1
|
Leitão F, Cánovas F. Predicting climate change impacts on marine fisheries, biodiversity and economy in the Canary/Iberia current upwelling system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125537. [PMID: 40311359 DOI: 10.1016/j.jenvman.2025.125537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/04/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
The vulnerability of fisheries to climate change (CC) is driven by exposure factors that can affect species and fisheries differently at regional level. Ecological and socioeconomic consequences of climate change were assessed by evaluating a set of species (N = 53), caught by Portuguese fleet, that are likely to be affected by changes in oceanographical conditions (climatic scenarios RCP4.5 and RCP8.5) by the middle of this century (2041-2060). A novel approach was used which consist in estimate species habitat vulnerability index to CC by combining species habitat suitability with species sensitivity (life history ecological-biological traits), that was considered the weighting score for habitat suitability estimations by niche ecological models. Exploited species denote little specialization and have a large marginalization range with results showing that shifts in environmental variables, expected in the future, did not alter general distribution patterns of study species. Specialization was associated with sea surface temperature while marginality to depth, indicating that species can find refuges at higher depths without losing distribution range. Predicted changes in habitat suitability values across all species varied between a decrease of 11 % and an increase of 7 %, with species mean shifts around ±4 %. Catch composition by species (similarity >95 % regardless scenario/area), functional groups (similarity >97 % regardless scenario/area), trophic level structure (similarity >98 % regardless scenario/area) and marine biodiversity (marine trophic index ∼ 3.35 regardless scenario/area) projected for the middle of this century, showed similarities to the present scenario. Economic losses estimated for the middle of this century correspond to a maximum value of 3 % in catch and 2.3 % economically. Fisheries revenue could not be jeopardized due to CC until the middle of the century. Under results found maintaining sustainable fishing management strategies is the best way to mitigate CC effects.
Collapse
Affiliation(s)
- F Leitão
- Centre of Marine Science (CCMAR), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal; Faculdade de Ciências e Tecnologias, Universidade do Algarve, Campus Gambelas, 8005-139, Faro, Portugal.
| | - F Cánovas
- Faculty of Health Sciences, Catholic University of Murcia, Campus de Los Jerónimos, Guadalupe, 30107, Murcia, Spain
| |
Collapse
|
2
|
Samoilys M, Osuka KE, Roche R, Koldewey H, Chabanet P. Effects of protection on large-bodied reef fishes in the western Indian Ocean. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025:e14430. [PMID: 39853835 DOI: 10.1111/cobi.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/22/2024] [Accepted: 10/16/2024] [Indexed: 01/26/2025]
Abstract
Predatory and large-bodied coral reef fishes have fundamental roles in the functioning and biodiversity of coral reef ecosystems, but their populations are declining, largely due to overexploitation in fisheries. These fishes include sharks, groupers, Humphead wrasse (Cheilinus undulatus), and Green Humphead parrotfish (Bolbometopon muricatum). In the western Indian Ocean, this situation is exacerbated by limited population data on these fishes, including from conventional visual census methods, which limit the surface area surveyed. We developed a rapid timed scuba swim survey approach for application over large areas for estimation of the abundance of large-bodied reef fishes and assessment of the effectiveness of marine protected areas (MPAs) in maintaining these species' populations. Using this method, we sampled 7 regions in the western central Indian Ocean and Gulf of Aden, including 2 remote reference locations where fishing is prohibited. Eight families were selected for the surveys from across 3 categories: pelagic, demersal, and large-bodied single species. Sharks (Carcharhinidae) were absent in 5 of the 7 regions, observed only in Mozambique and the Chagos Archipelago. Tunas (Scombridae) and barracudas (Sphyraenidae) were rarely observed (none in Madagascar, Djibouti, and Iles Glorieuses). The Giant grouper (Epinephelus lanceolatus) was absent in all regions, Humphead wrasse was absent in Comoros and Iles Glorieuses, and Green Humphead parrotfish was observed at only one site in Tanzania. The MPAs were not effective in protecting these single large-bodied species or the 4 pelagic families, except for sharks in the highly protected reference locations. However, MPAs with medium levels of protection were effective in maintaining the abundance of some demersal families, notably large-bodied groupers. Our results support the hypothesis of local extirpation of these large-bodied fishes on many coral reefs in the western Indian Ocean.
Collapse
Affiliation(s)
- Melita Samoilys
- CORDIO East Africa, Mombasa, Kenya
- Department of Biology, University of Oxford, Oxford, UK
| | - Kennedy E Osuka
- CORDIO East Africa, Mombasa, Kenya
- School of Environmental Science, University of Liverpool, Liverpool, UK
| | - Ronan Roche
- Department of Earth, Oceans and Ecological Science, University of Bangor, Bangor, UK
| | - Heather Koldewey
- Zoological Society of London, London, UK
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | - Pascale Chabanet
- UMR ENTROPIE (IRD, UR, CNRS, IFREMER, UNC), CS 41096, La Reunion, France
| |
Collapse
|
3
|
Zamborain-Mason J, Connolly SR, MacNeil MA, Barnes ML, Bauman AG, Feary DA, Huertas V, Januchowski-Hartley FA, Lau JD, Mihalitsis M, Cinner JE. Downscaling global reference points to assess the sustainability of local fisheries. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025:e14440. [PMID: 39815734 DOI: 10.1111/cobi.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 01/18/2025]
Abstract
Multispecies coral reef fisheries are typically managed by local communities who often lack research and monitoring capacity, which prevents estimation of well-defined sustainable reference points to perform locally relevant fishery assessments. Recent research modeling coral reef fisheries globally has estimated multispecies sustainable reference points (i.e., the maximum reef fish yields that can be harvested sustainably and the corresponding reef fish standing biomass at which those are expected to be achieved) based on environmental indicators. These global reference points are a promising tool for assessing data-poor reef fisheries but need to be downscaled to be relevant to resource practitioners. Using a small-scale multispecies reef fishery in Papua New Guinea, we estimated sustainable reference points and assessed the sustainability of the fishery by integrating global-scale analyses with local-scale environmental conditions (i.e., coral cover, sea surface temperature, ocean productivity, and whether the reef is an atoll), reef area, fish catch and standing biomass estimates, and fishers' perceptions. Local-scale relevant data were obtained from a combination of remote sensing products, underwater visual censuses, catch surveys, and household structured social surveys. Our sustainability assessment based on downscaled estimated sustainable reference points was consistent with local fishers' perceptions. Specifically, our downscaled results suggested that the fishing community was overfishing their reef fish stocks and stocks were below biomass levels that maximize production, making the overall reef fishery unsustainable. These results were consistent with fisher perceptions that reef fish stocks were declining in abundance and mean fish length and that fishers had to spend more time finding fish. Our downscaled site-level assessment revealed severe local resource exploitation, the dynamics of which were masked in national-scale assessments, emphasizing the importance of matching assessments to the scale of management. Overall, we show how global reference points can be applied locally when long-term data are not available, providing baseline assessments for sustainably managing previously unassessed multispecies reef fisheries around the globe.
Collapse
Affiliation(s)
- Jessica Zamborain-Mason
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Department of Nutrition and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sean R Connolly
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michele L Barnes
- College of Arts, Society and Education, James Cook University, Townsville, Queensland, Australia
| | - Andrew G Bauman
- National Coral Reef Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | - Victor Huertas
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, Australia
| | | | - Jacqueline D Lau
- College of Arts, Society and Education, James Cook University, Townsville, Queensland, Australia
| | - Michalis Mihalitsis
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, Australia
- Department of Evolution and Ecology, University of California, Davis, Davis, California, USA
| | - Joshua E Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Maire E, Robinson JPW, McLean M, Arif S, Zamborain-Mason J, Cinner JE, Ferse SCA, Graham NAJ, Hoey AS, MacNeil MA, Mouillot D, Hicks CC. Managing nutrition-biodiversity trade-offs on coral reefs. Curr Biol 2024; 34:4612-4622.e5. [PMID: 39293442 DOI: 10.1016/j.cub.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Coral reefs support an incredible abundance and diversity of fish species, with reef-associated fisheries providing important sources of income, food, and dietary micronutrients to millions of people across the tropics. However, the rapid degradation of the world's coral reefs and the decline in their biodiversity may limit their capacity to supply nutritious and affordable seafood while meeting conservation goals for sustainability. Here, we conduct a global-scale analysis of how the nutritional quality of reef fish assemblages (nutritional contribution to the recommended daily intake of calcium, iron, and zinc contained in an average 100 g fish on the reef) relates to key environmental, socioeconomic, and ecological conditions, including two key metrics of fish biodiversity. Our global analysis of more than 1,600 tropical reefs reveals that fish trophic composition is a more important driver of micronutrient concentrations than socioeconomic and environmental conditions. Specifically, micronutrient density increases as the relative biomass of herbivores and detritivores increases at lower overall biomass or under high human pressure. This suggests that the provision of essential micronutrients can be maintained or even increase where fish biomass decreases, reinforcing the need for policies that ensure sustainable fishing, and that these micronutrients are retained locally for nutrition. Furthermore, we found a negative association between micronutrient density and two metrics of fish biodiversity, revealing an important nutrition-biodiversity trade-off. Protecting reefs with high levels of biodiversity maintains key ecosystem functions, whereas sustainable fisheries management in locations with high micronutrient density could sustain the essential supply of micronutrients to coastal human communities.
Collapse
Affiliation(s)
- Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| | - James P W Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Suchinta Arif
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Joshua E Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sebastian C A Ferse
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany; Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | | | - Andrew S Hoey
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France; Institut Universitaire de France, Paris, France
| | - Christina C Hicks
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
5
|
Hadj-Hammou J, Cinner JE, Barneche DR, Caldwell IR, Mouillot D, Robinson JPW, Schiettekatte NMD, Siqueira AC, Taylor BM, Graham NAJ. Global patterns and drivers of fish reproductive potential on coral reefs. Nat Commun 2024; 15:6105. [PMID: 39030209 PMCID: PMC11271586 DOI: 10.1038/s41467-024-50367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Fish fecundity scales hyperallometrically with body mass, meaning larger females produce disproportionately more eggs than smaller ones. We explore this relationship beyond the species-level to estimate the "reproductive potential" of 1633 coral reef sites distributed globally. We find that, at the site-level, reproductive potential scales hyperallometrically with assemblage biomass, but with a smaller median exponent than at the species-level. Across all families, modelled reproductive potential is greater in fully protected sites versus fished sites. This difference is most pronounced for the important fisheries family, Serranidae. When comparing a scenario where 30% of sites are randomly fully protected to a current protection scenario, we estimate an increase in the reproductive potential of all families, and particularly for Serranidae. Such results point to the possible ecological benefits of the 30 × 30 global conservation target and showcase management options to promote the sustainability of population replenishment.
Collapse
Affiliation(s)
- Jeneen Hadj-Hammou
- Lancaster University Environment Centre, Lancaster University, Lancaster, UK.
| | - Joshua E Cinner
- Thriving Oceans Research Hub. School of Geosciences, University of Sydney, Caperdown, NSW, 2006, Australia
| | - Diego R Barneche
- Australian Institute of Marine Science, Crawley, WA, Australia
- Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - Iain R Caldwell
- College of Arts, Society and Education, James Cook University, Townsville, QLD, Australia
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - James P W Robinson
- Lancaster University Environment Centre, Lancaster University, Lancaster, UK
| | | | - Alexandre C Siqueira
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Perth, WA, 6027, Australia
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Brett M Taylor
- University of Guam Marine Laboratory and UOG Sea Grant, 303 University Drive, UOG Station, Mangilao, Guam, 96923, USA
| | - Nicholas A J Graham
- Lancaster University Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
6
|
Devi SS, Saifudeen N, Kumar KS, Kumar AB. Does the microplastics ingestion patterns and polymer composition vary across the oceanic zones? A case study from the Indian coast. MARINE POLLUTION BULLETIN 2024; 204:116532. [PMID: 38824708 DOI: 10.1016/j.marpolbul.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
This study explores microplastic (MP) presence in the gastrointestinal tracts of deep-sea fish from the Central Indian Ocean, off the Indian coast. Among the 27 species examined, 19 showed MP contamination, averaging 2.68 ± 0.30 (±SE) MPs per individual. Polymer analysis via FTIR and micro-Raman identified several types, including polyethylene terephthalate (PET), polyvinyl alcohol (PVA), polypropelene (PP), polyvinyl acetate (PVC), polyurethane (PU), polytetrafluoroethylene (PTFE), polyaniline (PANI), polymethyl methacrylate (PMMA), and polyethersulfone (PES), with PET being the most prevalent (33.33 %). MP ingestion was higher in benthopelagic fish and those at higher trophic levels, as indicated by comparisons across oceanic zones. Niche partitioning analysis suggests feeding behaviour as a primary influencer of MP ingestion in deep-sea fish rather than habitat or trophic level. The study proposes the potential use of deep-sea fish as indicators for assessing microplastic pollution across oceanic zones and deep-sea regions through bycatch monitoring.
Collapse
Affiliation(s)
- Suvarna S Devi
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India
| | - Nasila Saifudeen
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India
| | | | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India.
| |
Collapse
|
7
|
Young HS, McCauley FO, Micheli F, Dunbar RB, McCauley DJ. Shortened food chain length in a fished versus unfished coral reef. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3002. [PMID: 38840322 DOI: 10.1002/eap.3002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Direct exploitation through fishing is driving dramatic declines of wildlife populations in ocean environments, particularly for predatory and large-bodied taxa. Despite wide recognition of this pattern and well-established consequences of such trophic downgrading on ecosystem function, there have been few empirical studies examining the effects of fishing on whole system trophic architecture. Understanding these kinds of structural impacts is especially important in coral reef ecosystems-often heavily fished and facing multiple stressors. Given the often high dietary flexibility and numerous functional redundancies in diverse ecosystems such as coral reefs, it is important to establish whether web architecture is strongly impacted by fishing pressure or whether it might be resilient, at least to moderate-intensity pressure. To examine this question, we used a combination of bulk and compound-specific stable isotope analyses measured across a range of predatory and low-trophic-level consumers between two coral reef ecosystems that differed with respect to fishing pressure but otherwise remained largely similar. We found that even in a high-diversity system with relatively modest fishing pressure, there were strong reductions in the trophic position (TP) of the three highest TP consumers examined in the fished system but no effects on the TP of lower-level consumers. We saw no evidence that this shortening of the affected food webs was being driven by changes in basal resource consumption, for example, through changes in the spatial location of foraging by consumers. Instead, this likely reflected internal changes in food web architecture, suggesting that even in diverse systems and with relatively modest pressure, human harvest causes significant compressions in food chain length. This observed shortening of these food webs may have many important emergent ecological consequences for the functioning of ecosystems impacted by fishing or hunting. Such important structural shifts may be widespread but unnoticed by traditional surveys. This insight may also be useful for applied ecosystem managers grappling with choices about the relative importance of protection for remote and pristine areas and the value of strict no-take areas to protect not just the raw constituents of systems affected by fishing and hunting but also the health and functionality of whole systems.
Collapse
Affiliation(s)
- Hillary S Young
- Department of Ecology, Evolution and Marine Biology, UC Santa Barbara, Santa Barbara, California, USA
| | | | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, and Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, California, USA
| | - Robert B Dunbar
- Oceans Department and Earth Systems Science, Stanford University, Pacific Grove, California, USA
| | - Douglas J McCauley
- Department of Ecology, Evolution and Marine Biology, UC Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
8
|
Letessier TB, Mouillot D, Mannocci L, Jabour Christ H, Elamin EM, Elamin SM, Friedlander AM, Hearn A, Juhel JB, Kleiven AR, Moland E, Mouquet N, Nillos-Kleiven PJ, Sala E, Thompson CDH, Velez L, Vigliola L, Meeuwig JJ. Divergent responses of pelagic and benthic fish body-size structure to remoteness and protection from humans. Science 2024; 383:976-982. [PMID: 38422147 DOI: 10.1126/science.adi7562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Animal body-size variation influences multiple processes in marine ecosystems, but habitat heterogeneity has prevented a comprehensive assessment of size across pelagic (midwater) and benthic (seabed) systems along anthropic gradients. In this work, we derive fish size indicators from 17,411 stereo baited-video deployments to test for differences between pelagic and benthic responses to remoteness from human pressures and effectiveness of marine protected areas (MPAs). From records of 823,849 individual fish, we report divergent responses between systems, with pelagic size structure more profoundly eroded near human markets than benthic size structure, signifying greater vulnerability of pelagic systems to human pressure. Effective protection of benthic size structure can be achieved through MPAs placed near markets, thereby contributing to benthic habitat restoration and the recovery of associated fishes. By contrast, recovery of the world's largest and most endangered fishes in pelagic systems requires the creation of highly protected areas in remote locations, including on the High Seas, where protection efforts lag.
Collapse
Affiliation(s)
- Tom B Letessier
- CESAB - FRB, Montpellier, France
- Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
- Marine Futures Lab, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Mouillot
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laura Mannocci
- CESAB - FRB, Montpellier, France
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Hanna Jabour Christ
- Marine Futures Lab, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | | | - Sheikheldin Mohamed Elamin
- Faculty of Marine Science and Fisheries, Red Sea State University, P.O. Box 24, Port Sudan, Red Sea State, Sudan
| | - Alan M Friedlander
- National Geographic Society, Washington, DC 20036, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, Hawai'i, USA
| | - Alex Hearn
- Galapagos Science Center, Universidad San Francisco de Quito, Quito, Ecuador
- MigraMar, Olema, CA, USA
| | - Jean-Baptiste Juhel
- ENTROPIE, Institut de Recherche pour le Développement, IRD-UR-UNC-IFREMER-CNRS, Centre IRD de Nouméa, Nouméa Cedex, New-Caledonia, France
| | - Alf Ring Kleiven
- Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway
| | - Even Moland
- Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway
- Centre for Coastal Research (CCR), Department of Natural Sciences, University of Agder, P.O. Box 422, N-4604 Kristiansand, Norway
| | - Nicolas Mouquet
- CESAB - FRB, Montpellier, France
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Enric Sala
- National Geographic Society, Washington, DC 20036, USA
| | - Christopher D H Thompson
- Marine Futures Lab, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Laure Velez
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laurent Vigliola
- ENTROPIE, Institut de Recherche pour le Développement, IRD-UR-UNC-IFREMER-CNRS, Centre IRD de Nouméa, Nouméa Cedex, New-Caledonia, France
| | - Jessica J Meeuwig
- Marine Futures Lab, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Oceans Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Sanchez L, Loiseau N, Edgar GJ, Hautecoeur C, Leprieur F, Manel S, McLean M, Stuart-Smith RD, Velez L, Mouillot D. Rarity mediates species-specific responses of tropical reef fishes to protection. Ecol Lett 2024; 27:e14418. [PMID: 38532624 DOI: 10.1111/ele.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Marine protected areas (MPAs) are the most widely applied tool for marine biodiversity conservation, yet many gaps remain in our understanding of their species-specific effects, partly because the socio-environmental context and spatial autocorrelation may blur and bias perceived conservation outcomes. Based on a large data set of nearly 3000 marine fish surveys spanning all tropical regions of the world, we build spatially explicit models for 658 fish species to estimate species-specific responses to protection while controlling for the environmental, habitat and socio-economic contexts experienced across their geographic ranges. We show that the species responses are highly variable, with ~40% of fishes not benefitting from protection. When investigating how traits influence species' responses, we find that rare top-predators and small herbivores benefit the most from MPAs while mid-trophic level species benefit to a lesser extent, and rare large herbivores experience adverse effects, indicating potential trophic cascades.
Collapse
Affiliation(s)
- Loïc Sanchez
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Cyril Hautecoeur
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Stéphanie Manel
- Institut Universitaire de France, Paris, France
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Matthew McLean
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
10
|
Ceccarelli DM, Evans RD, Logan M, Jones GP, Puotinen M, Petus C, Russ GR, Srinivasan M, Williamson DH. Physical, biological and anthropogenic drivers of spatial patterns of coral reef fish assemblages at regional and local scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166695. [PMID: 37660823 DOI: 10.1016/j.scitotenv.2023.166695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Species abundance, diversity and community assemblage structure are determined by multiple physical, habitat and management drivers that operate across multiple spatial scales. Here we used a multi-scale coral reef monitoring dataset to examine regional and local differences in the abundance, species richness and composition of fish assemblages in no-take marine reserve (NTMR) and fished zones at four island groups in the Great Barrier Reef Marine Park, Australia. We applied boosted regression trees to quantify the influence of 20 potential drivers on the coral reef fish assemblages. Reefs in two locations, Magnetic Island and the Keppel Islands, had distinctive fish assemblages and low species richness, while the Palm and Whitsunday Islands had similar species composition and higher species richness. Overall, our analyses identified several important physical (temperature, wave exposure) and biological (coral, turf, macroalgal and unconsolidated substratum cover) drivers of inshore reef fish communities, some of which are being altered by human activities. Of these, sea surface temperature (SST) was more influential at large scales, while wave exposure was important both within and between island groups. Species richness declined with increasing macroalgal cover and exposure to cyclones, and increased with SST. Species composition was most strongly influenced by mean SST and percent cover of macroalgae. There was substantial regional variation in the local drivers of spatial patterns. Although NTMR zoning influenced total fish density in some regions, it had negligible effects on fish species richness, composition and trophic structure because of the relatively small number of species targeted by the fishery. These findings show that inshore reef fishes are directly influenced by disturbances typical of the nearshore Great Barrier Reef, highlighting the need to complement global action on climate change with more targeted localised efforts to maintain or improve the condition of coral reef habitats.
Collapse
Affiliation(s)
- Daniela M Ceccarelli
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Geoffrey P Jones
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Caroline Petus
- Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - Garry R Russ
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Maya Srinivasan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - David H Williamson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Great Barrier Reef Marine Park Authority, Townsville, QLD 4811, Australia
| |
Collapse
|
11
|
Robinson JPW, Darling ES, Maire E, Hamilton M, Hicks CC, Jupiter SD, Aaron MacNeil M, Mangubhai S, McClanahan T, Nand Y, Graham NAJ. Trophic distribution of nutrient production in coral reef fisheries. Proc Biol Sci 2023; 290:20231601. [PMID: 37788704 PMCID: PMC10547557 DOI: 10.1098/rspb.2023.1601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Coral reef fisheries supply nutritious catch to tropical coastal communities, where the quality of reef seafood is determined by both the rate of biomass production and nutritional value of reef fishes. Yet our understanding of reef fisheries typically uses targets of total reef fish biomass rather than individual growth (i.e. biomass production) and nutrient content (i.e. nutritional value of reef fish), limiting the ability of management to sustain the productivity of nutritious catches. Here, we use modelled growth coefficients and nutrient concentrations to develop a new metric of nutrient productivity of coral reef fishes. We then evaluate this metric with underwater visual surveys of reef fish assemblages from four tropical countries to examine nutrient productivity of reef fish food webs. Species' growth coefficients were associated with nutrients that vary with body size (calcium, iron, selenium and zinc), but not total nutrient density. When integrated with fish abundance data, we find that herbivorous species typically dominate standing biomass, biomass turnover and nutrient production on coral reefs. Such bottom-heavy trophic distributions of nutrients were consistent across gradients of fishing pressure and benthic composition. We conclude that management restrictions that promote sustainability of herbivores and other low trophic-level species can sustain biomass and nutrient production from reef fisheries that is critical to the food security of over 500 million people in the tropics.
Collapse
Affiliation(s)
| | - Emily S. Darling
- Wildlife Conservation Society, Global Marine Program, Bronx, NY 10460, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Mark Hamilton
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Christina C. Hicks
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Stacy D. Jupiter
- Melanesia Program, Wildlife Conservation Society, 11 Ma'afu St, Suva, Fiji
| | - M. Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Canada B3H 4R2
| | - Sangeeta Mangubhai
- Melanesia Program, Wildlife Conservation Society, 11 Ma'afu St, Suva, Fiji
| | - Tim McClanahan
- Wildlife Conservation Society, Global Marine Program, Bronx, NY 10460, USA
| | - Yashika Nand
- Melanesia Program, Wildlife Conservation Society, 11 Ma'afu St, Suva, Fiji
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | |
Collapse
|
12
|
Half a century of rising extinction risk of coral reef sharks and rays. Nat Commun 2023; 14:15. [PMID: 36650137 PMCID: PMC9845228 DOI: 10.1038/s41467-022-35091-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023] Open
Abstract
Sharks and rays are key functional components of coral reef ecosystems, yet many populations of a few species exhibit signs of depletion and local extinctions. The question is whether these declines forewarn of a global extinction crisis. We use IUCN Red List to quantify the status, trajectory, and threats to all coral reef sharks and rays worldwide. Here, we show that nearly two-thirds (59%) of the 134 coral-reef associated shark and ray species are threatened with extinction. Alongside marine mammals, sharks and rays are among the most threatened groups found on coral reefs. Overfishing is the main cause of elevated extinction risk, compounded by climate change and habitat degradation. Risk is greatest for species that are larger-bodied (less resilient and higher trophic level), widely distributed across several national jurisdictions (subject to a patchwork of management), and in nations with greater fishing pressure and weaker governance. Population declines have occurred over more than half a century, with greatest declines prior to 2005. Immediate action through local protections, combined with broad-scale fisheries management and Marine Protected Areas, is required to avoid extinctions and the loss of critical ecosystem function condemning reefs to a loss of shark and ray biodiversity and ecosystem services, limiting livelihoods and food security.
Collapse
|
13
|
Biological trade-offs underpin coral reef ecosystem functioning. Nat Ecol Evol 2022; 6:701-708. [PMID: 35379939 DOI: 10.1038/s41559-022-01710-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/20/2022] [Indexed: 11/08/2022]
Abstract
Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.
Collapse
|
14
|
Anderson L, Houk P, Miller MGR, Cuetos-Bueno J, Graham C, Kanemoto K, Terk E, McLeod E, Beger M. Trait groups as management entities in a complex, multispecies reef fishery. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13866. [PMID: 34811801 DOI: 10.1111/cobi.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Localized stressors compound the ongoing climate-driven decline of coral reefs, requiring natural resource managers to work with rapidly shifting paradigms. Trait-based adaptive management (TBAM) is a new framework to help address changing conditions by choosing and implementing management actions specific to species groups that share key traits, vulnerabilities, and management responses. In TBAM maintenance of functioning ecosystems is balanced with provisioning for human subsistence and livelihoods. We first identified trait-based groups of food fish in a Pacific coral reef with hierarchical clustering. Positing that trait-based groups performing comparable functions respond similarly to both stressors and management actions, we ascertained biophysical and socioeconomic drivers of trait-group biomass and evaluated their vulnerabilities with generalized additive models. Clustering identified 7 trait groups from 131 species. Groups responded to different drivers and displayed divergent vulnerabilities; human activities emerged as important predictors of community structuring. Biomass of small, solitary reef-associated species increased with distance from key fishing ports, and large, solitary piscivores exhibited a decline in biomass with distance from a port. Group biomass also varied in response to different habitat types, the presence or absence of reported dynamite fishing activity, and exposure to wave energy. The differential vulnerabilities of trait groups revealed how the community structure of food fishes is driven by different aspects of resource use and habitat. This inherent variability in the responses of trait-based groups presents opportunities to apply selective TBAM strategies for complex, multispecies fisheries. This approach can be widely adjusted to suit local contexts and priorities.
Collapse
Affiliation(s)
- Louise Anderson
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter Houk
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Mark G R Miller
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Javier Cuetos-Bueno
- Marine Laboratory, University of Guam, Mangilao, Guam
- The Nature Conservancy, Mangilao, Guam
| | - Curtis Graham
- Department of Marine Resources, Weno, Federated States of Micronesia
| | - Kriskitina Kanemoto
- FSM Ridge to Reef Program, Department of Marine Resources, Weno, Federated States of Micronesia
| | - Elizabeth Terk
- The Nature Conservancy, Kolonia, Federated States of Micronesia
| | | | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
15
|
Smallhorn-West P, van der Ploeg J, Boso D, Sukulu M, Leamae J, Isihanua M, Jasper M, Saeni-Oeta J, Batalofo M, Orirana G, Konamalefo A, Houma J, Eriksson H. Patterns of catch and trophic signatures illustrate diverse management requirements of coastal fisheries in Solomon Islands. AMBIO 2022; 51:1504-1519. [PMID: 35150394 PMCID: PMC9005606 DOI: 10.1007/s13280-021-01690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/11/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Coastal fisheries are a critical component of Pacific island food systems; they power village economies and provide nutritious aquatic foods. Many coastal women and men actively fishing in this region rely on multi-species fisheries, which given their extraordinary diversity are notoriously difficult to both characterize, and to manage. Understanding patterns of fishing, diversity of target species and drivers of these patterns can help define requirements for sustainable management and enhanced livelihoods. Here we use a 12-month data set of 8535 fishing trips undertaken by fishers across Malaita province, Solomon Islands, to create fisheries signatures for 13 communities based on the combination of two metrics; catch per unit effort (CPUE) and catch trophic levels. These signatures are in turn used as a framework for guiding suitable management recommendations in the context of community-based resource management. While a key proximate driver of these patterns was fishing gear (e.g. angling, nets or spearguns), market surveys and qualitative environmental information suggest that community fishing characteristics are coupled to local environmental features more than the market value of specific species they target. Our results demonstrate that even within a single island not all small-scale fisheries are equal, and effective management solutions ultimately depend on catering to the specific environmental characteristics around individual communities.
Collapse
Affiliation(s)
- Patrick Smallhorn-West
- WorldFish, Unit 2, LKP Building, Mission Place, PO Box 438, Honiara, Solomon Islands
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, QLD 4810 Australia
| | - Jan van der Ploeg
- WorldFish, Unit 2, LKP Building, Mission Place, PO Box 438, Honiara, Solomon Islands
| | - Delvene Boso
- WorldFish, Unit 2, LKP Building, Mission Place, PO Box 438, Honiara, Solomon Islands
| | - Meshach Sukulu
- WorldFish, Unit 2, LKP Building, Mission Place, PO Box 438, Honiara, Solomon Islands
| | - Janet Leamae
- WorldFish, Unit 2, LKP Building, Mission Place, PO Box 438, Honiara, Solomon Islands
| | - Mathew Isihanua
- Malaita Fisheries Division, Malaita Provincial Government, Auki, Malaita Solomon Islands
| | - Martin Jasper
- Malaita Fisheries Division, Malaita Provincial Government, Auki, Malaita Solomon Islands
| | - Janet Saeni-Oeta
- WorldFish, Unit 2, LKP Building, Mission Place, PO Box 438, Honiara, Solomon Islands
| | - Margaret Batalofo
- WorldFish, Unit 2, LKP Building, Mission Place, PO Box 438, Honiara, Solomon Islands
| | - Grace Orirana
- WorldFish, Unit 2, LKP Building, Mission Place, PO Box 438, Honiara, Solomon Islands
| | - Alick Konamalefo
- Malaita Fisheries Division, Malaita Provincial Government, Auki, Malaita Solomon Islands
| | - Jill Houma
- Malaita Fisheries Division, Malaita Provincial Government, Auki, Malaita Solomon Islands
| | - Hampus Eriksson
- WorldFish, Unit 2, LKP Building, Mission Place, PO Box 438, Honiara, Solomon Islands
- Australian National Center for Ocean Resources and Security (ANCORS), University of Wollongong, Wollongong, NSW Australia
| |
Collapse
|
16
|
Emerging insights on effects of sharks and other top predators on coral reefs. Emerg Top Life Sci 2022; 6:57-65. [PMID: 35258079 PMCID: PMC9023017 DOI: 10.1042/etls20210238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Predation is ubiquitous on coral reefs. Among the most charismatic group of reef predators are the top predatory fishes, including sharks and large-bodied bony fishes. Despite the threat presented by top predators, data describing their realized effects on reef community structure and functioning are challenging to produce. Many innovative studies have capitalized on natural experimental conditions to explore predator effects on reefs. Gradients in predator density have been created by spatial patterning of fisheries management. Evidence of prey release has been observed across some reefs, namely that potential prey increase in density when predator density is reduced. While such studies search for evidence of prey release among broad groups or guilds of potential prey, a subset of studies have sought evidence of release at finer population levels. We find that some groups of fishes are particularly vulnerable to the effects of predators and more able to capitalize demographically when predator density is reduced. For example, territorial damselfish appear to realize reliable population expansion with the reduction in predator density, likely because their aggressive, defensive behavior makes them distinctly vulnerable to predation. Relatedly, individual fishes that suffer from debilitating conditions, such as heavy parasite loads, appear to realize relatively stronger levels of prey release with reduced predator density. Studying the effects of predators on coral reefs remains a timely pursuit, and we argue that efforts to focus on the specifics of vulnerability to predation among potential prey and other context-specific dimensions of mortality hold promise to expand our knowledge.
Collapse
|
17
|
Alp M, Cucherousset J. Food webs speak of human impact: Using stable isotope-based tools to measure ecological consequences of environmental change. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2021.e00218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Climate-induced increases in micronutrient availability for coral reef fisheries. ONE EARTH (CAMBRIDGE, MASS.) 2022; 5:98-108. [PMID: 35128392 PMCID: PMC8791602 DOI: 10.1016/j.oneear.2021.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Climate change is transforming coral reefs, threatening supply of essential dietary micronutrients from small-scale fisheries to tropical coastal communities. Yet the nutritional value of reef fisheries and climate impacts on micronutrient availability remain unclear, hindering efforts to sustain food and nutrition security. Here, we measure nutrient content in coral reef fishes in Seychelles and show that reef fish are important sources of selenium and zinc and contain levels of calcium, iron, and omega-3 fatty acids comparable with other animal-source foods. Using experimental fishing, we demonstrate that iron and zinc are enriched in fishes caught on regime-shifted macroalgal habitats, whereas selenium and omega-3 varied among species. We find substantial increases in nutrients available to fisheries over two decades following coral bleaching, particularly for iron and zinc after macroalgal regime shifts. Our findings indicate that, if managed sustainably, coral reef fisheries could remain important micronutrient sources along tropical coastlines despite escalating climate impacts. Coral reef fishes are important sources of essential dietary nutrients Nutrients available to fisheries increased after mass coral bleaching Iron and zinc were higher in reef fishes caught on macroalgal habitats Coral reefs can remain key sources of nutritious food despite climate impacts
Tropical small-scale fisheries supply nutritious and affordable seafood to hundreds of millions of people, including catches from coral reefs that are vulnerable to marine heatwaves. Climate changes therefore threaten seafood supply in places where food insecurity is most prevalent, but what is the nutrient value of climate-impacted coral reefs? We analyzed nutrient content of 43 tropical reef fish species in Seychelles and found that coral reef fish contain similar levels of iron, selenium, and zinc as chicken, pork, and beef and higher levels of calcium and omega-3 fatty acids. By integrating nutrient data with fish surveys collected before and after mass coral bleaching, we show that high post-bleaching fish biomass led to greater nutrient supply for fisheries, particularly for iron and zinc. Sustainable management of reef fisheries can therefore continue to support tropical food and nutrition security, despite climate impacts to reef ecosystems.
Collapse
|
19
|
Fontoura L, D'Agata S, Gamoyo M, Barneche DR, Luiz OJ, Madin EMP, Eggertsen L, Maina JM. Protecting connectivity promotes successful biodiversity and fisheries conservation. Science 2022; 375:336-340. [PMID: 35050678 DOI: 10.1126/science.abg4351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The global decline of coral reefs has led to calls for strategies that reconcile biodiversity conservation and fisheries benefits. Still, considerable gaps in our understanding of the spatial ecology of ecosystem services remain. We combined spatial information on larval dispersal networks and estimates of human pressure to test the importance of connectivity for ecosystem service provision. We found that reefs receiving larvae from highly connected dispersal corridors were associated with high fish species richness. Generally, larval "sinks" contained twice as much fish biomass as "sources" and exhibited greater resilience to human pressure when protected. Despite their potential to support biodiversity persistence and sustainable fisheries, up to 70% of important dispersal corridors, sinks, and source reefs remain unprotected, emphasizing the need for increased protection of networks of well-connected reefs.
Collapse
Affiliation(s)
- Luisa Fontoura
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Stephanie D'Agata
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Marine Programs, Wildlife Conservation Society, Bronx, NY, USA.,ENTROPIE (IRD, University of La Reunion, CNRS, University of New Caledonia, Ifremer), 97400 Saint-Denis, La Reunion c/o IUEM, 29280 Plouzané, France
| | - Majambo Gamoyo
- Coastal and Marine Resources Development, Mombasa, Kenya
| | - Diego R Barneche
- Australian Institute of Marine Science, Crawley, WA 6009, Australia.,Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| | - Osmar J Luiz
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Elizabeth M P Madin
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Linda Eggertsen
- Department of Earth Sciences, Uppsala University, SE-621 67 Visby, Sweden
| | - Joseph M Maina
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Centre for Environmental Law, Macquarie University, Sydney, NSW 2019, Australia
| |
Collapse
|
20
|
Species richness and identity both determine the biomass of global reef fish communities. Nat Commun 2021; 12:6875. [PMID: 34824244 PMCID: PMC8616921 DOI: 10.1038/s41467-021-27212-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Changing biodiversity alters ecosystem functioning in nature, but the degree to which this relationship depends on the taxonomic identities rather than the number of species remains untested at broad scales. Here, we partition the effects of declining species richness and changing community composition on fish community biomass across >3000 coral and rocky reef sites globally. We find that high biodiversity is 5.7x more important in maximizing biomass than the remaining influence of other ecological and environmental factors. Differences in fish community biomass across space are equally driven by both reductions in the total number of species and the disproportionate loss of larger-than-average species, which is exacerbated at sites impacted by humans. Our results confirm that sustaining biomass and associated ecosystem functions requires protecting diversity, most importantly of multiple large-bodied species in areas subject to strong human influences. Species identity and richness both contribute biodiversity-ecosystem functioning relationships. Here the authors apply a decomposition approach inspired by the Price equation to a global dataset of reef fish community biomass, finding that increased richness and community compositions favouring large-bodied species enhance biomass.
Collapse
|
21
|
Coral Reef Mapping with Remote Sensing and Machine Learning: A Nurture and Nature Analysis in Marine Protected Areas. REMOTE SENSING 2021. [DOI: 10.3390/rs13152907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mapping habitats is essential to assist strategic decisions regarding the use and protection of coral reefs. Coupled with machine learning (ML) algorithms, remote sensing has allowed detailed mapping of reefs at meaningful scales. Here we integrated WorldView-3 and Landsat-8 imagery and ML techniques to produce a map of suitable habitats for the occurrence of a model species, the hydrocoral Millepora alcicornis, in coral reefs located inside marine protected areas in Northeast Brazil. Conservation and management efforts in the region were also analyzed, integrating human use layers to the ecological seascape. Three ML techniques were applied: two to derive base layers, namely geographically weighted regressions for bathymetry and support vector machine classifier (SVM) for habitat mapping, and one to build the species distribution model (MaxEnt) for Millepora alcicornis, a conspicuous and important reef-building species in the area. Additionally, human use was mapped based on the presence of tourists and fishers. SVM yielded 15 benthic classes (e.g., seagrass, sand, coral), with an overall accuracy of 79%. Bathymetry and its derivative layers depicted the topographical complexity of the area. The Millepora alcicornis distribution model identified distance from the shore and depth as topographical factors limiting the settling and growth of coral colonies. The most important variables were ecological, showing the importance of maintaining high biodiversity in the ecosystem. The comparison of the habitat suitability model with species absence and human use maps indicated the impact of direct human activities as potential inhibitors of coral development. Results reinforce the importance of the establishment of no-take zones and other protective measures for maintaining local biodiversity.
Collapse
|
22
|
Marshak AR, Link JS. Primary production ultimately limits fisheries economic performance. Sci Rep 2021; 11:12154. [PMID: 34135358 PMCID: PMC8209017 DOI: 10.1038/s41598-021-91599-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
Living marine resources (LMRs) contribute considerably to marine economies. Oceans continue to respond to the effects of global change, with environmental factors anticipated to impact future seafood production and its associated economic performance. Here we document novel relationships between primary productivity and LMR-based economics for US regional marine ecosystems and 64 international large marine ecosystems (LMEs). Intermediate relationships between production, total biomass, fisheries landings, revenue, and LMR-based employment are also elucidated. We found that all these factors were dependent on the amount of basal production in a given system. In addition, factors including human population, exploitation history, and governance interventions significantly influenced these relationships. As system productivity plays a foundational role in determining fisheries-based economics throughout global LMEs, greater accounting for these relationships has significant implications for global seafood sustainability and food security. Quantifying the direct link between primary production and fisheries economic performance serves to better inform ecosystem overfishing thresholds and their economic consequences. Further recognition and understanding of these relationships is key to ensuring that these connections are accounted for more effectively in sustainable management practices.
Collapse
Affiliation(s)
- Anthony R Marshak
- CSS, Inc. in Support of NOAA's National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Silver Spring, MD, USA.
| | - Jason S Link
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of the Assistant Administrator, Woods Hole, MA, USA
| |
Collapse
|
23
|
Loiseau N, Thuiller W, Stuart-Smith RD, Devictor V, Edgar GJ, Velez L, Cinner JE, Graham NAJ, Renaud J, Hoey AS, Manel S, Mouillot D. Maximizing regional biodiversity requires a mosaic of protection levels. PLoS Biol 2021; 19:e3001195. [PMID: 34010287 PMCID: PMC8133472 DOI: 10.1371/journal.pbio.3001195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
Protected areas are the flagship management tools to secure biodiversity from anthropogenic impacts. However, the extent to which adjacent areas with distinct protection levels host different species numbers and compositions remains uncertain. Here, using reef fishes, European alpine plants, and North American birds, we show that the composition of species in adjacent Strictly Protected, Restricted, and Non-Protected areas is highly dissimilar, whereas the number of species is similar, after controlling for environmental conditions, sample size, and rarity. We find that between 12% and 15% of species are only recorded in Non-Protected areas, suggesting that a non-negligible part of regional biodiversity occurs where human activities are less regulated. For imperiled species, the proportion only recorded in Strictly Protected areas reaches 58% for fishes, 11% for birds, and 7% for plants, highlighting the fundamental and unique role of protected areas and their environmental conditions in biodiversity conservation. This study shows that the dissimilarity in species composition between sites with different levels of protection is consistently high, suggesting that adjacent and connected areas with different protection levels host very dissimilar species assemblages.
Collapse
Affiliation(s)
- Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Ecologie Alpine, F-38000 Grenoble, France
- CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
- * E-mail:
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Ecologie Alpine, F-38000 Grenoble, France
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Vincent Devictor
- CNRS, ISEM, Université de Montpellier, IRD, EPHE, Montpellier, France
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Joshua E. Cinner
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | | | - Julien Renaud
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Ecologie Alpine, F-38000 Grenoble, France
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Stephanie Manel
- EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, IUF, Paris, France
| |
Collapse
|
24
|
Abstract
Interest is growing in designing resilient and ecologically rich urban environments that provide social and ecological benefits. Regenerative and biocentric designs fostering urban ecological habitats including food webs that provide ecosystem services for people and wildlife increasingly are being sought. However, the intentional design of urban landscapes for food webs remains in an early stage with few precedents and many challenges. In this paper, we explore the potential to design (for) urban food webs through collaborations between designers and ecologists. We start by examining the ecology and management of Jamaica Bay in New York City as a case study of an anthropogenic landscape where ecosystems are degraded and the integrity of extant food webs are intertwined with human agency. A subsequent design competition focusing on ecological design and management of this large-scale landscape for animal habitat and ecosystem services for people illustrates how designers approach this anthropogenic landscape. This case study reveals that both designing urban landscapes for food webs and directly designing and manipulating urban food webs are complicated and challenging to achieve and maintain, but they have the potential to increase ecological health of, and enhance ecosystem services in, urban environments. We identify opportunities to capitalize on species interactions across trophic structures and to introduce managed niches in biologically engineered urban systems. The design competition reveals an opportunity to approach urban landscapes and ecological systems creatively through a proactive design process that includes a carefully crafted collaborative approach to constructing ecologically functioning landscapes that can integrate societal demands. As designers increasingly seek to build, adapt, and manage urban environments effectively, it will be critical to resolve the contradictions and challenges associated with human needs, ecosystem dynamics, and interacting assemblages of species. Ecologists and designers are still discovering and experimenting with designing (for) urban food webs and fostering species interactions within them. We recommend generating prototypes of urban food webs through a learning-by-doing approach in urban development projects. Design and implementation of urban food webs also can lead to research opportunities involving monitoring and experiments that identify and solve challenges of food-web construction while supporting and encouraging ongoing management.
Collapse
|
25
|
Boulanger E, Loiseau N, Valentini A, Arnal V, Boissery P, Dejean T, Deter J, Guellati N, Holon F, Juhel JB, Lenfant P, Manel S, Mouillot D. Environmental DNA metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves. Proc Biol Sci 2021; 288:20210112. [PMID: 33906403 PMCID: PMC8080007 DOI: 10.1098/rspb.2021.0112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Although we are currently experiencing worldwide biodiversity loss, local species richness does not always decline under anthropogenic pressure. This conservation paradox may also apply in protected areas but has not yet received conclusive evidence in marine ecosystems. Here, we survey fish assemblages in six Mediterranean no-take reserves and their adjacent fishing grounds using environmental DNA (eDNA) while controlling for environmental conditions. We detect less fish species in marine reserves than in nearby fished areas. The paradoxical gradient in species richness is accompanied by a marked change in fish species composition under different managements. This dissimilarity is mainly driven by species that are often overlooked by classical visual surveys but detected with eDNA: cryptobenthic, pelagic, and rare fishes. These results do not negate the importance of reserves in protecting biodiversity but shed new light on how under-represented species groups can positively react to fishing pressure and how conservation efforts can shape regional biodiversity patterns.
Collapse
Affiliation(s)
- Emilie Boulanger
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Véronique Arnal
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Pierre Boissery
- Agence de l'Eau Rhône-Méditerranée-Corse, Délégation de Marseille, Marseille, France
| | | | | | - Nacim Guellati
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | | | | | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
26
|
Clementi GM, Bakker J, Flowers KI, Postaire BD, Babcock EA, Bond ME, Buddo D, Cardeñosa D, Currey-Randall LM, Goetze JS, Harvey ES, Heupel M, Kiszka JJ, Kyne F, MacNeil MA, Meekan MG, Rees MJ, Simpfendorfer CA, Speed CW, Heithaus MR, Chapman DD. Moray eels are more common on coral reefs subject to higher human pressure in the greater Caribbean. iScience 2021; 24:102097. [PMID: 33681724 PMCID: PMC7918280 DOI: 10.1016/j.isci.2021.102097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/06/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Proximity and size of the nearest market (‘market gravity’) have been shown to have strong negative effects on coral reef fish communities that can be mitigated by the establishment of closed areas. However, moray eels are functionally unique predators that are generally not subject to targeted fishing and should therefore not directly be affected by these factors. We used baited remote underwater video systems to investigate associations between morays and anthropogenic, habitat, and ecological factors in the Caribbean region. Market gravity had a positive effect on morays, while the opposite pattern was observed in a predator group subject to exploitation (sharks). Environmental DNA analyses corroborated the positive effect of market gravity on morays. We hypothesize that the observed pattern could be the indirect result of the depletion of moray competitors and predators near humans. Baited remote underwater videos and environmental DNA were used to assess morays Market gravity had a strong positive effect on moray abundance Morays and sharks were negatively associated Lack of competitors and predators may explain increased morays on reefs near humans
Collapse
Affiliation(s)
- Gina M. Clementi
- Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Judith Bakker
- Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Kathryn I. Flowers
- Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Bautisse D. Postaire
- Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Elizabeth A. Babcock
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
| | - Mark E. Bond
- Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Dayne Buddo
- The Bay Academy, Bay Ecotarium, The Embarcadero at Beach Street, San Francisco, CA 94133, USA
| | - Diego Cardeñosa
- Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | | | - Jordan S. Goetze
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
- School of Molecular and Life Sciences, Curtin University, WA, Australia
| | - Euan S. Harvey
- School of Molecular and Life Sciences, Curtin University, WA, Australia
| | - Michelle Heupel
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, TAS, Australia
| | - Jeremy J. Kiszka
- Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Fabian Kyne
- University of the West Indies, Kingston, Jamaica
| | - M. Aaron MacNeil
- Department of Biology, Dalhousie University, Halifax, NS B3H 3J5, Canada
| | - Mark G. Meekan
- Australian Institute of Marine Science, Crawley, WA, Australia
| | - Matthew J. Rees
- Australian Institute of Marine Science, Crawley, WA, Australia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Conrad W. Speed
- Australian Institute of Marine Science, Crawley, WA, Australia
| | - Michael R. Heithaus
- Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Demian D. Chapman
- Institute of Environment, Department of Biological Sciences, Coastlines and Oceans Division, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
- Corresponding author
| |
Collapse
|
27
|
Russ GR, Rizzari JR, Abesamis RA, Alcala AC. Coral cover a stronger driver of reef fish trophic biomass than fishing. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02224. [PMID: 32866333 PMCID: PMC7816266 DOI: 10.1002/eap.2224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 05/21/2023]
Abstract
An influential paradigm in coral reef ecology is that fishing causes trophic cascades through reef fish assemblages, resulting in reduced herbivory and thus benthic phase shifts from coral to algal dominance. Few long-term field tests exist of how fishing affects the trophic structure of coral reef fish assemblages, and how such changes affect the benthos. Alternatively, benthic change itself may drive the trophic structure of reef fish assemblages. Reef fish trophic structure and benthic cover were quantified almost annually from 1983 to 2014 at two small Philippine islands (Apo, Sumilon). At each island a No-Take Marine Reserve (NTMR) site and a site open to subsistence reef fishing were monitored. Thirteen trophic groups were identified. Large planktivores often accounted for >50% of assemblage biomass. Significant NTMR effects were detected at each island for total fish biomass, but for only 2 of 13 trophic components: generalist large predators and large planktivores. Fishing-induced changes in biomass of these components had no effect on live hard coral (HC) cover. In contrast, HC cover affected biomass of 11 of 13 trophic components significantly. Positive associations with HC cover were detected for total fish biomass, generalist large predators, piscivores, obligate coral feeders, large planktivores, and small planktivores. Negative associations with HC cover were detected for large benthic foragers, detritivores, excavators, scrapers, and sand feeders. These associations of fish biomass to HC cover were most clear when environmental disturbances (e.g., coral bleaching, typhoons) reduced HC cover, often quickly (1-2 yr), and when HC recovered, often slowly (5-10 yr). As HC cover changed, the biomass of 11 trophic components of the fish assemblage changed. Benthic and fish assemblages were distinct at all sites from the outset, remaining so for 31 yr, despite differences in fishing pressure and disturbance history. HC cover alone explained ~30% of the variability in reef fish trophic structure, whereas fishing alone explained 24%. Furthermore, HC cover affected more trophic groups more strongly than fishing. Management of coral reefs must include measures to maintain coral reef habitats, not just measures to reduce fishing by NTMRs.
Collapse
Affiliation(s)
- Garry R. Russ
- College of Science and Engineering and ARC Centre for Coral Reef StudiesJames Cook UniversityTownsvilleQueensland4811Australia
| | - Justin R. Rizzari
- School of Life and Environmental SciencesDeakin UniversityGeelong Waurn Ponds CampusGeelongVictoria3216Australia
| | - Rene A. Abesamis
- Silliman University Angelo King Center for Research and Environmental ManagementSilliman UniversityDumaguete City6200Philippines
| | - Angel C. Alcala
- Silliman University Angelo King Center for Research and Environmental ManagementSilliman UniversityDumaguete City6200Philippines
| |
Collapse
|
28
|
Pereira PHC, Côrtes LGF, Lima GV, Gomes E, Pontes AVF, Mattos F, Araújo ME, Ferreira-Junior F, Sampaio CLS. Reef fishes biodiversity and conservation at the largest Brazilian coastal Marine Protected Area (MPA Costa dos Corais). NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Coral reefs harbor one of the largest fish biodiversity on earth; yet information on reef fishes is still absent for many regions. We analyzed reef fish richness, distribution, and conservation on the largest Brazilian multiple use coastal MPA; which cover a large extent of coral reefs at the SWA. A total of 325 fish species have been listed for MPA Costa dos Corais, including Chondrichthyes (28 species) and Actinopterygii (297). Fish species were represented by 81 families and the most representative families were Carangidae (23 species), Labridae (21) and Gobiidae (15). The MPA fish richness represented 44% of all recorded fish species of the Southwestern Atlantic Ocean (SWA) highlighting the large-scale importance of this MPA. A total of 40 species (12%) are registered at Near Threatened (NT), Vulnerable (VU), Endangered (EN) or Critically Endangered (CR). This study reinforces the importance of MPA Costa dos Corais on reef fish biodiversity and conservation and emphasize the urgent need of conservation strategies.
Collapse
Affiliation(s)
| | - Luís G. F. Côrtes
- Projeto Conservação Recifal, Brazil; Universidade Federal de Pernambuco, Brazil
| | | | - Erandy Gomes
- Projeto Conservação Recifal, Brazil; Universidade Federal de Pernambuco, Brazil; Universidade Federal de Pernambuco, Brazil
| | | | | | - Maria E. Araújo
- Universidade Federal de Pernambuco, Brazil; Universidade Federal de Pernambuco, Brazil
| | | | | |
Collapse
|
29
|
Bradley P, Jessup B, Pittman SJ, Jeffrey CFG, Ault JS, Carrubba L, Lilyestrom C, Appeldoorn RS, Schärer MT, Walker BK, McField M, Santavy DL, Smith TB, García-Moliner G, Smith SG, Huertas E, Gerritsen J, Oliver LM, Horstmann C, Jackson SK. Development of a reef fish biological condition gradient model with quantitative decision rules for the protection and restoration of coral reef ecosystems. MARINE POLLUTION BULLETIN 2020; 159:111387. [PMID: 32827871 PMCID: PMC8717739 DOI: 10.1016/j.marpolbul.2020.111387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 05/09/2023]
Abstract
Coral reef ecosystems are declining due to multiple interacting stressors. A bioassessment framework focused on stressor-response associations was developed to help organize and communicate complex ecological information to support coral reef conservation. This study applied the Biological Condition Gradient (BCG), initially developed for freshwater ecosystems, to fish assemblages of U.S. Caribbean coral reef ecosystems. The reef fish BCG describes how biological conditions changed incrementally along a gradient of increasing anthropogenic stress. Coupled with physical and chemical water quality data, the BGC forms a scientifically defensible basis to prioritize, protect and restore water bodies containing coral reefs. Through an iterative process, scientists from across the U.S. Caribbean used fishery-independent survey data and expert knowledge to develop quantitative decision rules to describe six levels of coral reef ecosystem condition. The resultant reef fish BCG provides an effective tool for identifying healthy and degraded coral reef ecosystems and has potential for global application.
Collapse
Affiliation(s)
| | | | | | - Christopher F G Jeffrey
- CSS-Inc., Fairfax, VA, USA; Under Contract to NOAA, National Centers for Coastal Ocean Science, Marine Spatial Ecology Division, Biogeography Branch, Silver Spring, MD, USA
| | - Jerald S Ault
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
| | | | - Craig Lilyestrom
- Puerto Rico Department of Natural and Environmental Resources, San Juan, PR, USA
| | | | | | - Brian K Walker
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Fort Lauderdale, FL, USA
| | | | - Deborah L Santavy
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development (ORD), Center for Environmental, Measurement and Modeling (CEMM), Gulf Ecosystem Measurement and Modeling Division (GEMMD), Gulf Breeze, FL, USA.
| | - Tyler B Smith
- University of the Virgin Islands, St. Thomas, VI, USA
| | | | - Steven G Smith
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
| | - Evelyn Huertas
- U.S. Environmental Protection Agency, Region 2, Guaynabo, PR, USA
| | | | - Leah M Oliver
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development (ORD), Center for Environmental, Measurement and Modeling (CEMM), Gulf Ecosystem Measurement and Modeling Division (GEMMD), Gulf Breeze, FL, USA
| | - Christina Horstmann
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development (ORD), Center for Environmental, Measurement and Modeling (CEMM), Gulf Ecosystem Measurement and Modeling Division (GEMMD), Gulf Breeze, FL, USA; Oak Ridge Institute for Science Education Fellow, US EPA, ORD, CEMM, GEMMD, Gulf Breeze, FL, USA
| | - Susan K Jackson
- U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA
| |
Collapse
|
30
|
Wang Y, Yu K, Chen X, Wang W, Huang X, Wang Y, Liao Z. An approach for assessing ecosystem-based adaptation in coral reefs at relatively high latitudes to climate change and human pressure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:579. [PMID: 32783089 DOI: 10.1007/s10661-020-08534-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Relatively high-latitude waters are supposed as a refuge for corals under ocean warming. A systematic assessment of the Weizhou Island reef in the northern South China Sea, a relatively high-latitude region, shows that the ecosystem restoration index decreased from 0.96 to 0.62 during the period between 1990 and 2015. Although the biotic community, supporting services, and regulating services remained at good or very good states, the provisioning services, cultural services, and especially habitat structure deteriorated to very poor or moderate states. Gray relational analysis showed that these ecological declines exhibited a strong relationship with human pressures from tourism activities and the petrochemical industry. The recoveries of the biotic community and supporting services that benefited from wintertime warming appeared to be partly offset by intensive human pressures. The long-term effects on ecosystem structure and functions suggest that anthropogenic disturbances have impaired the possibility of this area serving as a potential thermal refuge for reef-building corals in the South China Sea. This study thus provides an integrated approach for assessing the adaptive responses of coral reef ecosystems to climate change and local human activities.
Collapse
Affiliation(s)
- Yongzhi Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China.
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China.
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, Guangdong, China.
| | - Xiaoyan Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China.
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China.
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, Guangdong, China.
| | - Wenhuan Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, Guangxi, China
- Coral Reef Research Center of China, Guangxi University, Nanning, 530004, Guangxi, China
- School of Marine Sciences, Guangxi University, Nanning, 530004, Guangxi, China
| |
Collapse
|
31
|
Schiettekatte NMD, Barneche DR, Villéger S, Allgeier JE, Burkepile DE, Brandl SJ, Casey JM, Mercière A, Munsterman KS, Morat F, Parravicini V. Nutrient limitation, bioenergetics and stoichiometry: A new model to predict elemental fluxes mediated by fishes. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nina M. D. Schiettekatte
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| | - Diego R. Barneche
- Australian Institute of Marine Science Crawley WA Australia
- Oceans InstituteThe University of Western Australia Crawley WA Australia
- College of Life and Environmental Sciences University of Exeter Penryn UK
| | | | - Jacob E. Allgeier
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Deron E. Burkepile
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara CA USA
- Marine Science Institute University of California Santa Barbara CA USA
| | - Simon J. Brandl
- Department of Biological Sciences Simon Fraser University Burnaby BC Canada
| | - Jordan M. Casey
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| | - Alexandre Mercière
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| | - Katrina S. Munsterman
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Fabien Morat
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| | - Valeriano Parravicini
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan France
- Laboratoire d'Excellence “CORAIL” Perpignan France
| |
Collapse
|
32
|
Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat Ecol Evol 2020; 4:919-926. [PMID: 32424279 DOI: 10.1038/s41559-020-1203-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/08/2020] [Indexed: 11/08/2022]
Abstract
Positive relationships between biodiversity and ecosystem functioning (BEF) highlight the importance of conserving biodiversity to maintain key ecosystem functions and associated services. Although natural systems are rapidly losing biodiversity due to numerous human-caused stressors, our understanding of how multiple stressors influence BEF relationships comes largely from small, experimental studies. Here, using remote assemblages of coral reef fishes, we demonstrate strong, non-saturating relationships of biodiversity with two ecosystem functions: biomass and productivity. These positive relationships were robust both to an extreme heatwave that triggered coral bleaching and to invasive rats which disrupt nutrient subsidies from native seabirds. Despite having only minor effects on BEF relationships, both stressors still decreased ecosystem functioning via other pathways. The extreme heatwave reduced biodiversity, which, due to the strong BEF relationships, ultimately diminished both ecosystem functions. Conversely, the loss of cross-system nutrient subsidies directly decreased biomass. These results demonstrate multiple ways by which human-caused stressors can reduce ecosystem functioning, despite robust BEF relationships, in natural high-diversity assemblages.
Collapse
|
33
|
Jouffray JB, Wedding LM, Norström AV, Donovan MK, Williams GJ, Crowder LB, Erickson AL, Friedlander AM, Graham NAJ, Gove JM, Kappel CV, Kittinger JN, Lecky J, Oleson KLL, Selkoe KA, White C, Williams ID, Nyström M. Parsing human and biophysical drivers of coral reef regimes. Proc Biol Sci 2020; 286:20182544. [PMID: 30963937 PMCID: PMC6408596 DOI: 10.1098/rspb.2018.2544] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coral reefs worldwide face unprecedented cumulative anthropogenic effects of interacting local human pressures, global climate change and distal social processes. Reefs are also bound by the natural biophysical environment within which they exist. In this context, a key challenge for effective management is understanding how anthropogenic and biophysical conditions interact to drive distinct coral reef configurations. Here, we use machine learning to conduct explanatory predictions on reef ecosystems defined by both fish and benthic communities. Drawing on the most spatially extensive dataset available across the Hawaiian archipelago—20 anthropogenic and biophysical predictors over 620 survey sites—we model the occurrence of four distinct reef regimes and provide a novel approach to quantify the relative influence of human and environmental variables in shaping reef ecosystems. Our findings highlight the nuances of what underpins different coral reef regimes, the overwhelming importance of biophysical predictors and how a reef's natural setting may either expand or narrow the opportunity space for management interventions. The methods developed through this study can help inform reef practitioners and hold promises for replication across a broad range of ecosystems.
Collapse
Affiliation(s)
- Jean-Baptiste Jouffray
- 1 Stockholm Resilience Centre, Stockholm University , Stockholm , Sweden.,2 Global Economic Dynamics and the Biosphere Academy Programme, Royal Swedish Academy of Sciences , Stockholm , Sweden
| | - Lisa M Wedding
- 3 Stanford Center for Ocean Solutions, Stanford University , Stanford, CA 94305 , USA
| | - Albert V Norström
- 1 Stockholm Resilience Centre, Stockholm University , Stockholm , Sweden
| | - Mary K Donovan
- 4 Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa , Kaneohe, HI 96744 , USA
| | - Gareth J Williams
- 5 School of Ocean Sciences, Bangor University , Anglesey LL59 5AB , UK
| | - Larry B Crowder
- 6 Hopkins Marine Station, Stanford University , Pacific Grove, CA 9395 , USA
| | - Ashley L Erickson
- 3 Stanford Center for Ocean Solutions, Stanford University , Stanford, CA 94305 , USA
| | - Alan M Friedlander
- 7 Pristine Seas, National Geographic Society , Washington, DC 20036 , USA
| | - Nicholas A J Graham
- 8 Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , UK
| | - Jamison M Gove
- 9 Ecosystem Science Division, Pacific Islands Fisheries Science Center, National Oceanic Atmospheric Administration , Honolulu, HI, 96818 , USA
| | - Carrie V Kappel
- 10 National Center for Ecological Analysis and Synthesis, University of California Santa Barbara , Santa Barbara, CA 93101 , USA
| | - John N Kittinger
- 11 Center for Oceans, Conservation International , Honolulu, HI 96825 , USA.,12 Julie Ann Wrigley Global Institute of Sustainability, Arizona State University , Tempe, AZ 85281 , USA
| | - Joey Lecky
- 13 Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa , Honolulu, HI 96822 , USA
| | - Kirsten L L Oleson
- 13 Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa , Honolulu, HI 96822 , USA
| | - Kimberly A Selkoe
- 10 National Center for Ecological Analysis and Synthesis, University of California Santa Barbara , Santa Barbara, CA 93101 , USA
| | - Crow White
- 14 Department of Biological Sciences, California Polytechnic State University , San Luis Obispo, CA 93407 , USA
| | - Ivor D Williams
- 9 Ecosystem Science Division, Pacific Islands Fisheries Science Center, National Oceanic Atmospheric Administration , Honolulu, HI, 96818 , USA
| | - Magnus Nyström
- 1 Stockholm Resilience Centre, Stockholm University , Stockholm , Sweden
| |
Collapse
|
34
|
Campbell SJ, Darling ES, Pardede S, Ahmadia G, Mangubhai S, Amkieltiela, Estradivari, Maire E. Fishing restrictions and remoteness deliver conservation outcomes for Indonesia's coral reef fisheries. Conserv Lett 2020. [DOI: 10.1111/conl.12698] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Stuart J. Campbell
- Indonesia ProgramWildlife Conservation Society Bogor West Java Indonesia
- Rare Indonesia Bogor West Java Indonesia
| | - Emily S. Darling
- Wildlife Conservation SocietyGlobal Marine Program Bronx New York
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario Canada
| | - Shinta Pardede
- Indonesia ProgramWildlife Conservation Society Bogor West Java Indonesia
| | | | - Sangeeta Mangubhai
- Wildlife Conservation SocietyGlobal Marine Program Bronx New York
- The Nature Conservancy Sorong West Papua Indonesia
| | - Amkieltiela
- WWF IndonesiaConservation Science Unit Jakarta West Java Indonesia
| | - Estradivari
- WWF IndonesiaConservation Science Unit Jakarta West Java Indonesia
| | - Eva Maire
- MARBECUniv. Montpellier, CNRS, Ifremer, IRD Montpellier France
- Lancaster Environment CentreLancaster University Lancaster UK
| |
Collapse
|
35
|
Tebbett SB, Bellwood DR. Algal turf sediments on coral reefs: what's known and what's next. MARINE POLLUTION BULLETIN 2019; 149:110542. [PMID: 31542595 DOI: 10.1016/j.marpolbul.2019.110542] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Algal turfs are likely to rise in prominence on coral reefs in the Anthropocene. In these ecosystems the sediments bound within algal turfs will shape ecosystem functions and the services humanity can obtain from reefs. However, while interest is growing in the role of algal turf sediments, studies remain limited. In this review we provide an overview of our knowledge to-date concerning algal turf sediments on coral reefs. Specifically, we highlight what algal turf sediments are, their role in key ecosystem processes, the potential importance of algal turf sediments on Anthropocene reefs, and key knowledge gaps for future research. The evidence suggests that the management of algal turf sediments will be critically important if we are to sustain key functions and services on highly-altered, Anthropocene coral reef configurations.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
36
|
Robinson JPW, McDevitt‐Irwin JM, Dajka J, Hadj‐Hammou J, Howlett S, Graba‐Landry A, Hoey AS, Nash KL, Wilson SK, Graham NAJ. Habitat and fishing control grazing potential on coral reefs. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13457] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Jan‐Claas Dajka
- Lancaster Environment Centre Lancaster University Lancaster UK
| | | | | | - Alexia Graba‐Landry
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Kirsty L. Nash
- Centre for Marine Socioecology University of Tasmania Hobart Tas. Australia
- Institute for Marine & Antarctic Studies University of Tasmania Hobart Tas. Australia
| | - Shaun K. Wilson
- Department of Biodiversity, Conservation and Attractions: Marine Science Program Kensington WA Australia
- Oceans Institute University of Western Australia Crawley WA Australia
| | | |
Collapse
|
37
|
Zgliczynski BJ, Williams GJ, Hamilton SL, Cordner EG, Fox MD, Eynaud Y, Michener RH, Kaufman LS, Sandin SA. Foraging consistency of coral reef fishes across environmental gradients in the central Pacific. Oecologia 2019; 191:433-445. [PMID: 31485849 DOI: 10.1007/s00442-019-04496-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/24/2019] [Indexed: 11/30/2022]
Abstract
We take advantage of a natural gradient of human exploitation and oceanic primary production across five central Pacific coral reefs to examine foraging patterns in common coral reef fishes. Using stomach content and stable isotope (δ15N and δ13C) analyses, we examined consistency across islands in estimated foraging patterns. Surprisingly, species within the piscivore-invertivore group exhibited the clearest pattern of foraging consistency across all five islands despite there being a considerable difference in mean body mass (14 g-1.4 kg) and prey size (0.03-3.8 g). In contrast, the diets and isotopic values of the grazer-detritivores varied considerably and exhibited no consistent patterns across islands. When examining foraging patterns across environmental contexts, we found that δ15N values of species of piscivore-invertivore and planktivore closely tracked gradients in oceanic primary production; again, no comparable patterns existed for the grazer-detritivores. The inter-island consistency in foraging patterns within the species of piscivore-invertivore and planktivore and the lack of consistency among species of grazer-detritivores suggests a linkage to different sources of primary production among reef fish functional groups. Our findings suggest that piscivore-invertivores and planktivores are likely linked to well-mixed and isotopically constrained allochthonous oceanic primary production, while grazer-detritivores are likely linked to sources of benthic primary production and autochthonous recycling. Further, our findings suggest that species of piscivore-invertivore, independent of body size, converge toward consuming low trophic level prey, with a hypothesized result of reducing the number of steps between trophic levels and increasing the trophic efficiency at a community level.
Collapse
Affiliation(s)
- Brian J Zgliczynski
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA.
| | | | | | - Elisabeth G Cordner
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Michael D Fox
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Yoan Eynaud
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | | | - Les S Kaufman
- Department of Biology, Boston University, Boston, MA, USA
| | - Stuart A Sandin
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| |
Collapse
|
38
|
Rosenberg Y, Doniger T, Levy O. Sustainability of coral reefs are affected by ecological light pollution in the Gulf of Aqaba/Eilat. Commun Biol 2019; 2:289. [PMID: 31396569 PMCID: PMC6683144 DOI: 10.1038/s42003-019-0548-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/15/2019] [Indexed: 01/12/2023] Open
Abstract
As human populations grow and lighting technologies improve, artificial light gradually alters natural cycles of light and dark that have been consistent over long periods of geological and evolutionary time. While considerable ecological implications of artificial light have been identified in both terrestrial and aquatic habitats, knowledge about the physiological and molecular effects of light pollution is vague. To determine if ecological light pollution (ELP) impacts coral biological processes, we characterized the transcriptome of the coral Acropora eurystoma under two different light regimes: control conditions and treatment with light at night. Here we show that corals exposed to ELP have approximately 25 times more differentially expressed genes that regulate cell cycle, cell proliferation, cell growth, protein synthesis and display changes in photo physiology. The finding of this work confirms that ELP acts as a chronic disturbance that may impact the future of coral reefs.
Collapse
Affiliation(s)
- Yael Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| |
Collapse
|
39
|
Benkwitt CE, Wilson SK, Graham NAJ. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. GLOBAL CHANGE BIOLOGY 2019; 25:2619-2632. [PMID: 31157944 DOI: 10.1111/gcb.14643] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Cross-ecosystem nutrient subsidies play a key role in the structure and dynamics of recipient communities, but human activities are disrupting these links. Because nutrient subsidies may also enhance community stability, the effects of losing these inputs may be exacerbated in the face of increasing climate-related disturbances. Nutrients from seabirds nesting on oceanic islands enhance the productivity and functioning of adjacent coral reefs, but it is unknown whether these subsidies affect the response of coral reefs to mass bleaching events or whether the benefits of these nutrients persist following bleaching. To answer these questions, we surveyed benthic organisms and fishes around islands with seabirds and nearby islands without seabirds due to the presence of invasive rats. Surveys were conducted in the Chagos Archipelago, Indian Ocean, immediately before the 2015-2016 mass bleaching event and, in 2018, two years following the bleaching event. Regardless of the presence of seabirds, relative coral cover declined by 32%. However, there was a post-bleaching shift in benthic community structure around islands with seabirds, which did not occur around islands with invasive rats, characterized by increases in two types of calcareous algae (crustose coralline algae [CCA] and Halimeda spp.). All feeding groups of fishes were positively affected by seabirds, but only herbivores and piscivores were unaffected by the bleaching event and sustained the greatest difference in biomass between islands with seabirds versus those with invasive rats. By contrast, corallivores and planktivores, both of which are coral-dependent, experienced the greatest losses following bleaching. Even though seabird nutrients did not enhance community-wide resistance to bleaching, they may still promote recovery of these reefs through their positive influence on CCA and herbivorous fishes. More broadly, the maintenance of nutrient subsidies, via strategies including eradication of invasive predators, may be important in shaping the response of ecological communities to global climate change.
Collapse
Affiliation(s)
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia
- Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | | |
Collapse
|
40
|
Abstract
Sustainable fisheries must ultimately reduce poverty while maintaining ecosystem productivity. On coral reefs, managing for 'concave' trophic pyramids might be a win-win for people and ecosystems, by providing higher-value fisheries and maintaining important ecological functions.
Collapse
|
41
|
Licuanan WY, Robles R, Reyes M. Status and recent trends in coral reefs of the Philippines. MARINE POLLUTION BULLETIN 2019; 142:544-550. [PMID: 31232337 DOI: 10.1016/j.marpolbul.2019.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Concern about the condition of Philippine coral reefs has prompted a recent reassessment of the status of the nation's reefs, the results of which are reported here. This paper presents the largest updated dataset on Philippine coral cover and generic diversity. The dataset was obtained from equally-sized sampling stations on fore-reef slopes of fringing reefs in six biogeographic regions using identical methods. A total of 206 stations were surveyed from 2014 to 2017, and another 101 stations were monitored from 2015 to 2018. The weighted average hard coral cover (HCC) was 22.8% (±1.2 SE) and coral generic diversity averaged 14.5 (±0.5 SE). Both were highest in the fully-formed reefs of the Sulu Sea biogeographic region and lowest in the eastern Philippines. Comparisons of findings with those of previous assessments show the continued decline in coral cover over a larger time scale, with the loss of about a third of the reef corals over the last decade. However, no consistent changes were evident in the 101 monitoring stations from 2015 to 2018 despite the global coral bleaching event. An expanded monitoring program, not just one-off assessments, is recommended to improve reef management in the Philippines.
Collapse
Affiliation(s)
- W Y Licuanan
- Br. Alfred Shields FSC Ocean Research Center, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines; Biology Department, College of Science, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines.
| | - R Robles
- Br. Alfred Shields FSC Ocean Research Center, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines; Mathematics and Statistics Department, College of Science, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
| | - M Reyes
- Br. Alfred Shields FSC Ocean Research Center, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines; The Graduate School, University of Santo Tomas, Thomas Aquinas Research Complex, España Boulevard, Manila 1008, Philippines
| |
Collapse
|
42
|
Samoilys MA, Halford A, Osuka K. Disentangling drivers of the abundance of coral reef fishes in the Western Indian Ocean. Ecol Evol 2019; 9:4149-4167. [PMID: 31015995 PMCID: PMC6468081 DOI: 10.1002/ece3.5044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 01/15/2023] Open
Abstract
AIM Understanding the drivers of the structure of coral reef fish assemblages is vital for their future conservation. Quantifying the separate roles of natural drivers from the increasing influence of anthropogenic factors, such as fishing and climate change, is a key component of this understanding. It follows that the intrinsic role of historical biogeographical and geomorphological factors must be accounted for when trying to understand the effects of contemporary disturbances such as fishing. LOCATION Comoros, Madagascar, Mozambique and Tanzania, Western Indian Ocean (WIO). METHODS We modeled patterns in the density and biomass of an assemblage of reef-associated fish species from 11 families, and their association with 16 biophysical variables. RESULTS Canonical analysis of principal coordinates revealed strong country affiliations of reef fish assemblages and distance-based linear modeling confirmed geographic location and reef geomorphology were the most significant correlates, explaining 32% of the observed variation in fish assemblage structure. Another 6%-8% of variation was explained by productivity gradients (chl_a), and reef exposure or slope. Where spatial effects were not significant between mainland continental locations, fishing effects became evident explaining 6% of the variation in data. No correlation with live coral was detected. Only 37 species, predominantly lower trophic level taxa, were significant in explaining differences in assemblages between sites. MAIN CONCLUSIONS Spatial and geomorphological histories remain a major influence on the structure of reef fish assemblages in the WIO. Reef geomorphology was closely linked to standing biomass, with "ocean-exposed" fringing reefs supporting high average biomass of ~1,000 kg/ha, while "lagoon-exposed fringing" reefs and "inner seas patch complex" reefs yielded substantially less at ~500kg/ha. Further, the results indicate the influence of benthic communities on fish assemblages is scale dependent. Such insights will be pivotal for managers seeking to balance long-term sustainability of artisanal reef fisheries with conservation of coral reef systems.
Collapse
Affiliation(s)
- Melita A. Samoilys
- CORDIO East AfricaMombasaKenya
- Department of ZoologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
43
|
Williams GJ, Graham NAJ, Jouffray JB, Norström AV, Nyström M, Gove JM, Heenan A, Wedding LM. Coral reef ecology in the Anthropocene. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13290] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Jean-Baptiste Jouffray
- Stockholm Resilience Centre; Stockholm University; Stockholm Sweden
- Global Economic Dynamics and the Biosphere Academy Programme; Royal Swedish Academy of Sciences; Stockholm Sweden
| | | | - Magnus Nyström
- Stockholm Resilience Centre; Stockholm University; Stockholm Sweden
| | - Jamison M. Gove
- NOAA Pacific Islands Fisheries Science Center; Honolulu Hawaii
| | - Adel Heenan
- School of Ocean Sciences; Bangor University; Anglesey UK
| | - Lisa M. Wedding
- Center for Ocean Solutions; Stanford University; Stanford California
| |
Collapse
|
44
|
Weijerman M, Veazey L, Yee S, Vaché K, Delevaux JMS, Donovan MK, Falinski K, Lecky J, Oleson KLL. Managing Local Stressors for Coral Reef Condition and Ecosystem Services Delivery Under Climate Scenarios. FRONTIERS IN MARINE SCIENCE 2018; 5:10.3389/fmars.2018.00425. [PMID: 34124078 PMCID: PMC8193846 DOI: 10.3389/fmars.2018.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coral reefs provide numerous ecosystem goods and services, but are threatened by multiple environmental and anthropogenic stressors. To identify management scenarios that will reverse or mitigate ecosystem degradation, managers can benefit from tools that can quantify projected changes in ecosystem services due to alternative management options. We used a spatially-explicit biophysical ecosystem model to evaluate socio-ecological trade-offs of land-based vs. marine-based management scenarios, and local-scale vs. global-scale stressors and their cumulative impacts. To increase the relevance of understanding ecological change for the public and decision-makers, we used four ecological production functions to translate the model outputs into the ecosystem services: "State of the Reef," "Trophic Integrity," "Fisheries Production," and "Fisheries Landings." For a case study of Maui Nui, Hawai'i, land-based management attenuated coral cover decline whereas fisheries management promoted higher total fish biomass. Placement of no-take marine protected areas (MPAs) across 30% of coral reef areas led to a reversal of the historical decline in predatory fish biomass, although this outcome depended on the spatial arrangement of MPAs. Coral cover declined less severely under strict sediment mitigation scenarios. However, the benefits of these local management scenarios were largely lost when accounting for climate-related impacts. Climate-related stressors indirectly increased herbivore biomass due to the shift from corals to algae and, hence, greater food availability. The two ecosystem services related to fish biomass increased under climate-related stressors but "Trophic Integrity" of the reef declined, indicating a less resilient reef. "State of the Reef" improved most and "Trophic Integrity" declined least under an optimistic global warming scenario and strict local management. This work provides insight into the relative influence of land-based vs. marine-based management and local vs. global stressors as drivers of changes in ecosystem dynamics while quantifying the tradeoffs between conservation- and extraction-oriented ecosystem services.
Collapse
Affiliation(s)
- Mariska Weijerman
- Joint Institute of Marine and Atmospheric Research, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, United States
| | - Lindsay Veazey
- Department of Natural Resources and Environmental Management, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Susan Yee
- Gulf Ecology Division, U.S. Environmental Protection Agency, Gulf Breeze, FL, United States
| | - Kellie Vaché
- Biological and Ecological Engineering, Oregon State University, Corvallis, OR, United States
| | - Jade M. S. Delevaux
- Department of Natural Resources and Environmental Management, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Mary K. Donovan
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kānéohe, HI, United States
| | - Kim Falinski
- Department of Natural Resources and Environmental Management, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Joey Lecky
- Joint Institute of Marine and Atmospheric Research, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Natural Resources and Environmental Management, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Kirsten L. L. Oleson
- Joint Institute of Marine and Atmospheric Research, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Natural Resources and Environmental Management, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
45
|
Russ GR, Payne CS, Bergseth BJ, Rizzari JR, Abesamis RA, Alcala AC. Decadal-scale response of detritivorous surgeonfishes (family Acanthuridae) to no-take marine reserve protection and changes in benthic habitat. JOURNAL OF FISH BIOLOGY 2018; 93:887-900. [PMID: 30246331 DOI: 10.1111/jfb.13809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
No-take marine reserves (NTMR) are increasingly being implemented to mitigate the effects of fishing on coral reefs, yet determining the efficacy of NTMRs depends largely on partitioning the effects of fishing from the effect of benthic habitat. Species of coral-reef fishes typically decline in density when subjected to fishing or benthic disturbances, but this is not always the case. This study documents the long-term (8-31 years) response of six species of detritivorous surgeonfishes (family Acanthuridae) to NTMR protection and benthic habitat change at four islands (Apo, Sumilon, Mantigue, Selinog) in the central Philippines, each island with a NTMR and a monitored fished site. Despite being subject to moderate fishing pressure, these species did not increase in density with NTMR protection. However, density of these surgeonfishes had a strong negative relationship with cover of live hard coral and a strong positive relationship with cover of dead substratum (sand, rubble, hard dead substratum). These surgeonfishes typically feed over dead substrata and thus probably increase in density following large environmental disturbances that substantially reduce live hard coral cover. Here, we describe effects of environmental disturbance events (e.g., use of explosives, typhoons) that reduced live hard-coral cover and subsequent large increases (up to 25 fold) in surgeonfish densities, which then slowly (over 5-15 years) decreased in density as live hard coral recovered. Density of these functionally important surgeonfish species was influenced more by changes to benthic cover than by NTMR protection. Thus, we highlight the greater importance of bottom-up controls (i.e., benthic changes to food availability) than top-down control (i.e., fishing) on a functionally important group of coral-reef fishes.
Collapse
Affiliation(s)
- Garry R Russ
- College of Science and Engineering, James Cook University, Townsville, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Australia
| | - Cody S Payne
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Brock J Bergseth
- College of Science and Engineering, James Cook University, Townsville, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Australia
- Oceans & Atmosphere Division, CSIRO, Hobart, Australia
| | - Justin R Rizzari
- College of Science and Engineering, James Cook University, Townsville, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Australia
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Rene A Abesamis
- College of Science and Engineering, James Cook University, Townsville, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Australia
- Silliman University Angelo King Center for Research and Environmental Management, Silliman University, Dumaguete City, Philippines
| | - Angel C Alcala
- Silliman University Angelo King Center for Research and Environmental Management, Silliman University, Dumaguete City, Philippines
| |
Collapse
|
46
|
Tebbett SB, Bellwood DR. Functional links on coral reefs: Urchins and triggerfishes, a cautionary tale. MARINE ENVIRONMENTAL RESEARCH 2018; 141:255-263. [PMID: 30249458 DOI: 10.1016/j.marenvres.2018.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Urchins are ubiquitous components of coral reefs ecosystems, with significant roles in bioerosion and herbivory. By controlling urchin densities, triggerfishes have been identified as keystone predators. However, the functional linkages between urchins and triggerfishes, in terms of distributional patterns and concomitant effects on ecosystem processes, are not well understood, especially in relatively unexploited systems. To address this we censused urchins and triggerfishes on two cross-shelf surveys on the Great Barrier Reef (GBR) at the same times and locations. We also evaluated the role of urchins in bioerosion. Although urchin abundance and triggerfish biomass varied by 80% and nearly 900% across sites, respectively, this variability was driven primarily by shelf position with no evidence of top-down control on urchins by triggerfishes. Low urchin abundances meant urchins only played a minor role in bioerosion. We highlight the potential variability in functional links, and contributions to ecosystem processes, among regions.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia.
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
47
|
Dubois M, Gascuel D, Coll M, Claudet J. Recovery Debts Can Be Revealed by Ecosystem Network-Based Approaches. Ecosystems 2018. [DOI: 10.1007/s10021-018-0294-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
SEAMANCORE: A spatially explicit simulation model for assisting the local MANagement of COral REefs. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Cowburn B, Samoilys MA, Obura D. The current status of coral reefs and their vulnerability to climate change and multiple human stresses in the Comoros Archipelago, Western Indian Ocean. MARINE POLLUTION BULLETIN 2018; 133:956-969. [PMID: 29778407 DOI: 10.1016/j.marpolbul.2018.04.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Coral bleaching and various human stressors have degraded the coral reefs of the Comoros Archipelago in the past 40 years and rising atmospheric CO2 levels are predicted to further impact marine habitats. The condition of reefs in the Comoros is poorly known; using SCUBA based methods we surveyed reef condition and resilience to bleaching at sites in Grande Comore and Mohéli in 2010 and 2016. The condition of reefs was highly variable, with a range in live coral cover between 6% and 60% and target fishery species biomass between 20 and 500 kg per ha. The vulnerability assessment of reefs to future coral bleaching and their exposure to fishing, soil erosion and river pollution in Mohéli Marine Park found that offshore sites around the islets south of the island were least likely to be impacted by these negative pressures. The high variability in both reef condition and vulnerability across reefs in the Park lends itself to spatially explicit conservation actions. However, it is noteworthy that climate impacts to date appear moderate and that local human pressures are not having a major impact on components of reef health and recovery, suggesting these reefs are relatively resilient to the current anthropogenic stresses that they are experiencing.
Collapse
Affiliation(s)
- B Cowburn
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O. BOX 10135, Mombasa 80101, Kenya
| | - M A Samoilys
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O. BOX 10135, Mombasa 80101, Kenya; Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
| | - D Obura
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O. BOX 10135, Mombasa 80101, Kenya
| |
Collapse
|
50
|
Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 2018; 559:250-253. [DOI: 10.1038/s41586-018-0202-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/09/2018] [Indexed: 11/08/2022]
|