revealed previously unreported genes with enriched expression in each subsection of the mature pistil, setting the foundation for future functional studies.
Collapse
Affiliation(s)
| | - Cora A MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Tonnabel J, David P, Janicke T, Lehner A, Mollet JC, Pannell JR, Dufay M. The Scope for Postmating Sexual Selection in Plants. Trends Ecol Evol 2021; 36:556-567. [PMID: 33775429 DOI: 10.1016/j.tree.2021.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/27/2022]
Abstract
Sexual selection is known to shape plant traits that affect access to mates during the pollination phase, but it is less well understood to what extent it affects traits relevant to interactions between pollen and pistils after pollination. This is surprising, because both of the two key modes of sexual selection, male-male competition and female choice, could plausibly operate during pollen-pistil interactions where physical male-female contact occurs. Here, we consider how the key processes of sexual selection might affect traits involved in pollen-pistil interactions, including 'Fisherian runaway' and 'good-genes' models. We review aspects of the molecular and cellular biology of pollen-pistil interactions on which sexual selection could act and point to research that is needed to investigate them.
Collapse
Affiliation(s)
- Jeanne Tonnabel
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France.
| | - Patrice David
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Tim Janicke
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France; Applied Zoology, Technical University Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Arnaud Lehner
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mathilde Dufay
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| |
Collapse
|
36
|
Płachno BJ, Kapusta M, Świątek P, Banaś K, Miranda VFO, Bogucka-Kocka A. Spatio-Temporal Distribution of Cell Wall Components in the Placentas, Ovules and Female Gametophytes of Utricularia during Pollination. Int J Mol Sci 2021; 22:ijms22115622. [PMID: 34070693 PMCID: PMC8199428 DOI: 10.3390/ijms22115622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/04/2023] Open
Abstract
In most angiosperms, the female gametophyte is hidden in the mother tissues and the pollen tube enters the ovule via a micropylar canal. The mother tissues play an essential role in the pollen tube guidance. However, in Utricularia, the female gametophyte surpasses the entire micropylar canal and extends beyond the limit of the integument. The female gametophyte then invades the placenta and a part of the central cell has direct contact with the ovary chamber. To date, information about the role of the placenta and integument in pollen tube guidance in Utricularia, which have extra-ovular female gametophytes, has been lacking. The aim of this study was to evaluate the role of the placenta, central cell and integument in pollen tube pollen tube guidance in Utricularia nelumbifolia Gardner and Utricularia humboldtii R.H. Schomb. by studying the production of arabinogalactan proteins. It was also determined whether the production of the arabinogalactan proteins is dependent on pollination in Utricularia. In both of the examined species, arabinogalactan proteins (AGPs) were observed in the placenta (epidermis and nutritive tissue), ovule (integument, chalaza), and female gametophyte of both pollinated and unpollinated flowers, which means that the production of AGPs is independent of pollination; however, the production of some AGPs was lower after fertilization. There were some differences in the production of AGPs between the examined species. The occurrence of AGPs in the placental epidermis and nutritive tissue suggests that they function as an obturator. The production of some AGPs in the ovular tissues (nucellus, integument) was independent of the presence of a mature embryo sac.
Collapse
Affiliation(s)
- Bartosz Jan Płachno
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
- Correspondence:
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Świątek
- Faculty of Natural Sciences, Biotechnology and Environmental Protection, Institute of Biology, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| | - Krzysztof Banaś
- Department of Plant Ecology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Vitor F. O. Miranda
- Laboratory of Plant Systematics, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal CEP 14884-900, SP, Brazil;
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
37
|
Paving the Way for Fertilization: The Role of the Transmitting Tract. Int J Mol Sci 2021; 22:ijms22052603. [PMID: 33807566 PMCID: PMC7961442 DOI: 10.3390/ijms22052603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023] Open
Abstract
Angiosperm reproduction relies on the precise growth of the pollen tube through different pistil tissues carrying two sperm cells into the ovules’ embryo sac, where they fuse with the egg and the central cell to accomplish double fertilization and ultimately initiate seed development. A network of intrinsic and tightly regulated communication and signaling cascades, which mediate continuous interactions between the pollen tube and the sporophytic and gametophytic female tissues, ensures the fast and meticulous growth of pollen tubes along the pistil, until it reaches the ovule embryo sac. Most of the pollen tube growth occurs in a specialized tissue—the transmitting tract—connecting the stigma, the style, and the ovary. This tissue is composed of highly secretory cells responsible for producing an extensive extracellular matrix. This multifaceted matrix is proposed to support and provide nutrition and adhesion for pollen tube growth and guidance. Insights pertaining to the mechanisms that underlie these processes remain sparse due to the difficulty of accessing and manipulating the female sporophytic tissues enclosed in the pistil. Here, we summarize the current knowledge on this key step of reproduction in flowering plants with special emphasis on the female transmitting tract tissue.
Collapse
|
38
|
Strasser R, Seifert G, Doblin MS, Johnson KL, Ruprecht C, Pfrengle F, Bacic A, Estevez JM. Cracking the "Sugar Code": A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:640919. [PMID: 33679857 PMCID: PMC7933510 DOI: 10.3389/fpls.2021.640919] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika S. Doblin
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Colin Ruprecht
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Pfrengle
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- The Sino-Australia Plant Cell Wall Research Centre, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - José M. Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
39
|
Zhang Y, Held MA, Kaur D, Showalter AM. CRISPR-Cas9 multiplex genome editing of the hydroxyproline-O-galactosyltransferase gene family alters arabinogalactan-protein glycosylation and function in Arabidopsis. BMC PLANT BIOLOGY 2021; 21:16. [PMID: 33407116 PMCID: PMC7789275 DOI: 10.1186/s12870-020-02791-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/08/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are a class of hydroxyproline-rich proteins (HRGPs) that are heavily glycosylated (> 90%) with type II arabinogalactans (AGs). AGPs are implicated in various plant growth and development processes including cell expansion, somatic embryogenesis, root and stem growth, salt tolerance, hormone signaling, male and female gametophyte development, and defense. To date, eight Hyp-O-galactosyltransferases (GALT2-6, HPGT1-3) have been identified; these enzymes are responsible for adding the first sugar, galactose, onto AGPs. Due to gene redundancy among the GALTs, single or double galt genetic knockout mutants are often not sufficient to fully reveal their biological functions. RESULTS Here, we report the successful application of CRISPR-Cas9 gene editing/multiplexing technology to generate higher-order knockout mutants of five members of the GALT gene family (GALT2-6). AGPs analysis of higher-order galt mutants (galt2 galt5, galt3 galt4 galt6, and galt2 galt3 galt4 galt5 gal6) demonstrated significantly less glycosylated AGPs in rosette leaves, stems, and siliques compared to the corresponding wild-type organs. Monosaccharide composition analysis of AGPs isolated from rosette leaves revealed significant decreases in arabinose and galactose in all the higher-order galt mutants. Phenotypic analyses revealed that mutation of two or more GALT genes was able to overcome the growth inhibitory effect of β-D-Gal-Yariv reagent, which specifically binds to β-1,3-galactan backbones on AGPs. In addition, the galt2 galt3 galt4 galt5 gal6 mutant exhibited reduced overall growth, impaired root growth, abnormal pollen, shorter siliques, and reduced seed set. Reciprocal crossing experiments demonstrated that galt2 galt3 galt4 galt5 gal6 mutants had defects in the female gametophyte which were responsible for reduced seed set. CONCLUSIONS Our CRISPR/Cas9 gene editing/multiplexing approach provides a simpler and faster way to generate higher-order mutants for functional characterization compared to conventional genetic crossing of T-DNA mutant lines. Higher-order galt mutants produced and characterized in this study provide insight into the relationship between sugar decorations and the various biological functions attributed to AGPs in plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701–2979 USA
| | - Dasmeet Kaur
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| |
Collapse
|
40
|
Yu CY, Zhang HK, Wang N, Gao XQ. Glycosylphosphatidylinositol-anchored proteins mediate the interactions between pollen/pollen tube and pistil tissues. PLANTA 2021; 253:19. [PMID: 33394122 DOI: 10.1007/s00425-020-03526-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In flowering plants, pollen germination on the stigma and pollen tube growth in pistil tissues are critical for sexual plant reproduction, which are involved in the interactions between pollen/pollen tube and pistil tissues. GPI-anchored proteins (GPI-APs) are located on the external surface of the plasma membrane and function in various processes of sexual plant reproduction. The evidences suggest that GPI-APs participate in endosome machinery, Ca2+ oscillations, the development of the transmitting tract, the maintenance of the integrity of pollen tube, the enhancement of interactions of the receptor-like kinase (RLK) and ligand, and guidance of the growth of pollen tube, and so on. In this review, we will summarize the recent progress on the roles of GPI-APs in the interactions between pollen/pollen tube and pistil tissues during pollination, such as pollen germination on the stigma, pollen tube growth in the transmitting tract, pollen tube guidance to the ovule, and pollen tube reception in the embryo sac. We will also discuss the future outlook of GPI-APs in the interactions between pollen/pollen tube and pistil tissues.
Collapse
Affiliation(s)
- Cai Yu Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Huan Kai Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Ning Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
41
|
Yanagisawa N, Kozgunova E, Higashiyama T. Pulsatile reverse flow actuated microfluidic injector: toward the application for single-molecule chemotropism assay. RSC Adv 2021; 11:27011-27018. [PMID: 35479974 PMCID: PMC9037660 DOI: 10.1039/d1ra04505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 11/21/2022] Open
Abstract
A localized chemical delivery technique to study cellular responses to signaling molecules.
Collapse
Affiliation(s)
- Naoki Yanagisawa
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Japan
| | - Elena Kozgunova
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| |
Collapse
|
42
|
Moyle LC, Wu M, Gibson MJS. Reproductive Proteins Evolve Faster Than Non-reproductive Proteins Among Solanum Species. FRONTIERS IN PLANT SCIENCE 2021; 12:635990. [PMID: 33912206 PMCID: PMC8072272 DOI: 10.3389/fpls.2021.635990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 05/13/2023]
Abstract
Elevated rates of evolution in reproductive proteins are commonly observed in animal species, and are thought to be driven by the action of sexual selection and sexual conflict acting specifically on reproductive traits. Whether similar patterns are broadly observed in other biological groups is equivocal. Here, we examine patterns of protein divergence among wild tomato species (Solanum section Lycopersicon), to understand forces shaping the evolution of reproductive genes in this diverse, rapidly evolving plant clade. By comparing rates of molecular evolution among loci expressed in reproductive and non-reproductive tissues, our aims were to test if: (a) reproductive-specific loci evolve more rapidly, on average, than non-reproductive loci; (b) 'male'-specific loci evolve at different rates than 'female'-specific loci; (c) genes expressed exclusively in gametophytic (haploid) tissue evolve differently from genes expressed in sporophytic (diploid) tissue or in both tissue types; and (d) mating system variation (a potential proxy for the expected strength of sexual selection and/or sexual conflict) affects patterns of protein evolution. We observed elevated evolutionary rates in reproductive proteins. However, this pattern was most evident for female- rather than male-specific loci, both broadly and for individual loci inferred to be positively selected. These elevated rates might be facilitated by greater tissue-specificity of reproductive proteins, as faster rates were also associated with more narrow expression domains. In contrast, we found little evidence that evolutionary rates are consistently different in loci experiencing haploid selection (gametophytic-exclusive loci), or in lineages with quantitatively different mating systems. Overall while reproductive protein evolution is generally elevated in this diverse plant group, some specific patterns of evolution are more complex than those reported in other (largely animal) systems, and include a more prominent role for female-specific loci among adaptively evolving genes.
Collapse
|
43
|
Silva J, Ferraz R, Dupree P, Showalter AM, Coimbra S. Three Decades of Advances in Arabinogalactan-Protein Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:610377. [PMID: 33384708 PMCID: PMC7769824 DOI: 10.3389/fpls.2020.610377] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are a large, complex, and highly diverse class of heavily glycosylated proteins that belong to the family of cell wall hydroxyproline-rich glycoproteins. Approximately 90% of the molecules consist of arabinogalactan polysaccharides, which are composed of arabinose and galactose as major sugars and minor sugars such as glucuronic acid, fucose, and rhamnose. About half of the AGP family members contain a glycosylphosphatidylinositol (GPI) lipid anchor, which allows for an association with the outer leaflet of the plasma membrane. The mysterious AGP family has captivated the attention of plant biologists for several decades. This diverse family of glycoproteins is widely distributed in the plant kingdom, including many algae, where they play fundamental roles in growth and development processes. The journey of AGP biosynthesis begins with the assembly of amino acids into peptide chains of proteins. An N-terminal signal peptide directs AGPs toward the endoplasmic reticulum, where proline hydroxylation occurs and a GPI anchor may be added. GPI-anchored AGPs, as well as unanchored AGPs, are then transferred to the Golgi apparatus, where extensive glycosylation occurs by the action of a variety glycosyltransferase enzymes. Following glycosylation, AGPs are transported by secretory vesicles to the cell wall or to the extracellular face of the plasma membrane (in the case of GPI-anchored AGPs). GPI-anchored proteins can be released from the plasma membrane into the cell wall by phospholipases. In this review, we present an overview of the accumulated knowledge on AGP biosynthesis over the past three decades. Particular emphasis is placed on the glycosylation of AGPs as the sugar moiety is essential to their function. Recent genetics and genomics approaches have significantly contributed to a broader knowledge of AGP biosynthesis. However, many questions remain to be elucidated in the decades ahead.
Collapse
Affiliation(s)
- Jessy Silva
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Ricardo Ferraz
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| |
Collapse
|
44
|
Yoshimi Y, Hara K, Yoshimura M, Tanaka N, Higaki T, Tsumuraya Y, Kotake T. Expression of a fungal exo-β-1,3-galactanase in Arabidopsis reveals a role of type II arabinogalactans in the regulation of cell shape. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5414-5424. [PMID: 32470141 PMCID: PMC7501824 DOI: 10.1093/jxb/eraa236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 05/11/2023]
Abstract
Arabinogalactan-proteins (AGPs) are a family of plant extracellular proteoglycans implicated in many physiological events. AGP is decorated with type II arabinogalactans (AGs) consisting of a β-1,3-galactan backbone and β-1,6-galactan side chains, to which other sugars are attached. Based on the fact that a type II AG-specific inhibitor, β-Yariv reagent, perturbs growth and development, it has been proposed that type II AGs participate in the regulation of cell shape and tissue organization. However, the mechanisms by which type II AGs participate have not yet been established. Here, we describe a novel system that causes specific degradation of type II AGs in Arabidopsis, by which a gene encoding a fungal exo-β-1,3-galactanase that specifically hydrolyzes β-1,3-galactan backbones of type II AGs is expressed under the control of a dexamethasone-inducible promoter. Dexamethasone treatment increased the galactanase activity, leading to a decrease in Yariv reagent-reactive AGPs in transgenic Arabidopsis. We detected the typical oligosaccharides released from type II AGs by Il3GAL in the soluble fraction, demonstrating that Il3GAL acted on type II AG in the transgenic plants. Additionally, this resulted in severe tissue disorganization in the hypocotyl and cotyledons, suggesting that the degradation of type II AGs affected the regulation of cell shape.
Collapse
Affiliation(s)
- Yoshihisa Yoshimi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Katsuya Hara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Mami Yoshimura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Nobukazu Tanaka
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
- Department of Gene Science, Integrated Experiment Support/Research Division, Natural Science Center for Basic Research and Development, Higashi-Hiroshima, Hiroshima, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
- Green Biology Research Center, Saitama University, Shimo-okubo, Sakura-ku, Saitama, Japan
- Correspondence:
| |
Collapse
|
45
|
Seifert GJ. On the Potential Function of Type II Arabinogalactan O-Glycosylation in Regulating the Fate of Plant Secretory Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:563735. [PMID: 33013983 PMCID: PMC7511660 DOI: 10.3389/fpls.2020.563735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
In a plant-specific mode of protein glycosylation, various sugars and glycans are attached to hydroxyproline giving rise to a variety of diverse O-glycoproteins. The sub-family of arabinogalactan proteins is implicated in a multitude of biological functions, however, the mechanistic role of O-glycosylation on AGPs by type II arabinogalactans is largely elusive. Some models suggest roles of the O-glycans such as in ligand-receptor interactions and as localized calcium ion store. Structurally different but possibly analogous types of protein O-glycosylation exist in animal and yeast models and roles for O-glycans were suggested in determining the fate of O-glycoproteins by affecting intracellular sorting or proteolytic activation and degradation. At present, only few examples exist that describe how the fate of artificial and endogenous arabinogalactan proteins is affected by O-glycosylation with type II arabinogalactans. In addition to other roles, these glycans might act as a molecular determinant for cellular localization and protein lifetime of many endogenous proteins.
Collapse
Affiliation(s)
- Georg J. Seifert
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
46
|
Pfeifer L, Shafee T, Johnson KL, Bacic A, Classen B. Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Sci Rep 2020; 10:8232. [PMID: 32427862 PMCID: PMC7237498 DOI: 10.1038/s41598-020-65135-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Seagrasses evolved from monocotyledonous land plants that returned to the marine habitat. This transition was accomplished by substantial changes in cell wall composition, revealing habitat-driven adaption to the new environment. Whether arabinogalactan-proteins (AGPs), important signalling molecules of land plants, are present in seagrass cell walls is of evolutionary and plant development interest. AGPs of Zostera marina L. were isolated and structurally characterised by analytical and bioinformatics methods as well as by ELISA with different anti-AGP antibodies. Calcium-binding capacity of AGPs was studied by isothermal titration calorimetry (ITC) and microscopy. Bioinformatic searches of the Z. marina proteome identified 9 classical AGPs and a large number of chimeric AGPs. The glycan structures exhibit unique features, including a high degree of branching and an unusually high content of terminating 4-O-methyl-glucuronic acid (4-OMe GlcA) residues. Although the common backbone structure of land plant AGPs is conserved in Z. marina, the terminating residues are distinct with high amounts of uronic acids. These differences likely result from the glycan-active enzymes (glycosyltransferases and methyltransferases) and are essential for calcium-binding properties. The role of this polyanionic surface is discussed with regard to adaption to the marine environment.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Thomas Shafee
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kim L Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany.
| |
Collapse
|
47
|
Zhang Y, Held MA, Showalter AM. Elucidating the roles of three β-glucuronosyltransferases (GLCATs) acting on arabinogalactan-proteins using a CRISPR-Cas9 multiplexing approach in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:221. [PMID: 32423474 PMCID: PMC7236193 DOI: 10.1186/s12870-020-02420-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/29/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are one of the most complex protein families in the plant kingdom and are present in the cell walls of all land plants. AGPs are implicated in diverse biological processes such as plant growth, development, reproduction, and stress responses. AGPs are extensively glycosylated by the addition of type II arabinogalactan (AG) polysaccharides to hydroxyproline residues in their protein cores. Glucuronic acid (GlcA) is the only negatively charged sugar added to AGPs and the functions of GlcA residues on AGPs remain to be elucidated. RESULTS Three members of the CAZy GT14 family (GLCAT14A-At5g39990, GLCAT14B-At5g15050, and GLCAT14C-At2g37585), which are responsible for transferring glucuronic acid (GlcA) to AGPs, were functionally characterized using a CRISPR/Cas9 gene editing approach in Arabidopsis. RNA seq and qRT-PCR data showed all three GLCAT genes were broadly expressed in different plant tissues, with GLCAT14A and GLCAT14B showing particularly high expression in the micropylar endosperm. Biochemical analysis of the AGPs from knock-out mutants of various glcat single, double, and triple mutants revealed that double and triple mutants generally had small increases of Ara and Gal and concomitant reductions of GlcA, particularly in the glcat14a glcat14b and glcat14a glcat14b glcat14c mutants. Moreover, AGPs isolated from all the glcat mutants displayed significant reductions in calcium binding compared to WT. Further phenotypic analyses found that the glcat14a glcat14b and glcat14a glcat14b glcat14c mutants exhibited significant delays in seed germination, reductions in root hair length, reductions in trichome branching, and accumulation of defective pollen grains. Additionally, both glcat14b glcat14c and glcat14a glcat14b glcat14c displayed significantly shorter siliques and reduced seed set. Finally, all higher-order mutants exhibited significant reductions in adherent seed coat mucilage. CONCLUSIONS This research provides genetic evidence that GLCAT14A-C function in the transfer of GlcA to AGPs, which in turn play a role in a variety of biochemical and physiological phenotypes including calcium binding by AGPs, seed germination, root hair growth, trichome branching, pollen development, silique development, seed set, and adherent seed coat mucilage accumulation.
Collapse
Affiliation(s)
- Yuan Zhang
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701–2979 USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| |
Collapse
|
48
|
Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. Fertilization in flowering plants: an odyssey of sperm cell delivery. PLANT MOLECULAR BIOLOGY 2020; 103:9-32. [PMID: 32124177 DOI: 10.1007/s11103-020-00987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm. Each of the successfully fertilized ovules later develops into a seed. Sets of macromolecules play roles in pollen tube (PT) guidance, from the stigma, through the transmitting tract and funiculus to the micropylar end of the ovule. Other sets of genetic players are involved in PT reception and in its rupture after it enters the ovule, and yet other sets of genes function in gametic fusion. Angiosperms have come long way from primitive reproductive structure development to today's sophisticated, diverse, and in most cases flamboyant organ. In this review, we will be discussing on the intricate yet complex molecular mechanism of double fertilization and how it might have been shaped by the evolutionary forces focusing particularly on the model plant Arabidopsis.
Collapse
Affiliation(s)
- Prakash B Adhikari
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro D Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
49
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
50
|
Warman C, Panda K, Vejlupkova Z, Hokin S, Unger-Wallace E, Cole RA, Chettoor AM, Jiang D, Vollbrecht E, Evans MMS, Slotkin RK, Fowler JE. High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements. PLoS Genet 2020; 16:e1008462. [PMID: 32236090 PMCID: PMC7112179 DOI: 10.1371/journal.pgen.1008462] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
In flowering plants, gene expression in the haploid male gametophyte (pollen) is essential for sperm delivery and double fertilization. Pollen also undergoes dynamic epigenetic regulation of expression from transposable elements (TEs), but how this process interacts with gene expression is not clearly understood. To explore relationships among these processes, we quantified transcript levels in four male reproductive stages of maize (tassel primordia, microspores, mature pollen, and sperm cells) via RNA-seq. We found that, in contrast with vegetative cell-limited TE expression in Arabidopsis pollen, TE transcripts in maize accumulate as early as the microspore stage and are also present in sperm cells. Intriguingly, coordinate expression was observed between highly expressed protein-coding genes and their neighboring TEs, specifically in mature pollen and sperm cells. To investigate a potential relationship between elevated gene transcript level and pollen function, we measured the fitness cost (male-specific transmission defect) of GFP-tagged coding sequence insertion mutations in over 50 genes identified as highly expressed in the pollen vegetative cell, sperm cell, or seedling (as a sporophytic control). Insertions in seedling genes or sperm cell genes (with one exception) exhibited no difference from the expected 1:1 transmission ratio. In contrast, insertions in over 20% of vegetative cell genes were associated with significant reductions in fitness, showing a positive correlation of transcript level with non-Mendelian segregation when mutant. Insertions in maize gamete expressed2 (Zm gex2), the sole sperm cell gene with measured contributions to fitness, also triggered seed defects when crossed as a male, indicating a conserved role in double fertilization, given the similar phenotype previously demonstrated for the Arabidopsis ortholog GEX2. Overall, our study demonstrates a developmentally programmed and coordinated transcriptional activation of TEs and genes in pollen, and further identifies maize pollen as a model in which transcriptomic data have predictive value for quantitative phenotypes.
Collapse
Affiliation(s)
- Cedar Warman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Sam Hokin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Erica Unger-Wallace
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Rex A. Cole
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Antony M. Chettoor
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Erik Vollbrecht
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa, United States of America
- Interdepartmental Genetics, Iowa State University, Ames, Iowa, United States of America
| | - Matthew M. S. Evans
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - John E. Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|