1
|
Dong J, Fu YX, Zheng BF, Chen MX, Chen Q, Wishwajith K, Dong J, Lin HY, Yang GF. Repurposing 4-Hydroxyphenylpyruvate dioxygenase inhibitors as novel agents for mosquito control: A structure-based design approach. Int J Biol Macromol 2025; 315:144566. [PMID: 40412679 DOI: 10.1016/j.ijbiomac.2025.144566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/14/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Mosquito-borne diseases remain a significant global health burden, necessitating innovative vector control strategies. 4-Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors, widely used as herbicides, have been recently explored for their potential to disrupt mosquito tyrosine metabolic pathways, offering a novel approach to mosquito control. This study utilized a structure-based rational design strategy to repurpose existing HPPD inhibitors, such as pyrazole-benzene 2,2-dioxothiadiazole and pyrazole-1,3-isoindolinone hybrids, targeting Aedes aegypti HPPD (AaHPPD). Biochemical assays demonstrated that a series of synthesized hybrid compounds exhibited superior inhibitory activity against mosquito-derived HPPD compared to traditional inhibitors, the IC50 values of compound a9 and compound c14 are 7.70 nM and 53.80 nM, respectively. Crystallographic analysis showed stable inhibitor binding mediated by chelation with metal ions in the active site and π-π interactions with Phe336 and Phe364. C6/36 cell assays further confirmed elevated tyrosine accumulation and significantly affected energy metabolism in the tricarboxylic acid cycle following treatment with the newly designed inhibitors. These findings highlight the potential of repurposed HPPD inhibitors as safe and effective mosquito control agents with novel mechanisms of action.
Collapse
Affiliation(s)
- Jin Dong
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Yi-Xuan Fu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Bai-Feng Zheng
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Xi Chen
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Kandegama Wishwajith
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| | - Jiangqing Dong
- Hubei Shizhen Laboratory, Wuhan 430061, PR China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Hong-Yan Lin
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
2
|
McComic SE, Chen R, Mishra S, Geldenhuys WJ, Cantrell CL, Burgess ER, Anderson TD, Swale DR. Mode of toxicity of the β-triketone leptospermone to Aedes aegypti mosquitoes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106401. [PMID: 40262858 DOI: 10.1016/j.pestbp.2025.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/24/2025]
Abstract
Leptospermone, a natural β-triketone and major constituent of manuka oil (Leptospermum scoparium), is an established inhibitor of plant HPPD and was identified to induce rapid knockdown and induce high toxicity to Aedes aegypti adults via topical and tarsal contact exposure with LD50 values of 150 ng/mg of mosquito and 357 ng/cm2, respectively. Although toxic to mosquitoes, leptospermone was non-toxic to ticks, the honey bee, or the fruit fly indicating a high degree of insect specificity. Importantly, leptospermone was equally toxic to non-blood fed and blood-fed mosquitoes suggesting the mode of action is not via HPPD inhibition. Molecular modeling suggested high structural similarities between leptospermone and mammalian sulfonamide carbonic anhydrase (CA) inhibitors. In vitro potency assays with mosquito midgut homogenate or purified CA verify leptospermone inhibits Ae. aegypti CA, but not mammalian CAs. CAs are metalloenzymes that regulate the pH of tissues and ubiquitously expressed throughout insect tissues but are abundantly expressed in the mosquito midgut and, thus, we tested leptospermone to alter pH regulation in the mosquito midgut. Indeed, leptospermone significantly reduced the pH of Ae. aegypti midguts when compared to control mosquitoes which further supports the notion that leptospermone mode of action in insects is via inhibition of CA. These data verify leptospermone is an effective mosquitocide that induces rapid knockdown and toxicity to Ae. aegypti at doses that approach natural pyrethrins against pyrethroid-resistant mosquito strains. Further, the data indicate leptospermone mode of action is CA inhibition, which is a novel mosquitocide target and is different when compared to the mode of action in plants.
Collapse
Affiliation(s)
- Sarah E McComic
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Rui Chen
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Shova Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, MS 38677, USA
| | - Edwin R Burgess
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA
| | - Daniel R Swale
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
3
|
Sterkel M, Tompkin J, Schal C, Guerra LRM, Pessoa GCD, Oliveira PL, Benoit JB. Deployment and transcriptional evaluation of nitisinone, an FDA-approved drug, to control bed bugs. PEST MANAGEMENT SCIENCE 2025; 81:2155-2164. [PMID: 39865399 PMCID: PMC11908903 DOI: 10.1002/ps.8614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/14/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside. This is mainly due to human-mediated transport and their high resistance to several classes of insecticides. New treatment options with novel modes of action are required for their control. In this study, we evaluated the use of nitisinone (NTBC), an FDA-approved drug, for bed bug control in an insecticide-susceptible (HH) and an insecticide-resistant (CIN) population. RESULTS Although NTBC was lethal to both populations when administered orally or applied topically in very low doses, we observed a slight but significant resistance in the CIN population. Transcriptomic analysis in both populations indicated that NTBC treatment elicited a broad suppression of genes associated with RNA post-transcriptional modifications, translation, endomembrane system, protein post-translational modifications and protein folding. The CIN population exhibited higher adenosine triphosphate (ATP) production and xenobiotic detoxification. Feeding studies on a mouse model suggest that NTBC could be used as a control method of bed bugs by host treatment. CONCLUSION The results indicate that NTBC can be used as a new active ingredient for bed bug control by topical or oral treatment and shed light on the molecular mechanisms of suppressed tyrosine metabolism following NTBC treatment. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marcos Sterkel
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Argentina
| | - Joshua Tompkin
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Luiza R M Guerra
- Departamento de Parasitologia-ICB, Laboratório de Entomologia Médica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grasielle C D Pessoa
- Departamento de Parasitologia-ICB, Laboratório de Entomologia Médica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
4
|
Haines LR, Trett A, Rose C, García N, Sterkel M, McGuinness D, Regnault C, Barrett MP, Leroy D, Burrows JN, Biagini G, Ranganath LR, Aljayyoussi G, Acosta-Serrano Á. Anopheles mosquito survival and pharmacokinetic modeling show the mosquitocidal activity of nitisinone. Sci Transl Med 2025; 17:eadr4827. [PMID: 40138457 DOI: 10.1126/scitranslmed.adr4827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
One approach to interrupting the transmission of insect-borne diseases that is successfully used in veterinary medicine is exploiting the ability of antiparasitic drugs to make vertebrate blood toxic for blood-feeding insects. Recent studies have identified 4-hydroxyphenylpyruvate dioxygenase (HPPD), an enzyme of the tyrosine detoxification pathway, as essential for hematophagous arthropods to digest their blood meals. Such blood-feeding insects include anopheline mosquitoes, which transmit malaria-causing Plasmodium parasites. A US Food and Drug Administration-approved HPPD enzyme inhibitor called nitisinone is a drug used to treat rare human-inherited disorders of the tyrosine pathway. Here, we demonstrate that feeding human blood containing nitisinone to insectary-reared female Anopheles gambiae mosquitoes was mosquitocidal to both young and old mosquitoes as well as insecticide-resistant Anopheles strains. Pharmacokinetic-pharmacodynamic (PK/PD) modeling of nitisinone's dose-response relationship (when administered at the highest recommended doses for adults and children) demonstrated improved efficacy against mosquitoes compared with the gold standard endectocidal drug, ivermectin. Furthermore, blood samples from individuals with alkaptonuria (a rare genetic metabolic disorder in the tyrosine degradation pathway), who were taking a daily low dose of 2 milligrams of nitisinone, were shown to be lethal to mosquitoes. Thus, inhibiting the Anopheles HPPD enzyme with nitisinone warrants further investigation as a complementary intervention for vector control and the prevention of malaria transmission.
Collapse
Affiliation(s)
- Lee R Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anna Trett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Natalia García
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Marcos Sterkel
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Argentina
| | - Dagmara McGuinness
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Clément Regnault
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture, Geneva, Switzerland
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Giancarlo Biagini
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lakshminarayan R Ranganath
- National Alkaptonuria Centre, Department of Clinical Biochemistry and Metabolism, Royal Liverpool University Hospital, Liverpool, UK
| | - Ghaith Aljayyoussi
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
5
|
Patil YP, Wagh DS, Barvkar VT, Gawari SK, Pisalwar PD, Ahmed S, Joshi RS. Altered Octopamine synthesis impairs tyrosine metabolism affecting Helicoverpa armigera vitality. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106323. [PMID: 40015913 DOI: 10.1016/j.pestbp.2025.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Tyramine β-hydroxylase (TβH) is a key enzyme in the biosynthesis of octopamine (OA), a vital neurohormone in invertebrates. This study explores the expression patterns and functional role of Helicoverpa armigera TβH (HaTβH) across various tissues and developmental stages. HaTβH expression was highest in the head and adult male stages, reflecting tissue-specific and developmental regulation. HaTβH silencing significantly increased locomotion and decreased feeding behavior. OA supplementation in silenced insects or HaTβH overexpression showed a contrary effect on locomotory and feeding behavior. In silico screening and inhibitory assays identified tomatidine, a tomato-derived metabolite, as a potent HaTβH inhibitor with strong binding affinity. In vivo bioassays confirmed tomatidine's inhibitory effects, reducing feeding and increasing mortality in H. armigera. Modulation in HaTβH expression or activity disturbs the tyrosine metabolic pathway, with altered levels of tyramine, octopamine, and dopamine. These results highlight HaTβH as a key regulator of OA biosynthesis, influencing insect feeding, locomotion, and overall survival. The present study also introduces tomatidine as a potential candidate for insect control, given its ability to disrupt HaTβH function. This work provides new insights into the physiological roles of HaTβH and offers promising avenues for developing targeted pest management strategies.
Collapse
Affiliation(s)
- Yogita P Patil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Deepti S Wagh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Shyam K Gawari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Priyanka D Pisalwar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Shadab Ahmed
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Rakesh S Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Kelley M, Holmes CJ, Herbert C, Rayhan A, Joves J, Uhran M, Klaus L, Frigard R, Singh K, Limbach PA, Addepalli B, Benoit JB. Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2025; 34:65-80. [PMID: 39105593 PMCID: PMC11705514 DOI: 10.1111/imb.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codon decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we discovered that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Asif Rayhan
- Department of ChemistryUniversity of CincinnatiCincinnatiOhioUSA
| | - Judd Joves
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Melissa Uhran
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Lucas Klaus
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Ronja Frigard
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Khwahish Singh
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | | | - Joshua B. Benoit
- Department of Biological SciencesUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
7
|
Nammunige NA, Agnew-Francis KA, Fernando DD, Taylor S, Lu H, Chow S, Hartel G, Okano S, Williams CM, Fischer K. β-Triketones from Leptospermum scoparium (mānuka) oil show potential as scabicides. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156321. [PMID: 39752786 DOI: 10.1016/j.phymed.2024.156321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Scabies is a debilitating and neglected infectious disease with limited effective treatment options and affecting millions of people worldwide, mainly in poor and overcrowded settings. Essential oils from Australasian Myrtaceae are known to have parasiticidal properties, often attributed to the presence of β-triketones, which are known inhibitors of the tyrosine catabolism pathway through inhibition of hydroxyphenylpyruvate dioxygenase (HPPD). PURPOSE In this study, essential oils from mānuka (Leptospermum scoparium) were evaluated in vitro for miticidal and ovicidal activities and their active β-triketone constituents (flavesone, leptospermone, and isoleptospermone) were identified. METHODS Mite survival and egg hatching bioassays were performed to assess the scabicidal (miticidal and ovicidal) properties of Australasian Myrtaceae essential oils (mānuka, tea tree, and kunzea), mānuka oil fractions and three β-triketones (leptospermone, isoleptospermone, flavesone). Scabicidal constituents of mānuka oil were determined and quantified by 1H NMR spectroscopy and gas chromatography. To investigate HPPD as a potential target of β-triketones in scabies, tyrosine and fumarate levels were measured in mites following exposure to flavesone, and in silico docking of β-triketones in homology models of scabies HPPD structures was performed. RESULTS Mānuka oil had superior scabicidal activity compared to conventional treatments, ivermectin and permethrin, as well as kunzea and tea tree oils. The analysis of the chemical composition of mānuka oil revealed a high abundance of sesquiterpenes (42 %), and three β-triketones, flavesone (4.7 %), leptospermone (17.2 %), and isoleptospermone (5.1 %). Miticidal and ovicidal activity was strongly correlated with the presence of these β-triketones, but not the sesquiterpenes. The β-triketones had similar miticidal activity (LC50 58.6-61.7 mM at 4 h; LT50 1.3-1.4 h at 150 mM) to each other and to mānuka oil, and showed high ovicidal activity in young and mature eggs, with leptospermone being the most potent (LC50 33.6-75.9 mM). Significantly altered tyrosine and fumarate levels in mites after exposure to flavesone compared to untreated mites indicate a possible interference of flavesone with the tyrosine catabolism pathway. Molecular docking experiments indicate that this activity is likely underpinned by their inhibition of the Sarcoptes scabiei hydroxyphenylpyruvate dioxygenase (SsHPPD). CONCLUSIONS Our results demonstrated that mānuka oil and the β-triketones flavesone, leptospermone, and isoleptospermone can effectively kill scabies mites and eggs at early and late developmental stages, likely through their inhibition of tyrosine catabolism. This work has revealed SsHPPD as a potential new target for the development of novel topical scabies drugs that target all life-stages of the parasite.
Collapse
Affiliation(s)
- Nirupama A Nammunige
- Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Veterinary Science, the University of Queensland, Brisbane, QLD, Australia
| | - Kylie A Agnew-Francis
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, QLD, Australia
| | - Deepani D Fernando
- Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Sara Taylor
- Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hieng Lu
- Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sharon Chow
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, QLD, Australia
| | - Gunter Hartel
- Statistics Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Satomi Okano
- Statistics Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, QLD, Australia
| | - Katja Fischer
- Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Sterkel M, Tompkin J, Schal C, Guerra LM, Pessoa GCD, Oliveira PL, Benoit JB. Deployment and transcriptional evaluation of nitisinone, an FDA-approved drug, to control bed bugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599347. [PMID: 38948842 PMCID: PMC11212946 DOI: 10.1101/2024.06.18.599347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside. This is mainly due to human-mediated transport and their high resistance to several classes of insecticides. New treatment options with novel modes of action are required for their control. In this study, we evaluated the use of nitisinone (NTBC), an FDA-approved drug, for bed bug control in an insecticide-susceptible (HH) and an insecticide-resistant (CIN) population. Although NTBC was lethal to both populations when administered orally or applied topically in very low doses, we observed a slight but significant resistance in the CIN population. Transcriptomic analysis in both populations indicated that NTBC treatment elicited a broad suppression of genes associated with RNA post-transcriptional modifications, translation, endomembrane system, protein post-translational modifications and protein folding. The CIN population exhibited higher ATP production and xenobiotic detoxification. Feeding studies on a mouse model highlight that NTBC could be used as a control method of bed bugs by host treatment. The results demonstrate that NTBC can be used as a new active ingredient for bed bug control by topical or oral treatment and shed light on the molecular mechanisms of suppressed tyrosine metabolism following NTBC treatment.
Collapse
|
9
|
Ouali R, Bousbata S. Unveiling the Peptidase Network Orchestrating Hemoglobin Catabolism in Rhodnius prolixus. Mol Cell Proteomics 2024; 23:100775. [PMID: 38663568 PMCID: PMC11135036 DOI: 10.1016/j.mcpro.2024.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/29/2024] [Accepted: 04/21/2024] [Indexed: 05/23/2024] Open
Abstract
Chagas disease is transmitted to humans by obligatory hematophagous insects of Triatominae subfamily, which feeds on various hosts to acquire their nutritional sustenance derived from blood proteins. Hemoglobin (Hb) digestion is a pivotal metabolic feature of triatomines, representing a key juncture in their competence toward Trypanosoma cruzi; however, it remains poorly understood. To explore the Hb digestion pathway in Rhodnius prolixus, a major Chagas disease vector, we employed an array of approaches for activity profiling of various midgut-associated peptidases using specific substrates and inhibitors. Dissecting the individual contribution of each peptidase family in Hb digestion has unveiled a predominant role played by aspartic proteases and cathepsin B-like peptidases. Determination of peptidase-specific cleavage sites of these key hemoglobinases, in conjunction with mass spectrometry-based identification of in vivo Hb-derived fragments, has revealed the intricate network of peptidases involved in the Hb digestion pathway. This network is initiated by aspartic proteases and subsequently sustained by cysteine proteases belonging to the C1 family. The process is continued simultaneously by amino and carboxypeptidases. The comprehensive profiling of midgut-associated aspartic proteases by quantitative proteomics has enabled the accurate revision of gene annotations within the A1 family of the R. prolixus genome. Significantly, this study also serves to illuminate a potentially important role of the anterior midgut in blood digestion. The expanded repertoire of midgut-associated proteases presented in this study holds promise for the identification of novel targets aimed at controlling the transmission of Chagas disease.
Collapse
Affiliation(s)
- Radouane Ouali
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Sabrina Bousbata
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
10
|
Cui Y, Matias J, Tang X, Cibichakravarthy B, DePonte K, Wu MJ, Fikrig E. Metabolomic changes associated with acquired resistance to Ixodes scapularis. Ticks Tick Borne Dis 2024; 15:102279. [PMID: 37972499 DOI: 10.1016/j.ttbdis.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Guinea pigs repeatedly exposed to Ixodes scapularis develop acquired resistance to the ticks (ATR). The molecular mechanisms of ATR have not been fully elucidated, and partially involves immune responses to proteins in tick saliva. In this study, we examined the metabolome of sera of guinea pigs during the development of ATR. Induction of components of the tyrosine metabolic pathway, including hydroxyphenyllactic acid (HPLA), were associated with ATR. We therefore administered HPLA to mice, an animal that does not develop ATR, and exposed the animals to I. scapularis. We also administered nitisinone, a known inhibitor of tyrosine degradation, to another group of mice. The mortality of I. scapularis that fed on mice given HPLA or nitisinone was 26 % and 72 % respectively, compared with 2 % mortality among ticks that fed on control animals. These data indicate that tick bites alter the guinea pig metabolome, and that the tyrosine metabolism pathway can potentially be targeted for I. scapularis control.
Collapse
Affiliation(s)
- Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA.
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Balasubramanian Cibichakravarthy
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Room 169, 300 Cedar Street, New Haven, CT 06520-8031, USA.
| |
Collapse
|
11
|
Kosakamoto H, Miura M, Obata F. Epidermal tyrosine catabolism is crucial for metabolic homeostasis and survival against high-protein diets in Drosophila. Development 2024; 151:dev202372. [PMID: 38165175 DOI: 10.1242/dev.202372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
The insect epidermis forms the exoskeleton and determines the body size of an organism. How the epidermis acts as a metabolic regulator to adapt to changes in dietary protein availability remains elusive. Here, we show that the Drosophila epidermis regulates tyrosine (Tyr) catabolism in response to dietary protein levels, thereby promoting metabolic homeostasis. The gene expression profile of the Drosophila larval body wall reveals that enzymes involved in the Tyr degradation pathway, including 4-hydroxyphenylpyruvate dioxygenase (Hpd), are upregulated by increased protein intake. Hpd is specifically expressed in the epidermis and is dynamically regulated by the internal Tyr levels. Whereas basal Hpd expression is maintained by insulin/IGF-1 signalling, Hpd induction on high-protein diet requires activation of the AMP-activated protein kinase (AMPK)-forkhead box O subfamily (FoxO) axis. Impairment of the FoxO-mediated Hpd induction in the epidermis leads to aberrant increases in internal Tyr and its metabolites, disrupting larval development on high-protein diets. Taken together, our findings uncover a crucial role of the epidermis as a metabolic regulator in coping with an unfavourable dietary environment.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Fazito do Vale V, Hevillin Rocha Simtob B, Ferreira Malta LG, Pessoa de Siqueira E. The common bed bug Cimex lectularius synthesizes hemozoin as an essential defense against the toxic effects of heme. Exp Parasitol 2023; 255:108653. [PMID: 37951390 DOI: 10.1016/j.exppara.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The common bed bug Cimex lectularius (Linnaeus 1758) is an ectoparasite that feeds preferably on human blood, being considered an important public health issue. Blood-feeding is a challenging process for hematophagous organisms, and one of the inherent risks with this kind of diet is the liberation of high doses of free heme after the digestion of hemoglobin. In order to deal with this potent cytotoxic agent, such organisms have acquired different defense mechanisms. Here, we use UV-visible spectrophotometry and infrared spectroscopy to show that C. lectularius crystalizes free heme to form the much less dangerous compound, hemozoin. According to our results, the peak of formation of hemozoin in the intestinal contents occurred 4-5 days after the blood meal, primarily in the posterior midgut. The quantification of the rate of conversion of heme to hemozoin revealed that at the end of digestion all the heme was in the form of hemozoin. Inhibition of the synthesis of hemozoin using the anti-malarial drug quinine led to an increase in both catalase activity in the intestinal epithelium and the mortality of the bed bugs, indicating that the insects were unable to cope with the oxidative stress generated by the overload of free heme. The data presented here show for the first time how C. lectularius deals with free heme, and how the process of formation of hemozoin is essential for the survival of these insects. Since resistance to insecticides is a common feature among field populations of bed bugs, there is an urgent need to develop alternative control methods. Thus, targeting the synthesis of hemozoin emerges as a possible novel strategy to fight bed bugs.
Collapse
Affiliation(s)
- Vladimir Fazito do Vale
- Grupo de Pesquisa Triatomíneos, Instituto René Rachou, Fiocruz, Belo Horizonte, 30190-002, Brazil.
| | | | | | - Ezequias Pessoa de Siqueira
- Grupo de Pesquisa Química de Produtos Naturais Bioativos, Instituto René Rachou, Fiocruz, Belo Horizonte, 30190-002, Brazil.
| |
Collapse
|
13
|
Ameijeiras P, Capriotti N, Ons S, Oliveira PL, Sterkel M. eIF3 subunit M regulates blood meal digestion in Rhodnius prolixus affecting ecdysis, reproduction, and survival. INSECT SCIENCE 2023; 30:1282-1292. [PMID: 36621956 DOI: 10.1111/1744-7917.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In triatomines, blood-feeding triggers many physiological processes including post embryonic development and reproduction. Different feeding habits, such as hematophagy, can shape gene functions to meet the challenges of each type of diet. The gut of blood-sucking insects faces particular challenges after feeding due to the quantity and the quality of the food ingested. A comparison of transcriptomic and proteomic data indicates that post transcriptional regulation of gene expression is crucial in the triatomine gut. It was proposed that eukaryotic translation initiation factor 3 subunit m (eIF3m) and eIF3e define 2 different eIF3 complexes with a distinct affinity for the different mRNAs, thus selecting the set of mRNAs to be translated and constituting a post transcriptional mode of regulation of gene expression. Because the eIF3m is mainly expressed in the gut, we evaluated its relevance in Rhodnius prolixus physiology through RNA interference-mediated gene silencing. The knockdown of eIF3m reduced the digestion rate, affecting the processes triggered by a blood meal. Its silencing inhibited molting and caused premature death in nymphs while impaired ovary development, oviposition and increased resistance to starvation in adult females. The survival of males after feeding (resistance to starvation) was not affected by eIF3m knockdown. The information regarding the eIF3m function in insects is scarce and the phenotypes observed in R. prolixus upon eIF3m silencing are different and more severe than those previously described in Drosophila melanogaster, indicating a pleiotropic role of this gene in triatomines.
Collapse
Affiliation(s)
- Pilar Ameijeiras
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Natalia Capriotti
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
14
|
McComic SE, Duke SO, Burgess ER, Swale DR. Defining the toxicological profile of 4-hydroxyphenylpyruvate dioxygenase-directed herbicides to Aedes aegypti and Amblyomma americanum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105532. [PMID: 37532340 DOI: 10.1016/j.pestbp.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Inhibitors targeting the 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzyme are well established herbicides and HPPD is also a primary enzyme within the tyrosine metabolism pathway in hematophagous arthropods, which is an essential metaboilic pathway post-blood feeding to prevent tyrosine-mediated toxicity. The objective of this study was to characterize the toxicity of triketone, pyrazole, pyrazolone, isoxazole, and triazole herbicides that inhibit HPPD to blood-fed mosquitoes and ticks. Topical exposure of nitisinone to blood-fed Aedes aegypti yielded high toxicity with an LD50 of 3.81 ng/insect (95% CI: 3.09 to 4.67 ng; Hillslope: 0.97, r2: 0.99), yet was non-toxic to non-blood fed (NBF) mosquitoes. The rank order of toxicity was nitisinone > tembotrione > pyrazoxyfen > tebuconazole > mesotrione against blood-fed Ae. Aegypti, but nitisinone was approximately 30-fold more toxic than other chemicals tested. We also assessed the toxicity of HPPD-inhibiting herbicides to the lone star tick, Amblyomma americanum and similarly, nitisinone was toxic to Am. americanum with a lethal time to kill 50% of subjects (LT50) of 23 h at 10 μM. Knockdown of the gene encoding the HPPD enzyme was performed through RNA-interference led to significant mortality after blood feeding in both, Ae. aegypti and Am. americanum. Lastly, a fluorescence assay was developed to determine relative quantities of L-tyrosine in Ae. aegypti and Am. americanum treated with HPPD inhibitors. L-tyrosine levels correlated with toxicity with nitisinone exposure leading to increased tyrosine concentrations post-blood feeding. Taken together, these data support previous work suggesting HPPD-inhibitors represent a novel mode of toxicity to mosquitoes and ticks and may represent base scaffolds for development of novel insecticides specific for hematophagous arthropods.
Collapse
Affiliation(s)
- Sarah E McComic
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Edwin R Burgess
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Daniel R Swale
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
15
|
Cui Y, Matias J, Tang X, Cibichakravarthy B, DePonte K, Wu MJ, Fikrig E. Metabolomic changes associated with acquired resistance to Ixodes scapularis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551287. [PMID: 37577710 PMCID: PMC10418055 DOI: 10.1101/2023.07.31.551287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Guinea pigs repeatedly exposed to Ixodes scapularis develop acquired resistance to the ticks (ATR). The molecular mechanisms of ATR have not been fully elucidated, and partially involve immune responses to proteins in tick saliva. In this study, we examined the metabolome of sera of guinea pigs during the development of ATR. Induction of components of the tyrosine metabolic pathway, including hydroxyphenyllactic acid (HPLA), were associated with ATR. We therefore administered HPLA to mice, an animal that does not develop ATR, and exposed the animals to I. scapularis . We also administered nitisinone, a known inhibitor of tyrosine degradation, to another group of mice. The mortality of I. scapularis that fed on mice given HPLA or nitisinone was 26% and 72% respectively, compared with 2% mortality among ticks that fed on control animals. These data indicate that metabolic changes that occur after tick bites contribute to ATR.
Collapse
|
16
|
Reeves JT, Herzog C, Barnes CL, Davis CA, Fuhlendorf SD, Wilder SM. Variation among arthropod taxa in the amino acid content of exoskeleton and digestible tissue. Ecol Evol 2023; 13:e10348. [PMID: 37496760 PMCID: PMC10365971 DOI: 10.1002/ece3.10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Arthropod consumption provides amino acids to invertebrates and vertebrates alike, but not all amino acids in arthropods may be digestible as some are bound in the exoskeleton. Consumers may not be able to digest exoskeleton in significant amounts or avoid it entirely (e.g., extraoral digestion). Hence, measures that do not separate digestible amino acids from those in exoskeleton may not accurately represent the amino acids available to consumers. Additionally, arthropods are taxonomically diverse, and it remains unclear if taxonomic differences also reflect differences in amino acid availability. Thus, we tested: (1) if there were consistent differences in the content and balance of amino acids between the digestible tissue and exoskeleton of arthropods and (2) if arthropod Orders differ in amino acid content and balance. We measured the amino acid content (mg/100 mg dry mass) and balance (mg/100 mg protein) of whole bodies and exoskeleton of a variety of arthropods using acid hydrolysis. Overall, there was higher amino acid content in digestible tissue. There were also significant differences in the amino acid balance of proteins in digestible tissue and exoskeleton. Amino acid content and balance also varied among Orders; digestible tissues of Hemiptera contained more of some essential amino acids than other Orders. These results demonstrate that arthropod taxa vary in amino acid content, which could have implications for prey choice by insectivores. In addition, exoskeleton and digestible tissue content differ in arthropods, which means that whole body amino acid content of an arthropod is not necessarily a predictor of amino acid intake of a predator that feeds on that arthropod.
Collapse
Affiliation(s)
- J. T. Reeves
- Department of Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| | - Colton Herzog
- Department of Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| | | | - Craig A. Davis
- Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Samuel D. Fuhlendorf
- Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Shawn M. Wilder
- Department of Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
17
|
Waldman J, Klafke GM, Tirloni L, Logullo C, da Silva Vaz I. Putative target sites in synganglion for novel ixodid tick control strategies. Ticks Tick Borne Dis 2023; 14:102123. [PMID: 36716581 PMCID: PMC10033424 DOI: 10.1016/j.ttbdis.2023.102123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
Acaricide resistance is a global problem that has impacts worldwide. Tick populations with broad resistance to all commercially available acaricides have been reported. Since resistance selection in ticks and their role in pathogen transmission to animals and humans result in important economic and public health burden, it is essential to develop new strategies for their control (i.e., novel chemical compounds, vaccines, biological control). The synganglion is the tick central nervous system and it is responsible for synthesizing and releasing signaling molecules with different physiological functions. Synganglion proteins are the targets of the majority of available acaricides. In this review we provide an overview of the mode-of-action and resistance mechanisms against neurotoxic acaricides in ticks, as well as putative target sites in synganglion, as a supporting tool to identify new target proteins and to develop new strategies for tick control.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Marcondes Klafke
- Instituto de Pesquisas Veterinárias Desidério Finamor - Centro de Pesquisa em Saúde Animal, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Carlos Logullo
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica de Artrópodes Hematófagos, IBqM, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Sun Y, Niu X, Huang Y, Wang L, Liu Z, Guo X, Xu B, Wang C. Role of the tyrosine aminotransferase AccTATN gene in the response to pesticide and heavy metal stress in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105372. [PMID: 36963941 DOI: 10.1016/j.pestbp.2023.105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Tyrosine aminotransferase (TATN) is the first enzyme involved in the metabolic degradation of tyrosine, and it plays an important role in tyrosine detoxification and helps the body resist oxidative damage. However, the function of TATN in Apis cerana cerana (A. c. cerana) remains unclear. To explore the role of TATN in the response to pesticide and heavy metal stress in A. c. cerana, AccTATN was isolated and identified. AccTATN was highly expressed in the integument and the adult stage. Exposure to multiple pesticides and heavy metal stress upregulated AccTATN expression. RNA interference experiments showed that silencing AccTATN reduced the resistance of A. c. cerana to glyphosate and avermectins stress. The expression of antioxidant-related genes and the activity of antioxidant enzymes were reduced after AccTATN was silenced, leading to the accumulation of oxidative damage. Overexpression of the recombinant AccTATN protein in a prokaryotic system also confirmed its role in heavy metal stress and improved antioxidant capacity. Our study showed that AccTATN may promote resistance to pesticide and heavy metal stress by regulating the antioxidant capacity of A. c. cerana. This study provides a valuable theoretical basis for A. c. cerana conservation.
Collapse
Affiliation(s)
- Yunhao Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Xiaojing Niu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Yuanyuan Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, PR China.
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China.
| |
Collapse
|
19
|
Duke SO, Pan Z, Chittiboyina AG, Swale DR, Sparks TC. Molecular targets of insecticides and herbicides - Are there useful overlaps? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105340. [PMID: 36963955 DOI: 10.1016/j.pestbp.2023.105340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
New insecticide modes of action are needed for insecticide resistance management strategies. The number of molecular targets of commercial herbicides and insecticides are fewer than 35 for both. Few commercial insecticide targets are found in plants, but ten targets of commercial herbicides are found in insects. For several of these commonly held targets, some compounds kill both plants and insects. For example, herbicidal inhibitors of p-hydroxyphenylpyruvate dioxygenase are effective insecticides on blood-fed insects. The glutamine synthetase-inhibiting herbicide glufosinate is insecticidal by the same mechanism of action, inhibition of glutamine synthetase. These and other examples of shared activities of commercial herbicides with insecticides through the same target site are discussed. Compounds with novel herbicide targets shared by insects that are not commercialized as pesticides (such as statins) are also discussed. Compounds that are both herbicidal and insecticidal can be used for insect pests not associated with crops or with crops made resistant to the compounds.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38667, USA.
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, United States Department of Agriculture, University, MS 38667, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38667, USA
| | - Daniel R Swale
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
20
|
Chen ZL, Yin ZJ, Qiu TY, Chen J, Liu J, Zhang XY, Xu JQ. Revealing the characteristics of ZIKV infection through tissue-specific transcriptome sequencing analysis. BMC Genomics 2022; 23:697. [PMID: 36209057 PMCID: PMC9546753 DOI: 10.1186/s12864-022-08919-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, Zika virus (ZIKV) re-emerged in India and was potentially associated with microcephaly. However, the molecular mechanisms underlying ZIKV pathogenesis remain to be explored. RESULTS Herein, we performed a comprehensive RNA-sequencing analysis on ZIKV-infected JEG-3, U-251 MG, and HK-2 cells versus corresponding uninfected controls. Combined with a series of functional analyses, including gene annotation, pathway enrichment, and protein-protein interaction (PPI) network analysis, we defined the molecular characteristics induced by ZIKV infection in different tissues and invasion time points. Data showed that ZIKV infection and replication in each susceptible organ commonly stimulated interferon production and down-regulated metabolic-related processes. Also, tissue-specific immune responses or biological processes (BPs) were induced after ZIKV infection, including GnRH signaling pathway in JEG-3 cells, MAPK signaling pathway in U-251 MG cells, and PPAR signaling pathway in HK-2 cells. Of note, ZIKV infection induced delayed antiviral interferon responses in the placenta-derived cell lines, which potentially explains the molecular mechanism by which ZIKV replicates rapidly in the placenta and subsequential vertical transmission occurs. CONCLUSIONS Together, these data may provide a systemic insight into the pathogenesis of ZIKV infection in distinct human tissue-derived cell lines, which is likely to help develop prophylactic and therapeutic strategies against ZIKV infection.
Collapse
Affiliation(s)
- Zhi-Lu Chen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zuo-Jing Yin
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tian-Yi Qiu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Immunotherapy and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jian Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jian Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xiao-Yan Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China. .,Department of Immunotherapy and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jian-Qing Xu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China. .,Department of Immunotherapy and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
21
|
Li C, Zhang J, Du H, Yang L, Wang Y, Lu Y, Li B, Chen K. Lowfat functions downstream of Myo20 to regulate wing and leg morphogenesis in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103829. [PMID: 36028072 DOI: 10.1016/j.ibmb.2022.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Myosin Myo20 plays vital roles in the morphogenesis of wings and legs among insects, but the function and signalling of Myo20 remain unclear. We show that Myo20 regulates wing cell division, ecdysteroid and amino acid metabolism, and gene expression in Tribolium castaneum. By RNA-seq, we identified 582 differentially expressed genes (DEGs) between control and ds-Myo20 larvae of T. castaneum. Of these DEGs, silencing Myo20 significantly decreased the mRNA and protein levels of lowfat. During development, lowfat has the highest expression in early pupae and the lowest level in 1-day embryos. Tissue-specific analysis indicated that lowfat was abundantly expressed in the head, fat body and epidermis of late-stage larvae and in wings and legs of 1, 2 and 5-day pupae. Likewise, knockdown of lowfat affected wing and leg morphogenesis, ecdysteroid and amino acid metabolism, and gene expression in T. castaneum. Silencing Myo20 or lowfat activated CYP18A1 to degrade ecdysteroids, stimulated amino acids catabolism to increase the transcription of 4E-BP but reduce S6K and cycE expression. These results suggest that Lowfat works downstream of Myo20 to employ target of rapamycin (TOR) signalling for wing and leg morphogenesis in insects.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
22
|
Governa P, Bernardini G, Braconi D, Manetti F, Santucci A, Petricci E. Survey on the Recent Advances in 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) Inhibition by Diketone and Triketone Derivatives and Congeneric Compounds: Structural Analysis of HPPD/Inhibitor Complexes and Structure-Activity Relationship Considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6963-6981. [PMID: 35652597 DOI: 10.1021/acs.jafc.2c02010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The serendipitous discovery of the HPPD inhibitors from allelopathic plants opened the way for searching new and effective herbicidal agents by application of classical hit-to-lead optimization approaches. A plethora of active and selective compounds were discovered that belong to three major classes of cyclohexane-based triketones, pyrazole-based diketones, and diketonitriles. In addition, to enhance inhibitory constant and herbicidal activity, many efforts were also made to gain broader weed control, crop safety, and eventual agricultural applicability. Moreover, HPPD inhibitors emerged as therapeutic agents for inherited and metabolic human diseases as well as vector-selective insecticides in the control of hematophagous arthropods. Given the large set of experimental data available, structure-activity relationship analysis could be used to derive suggestions for next generation optimized compounds.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
23
|
Cis- and trans-resveratrol have opposite effects on histone serine-ADP-ribosylation and tyrosine induced neurodegeneration. Nat Commun 2022; 13:3244. [PMID: 35688816 PMCID: PMC9187644 DOI: 10.1038/s41467-022-30785-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
Serum tyrosine levels increase during aging, neurocognitive, metabolic, and cardiovascular disorders. However, calorie restriction (CR) and sleep lower serum tyrosine levels. We previously showed that tyrosine inhibits tyrosyl-tRNA synthetase (TyrRS)-mediated activation of poly-ADP-ribose polymerase 1 (PARP1). Here, we show that histone serine-ADP-ribosylation is decreased in Alzheimer's Disease (AD) brains, and increased tyrosine levels deplete TyrRS and cause neuronal DNA damage. However, dopamine and brain-derived neurotrophic factor (BDNF) increase TyrRS and histone serine-ADP-ribosylation. Furthermore, cis-resveratrol (cis-RSV) that binds to TyrRS mimicking a 'tyrosine-free' conformation increases TyrRS, facilitates histone serine-ADP-ribosylation-dependent DNA repair, and provides neuroprotection in a TyrRS-dependent manner. Conversely, trans-RSV that binds to TyrRS mimicking a 'tyrosine-like' conformation decreases TyrRS, inhibits serine-ADP-ribosylation-dependent DNA repair, and induces neurodegeneration in rat cortical neurons. Our findings suggest that age-associated increase in serum tyrosine levels may effect neurocognitive and metabolic disorders and offer a plausible explanation for divergent results obtained in clinical trials using resveratrol.
Collapse
|
24
|
Gong X, Zhao G, Shan W, Guo H, Wang C, Liu Q, Xu B, Wang Y, Guo X. Identification and antioxidant capacity of 4-hydroxyphenylpyruvate dioxygenase (HPPD), a new favored herbicide target, in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105110. [PMID: 35715049 DOI: 10.1016/j.pestbp.2022.105110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD), a nonheme oxygenase, catalyzes the second step of the tyrosine catabolic pathway, which is shared by almost all aerobic life forms. This demonstrates its importance in aerobic biology. We isolated an HPPD homolog from Apis cerana cerana and named it AccHPPD. AccHPPD has an open reading frame (ORF) length of 900 bp and encodes a 299 amino acid protein that has a predicted molecular weight of 34.67 kDa and an isoelectric point of 6.27. Amino acid analysis showed that AccHPPD contained three conserved metal ion active sites, H-101, H-184 and E-267. Real-time fluorescence quantitative PCR (RT-qPCR) analysis showed that AccHPPD mainly existed in specific tissue sites, mainly high in the legs and in the thorax and epidermis, and in specific developmental stages, mainly adults. Under temperature, pesticide, heavy metal and ultraviolet (UV) radiation treatments, the expression level was downregulated, but under H2O2 treatment, the expression level was upregulated. Exogenous expression of the recombinant AccHPPD plasmid in E. coli enhanced the resistance to HgCl2 and H2O2. Inhibition of AccHPPD activity was demonstrated by the upregulation of the tyrosine content after feeding with the inhibitor 2-(2-nitro-4-trifluoromethyl benzoyl)-1,3-cyclohexanedione (NTBC). After silencing of AccHPPD, the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) decreased, and the expression levels of AccBax- and AccCaspase8-related genes were upregulated. The antioxidant genes AccCAT, AccGSTZ1, AccGSTD, AccSOD2, AccTpx3, AccCYP4G11, AccGDTS4, AccGSTO2 and AccMSRA were all upregulated. These results suggest that AccHPPD may serve an integral function in the response of A. cerana cerana to oxidative stress.
Collapse
Affiliation(s)
- Xiangwei Gong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Huijuan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
25
|
Das De T, Sharma P, Tevatiya S, Chauhan C, Kumari S, Yadav P, Singla D, Srivastava V, Rani J, Hasija Y, Pandey KC, Kajla M, Dixit R. Bidirectional Microbiome-Gut-Brain-Axis Communication Influences Metabolic Switch-Associated Responses in the Mosquito Anopheles culicifacies. Cells 2022; 11:1798. [PMID: 35681493 PMCID: PMC9180301 DOI: 10.3390/cells11111798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The periodic ingestion of a protein-rich blood meal by adult female mosquitoes causes a drastic metabolic change in their innate physiological status, which is referred to as a 'metabolic switch'. While understanding the neural circuits for host-seeking is modestly attended, how the gut 'metabolic switch' modulates brain functions, and resilience to physiological homeostasis, remains unexplored. Here, through a comparative brain RNA-Seq study, we demonstrate that the protein-rich diet induces the expression of brain transcripts related to mitochondrial function and energy metabolism, possibly causing a shift in the brain's engagement to manage organismal homeostasis. A dynamic mRNA expression pattern of neuro-signaling and neuro-modulatory genes in both the gut and brain likely establishes an active gut-brain communication. The disruption of this communication through decapitation does not affect the modulation of the neuro-modulator receptor genes in the gut. In parallel, an unusual and paramount shift in the level of neurotransmitters (NTs), from the brain to the gut after blood feeding, further supports the idea of the gut's ability to serve as a 'second brain'. After blood-feeding, a moderate enrichment of the gut microbial population, and altered immunity in the gut of histamine receptor-silenced mosquitoes, provide initial evidence that the gut-microbiome plays a crucial role in gut-brain-axis communication. Finally, a comparative metagenomics evaluation of the gut microbiome highlighted that blood-feeding enriches the family members of the Morganellaceae and Pseudomonadaceae bacterial communities. The notable observation of a rapid proliferation of Pseudomonas bacterial sp. and tryptophan enrichment in the gut correlates with the suppression of appetite after blood-feeding. Additionally, altered NTs dynamics of naïve and aseptic mosquitoes provide further evidence that gut-endosymbionts are key modulators for the synthesis of major neuroactive molecules. Our data establish a new conceptual understanding of microbiome-gut-brain-axis communication in mosquitoes.
Collapse
Affiliation(s)
- Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Pooja Yadav
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Deepak Singla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Vartika Srivastava
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Mayur Kajla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| |
Collapse
|
26
|
Berni M, Lima L, Bressan D, Julio A, Bonfim L, Simão Y, Pane A, Ramos I, Oliveira PL, Araujo H. Atypical strategies for cuticle pigmentation in the blood-feeding hemipteran Rhodnius prolixus. Genetics 2022; 221:6571811. [PMID: 35445704 PMCID: PMC9157140 DOI: 10.1093/genetics/iyac064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
Pigmentation in insects has been linked to mate selection and predator evasion, thus representing an important aspect for natural selection. Insect body color is classically associated to the activity of tyrosine pathway enzymes, and eye color to pigment synthesis through the tryptophan and guanine pathways, and their transport by ABC proteins. Among the hemiptera, the genetic basis for pigmentation in kissing bugs such as Rhodnius prolixus, that transmit Chagas disease to humans, has not been addressed. Here we report the functional analysis of R. prolixus eye and cuticle pigmentation genes. Consistent with data for most insect clades, we show that knockdown for yellow results in a yellow cuticle, while scarlet and cinnabar knockdowns display red eyes as well as cuticle phenotypes. In addition, tyrosine pathway aaNATpreto knockdown resulted in a striking dark cuticle that displays no color pattern or UV reflectance. In contrast, knockdown of ebony and tan, that encode NBAD branch tyrosine pathway enzymes, did not generate the expected dark and light brown phenotypes, respectively, as reported for other insects. We hypothesize that R. prolixus, which requires tyrosine pathway enzymes for detoxification from the blood diet, evolved an unusual strategy for cuticle pigmentation based on the preferential use of a color erasing function of the aaNATpreto tyrosine pathway branch. We also show that genes classically involved in the generation and transport of eye pigments regulate red body color in R. prolixus. This is the first systematic approach to identify the genes responsible for the generation of color in a blood-feeding hemiptera, providing potential visible markers for future transgenesis.
Collapse
Affiliation(s)
- Marcus Berni
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Leonardo Lima
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Daniel Bressan
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Alison Julio
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Post-graduate Program in Morphological Sciences (PCM), Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Larissa Bonfim
- Institute for Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Yasmin Simão
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Attilio Pane
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Isabela Ramos
- Institute for Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Pedro L Oliveira
- Institute for Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Helena Araujo
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil (INCT-EM), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
27
|
Li C, Yang L, Wang Y, Du H, Zhang J, Lu Y, Li B, Chen K. Functional analysis of zona pellucida domain protein Dusky in Tribolium castaneum. INSECT SCIENCE 2022; 29:388-398. [PMID: 34237197 DOI: 10.1111/1744-7917.12938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The zona pellucida domain protein Dusky (Dy) plays a vital role in wing morphogenesis in insects, but little information on its function has been reported. In this study, we found that dy regulated wing cell size, larval and pupal duration, and the metabolism of amino acid and 20-hydroxyecdysone in Tribolium castaneum. Using RNA-seq, 413 differentially expressed genes were identified between physiological buffer-injected and dy-double-stranded RNA-treated larvae, including 88 downregulated genes and 325 upregulated genes. Among these genes, dy knockdown increased CYP18A1 expression to elevate the 26-hydroxylation of 20-hydroxyecdysone, which ultimately led to growth defects in wing cells. Silencing of dy upregulated the transcription of genes encoding tyrosine aminotransferase, 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1, 2-dioxygenase, and Pale to promote the catabolism of tyrosine and phenylalanine, which eventually reduced amino acid content. Furthermore, dy knockdown upregulated 4E-BP expression, and 4E-BP silencing partially phenocopied dy RNA interference-mediated wing morphogenesis. These results suggest that Dy controls 20-hydroxyecdysone and amino acid metabolism to regulate wing morphogenesis in the insect.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
28
|
Frias-Soler RC, Kelsey NA, Villarín Pildaín L, Wink M, Bairlein F. Transcriptome signature changes in the liver of a migratory passerine. Genomics 2022; 114:110283. [PMID: 35143886 DOI: 10.1016/j.ygeno.2022.110283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
The liver plays a principal role in avian migration. Here, we characterised the liver transcriptome of a long-distance migrant, the Northern Wheatear (Oenanthe oenanthe), sampled at different migratory stages, looking for molecular processes linked with adaptations to migration. The analysis of the differentially expressed genes suggested changes in the periods of the circadian rhythm, variation in the proportion of cells in G1/S cell-cycle stages and the putative polyploidization of this cell population. This may explain the dramatic increment in the liver's metabolic capacities towards migration. Additionally, genes involved in anti-oxidative stress, detoxification and innate immune responses, lipid metabolism, inflammation and angiogenesis were regulated. Lipophagy and lipid catabolism were active at all migratory stages and increased towards the fattening and fat periods, explaining the relevance of lipolysis in controlling steatosis and maintaining liver health. Our study clears the way for future functional studies regarding long-distance avian migration.
Collapse
Affiliation(s)
- Roberto Carlos Frias-Soler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Natalie A Kelsey
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Lilian Villarín Pildaín
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Franz Bairlein
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany.
| |
Collapse
|
29
|
Hernandez-Castro LE, Villacís AG, Jacobs A, Cheaib B, Day CC, Ocaña-Mayorga S, Yumiseva CA, Bacigalupo A, Andersson B, Matthews L, Landguth EL, Costales JA, Llewellyn MS, Grijalva MJ. Population genomics and geographic dispersal in Chagas disease vectors: Landscape drivers and evidence of possible adaptation to the domestic setting. PLoS Genet 2022; 18:e1010019. [PMID: 35120121 PMCID: PMC8849464 DOI: 10.1371/journal.pgen.1010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/16/2022] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches. Re-infestation of recently insecticide-treated houses by wild/secondary triatomine, their potential adaptation to this new environment and capabilities to geographically disperse across multiple human communities jeopardise sustainable Chagas disease control. This is the first study in Chagas disease vectors that identifies genomic regions possibly linked to adaptations to the built environment and describes landscape drivers for accurate prediction of geographic dispersal. We sampled multiple domestic and wild Rhodnius ecuadoriensis population pairs across a mountainous terrain in southern Ecuador. We evidenced that triatomine movement from forest to built enviroments does occur at a high rate. In these highly connected population pairs we detected loci possibly linked to local adaptation among the genomic makers we evaluated and in doing so we pave the way for future triatomine genomic research. We highlighted that current haphazardous vector control in the zone will be hindered by reinfestation of triatomines from the forest. Instead, we recommend frequent and spatially-targeted vector control and provided a landacape genomic model that identifies highly connected and isolated triatomine populations to facilitate efficient vector control.
Collapse
Affiliation(s)
- Luis E. Hernandez-Castro
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- The Epidemiology, Economics and Risk Assessment Group, The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (LEH-C); (MSL)
| | - Anita G. Villacís
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, United States of America
| | - Bachar Cheaib
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Casey C. Day
- Computational Ecology Lab, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Cesar A. Yumiseva
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Antonella Bacigalupo
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Matthews
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Erin L. Landguth
- Computational Ecology Lab, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, United States of America
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Martin S. Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (LEH-C); (MSL)
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
30
|
Vergaray Ramirez MA, Sterkel M, Martins AJ, Bp Lima J, L Oliveira P. On the use of inhibitors of 4-hydroxyphenylpyruvate dioxygenase as a vector-selective insecticide in the control of mosquitoes. PEST MANAGEMENT SCIENCE 2022; 78:692-702. [PMID: 34647418 DOI: 10.1002/ps.6679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Blood-sucking insects incorporate many times their body weight of blood in a single meal. Because proteins are the major component of vertebrate blood, its digestion in the gut generates extremely high concentrations of free amino acids. Previous reports showed that the tyrosine degradation pathway plays an essential role in adapting these animals to blood feeding. Inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD), the rate-limiting step of tyrosine degradation, results in the death of insects after a blood meal. Therefore, it has been suggested that compounds that block the catabolism of tyrosine could act selectively on blood-feeding insects. Here, we evaluated the toxicity against mosquitoes of three HPPD inhibitors currently used as herbicides and in human health. RESULTS Of the compounds tested, nitisinone (NTBC) proved to be more potent than mesotrione (MES) and isoxaflutole (IFT) in Aedes aegypti. NTBC was lethal to Ae. aegypti in artificial feeding assays [median lethal dose (LD50 ): 4.53 μm] and in topical application (LD50 : 0.012 nmol/mosquito). NTBC was also lethal to Ae. aegypti populations that were resistant to neurotoxic insecticides, and to other mosquito species (Anopheles and Culex). CONCLUSION HPPD inhibitors, particularly NTBC, represent promising new drugs for mosquito control. Because they affect only blood-feeding organisms, they represent a safer and more environmentally friendly alternative to conventional neurotoxic insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marlon A Vergaray Ramirez
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Sterkel
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata (CREG-UNLP), Buenos Aires, Argentina
| | - Ademir J Martins
- Laboratorio de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, Brazil
- Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - José Bp Lima
- Laboratorio de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Entomologia, Instituto de Biologia do Exército, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Carvalho-Costa TM, Tiveron RDR, Mendes MT, Barbosa CG, Nevoa JC, Roza GA, Silva MV, Figueiredo HCP, Rodrigues V, Soares SDC, Oliveira CJF. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front Cell Infect Microbiol 2022; 11:773357. [PMID: 34988032 PMCID: PMC8722679 DOI: 10.3389/fcimb.2021.773357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Rafael Destro Rosa Tiveron
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Maria Tays Mendes
- Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Cecília Gomes Barbosa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Jessica Coraiola Nevoa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Guilherme Augusto Roza
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinícius Silva
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Siomar de Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
32
|
Sasidharan S, Tripathi T, Saudagar P. Critical Insight into Plausible Acquired Tocopherol Pathway in Neglected Human Trypanosomatids. ACS OMEGA 2021; 6:31396-31403. [PMID: 34869966 PMCID: PMC8637591 DOI: 10.1021/acsomega.1c05046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 06/02/2023]
Abstract
Despite global therapeutic advancements, tropical parasitic infections like trypanosomiasis and leishmaniasis continue to be a major health concern in developing countries. These two tropical infectious diseases lead to enormous economic loss, significant disability, and morbidity, accounting for over one million deaths per year worldwide. The causative parasites, which shuttle between an insect vector and a mammalian host, thrive either in the bloodstream or in the intramacrophage environments. Essentially, the parasites live in an environment of oxidative stress and therefore require metabolic pathways to counterbalance the host immune response and survive the adverse conditions. Apart from the trypanothione pathway elucidated in the parasites, there exists a tocopherol pathway that functions to scavenge the reactive chemical species. This pathway, unique to photosynthetic organisms, is essential for the parasite's survival, though the enzymes involved remain largely uncharacterized. Consequently, an understanding of the origin of the pathway and where and how the interconnected tocopherol pathway functions may result in the identification of promising and potential therapeutic interventions to combat these deadly diseases. Recent works underline the presence of the tocopherol pathway in trypanosomatids and hypothesize that trypanosomatids may be tocopherol prototrophs. This review focuses on the biosynthesis of tocopherols in Trypanosoma and Leishmania in light of the current evidence.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department
of Biotechnology, National Institute of
Technology Warangal, Warangal 506004, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Prakash Saudagar
- Department
of Biotechnology, National Institute of
Technology Warangal, Warangal 506004, India
| |
Collapse
|
33
|
Aardema ML, Zimmerman KI. The establishment of a new autogenous line of the Asian tiger mosquito, Aedes albopictus, from its current northern range limit in the United States. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:112-115. [PMID: 35229588 DOI: 10.52707/1081-1710-46.1.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ, U.S.A.,
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, U.S.A
| | - Kelly I Zimmerman
- Environmental Science and Management Program, Montclair State University, Montclair, NJ, U.S.A
| |
Collapse
|
34
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
35
|
Kiefer JST, Batsukh S, Bauer E, Hirota B, Weiss B, Wierz JC, Fukatsu T, Kaltenpoth M, Engl T. Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis. Commun Biol 2021; 4:554. [PMID: 33976379 PMCID: PMC8113238 DOI: 10.1038/s42003-021-02057-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glyphosate is widely used as a herbicide, but recent studies begin to reveal its detrimental side effects on animals by targeting the shikimate pathway of associated gut microorganisms. However, its impact on nutritional endosymbionts in insects remains poorly understood. Here, we sequenced the tiny, shikimate pathway encoding symbiont genome of the sawtoothed grain beetle Oryzaephilus surinamensis. Decreased titers of the aromatic amino acid tyrosine in symbiont-depleted beetles underscore the symbionts' ability to synthesize prephenate as the precursor for host tyrosine synthesis and its importance for cuticle sclerotization and melanization. Glyphosate exposure inhibited symbiont establishment during host development and abolished the mutualistic benefit on cuticle synthesis in adults, which could be partially rescued by dietary tyrosine supplementation. Furthermore, phylogenetic analyses indicate that the shikimate pathways of many nutritional endosymbionts likewise contain a glyphosate sensitive 5-enolpyruvylshikimate-3-phosphate synthase. These findings highlight the importance of symbiont-mediated tyrosine supplementation for cuticle biosynthesis in insects, but also paint an alarming scenario regarding the use of glyphosate in light of recent declines in insect populations.
Collapse
Affiliation(s)
- Julian Simon Thilo Kiefer
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Suvdanselengee Batsukh
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Eugen Bauer
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Bin Hirota
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Benjamin Weiss
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C Wierz
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Tobias Engl
- Evolutionary Ecology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Mainz, Germany.
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
36
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Early Post-Prandial Regulation of Protein Expression in the Midgut of Chagas Disease Vector Rhodnius prolixus Highlights New Potential Targets for Vector Control Strategy. Microorganisms 2021; 9:microorganisms9040804. [PMID: 33920371 PMCID: PMC8069306 DOI: 10.3390/microorganisms9040804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chagas disease is a vector-borne parasitic disease caused by the flagellated protozoan Trypanosoma cruzi and transmitted to humans by a large group of bloodsucking triatomine bugs. Triatomine insects, such as Rhodnius prolixus, ingest a huge amount of blood in a single meal. Their midgut represents an important interface for triatomine–trypanosome interactions. Furthermore, the development of parasites and their vectorial transmission are closely linked to the blood feeding and digestion; thus, an understanding of their physiology is essential for the development of new strategies to control triatomines. In this study, we used label-free quantitative proteomics to identify and analyze the early effect of blood feeding on protein expression in the midgut of Rhodnius prolixus. We both identified and quantified 124 proteins in the anterior midgut (AM) and 40 in the posterior midgut (PM), which vary significantly 6 h after feeding. The detailed analysis of these proteins revealed their predominant involvement in the primary function of hematophagy, including proteases, proteases inhibitors, amino acids metabolism, primary metabolites processing, and protein folding. Interestingly, our proteomics data show a potential role of the AM in protein digestion. Moreover, proteins related to detoxification processes and innate immunity, which are largely accepted to be triggered by blood ingestion, were mildly modulated. Surprisingly, one third of blood-regulated proteins in the AM have unknown function. This work contributes to the improvement of knowledge on the digestive physiology of triatomines in the early hours post-feeding. It provides key information for selecting new putative targets for the development of triatomine control tools and their potential role in the vector competence, which could be applied to other vector species.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| | - Larissa Rezende Vieira
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| |
Collapse
|
37
|
Differential Gene Expression in the Heads of Behaviorally Divergent Culex pipiens Mosquitoes. INSECTS 2021; 12:insects12030271. [PMID: 33806861 PMCID: PMC8005152 DOI: 10.3390/insects12030271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
Host preferences of Cx. pipiens, a bridge vector for West Nile virus to humans, have the potential to drive pathogen transmission dynamics. Yet much remains unknown about the extent of variation in these preferences and their molecular basis. We conducted host choice assays in a laboratory setting to quantify multi-day human and avian landing rates for Cx. pipiens females. Assayed populations originated from five above-ground and three below-ground breeding and overwintering habitats. All three below-ground populations were biased toward human landings, with rates of human landing ranging from 69-85%. Of the five above-ground populations, four had avian landing rates of >80%, while one landed on the avian host only 44% of the time. Overall response rates and willingness to alternate landing on the human and avian hosts across multiple days of testing also varied by population. For one human- and one avian-preferring population, we examined patterns of differential expression and splice site variation at genes expressed in female heads. We also compared gene expression and splice site variation within human-seeking females in either gravid or host-seeking physiological states to identify genes that may regulate blood feeding behaviors. Overall, we identified genes with metabolic and regulatory function that were differentially expressed in our comparison of gravid and host-seeking females. Differentially expressed genes in our comparison of avian- and human-seeking females were enriched for those involved in sensory perception. We conclude with a discussion of specific sensory genes and their potential influence on the divergent behaviors of avian- and human-seeking Cx. pipiens.
Collapse
|
38
|
Martins M, Ramos LFC, Murillo JR, Torres A, de Carvalho SS, Domont GB, de Oliveira DMP, Mesquita RD, Nogueira FCS, Maciel-de-Freitas R, Junqueira M. Comprehensive Quantitative Proteome Analysis of Aedes aegypti Identifies Proteins and Pathways Involved in Wolbachia pipientis and Zika Virus Interference Phenomenon. Front Physiol 2021; 12:642237. [PMID: 33716790 PMCID: PMC7947915 DOI: 10.3389/fphys.2021.642237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) is a global public health emergency due to its association with microcephaly, Guillain-Barré syndrome, neuropathy, and myelitis in children and adults. A total of 87 countries have had evidence of autochthonous mosquito-borne transmission of ZIKV, distributed across four continents, and no antivirus therapy or vaccines are available. Therefore, several strategies have been developed to target the main mosquito vector, Aedes aegypti, to reduce the burden of different arboviruses. Among such strategies, the use of the maternally-inherited endosymbiont Wolbachia pipientis has been applied successfully to reduce virus susceptibility and decrease transmission. However, the mechanisms by which Wolbachia orchestrate resistance to ZIKV infection remain to be elucidated. In this study, we apply isobaric labeling quantitative mass spectrometry (MS)-based proteomics to quantify proteins and identify pathways altered during ZIKV infection; Wolbachia infection; co-infection with Wolbachia/ZIKV in the A. aegypti heads and salivary glands. We show that Wolbachia regulates proteins involved in reactive oxygen species production, regulates humoral immune response, and antioxidant production. The reduction of ZIKV polyprotein in the presence of Wolbachia in mosquitoes was determined by MS and corroborates the idea that Wolbachia helps to block ZIKV infections in A. aegypti. The present study offers a rich resource of data that may help to elucidate mechanisms by which Wolbachia orchestrate resistance to ZIKV infection in A. aegypti, and represents a step further on the development of new targeted methods to detect and quantify ZIKV and Wolbachia directly in complex tissues.
Collapse
Affiliation(s)
- Michele Martins
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Felipe Costa Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jimmy Rodriguez Murillo
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - André Torres
- Carlos Chagas Filho Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gilberto Barbosa Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Magno Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Sterkel M, Haines LR, Casas-Sánchez A, Owino Adung’a V, Vionette-Amaral RJ, Quek S, Rose C, Silva dos Santos M, García Escude N, Ismail HM, Paine MI, Barribeau SM, Wagstaff S, MacRae JI, Masiga D, Yakob L, Oliveira PL, Acosta-Serrano Á. Repurposing the orphan drug nitisinone to control the transmission of African trypanosomiasis. PLoS Biol 2021; 19:e3000796. [PMID: 33497373 PMCID: PMC7837477 DOI: 10.1371/journal.pbio.3000796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.
Collapse
Affiliation(s)
- Marcos Sterkel
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Lee R. Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Vincent Owino Adung’a
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Kenya
| | | | - Shannon Quek
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | | | - Hanafy M. Ismail
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Mark I. Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Seth M. Barribeau
- Department of Ecology Evolution & Behaviour, Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Simon Wagstaff
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
40
|
Yeshi K, Creek DJ, Anderson D, Ritmejerytė E, Becker L, Loukas A, Wangchuk P. Metabolomes and Lipidomes of the Infective Stages of the Gastrointestinal nematodes, Nippostrongylus brasiliensis and Trichuris muris. Metabolites 2020; 10:metabo10110446. [PMID: 33171998 PMCID: PMC7694664 DOI: 10.3390/metabo10110446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
Soil-transmitted helminths, including hookworms and whipworms, infect billions of people worldwide. Their capacity to penetrate and migrate through their hosts’ tissues is influenced by the suite of molecules produced by the infective developmental stages. To facilitate a better understanding of the immunobiology and pathogenicity of human hookworms and whipworms, we investigated the metabolomes of the infective stage of Nippostrongylus brasiliensis third-stage larvae (L3) which penetrate the skin and Trichuris muris eggs which are orally ingested, using untargeted liquid chromatography-mass spectrometry (LC-MS). We identified 55 polar metabolites through Metabolomics Standard Initiative level-1 (MSI-I) identification from N. brasiliensis and T. muris infective stages, out of which seven were unique to excretory/secretory products (ESPs) of N. brasiliensis L3. Amino acids were a principal constituent (33 amino acids). Additionally, we identified 350 putative lipids, out of which 28 (all known lipids) were unique to N. brasiliensis L3 somatic extract and four to T. muris embryonated egg somatic extract. Glycerophospholipids and glycerolipids were the major lipid groups. The catalogue of metabolites identified in this study shed light on the biology, and possible therapeutic and diagnostic targets for the treatment of these critical infectious pathogens. Moreover, with the growing body of literature on the therapeutic utility of helminth ESPs for treating inflammatory diseases, a role for metabolites is likely but has received little attention thus far.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
- Correspondence: (K.Y.); (P.W.)
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (D.J.C.); (D.A.)
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (D.J.C.); (D.A.)
| | - Edita Ritmejerytė
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia; (E.R.); (L.B.); (A.L.)
- Correspondence: (K.Y.); (P.W.)
| |
Collapse
|
41
|
Verdaguer IB, Zafra CA, Crispim M, Sussmann RA, Kimura EA, Katzin AM. Prenylquinones in Human Parasitic Protozoa: Biosynthesis, Physiological Functions, and Potential as Chemotherapeutic Targets. Molecules 2019; 24:molecules24203721. [PMID: 31623105 PMCID: PMC6832408 DOI: 10.3390/molecules24203721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Human parasitic protozoa cause a large number of diseases worldwide and, for some of these diseases, there are no effective treatments to date, and drug resistance has been observed. For these reasons, the discovery of new etiological treatments is necessary. In this sense, parasitic metabolic pathways that are absent in vertebrate hosts would be interesting research candidates for the identification of new drug targets. Most likely due to the protozoa variability, uncertain phylogenetic origin, endosymbiotic events, and evolutionary pressure for adaptation to adverse environments, a surprising variety of prenylquinones can be found within these organisms. These compounds are involved in essential metabolic reactions in organisms, for example, prevention of lipoperoxidation, participation in the mitochondrial respiratory chain or as enzymatic cofactors. This review will describe several prenylquinones that have been previously characterized in human pathogenic protozoa. Among all existing prenylquinones, this review is focused on ubiquinone, menaquinone, tocopherols, chlorobiumquinone, and thermoplasmaquinone. This review will also discuss the biosynthesis of prenylquinones, starting from the isoprenic side chains to the aromatic head group precursors. The isoprenic side chain biosynthesis maybe come from mevalonate or non-mevalonate pathways as well as leucine dependent pathways for isoprenoid biosynthesis. Finally, the isoprenic chains elongation and prenylquinone aromatic precursors origins from amino acid degradation or the shikimate pathway is reviewed. The phylogenetic distribution and what is known about the biological functions of these compounds among species will be described, as will the therapeutic strategies associated with prenylquinone metabolism in protozoan parasites.
Collapse
Affiliation(s)
- Ignasi B. Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Camila A. Zafra
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Rodrigo A.C. Sussmann
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro 45810-000 Bahia, Brazil
| | - Emília A. Kimura
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Alejandro M. Katzin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +5511-3091-7417
| |
Collapse
|
42
|
Sterkel M, Ons S, Oliveira PL. DOPA decarboxylase is essential for cuticle tanning in Rhodnius prolixus (Hemiptera: Reduviidae), affecting ecdysis, survival and reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:24-31. [PMID: 30885802 DOI: 10.1016/j.ibmb.2019.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Cuticle tanning occurs in insects immediately after hatching or molting. During this process, the cuticle becomes dark and rigid due to melanin deposition and protein crosslinking. In insects, different from mammals, melanin is synthesized mainly from dopamine, which is produced from DOPA by the enzyme DOPA decarboxylase. In this work, we report that the silencing of the RpAadc-2 gene, which encodes the putative Rhodnius prolixus DOPA decarboxylase enzyme, resulted in a reduction in nymph survival, with a high percentage of treated insects dying during the ecdysis process or in the expected ecdysis period. Those treated insects that could complete ecdysis presented a decrease in cuticle pigmentation and hardness after molting. In adult females, the knockdown of AADC-2 resulted in a reduction in the hatching of eggs; the nymphs that managed to hatch failed to tan the cuticle and were unable to feed. Despite the failure in cuticle tanning, knockdown of the AADC-2 did not increase the susceptibility to topically applied deltamethrin, a pyrethroid insecticide. Additionally, our results showed that the melanin synthesis pathway did not play a major role in the detoxification of the excess (potentially toxic) tyrosine from the diet, an essential trait for hematophagous arthropod survival after a blood meal.
Collapse
Affiliation(s)
- Marcos Sterkel
- Laboratory of Genetics and Functional Genomics, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120, 1459, La Plata, 1900, Argentina.
| | - Sheila Ons
- Laboratory of Genetics and Functional Genomics, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120, 1459, La Plata, 1900, Argentina.
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco D. Prédio do CCS, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Balanco JMF, Sussmann RAC, Verdaguer IB, Gabriel HB, Kimura EA, Katzin AM. Tocopherol biosynthesis in Leishmania ( L.) amazonensis promastigotes. FEBS Open Bio 2019; 9:743-754. [PMID: 30984548 PMCID: PMC6443866 DOI: 10.1002/2211-5463.12613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 01/25/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by a trypanosomatid protozoan of the genus Leishmania. Most drugs used to treat leishmaniasis are highly toxic, and the emergence of drug‐resistant strains has been observed. Therefore, new therapeutic targets against leishmaniasis are required. Several isoprenoid compounds, including dolichols or ubiquinones, have been shown to be important for cell viability and proliferation in various trypanosomatid species. Here, we detected the biosynthesis of tocopherol in Leishmania (L.) amazonensis promastigotes in vitro through metabolic labelling with [1‐(n)‐3H]‐phytol. Subsequently, we confirmed the presence of vitamin E in the parasite by gas chromatography–mass spectrometry. Treatment with usnic acid or nitisinone, inhibitors of precursors of vitamin E synthesis, inhibited growth of the parasite in a concentration‐dependent manner. This study provides the first evidence of tocopherol biosynthesis in a trypanosomatid and suggests that inhibitors of the enzyme 4‐hydroxyphenylpyruvate dioxygenase may be suitable for use as antileishmanial compounds. Database The amino acid sequence of a conserved hypothetical protein [Leishmania mexicana MHOM/GT/2001/U1103] has been deposited in GenBank (CBZ28005.1)
Collapse
Affiliation(s)
- José Mário F Balanco
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Rodrigo A C Sussmann
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Ignasi B Verdaguer
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Heloisa B Gabriel
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Emilia A Kimura
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Alejandro M Katzin
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| |
Collapse
|
44
|
Cabezas-Cruz A, Espinosa P, Alberdi P, de la Fuente J. Tick-Pathogen Interactions: The Metabolic Perspective. Trends Parasitol 2019; 35:316-328. [PMID: 30711437 DOI: 10.1016/j.pt.2019.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/03/2023]
Abstract
The first tick genome published in 2016 provided an invaluable tool for studying the molecular basis of tick-pathogen interactions. Metabolism is a key element in host-pathogen interactions. However, our knowledge of tick-pathogen metabolic interactions is very limited. Recently, a systems biology approach, using omics datasets, has revealed that tick-borne pathogen infection induces transcriptional reprograming affecting several metabolic pathways in ticks, facilitating infection, multiplication, and transmission. Results suggest that the response of tick cells to tick-borne pathogens is associated with tolerance to infection. Here we review our current understanding of the modulation of tick metabolism by tick-borne pathogens, with a focus on the model intracellular bacterium Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France.
| | - Pedro Espinosa
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
45
|
Scolari F, Attardo GM, Aksoy E, Weiss B, Savini G, Takac P, Abd-Alla A, Parker AG, Aksoy S, Malacrida AR. Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiol 2018; 18:169. [PMID: 30470198 PMCID: PMC6251095 DOI: 10.1186/s12866-018-1289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Tsetse flies (Diptera, Glossinidae) display unique reproductive biology traits. Females reproduce through adenotrophic viviparity, nourishing the growing larva into their modified uterus until parturition. Males transfer their sperm and seminal fluid, produced by both testes and male accessory glands, in a spermatophore capsule transiently formed within the female reproductive tract upon mating. Both sexes are obligate blood feeders and have evolved tight relationships with endosymbionts, already shown to provide essential nutrients lacking in their diet. However, the partnership between tsetse and its symbionts has so far been investigated, at the molecular, genomic and metabolomics level, only in females, whereas the roles of microbiota in male reproduction are still unexplored. Results Here we begin unravelling the impact of microbiota on Glossina m. morsitans (G. morsitans) male reproductive biology by generating transcriptomes from the reproductive tissues of males deprived of their endosymbionts (aposymbiotic) via maternal antibiotic treatment and dietary supplementation. We then compared the transcriptional profiles of genes expressed in the male reproductive tract of normal and these aposymbiotic flies. We showed that microbiota removal impacts several male reproductive genes by depressing the activity of genes in the male accessory glands (MAGs), including sequences encoding seminal fluid proteins, and increasing expression of genes in the testes. In the MAGs, in particular, the expression of genes related to mating, immunity and seminal fluid components’ synthesis is reduced. In the testes, the absence of symbionts activates genes involved in the metabolic apparatus at the basis of male reproduction, including sperm production, motility and function. Conclusions Our findings mirrored the complementary roles male accessory glands and testes play in supporting male reproduction and open new avenues for disentangling the interplay between male insects and endosymbionts. From an applied perspective, unravelling the metabolic and functional relationships between tsetse symbionts and male reproductive physiology will provide fundamental information useful to understanding the biology underlying improved male reproductive success in tsetse. This information is of particular importance in the context of tsetse population control via Sterile Insect Technique (SIT) and its impact on trypanosomiasis transmission. Electronic supplementary material The online version of this article (10.1186/s12866-018-1289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Geoffrey Michael Attardo
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA.,Present Address: Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Emre Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Brian Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06, Bratislava, SR, Slovakia
| | - Adly Abd-Alla
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Andrew Gordon Parker
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | | |
Collapse
|
46
|
O'Flynn BG, Suarez G, Hawley AJ, Merkler DJ. Insect Arylalkylamine N-Acyltransferases: Mechanism and Role in Fatty Acid Amide Biosynthesis. Front Mol Biosci 2018; 5:66. [PMID: 30094237 PMCID: PMC6070697 DOI: 10.3389/fmolb.2018.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/26/2018] [Indexed: 01/29/2023] Open
Abstract
Arylalkylamine N-acyltransferases (AANATs) catalyze the formation of an N-acylamide from an acyl-CoA thioester and an amine. One well known example is the production of N-acetylserotonin from acetyl-CoA and serotonin, a reaction in the melatonin biosynthetic pathway from tryptophan. AANATs have been identified from a variety of vertebrates and invertebrates. Considerable efforts have been devoted to the mammalian AANAT because a cell-permeable inhibitor specifically targeted against this enzyme could prove useful to treat diseases related to dysfunction in melatonin production. Insects are an interesting model for the study of AANATs because more than one isoform is typically expressed by a specific insect and the different insect AANATs (iAANATs) serve different roles in the insect cell. In contrast, mammals express only one AANAT. The major role of iAANATs seem to be in the production of N-acetyldopamine, a reaction important in the tanning and sclerotization of the cuticle. Metabolites identified in insects including N-acetylserotonin and long-chain N-fatty acyl derivatives of dopamine, histidine, phenylalanine, serotonin, tyrosine, and tryptophan are likely produced by an iAANAT. In vitro studies of specific iAANATs are consistent with this hypothesis. In this review, we highlight the current metabolomic knowledge of the N-acylated aromatic amino acids and N-acylated derivatives of the aromatic amino acids, the current mechanistic understanding of the iAANATs, and explore the possibility that iAANATs serve as insect "rhymezymes" regulating photoperiodism and other rhythmic processes in insects.
Collapse
Affiliation(s)
| | | | | | - David J. Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
47
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
48
|
Cabezas-Cruz A, Espinosa PJ, Obregón DA, Alberdi P, de la Fuente J. Ixodes scapularis Tick Cells Control Anaplasma phagocytophilum Infection by Increasing the Synthesis of Phosphoenolpyruvate from Tyrosine. Front Cell Infect Microbiol 2017; 7:375. [PMID: 28861402 PMCID: PMC5562928 DOI: 10.3389/fcimb.2017.00375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/04/2017] [Indexed: 01/14/2023] Open
Abstract
The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of life-threatening diseases in humans and animals. A. phagocytophilum is an emerging tick-borne pathogen in the United States, Europe, Africa and Asia, with increasing numbers of infected people and animals every year. It is increasingly recognized that intracellular pathogens modify host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. Recent reports have shown that amino acids are central to the host–pathogen metabolic interaction. In this study, a genome-wide search for components of amino acid metabolic pathways was performed in Ixodes scapularis, the main tick vector of A. phagocytophilum in the United States, for which the genome was recently published. The enzymes involved in the synthesis and degradation pathways of the twenty amino acids were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis amino acid metabolic pathway components in response to A. phagocytophilum infection of tick tissues and ISE6 tick cells. Our analysis was focused on the interplay between carbohydrate and amino acid metabolism during A. phagocytophilum infection in ISE6 cells. The results showed that tick cells increase the synthesis of phosphoenolpyruvate (PEP) from tyrosine to control A. phagocytophilum infection. Metabolic pathway analysis suggested that this is achieved by (i) increasing the transcript and protein levels of mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M), (ii) shunting tyrosine into the tricarboxylic acid (TCA) cycle to increase fumarate and oxaloacetate which will be converted into PEP by PEPCK-M, and (iii) blocking all the pathways that use PEP downstream gluconeogenesis (i.e., de novo serine synthesis pathway (SSP), glyceroneogenesis and gluconeogenesis). While sequestering host PEP may be critical for this bacterium because it cannot actively carry out glycolysis to produce PEP, excess of this metabolite may be toxic for A. phagocytophilum. The present work provides a more comprehensive view of the major amino acid metabolic pathways involved in the response to pathogen infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Biologie Moléculaire et Immunologie Parasitaires (BIPAR), Unité Mixte de Recherche (UMR), Institut National Recherche Agronomique, Agence Nationale Sécurité Sanitaire Alimentaire Nationale (ANSES), Ecole Nationale Vétérinaire d'Alfort, Université Paris-EstMaisons-Alfort, France.,Department of Parasitology, Faculty of Science, University of South BohemiaČeské Budějovice, Czechia.,Institute of Parasitology, Biology Center, Czech Academy of SciencesČeské Budějovice, Czechia
| | - Pedro J Espinosa
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad Real, Spain
| | - Dasiel A Obregón
- Cell and Molecular Biology Laboratory, University of Sao PauloSao Paulo, Brazil
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, United States
| |
Collapse
|
49
|
Sterkel M, Oliveira JHM, Bottino-Rojas V, Paiva-Silva GO, Oliveira PL. The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods. Trends Parasitol 2017; 33:633-644. [PMID: 28549573 DOI: 10.1016/j.pt.2017.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate blood composition is heavily biased towards proteins, and hemoglobin, which is a hemeprotein, is by far the most abundant protein. Typically, hematophagous insects ingest blood volumes several times their weight before the blood meal. This barbarian feast offers an abundance of nutrients, but the degradation of blood proteins generates toxic concentrations of amino acids and heme, along with unparalleled microbiota growth. Despite this challenge, hematophagous arthropods have successfully developed mechanisms that bypass the toxicity of these molecules. While these adaptations allow hematophagous arthropods to tolerate their diet, they also constitute a unique mode of operation for cell signaling, immunity, and metabolism, the study of which may offer insights into the biology of disease vectors and may lead to novel vector-specific control methods.
Collapse
Affiliation(s)
- Marcos Sterkel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Henrique M Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil.
| |
Collapse
|
50
|
Sterkel M, Oliveira PL. Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus. Proc Biol Sci 2017; 284:20162607. [PMID: 28469016 PMCID: PMC5443934 DOI: 10.1098/rspb.2016.2607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
The phenylalanine/tyrosine degradation pathway is frequently described as a catabolic pathway that funnels aromatic amino acids into citric acid cycle intermediates. Previously, we demonstrated that the accumulation of tyrosine generated during the hydrolysis of blood meal proteins in Rhodnius prolixus is potentially toxic, a harmful outcome that is prevented by the action of the first two enzymes in the tyrosine degradation pathway. In this work, we further evaluated the relevance of all other enzymes involved in phenylalanine/tyrosine metabolism in the physiology of this insect. The knockdown of most of these enzymes produced a wide spectrum of distinct phenotypes associated with reproduction, development and nymph survival, demonstrating a highly pleiotropic role of tyrosine metabolism. The phenotypes obtained for two of these enzymes, homogentisate dioxygenase and fumarylacetoacetase, have never before been described in any arthropod. To our knowledge, this report is the first comprehensive gene-silencing analysis of an amino acid metabolism pathway in insects. Amino acid metabolism is exceptionally important in haematophagous arthropods due to their particular feeding behaviour.
Collapse
Affiliation(s)
- Marcos Sterkel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|