1
|
Tse-Kang S, Wani KA, Pukkila-Worley R. Patterns of pathogenesis in innate immunity: insights from C. elegans. Nat Rev Immunol 2025:10.1038/s41577-025-01167-0. [PMID: 40247006 DOI: 10.1038/s41577-025-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host-pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.
Collapse
Affiliation(s)
- Samantha Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Tecle E, Warushavithana P, Li S, Blanchard MJ, Chhan CB, Bui T, Underwood RS, Bakowski MA, Troemel ER, Lažetić V. Conserved chromatin regulators control the transcriptional immune response to intracellular pathogens in Caenorhabditis elegans. PLoS Genet 2025; 21:e1011444. [PMID: 40193347 PMCID: PMC11975079 DOI: 10.1371/journal.pgen.1011444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Robust transcriptional responses are critical for defense against infection. However, unrestrained immune responses can cause negative impacts such as damaging inflammation and slowed development. Here, we find that a class of transcriptional regulators previously associated with regulation of development in Caenorhabditis elegans, is also involved in repressing immune responses. Specifically, through forward genetics, we find that loss of lin-15B leads to constitutive expression of Intracellular Pathogen Response (IPR) genes. lin-15B encodes a transcriptional repressor with a conserved THAP domain that is associated with the DRM chromatin remodeling complex that regulates C. elegans development. We show that lin-15B mutants have increased resistance to natural intracellular pathogens, and the induction of IPR genes in lin-15B mutants relies on the MES-4 histone methyltransferase. We extend our analyses to other DRM and NuRD chromatin remodeling factors, as well as SUMOylation histone modifiers, showing that a broad range of chromatin-related factors can repress IPR gene expression. Altogether these findings suggest that conserved chromatin regulators may facilitate development in part by repressing damaging immune responses against intracellular pathogens.
Collapse
Affiliation(s)
- Eillen Tecle
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Paaramitha Warushavithana
- Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, District of Columbia,Washington, United States of America
| | - Samuel Li
- Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, District of Columbia,Washington, United States of America
| | - Michael J. Blanchard
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Crystal B. Chhan
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Theresa Bui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ryan S. Underwood
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Malina A. Bakowski
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Vladimir Lažetić
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- Department of Biological Sciences, Columbian College of Arts and Sciences, The George Washington University, District of Columbia,Washington, United States of America
| |
Collapse
|
3
|
Wernet ND, Tecle E, Sarmiento MB, Kuo CJ, Chhan CB, Baick I, Batachari LE, Franklin L, Herneisen A, Bhabha G, Ekiert DC, Hanna-Rose W, Troemel ER. Adenosine deaminase and deoxyadenosine regulate intracellular immune response in C. elegans. iScience 2025; 28:111950. [PMID: 40034845 PMCID: PMC11872409 DOI: 10.1016/j.isci.2025.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/22/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) are enzymes in the purine salvage pathway, which recycles purines to meet cellular demands. Mutations of these enzymes in humans cause inflammatory and immunodeficiency syndromes, but the mechanisms are not well understood. Prior work in the nematode Caenorhabditis elegans demonstrated that loss of PNP ortholog PNP-1 induced an immune response called the intracellular pathogen response (IPR). Here, we show that loss of the enzyme upstream of PNP-1 called ADAH-1 (ADA homolog) also induces the IPR and promotes resistance against intracellular pathogens. Unlike PNP-1, ADAH-1 is essential for organismal development. Importantly, we find that supplementation of deoxyadenosine, a substrate for ADA, induces the IPR and promotes resistance to intracellular pathogens in C. elegans, a finding we extend to human cells. Thus, mutations in ADA and PNP induce innate immunity through increased deoxyadenosine, a phenomenon that is conserved from C. elegans to humans.
Collapse
Affiliation(s)
- Nicole D. Wernet
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Eillen Tecle
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Cheng-Ju Kuo
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Crystal B. Chhan
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ian Baick
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Lakshmi E. Batachari
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Latisha Franklin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Alice Herneisen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Gira Bhabha
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Damian C. Ekiert
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Kalugotla G, Marmerstein V, Schriefer LA, Wang L, Morrison S, Perez LC, Schedl T, Pak SC, Baldridge MT. ATG-3 limits Orsay virus infection in C. elegans through regulation of collagen pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632696. [PMID: 39868230 PMCID: PMC11761658 DOI: 10.1101/2025.01.13.632696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autophagy is an essential cellular process which functions to maintain homeostasis in response to stressors such as starvation or infection. Here, we report that a subset of autophagy factors including ATG-3 play an antiviral role in Orsay virus infection of Caenorhabditis elegans. Orsay virus infection does not modulate autophagic flux, and re-feeding after starvation limits Orsay virus infection and blocks autophagic flux, suggesting that the role of ATG-3 in Orsay virus susceptibility is independent of its role in maintaining autophagic flux. atg-3 mutants phenocopy rde-1 mutants, which have a defect in RNA interference (RNAi), in susceptibility to Orsay virus infection and transcriptional response to infection. However, atg-3 mutants do not exhibit defects in RNAi. Additionally, atg-3 limits viral infection at a post-entry step, similar to rde-1 mutants. Differential expression analysis using RNA sequencing revealed that antiviral sqt-2, which encodes a collagen trimer protein, is depleted in naïve and infected atg-3 mutants, as well as in infected WT animals, as are numerous other collagen genes. These data suggest that ATG-3 has a role in collagen organization pathways that function in antiviral defense in C. elegans.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie Morrison
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Luis Casorla Perez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Tishadas S, Noma K. Orsay virus infection rate declines with age in C. elegans. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001434. [PMID: 39867230 PMCID: PMC11764689 DOI: 10.17912/micropub.biology.001434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
The intracellular pathogen response is regulated by multiple pals genes in C. elegans . How such responses change with age is largely unknown. Thus, we investigated potential age-dependent changes in the immune response to the C. elegans -specific Orsay virus . When animals were exposed to equal viral concentrations, the expression of known immune-response pals genes and viral RNAs was lower in aged populations than in young adults. However, when young and aged populations were infected with equal viral loads, pals gene expression did not change with age. Therefore, aged C. elegans experience a decline in viral infection rate.
Collapse
Affiliation(s)
- Shivaani Tishadas
- Nagoya University, Nagoya, Aichi, Japan
- Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
6
|
Seetharaman A, Galagali H, Linarte E, Liu MHX, Cohen JD, Chetal K, Sadreyev R, Tate AJ, Montgomery TA, Ruvkun G. Decreased SynMuv B gene activity in response to viral infection leads to activation of the antiviral RNAi pathway in C. elegans. PLoS Biol 2025; 23:e3002748. [PMID: 39879188 PMCID: PMC11778786 DOI: 10.1371/journal.pbio.3002748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense. About one-third of the score of mutants that enhance RNAi are in synMuv B genes, identified 30 years ago in unrelated screens for increased growth factor signaling. Many synMuv B genes encode dREAM complex chromatin-regulatory proteins found in nearly all animals and plants. We show that mRNAs which are highly induced in synMuv B mutants are congruent with those induced by Orsay RNA virus infection, suggesting that the enhanced RNAi of synMuv B mutants may also be triggered by down-regulation of synMuvB gene activity in an Orsay virus infection of wild type. The multivulval (Muv) phenotype of synMuv B mutants requires the presence of a second nematode-specific synMuv A gene mutation, but the enhanced RNAi of synMuv B mutants does not require a second synMuv A mutation. To test if Orsay viral infection down-regulates synMuv B gene activity, we infected a single synMuv A mutant with Orsay virus and found that a Muv phenotype could be induced. Thus, decreased synMuv B gene activity is part of the normal C. elegans viral defense response. In support of the model that decreased syn- Muv B gene activity enhances antiviral response, we found that synMuv B mutants have 50 to 100× lower viral RNA levels during an Orsay virus infection than wild type. Thus down-regulation of synMuv B activity to enhance RNAi is a key component in the defense response to viral infection. Small RNA deep sequencing analysis of dREAM complex mutants revealed siRNA profiles indicative of such a response. Thus, the pan-eukaryotic synMuv B genes constitute an element in C. elegans antiviral defense which is conserved across many eukaryotes where it also may act in viral defense. The enhanced RNAi and conservation of the dREAM complex mutants suggests new therapeutic avenues to boost antiviral defenses.
Collapse
Affiliation(s)
- Ashwin Seetharaman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Himani Galagali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Linarte
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, Massachusetts, United States of America
| | - Mona H. X. Liu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jennifer D. Cohen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alex J. Tate
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Taiowa A. Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Xu W, Sun Y, Breen P, Ruvkun G, Mao K. Caenorhabditis elegans inositol hexaphosphate pathways couple to RNA interference and pathogen defense. Proc Natl Acad Sci U S A 2024; 121:e2416982121. [PMID: 39602251 PMCID: PMC11626161 DOI: 10.1073/pnas.2416982121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
RNA interference (RNAi) is an evolutionarily conserved pathway that defends against viral infections in diverse organisms. Caenorhabditis elegans mutations that enhance RNAi have revealed pathways that may regulate antiviral defense. A genetic screen for C. elegans mutations that fail to up-regulate a defense response reporter transgene detected mutations that enhance RNAi to silence this reporter gene in the inositol polyphosphate multikinase impk-1, the synMuv B gene lin-15B, and the pathogen defense response gene pals-22. Using other assays for enhanced RNAi, we found that the impk-1 alleles and an ippk-1 gene inactivation of a later step in inositol hexaphosphate (IP6) synthesis, and the lin-15B and pals-22 alleles enhance RNAi. IP6 has been known for decades to bind and stabilize human adenosine deaminase that acts on RNA (ADAR) as well as the paralog tRNA editing ADAT. We show that the C. elegans IP6 pathway is also required for mRNA and tRNA editing. Thus, a deficiency in two axes of RNA editing enhances the already potent C. elegans RNAi antiviral defense, suggesting adenosine to inosine RNA editing may normally moderate this siRNA antiviral defense pathway. The C. elegans IP6-deficient mutants are synthetic lethal with a set of enhanced RNAi mutants that act in the polyploid hypodermis to regulate collagen secretion and signaling from that tissue, implicating IP6 signaling especially in this tissue. This enhanced antiviral RNAi response uses the C. elegans RIG-I-like receptor DRH-1 to activate the unfolded protein response (UPR). The production of primary siRNAs, rather than secondary siRNAs, contributes to this activation of the UPR through XBP-1 signaling. The gon-14 and pal-17 mutants that also emerged from this screen act in the mitochondrial defense pathway rather than by enhancing RNAi.
Collapse
Affiliation(s)
- Wenjing Xu
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
| | - Yifan Sun
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kai Mao
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
8
|
Liu K, Grover M, Trusch F, Vagena-Pantoula C, Ippolito D, Barkoulas M. Paired C-type lectin receptors mediate specific recognition of divergent oomycete pathogens in C. elegans. Cell Rep 2024; 43:114906. [PMID: 39460939 DOI: 10.1016/j.celrep.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Innate immune responses can be triggered upon detection of pathogen- or damage-associated molecular patterns by host receptors that are often present on the surface of immune cells. While invertebrates like Caenorhabditis elegans lack professional immune cells, they still mount pathogen-specific responses. However, the identity of host receptors in the nematode remains poorly understood. Here, we show that C-type lectin receptors mediate species-specific recognition of divergent oomycetes in C. elegans. A CLEC-27/CLEC-35 pair is essential for recognition of the oomycete Myzocytiopsis humicola, while a CLEC-26/CLEC-36 pair is required for detection of Haptoglossa zoospora. Both clec pairs are transcriptionally regulated through a shared promoter by the conserved PRD-like homeodomain transcription factor CEH-37/OTX2 and act in sensory neurons and the anterior intestine to trigger a protective immune response in the epidermis. This system enables redundant tissue sensing of oomycete threats through canonical CLEC receptors and host defense via cross-tissue communication.
Collapse
Affiliation(s)
- Kenneth Liu
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Manish Grover
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Franziska Trusch
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | | | | | | |
Collapse
|
9
|
Zhang Y, Samuelson AV. Antiviral defense in aged Caenorhabditis elegans declines due to loss of DRH-1/RIG-I deSUMOylation via ULP-4/SENP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623310. [PMID: 39605404 PMCID: PMC11601531 DOI: 10.1101/2024.11.12.623310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Innate host defense mechanisms require posttranslational modifications (PTM) to protect against viral infection. Age-associated immunosenescence results in increased pathogenesis and mortality in the elderly, but the contribution of altered PTM regulation to immunosenescence is unknown. SUMOylation is a rapid and reversible post-translational modification that has been implicated in age-associated disease and plays conflicting roles in viral replication and antiviral defenses in mammals. We have discovered in Caenorhabditis elegans that induction of antiviral defense is regulated through SUMOylation of DRH-1, the ortholog of the DEAD/H-box helicase and cytosolic pattern recognition receptor RIG-I, and that this regulation breaks down during aging. We find the SUMO isopeptidase ULP-4 is essential for deSUMOylation of DRH-1 and activation of the intracellular pathogen response (IPR) after exposure to Orsay virus (OV), a natural enteric C. elegans pathogen. ULP-4 promotes stabilization of DRH-1, which translocates to the mitochondria to activate the IPR in young animals exposed to virus. Loss of either drh-1 or ulp-4 compromises antiviral defense resulting in a failure to clear the virus and signs of intestinal pathogenesis. During aging, expression of ulp-4 decreases, which results in increased proteosomal degradation of DRH-1 and loss of the IPR. Mutating the DRH-1 SUMOylated lysines resulted in the constitutive activation of the IPR in young animals and partially rescued the age-associated lost inducibility of the IPR. Our work establishes that aging results in dysregulated SUMOylation and loss of DRH-1, which compromises antiviral defense and creates a physiological shift to favor chronic pathological infection in older animals.
Collapse
|
10
|
Raman D, Wernet N, Gang S, Troemel E. PALS-14 promotes resistance to Nematocida parisii infection in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001325. [PMID: 39473452 PMCID: PMC11519727 DOI: 10.17912/micropub.biology.001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 11/09/2024]
Abstract
Microsporidia are common natural pathogens of the nematode Caenorhabditis elegans . Infection of C. elegans by the microsporidian species Nematocida parisii leads to induction of the Intracellular Pathogen Response (IPR), including transcriptional upregulation of 26 pals genes. The divergent ' pals ' sequence signature is conserved with humans, but PALS proteins have unknown biochemical functions. So far, none of the 26 induced pals genes have a demonstrated role in immunity. Here, we use RNAseq data, RNA interference, and CRISPR/Cas9 mutant analysis to identify the N. parisii -induced pals-14 gene as an immune gene that provides defense against microsporidia infection in C. elegans .
Collapse
Affiliation(s)
- Deevya Raman
- Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Nicole Wernet
- Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| | - Spencer Gang
- Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, United States
| | - Emily Troemel
- Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Kovács D, Biró JB, Ahmed S, Kovács M, Sigmond T, Hotzi B, Varga M, Vincze VV, Mohammad U, Vellai T, Barna J. Age-dependent heat shock hormesis to HSF-1 deficiency suggests a compensatory mechanism mediated by the unfolded protein response and innate immunity in young Caenorhabditis elegans. Aging Cell 2024; 23:e14246. [PMID: 38895933 PMCID: PMC11464127 DOI: 10.1111/acel.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The transcription factor HSF-1 (heat shock factor 1) acts as a master regulator of heat shock response in eukaryotic cells to maintain cellular proteostasis. The protein has a protective role in preventing cells from undergoing ageing, and neurodegeneration, and also mediates tumorigenesis. Thus, modulating HSF-1 activity in humans has a promising therapeutic potential for treating these pathologies. Loss of HSF-1 function is usually associated with impaired stress tolerance. Contrary to this conventional knowledge, we show here that inactivation of HSF-1 in the nematode Caenorhabditis elegans results in increased thermotolerance at young adult stages, whereas HSF-1 deficiency in animals passing early adult stages indeed leads to decreased thermotolerance, as compared to wild-type. Furthermore, a gene expression analysis supports that in young adults, distinct cellular stress response and immunity-related signaling pathways become induced upon HSF-1 deficiency. We also demonstrate that increased tolerance to proteotoxic stress in HSF-1-depleted young worms requires the activity of the unfolded protein response of the endoplasmic reticulum and the SKN-1/Nrf2-mediated oxidative stress response pathway, as well as an innate immunity-related pathway, suggesting a mutual compensatory interaction between HSF-1 and these conserved stress response systems. A similar compensatory molecular network is likely to also operate in higher animal taxa, raising the possibility of an unexpected outcome when HSF-1 activity is manipulated in humans.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | | | - Saqib Ahmed
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Márton Kovács
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Tímea Sigmond
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Bernadette Hotzi
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Máté Varga
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | | | - Umar Mohammad
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
| | - Tibor Vellai
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| | - János Barna
- Department of GeneticsELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
12
|
Castiglioni VG, Olmo-Uceda MJ, Villena-Giménez A, Muñoz-Sánchez JC, Legarda EG, Elena SF. Story of an infection: Viral dynamics and host responses in the Caenorhabditis elegans-Orsay virus pathosystem. SCIENCE ADVANCES 2024; 10:eadn5945. [PMID: 39331715 PMCID: PMC11430451 DOI: 10.1126/sciadv.adn5945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Orsay virus (OrV) is the only known natural virus affecting Caenorhabditis elegans, with minimal impact on the animal's fitness due to its robust innate immune response. This study aimed to understand the interactions between C. elegans and OrV by tracking the infection's progression during larval development. Four distinct stages of infection were identified on the basis of viral load, with a peak in capsid-encoding RNA2 coinciding with the first signs of viral egression. Transcriptomic analysis revealed temporal changes in gene expression and functions induced by the infection. A specific set of up-regulated genes remained active throughout the infection, and genes correlated and anticorrelated with virus accumulation were identified. Responses to OrV mirrored reactions to other biotic stressors, distinguishing between virus-specific responses and broader immune responses. Moreover, mutants of early response genes and defense-related processes showed altered viral load progression, uncovering additional players in the antiviral defense response.
Collapse
Affiliation(s)
- Victoria G. Castiglioni
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - María J. Olmo-Uceda
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - Ana Villena-Giménez
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - Juan C. Muñoz-Sánchez
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - Esmeralda G. Legarda
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
| | - Santiago F. Elena
- Institute of Integrative Systems Biology (I2SysBio), CSIC-Universitat de València, Paterna, 46980 Valencia, Spain
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
13
|
Gang SS, Lažetić V. Microsporidia: Pervasive natural pathogens of Caenorhabditis elegans and related nematodes. J Eukaryot Microbiol 2024; 71:e13027. [PMID: 38702921 DOI: 10.1111/jeu.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024]
Abstract
The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.
Collapse
Affiliation(s)
- Spencer S Gang
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, USA
| | - Vladimir Lažetić
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
14
|
Iannacone MJ, Um P, Grubbs JI, van der Linden AM, Raizen DM. Quiescence Enhances Survival during Viral Infection in Caenorhabditis elegans. J Neurosci 2024; 44:e1700222024. [PMID: 39060176 PMCID: PMC11358607 DOI: 10.1523/jneurosci.1700-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Infection causes reduced activity, anorexia, and sleep, which are components of the phylogenetically conserved but poorly understood sickness behavior. We developed a Caenorhabditis elegans model to study quiescence during chronic infection, using infection with the Orsay virus. The Orsay virus infects intestinal cells yet strongly affects behavior, indicating gut-to-nervous system communication. Infection quiescence has the sleep properties of reduced responsiveness and rapid reversibility. Both the ALA and RIS neurons regulate virus-induced quiescence though ALA plays a more prominent role. Quiescence-defective animals have decreased survival when infected, indicating a benefit of quiescence during chronic infectious disease. The survival benefit of quiescence is not explained by a difference in viral load, indicating that it improves resilience rather than resistance to infection. Orsay infection is associated with a decrease in ATP levels, and this decrease is more severe in quiescence-defective animals. We propose that quiescence preserves energetic resources by reducing energy expenditures and/or by increasing extraction of energy from nutrients. This model presents an opportunity to explore the role of sleep and fatigue in chronic infectious illness.
Collapse
Affiliation(s)
- Michael J Iannacone
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul Um
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jeremy I Grubbs
- Department of Biology, University of Nevada, Reno, Nevada 89557
| | | | - David M Raizen
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
15
|
Batachari LE, Dai AY, Troemel ER. Caenorhabditis elegans RIG-I-like receptor DRH-1 signals via CARDs to activate antiviral immunity in intestinal cells. Proc Natl Acad Sci U S A 2024; 121:e2402126121. [PMID: 38980902 PMCID: PMC11260149 DOI: 10.1073/pnas.2402126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E. Batachari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Alyssa Y. Dai
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Emily R. Troemel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
16
|
Seetharaman A, Galagali H, Linarte E, Liu MHX, Cohen JD, Chetal K, Sadreyev R, Tate AJ, Montgomery TA, Ruvkun G. Caenorhabditis elegans SynMuv B gene activity is down-regulated during a viral infection to enhance RNA interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603258. [PMID: 39071373 PMCID: PMC11275910 DOI: 10.1101/2024.07.12.603258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Small RNA pathways regulate eukaryotic antiviral defense. Many of the Caenorhabditis elegans mutations that were identified based on their enhanced RNAi, the synMuv B genes, also emerged from unrelated genetic screens for increased growth factor signaling. The dozen synMuv B genes encode homologues of the mammalian dREAM complex found in nearly all animals and plants, which includes the lin-35 /retinoblastoma oncogene. We show that a set of highly induced mRNAs in synMuv B mutants is congruent with mRNAs induced by Orsay RNA virus infection of C. elegans . In wild type animals, a combination of a synMuv A mutation and a synMuv B mutation are required for the Muv phenotype of increased growth factor signaling. But we show that Orsay virus infection of a single synMuv A mutant can induce a Muv phenotype, unlike the uninfected single synMuv A mutant. This suggests that decreased synMuv B activity, which activates the antiviral RNAi pathway, is a defense response to viral infection. Small RNA deep sequencing analysis of various dREAM complex mutants uncovers distinct siRNA profiles indicative of such an siRNA response. We conclude that the synMuv B mutants maintain an antiviral readiness state even in the absence of actual infection. The enhanced RNAi and conservation of the dREAM complex mutants suggests new therapeutic avenues to boost antiviral defenses.
Collapse
|
17
|
Batachari LE, Sarmiento MB, Wernet N, Troemel ER. Orsay Virus Infection in Caenorhabditis elegans. Curr Protoc 2024; 4:e1098. [PMID: 38967546 PMCID: PMC11486333 DOI: 10.1002/cpz1.1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Orsay virus infection in the nematode Caenorhabditis elegans presents an opportunity to study host-virus interactions in an easily culturable, whole-animal host. Previously, a major limitation of C. elegans as a model for studying antiviral immunity was the lack of viruses known to naturally infect the worm. With the 2011 discovery of the Orsay virus, a naturally occurring viral pathogen, C. elegans has emerged as a compelling model for research on antiviral defense. From the perspective of the host, the genetic tractability of C. elegans enables mechanistic studies of antiviral immunity while the transparency of this animal allows for the observation of subcellular processes in vivo. Preparing infective virus filtrate and performing infections can be achieved with relative ease in a laboratory setting. Moreover, several tools are available to measure the outcome of infection. Here, we describe workflows for generating infective virus filtrate, achieving reproducible infection of C. elegans, and assessing the outcome of viral infection using molecular biology approaches and immunofluorescence. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of Orsay virus filtrate Support Protocol: Synchronize C. elegans development by bleaching Basic Protocol 2: Orsay virus infection Basic Protocol 3: Quantification of Orsay virus RNA1/RNA2 transcript levels by qRT-PCR Basic Protocol 4: Quantification of infection rate and fluorescence in situ hybridization (FISH) fluorescence intensity Basic Protocol 5: Immunofluorescent labeling of dsRNA in virus-infected intestinal tissue.
Collapse
Affiliation(s)
- Lakshmi E Batachari
- School of Biological Sciences, University of California San Diego, La Jolla, California
| | | | - Nicole Wernet
- School of Biological Sciences, University of California San Diego, La Jolla, California
| | - Emily R Troemel
- School of Biological Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
18
|
Bardan Sarmiento M, Gang SS, van Oosten-Hawle P, Troemel ER. CUL-6/cullin ubiquitin ligase-mediated degradation of HSP-90 by intestinal lysosomes promotes thermotolerance. Cell Rep 2024; 43:114279. [PMID: 38795346 PMCID: PMC11238739 DOI: 10.1016/j.celrep.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024] Open
Abstract
Heat shock can be a lethal stressor. Previously, we described a CUL-6/cullin-ring ubiquitin ligase complex in the nematode Caenorhabditis elegans that is induced by intracellular intestinal infection and proteotoxic stress and that promotes improved survival upon heat shock (thermotolerance). Here, we show that CUL-6 promotes thermotolerance by targeting the heat shock protein HSP-90 for degradation. We show that CUL-6-mediated lowering of HSP-90 protein levels, specifically in the intestine, improves thermotolerance. Furthermore, we show that lysosomal function is required for CUL-6-mediated promotion of thermotolerance and that CUL-6 directs HSP-90 to lysosome-related organelles upon heat shock. Altogether, these results indicate that a CUL-6 ubiquitin ligase promotes organismal survival upon heat shock by promoting HSP-90 degradation in intestinal lysosomes. Thus, HSP-90, a protein commonly associated with protection against heat shock and promoting degradation of other proteins, is itself degraded to protect against heat shock.
Collapse
Affiliation(s)
| | - Spencer S Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Emily R Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Alkan C, Brésard G, Frézal L, Richaud A, Ruaud A, Zhang G, Félix MA. Natural variation in infection specificity of Caenorhabditis briggsae isolates by two RNA viruses. PLoS Pathog 2024; 20:e1012259. [PMID: 38861582 PMCID: PMC11195985 DOI: 10.1371/journal.ppat.1012259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Antagonistic relationships such as host-virus interactions potentially lead to rapid evolution and specificity in interactions. The Orsay virus is so far the only horizontal virus naturally infecting the nematode C. elegans. In contrast, several related RNA viruses infect its congener C. briggsae, including Santeuil (SANTV) and Le Blanc (LEBV) viruses. Here we focus on the host's intraspecific variation in sensitivity to these two intestinal viruses. Many temperate-origin C. briggsae strains, including JU1264 and JU1498, are sensitive to both, while many tropical strains, such as AF16, are resistant to both. Interestingly, some C. briggsae strains exhibit a specific resistance, such as the HK104 strain, specifically resistant to LEBV. The viral sensitivity pattern matches the strains' geographic and genomic relationships. The heavily infected strains mount a seemingly normal small RNA response that is insufficient to suppress viral infection, while the resistant strains show no small RNA response, suggesting an early block in viral entry or replication. We use a genetic approach from the host side to map genomic regions participating in viral resistance polymorphisms. Using Advanced Intercrossed Recombinant Inbred Lines (RILs) between virus-resistant AF16 and SANTV-sensitive HK104, we detect Quantitative Trait Loci (QTLs) on chromosomes IV and III. Building RILs between virus-sensitive JU1498 and LEBV-resistant HK104 followed by bulk segregant analysis, we identify a chromosome II QTL. In both cases, further introgressions of the regions confirmed the QTLs. This diversity provides an avenue for studying virus entry, replication, and exit mechanisms, as well as host-virus specificity and the host response to a specific virus infection.
Collapse
Affiliation(s)
- Cigdem Alkan
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gautier Brésard
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Lise Frézal
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques Paris, Paris, France
| | - Aurélien Richaud
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Albane Ruaud
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gaotian Zhang
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Marie-Anne Félix
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
20
|
González R, Félix MA. Caenorhabditis elegans immune responses to microsporidia and viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105148. [PMID: 38325500 DOI: 10.1016/j.dci.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France.
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France
| |
Collapse
|
21
|
Grover M, Gang SS, Troemel ER, Barkoulas M. Proteasome inhibition triggers tissue-specific immune responses against different pathogens in C. elegans. PLoS Biol 2024; 22:e3002543. [PMID: 38466732 PMCID: PMC10957088 DOI: 10.1371/journal.pbio.3002543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/21/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Protein quality control pathways play important roles in resistance against pathogen infection. For example, the conserved transcription factor SKN-1/NRF up-regulates proteostasis capacity after blockade of the proteasome and also promotes resistance against bacterial infection in the nematode Caenorhabditis elegans. SKN-1/NRF has 3 isoforms, and the SKN-1A/NRF1 isoform, in particular, regulates proteasomal gene expression upon proteasome dysfunction as part of a conserved bounce-back response. We report here that, in contrast to the previously reported role of SKN-1 in promoting resistance against bacterial infection, loss-of-function mutants in skn-1a and its activating enzymes ddi-1 and png-1 show constitutive expression of immune response programs against natural eukaryotic pathogens of C. elegans. These programs are the oomycete recognition response (ORR), which promotes resistance against oomycetes that infect through the epidermis, and the intracellular pathogen response (IPR), which promotes resistance against intestine-infecting microsporidia. Consequently, skn-1a mutants show increased resistance to both oomycete and microsporidia infections. We also report that almost all ORR/IPR genes induced in common between these programs are regulated by the proteasome and interestingly, specific ORR/IPR genes can be induced in distinct tissues depending on the exact trigger. Furthermore, we show that increasing proteasome function significantly reduces oomycete-mediated induction of multiple ORR markers. Altogether, our findings demonstrate that proteasome regulation keeps innate immune responses in check in a tissue-specific manner against natural eukaryotic pathogens of the C. elegans epidermis and intestine.
Collapse
Affiliation(s)
- Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Spencer S. Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | |
Collapse
|
22
|
Tran TD, Luallen RJ. An organismal understanding of C. elegans innate immune responses, from pathogen recognition to multigenerational resistance. Semin Cell Dev Biol 2024; 154:77-84. [PMID: 36966075 PMCID: PMC10517082 DOI: 10.1016/j.semcdb.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
The nematode Caenorhabditis elegans has been a model for studying infection since the early 2000s and many major discoveries have been made regarding its innate immune responses. C. elegans has been found to utilize some key conserved aspects of immune responses and signaling, but new interesting features of innate immunity have also been discovered in the organism that might have broader implications in higher eukaryotes such as mammals. Some of the distinctive features of C. elegans innate immunity involve the mechanisms this bacterivore uses to detect infection and mount specific immune responses to different pathogens, despite lacking putative orthologs of many important innate immune components, including cellular immunity, the inflammasome, complement, or melanization. Even when orthologs of known immune factors exist, there appears to be an absence of canonical functions, most notably the lack of pattern recognition by its sole Toll-like receptor. Instead, recent research suggests that C. elegans senses infection by specific pathogens through contextual information, including unique products produced by the pathogen or infection-induced disruption of host physiology, similar to the proposed detection of patterns of pathogenesis in mammalian systems. Interestingly, C. elegans can also transfer information of past infection to their progeny, providing robust protection for their offspring in face of persisting pathogens, in part through the RNAi pathway as well as potential new mechanisms that remain to be elucidated. Altogether, some of these strategies employed by C. elegans share key conceptual features with vertebrate adaptive immunity, as the animal can differentiate specific microbial features, as well as propagate a form of immune memory to their offspring.
Collapse
Affiliation(s)
- Tuan D Tran
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Robert J Luallen
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
23
|
Batachari LE, Dai AY, Troemel ER. C. elegans RIG-I-like receptor DRH-1 signals via CARDs to activate anti-viral immunity in intestinal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578694. [PMID: 38370651 PMCID: PMC10871272 DOI: 10.1101/2024.02.05.578694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well-studied. In contrast, the downstream signaling mechanisms for invertebrate RIG-I-like receptors are much less clear. For example, the Caenorhabditis elegans RIG-I-like receptor DRH-1 lacks annotated CARDs and upregulates the distinct output of RNA interference (RNAi). Here we found that, similar to mammal RIG-I-like receptors, DRH-1 signals through two tandem caspase activation and recruitment domains (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into anti-viral signaling in C. elegans, highlighting unexpected parallels in RIG-I-like receptor signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E Batachari
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Alyssa Y Dai
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
24
|
González R, Félix MA. Naturally-associated bacteria modulate Orsay virus infection of Caenorhabditis elegans. PLoS Pathog 2024; 20:e1011947. [PMID: 38232128 PMCID: PMC10824439 DOI: 10.1371/journal.ppat.1011947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/29/2024] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Microbes associated with an organism can significantly modulate its susceptibility to viral infections, but our understanding of the influence of individual microbes remains limited. The nematode Caenorhabditis elegans is a model organism that in nature inhabits environments rich in bacteria. Here, we examine the impact of 71 naturally associated bacteria on C. elegans susceptibility to its only known natural virus, the Orsay virus. Our findings reveal that viral infection of C. elegans is significantly influenced by monobacterial environments. Compared to an Escherichia coli environmental reference, the majority of tested bacteria reduced C. elegans susceptibility to viral infection. This reduction is not caused by virion degradation or poor animal nutrition by the bacteria. The repression of viral infection by the bacterial strains Chryseobacterium JUb44 and Sphingobacterium BIGb0172 does not require the RIG-I homolog DRH-1, which is known to activate antiviral responses such as RNA interference and transcriptional regulation. Our research highlights the necessity of considering natural biotic environments in viral infection studies and opens the way future research on host-microbe-virus interactions.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l’École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l’École Normale Supérieure, CNRS, INSERM, Paris, France
| |
Collapse
|
25
|
Ferrarini MG, Vallier A, Vincent-Monégat C, Dell'Aglio E, Gillet B, Hughes S, Hurtado O, Condemine G, Zaidman-Rémy A, Rebollo R, Parisot N, Heddi A. Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp. MICROBIOME 2023; 11:274. [PMID: 38087390 PMCID: PMC10717185 DOI: 10.1186/s40168-023-01714-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development. RESULTS We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics. We unraveled a constant arms race in which different biological functions are intertwined and coregulated across both partners. These include immunity, metabolism, metal control, apoptosis, and bacterial stress response. CONCLUSIONS The study of these tightly regulated functions, which are at the center of symbiotic regulations, provides evidence on how hosts and bacteria finely tune their gene expression and respond to different physiological challenges constrained by insect development in a nutritionally limited ecological niche. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | | | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Ophélie Hurtado
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Guy Condemine
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Institut universitaire de France (IUF), Paris, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| |
Collapse
|
26
|
Lažetić V, Batachari LE, Russell AB, Troemel ER. Similarities in the induction of the intracellular pathogen response in Caenorhabditis elegans and the type I interferon response in mammals. Bioessays 2023; 45:e2300097. [PMID: 37667453 PMCID: PMC10694843 DOI: 10.1002/bies.202300097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Although the type-I interferon (IFN-I) response is considered vertebrate-specific, recent findings about the Intracellular Pathogen Response (IPR) in nematode Caenorhabditis elegans indicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN-I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN-I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens in C. elegans and other simple host organisms. Here we highlight similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN-I response, as well as the similar consequences of these defense programs on organismal development.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Lakshmi E. Batachari
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alistair B. Russell
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Emily R. Troemel
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
27
|
Jung R, Lechler MC, Fernandez-Villegas A, Chung CW, Jones HC, Choi YH, Thompson MA, Rödelsperger C, Röseler W, Kaminski Schierle GS, Sommer RJ, David DC. A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans. PLoS Biol 2023; 21:e3002284. [PMID: 37708127 PMCID: PMC10501630 DOI: 10.1371/journal.pbio.3002284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.
Collapse
Affiliation(s)
- Raimund Jung
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Marie C. Lechler
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Ana Fernandez-Villegas
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Chyi Wei Chung
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Harry C. Jones
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | - Yoon Hee Choi
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | | | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Waltraud Röseler
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | | | - Ralf J. Sommer
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Della C. David
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Lažetić V, Blanchard MJ, Bui T, Troemel ER. Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans. PLoS Pathog 2023; 19:e1011120. [PMID: 37463170 PMCID: PMC10353827 DOI: 10.1371/journal.ppat.1011120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, the pals gene family expanded to 39 members in the Caenorhabditis elegans genome, in comparison to a single mammalian pals ortholog. Our previous studies have revealed that two members of this family, pals-22 and pals-25, act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens of C. elegans-the Orsay virus and the fungus Nematocida parisii from the microsporidia phylum. In this study, we identify a previously uncharacterized member of the pals family, pals-17, as a newly described negative regulator of the IPR. pals-17 mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterized pals genes, pals-20 and pals-16, are positive regulators of the IPR, acting downstream of pals-17. These positive regulators reverse the effects caused by the loss of pals-17 on IPR gene expression, immunity, and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside and at the apical side of intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that several pals genes from the expanded pals gene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens in C. elegans.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Michael J. Blanchard
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Theresa Bui
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
29
|
Fujii C, Wang D. Novel insights into virus-host interactions using the model organism C. elegans. Adv Virus Res 2023; 115:135-158. [PMID: 37173064 DOI: 10.1016/bs.aivir.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Viruses continue to pose a public health threat raising the need for effective management strategies. Currently existing antiviral therapeutics are often specific to only a single viral species, and resistance to the therapeutic can often arise, and therefore new therapeutics are needed. The C. elegans-Orsay virus system offers a powerful platform for studying RNA virus-host interactions that could ultimately lead to novel targets for antiviral therapy. The relative simplicity of C. elegans, the well-established experimental tools, and its extensive evolutionary conservation of genes and pathways with mammals are key features of this model. Orsay virus, a bisegmented positive sense RNA virus, is a natural pathogen of C. elegans. Orsay virus infection can be studied in a multicellular organismal context, overcoming some of the limitations inherent to tissue culture-based systems. Moreover, compared to mice, the rapid generation time of C. elegans enables robust and facile forward genetics. This review aims to summarize studies that have laid the foundation for the C. elegans-Orsay virus experimental system, experimental tools, and key examples of C. elegans host factors that impact Orsay virus infection that have evolutionarily conserved function in mammalian virus infection.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
30
|
Mok C, Xiao MA, Wan YC, Zhao W, Ahmed SM, Luallen RJ, Reinke AW. High-throughput phenotyping of infection by diverse microsporidia species reveals a wild C. elegans strain with opposing resistance and susceptibility traits. PLoS Pathog 2023; 19:e1011225. [PMID: 36893187 PMCID: PMC10030041 DOI: 10.1371/journal.ppat.1011225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/21/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Animals are under constant selective pressure from a myriad of diverse pathogens. Microsporidia are ubiquitous animal parasites, but the influence they exert on shaping animal genomes is mostly unknown. Using multiplexed competition assays, we measured the impact of four different species of microsporidia on 22 wild isolates of Caenorhabditis elegans. This resulted in the identification and confirmation of 13 strains with significantly altered population fitness profiles under infection conditions. One of these identified strains, JU1400, is sensitive to an epidermal-infecting species by lacking tolerance to infection. JU1400 is also resistant to an intestinal-infecting species and can specifically recognize and destroy this pathogen. Genetic mapping of JU1400 demonstrates that these two opposing phenotypes are caused by separate loci. Transcriptional analysis reveals the JU1400 sensitivity to epidermal microsporidia infection results in a response pattern that shares similarity to toxin-induced responses. In contrast, we do not observe JU1400 intestinal resistance being regulated at the transcriptional level. The transcriptional response to these four microsporidia species is conserved, with C. elegans strain-specific differences in potential immune genes. Together, our results show that phenotypic differences to microsporidia infection amongst C. elegans are common and that animals can evolve species-specific genetic interactions.
Collapse
Affiliation(s)
- Calvin Mok
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meng A. Xiao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yin C. Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shanzeh M. Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Goswamy D, Gonzalez X, Labed SA, Irazoqui JE. C. elegans orphan nuclear receptor NHR-42 represses innate immunity and promotes lipid loss downstream of HLH-30/TFEB. Front Immunol 2023; 14:1094145. [PMID: 36860863 PMCID: PMC9968933 DOI: 10.3389/fimmu.2023.1094145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, transcription factors of the Microphthalmia-TFE (MiT) family, including TFEB and TFE3 in mammals and HLH-30 in Caenorhabditis elegans, have emerged as important regulators of innate immunity and inflammation in invertebrates and vertebrates. Despite great strides in knowledge, the mechanisms that mediate downstream actions of MiT transcription factors in the context of innate host defense remain poorly understood. Here, we report that HLH-30, which promotes lipid droplet mobilization and host defense, induces the expression of orphan nuclear receptor NHR-42 during infection with Staphylococcus aureus. Remarkably, NHR-42 loss of function promoted host infection resistance, genetically defining NHR-42 as an HLH-30-controlled negative regulator of innate immunity. During infection, NHR-42 was required for lipid droplet loss, suggesting that it is an important effector of HLH-30 in lipid immunometabolism. Moreover, transcriptional profiling of nhr-42 mutants revealed wholesale activation of an antimicrobial signature, of which abf-2, cnc-2, and lec-11 were important for the enhanced survival of infection of nhr-42 mutants. These results advance our knowledge of the mechanisms by which MiT transcription factors promote host defense, and by analogy suggest that TFEB and TFE3 may similarly promote host defense via NHR-42-homologous nuclear receptors in mammals.
Collapse
Affiliation(s)
| | | | | | - Javier E. Irazoqui
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
32
|
Jiranek J, Gibson A. Diet can alter the cost of resistance to a natural parasite in Caenorhabditis elegans. Ecol Evol 2023; 13:e9793. [PMID: 36789344 PMCID: PMC9911625 DOI: 10.1002/ece3.9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Resistance to parasites confers a fitness advantage, yet hosts show substantial variation in resistance in natural populations. Evolutionary theory indicates that resistant and susceptible genotypes can coexist if resistance is costly, but there is mixed evidence that resistant individuals have lower fitness in the absence of parasites. One explanation for this discrepancy is that the cost of resistance varies with environmental context. We tested this hypothesis using Caenorhabditis elegans and its natural microsporidian parasite, Nematocida ironsii. We used multiple metrics to compare the fitness of two near-isogenic host genotypes differing at regions associated with resistance to N. ironsii. To quantify the effect of the environment on the cost associated with these known resistance regions, we measured fitness on three microbial diets. We found that the cost of resistance varied with both diet and the measure of fitness. We detected no cost to resistance, irrespective of diet, when fitness was measured as fecundity. However, we detected a cost when fitness was measured in terms of population growth, and the magnitude of this cost varied with diet. These results provide a proof of concept that, by mediating the cost of resistance, environmental context may govern the rate and nature of resistance evolution in heterogeneous environments.
Collapse
Affiliation(s)
- Juliana Jiranek
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Amanda Gibson
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
33
|
Lažetić V, Blanchard MJ, Bui T, Troemel ER. Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524171. [PMID: 36711775 PMCID: PMC9882112 DOI: 10.1101/2023.01.15.524171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, the pals gene family expanded to 39 members in the Caenorhabditis elegans genome, in comparison to a single mammalian pals ortholog. Our previous studies have revealed that two members of this family, pals-22 and pals-25 , act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens of C. elegans - the Orsay virus and the fungus Nematocida parisii from the microsporidia phylum. In this study, we identify a previously uncharacterized member of the pals family, pals-17 , as a newly described negative regulator of the IPR. pals-17 mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterized pals genes, pals-20 and pals-16 , are positive regulators of the IPR, acting downstream of pals-17 . These positive regulators reverse the effects caused by the loss of pals-17 on IPR gene expression, immunity and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that several pals genes from the expanded pals gene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens in C. elegans . AUTHOR SUMMARY Immune responses to pathogens induce extensive rewiring of host physiology. In the short term, these changes are generally beneficial as they can promote resistance against infection. However, prolonged activation of immune responses can have serious negative consequences on host health, including impaired organismal development and fitness. Therefore, the balance between activating the immune system and promoting development must be precisely regulated. In this study, we used genetics to identify a gene in the roundworm Caenorhabditis elegans called pals-17 that acts as a repressor of the Intracellular Pathogen Response (IPR), a defense response against viral and microsporidian infections. We also found that pals-17 is required for the normal development of these animals. Furthermore, we identified two other pals genes, pals-20 and pals-16 , as suppressors of pals-17 mutant phenotypes. Finally, we found that PALS-17 and PALS-20 proteins colocalize inside intestinal cells, where viruses and microsporidia invade and replicate in the host. Taken together, our study demonstrates a balance between organismal development and immunity that is regulated by several genetic ON/OFF switch 'modules' in C. elegans .
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Michael J. Blanchard
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Theresa Bui
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States,Corresponding author
| |
Collapse
|
34
|
Wan YC, Troemel ER, Reinke AW. Conservation of Nematocida microsporidia gene expression and host response in Caenorhabditis nematodes. PLoS One 2022; 17:e0279103. [PMID: 36534656 PMCID: PMC9762603 DOI: 10.1371/journal.pone.0279103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Microsporidia are obligate intracellular parasites that are known to infect most types of animals. Many species of microsporidia can infect multiple related hosts, but it is not known if microsporidia express different genes depending upon which host species is infected or if the host response to infection is specific to each microsporidia species. To address these questions, we took advantage of two species of Nematocida microsporidia, N. parisii and N. ausubeli, that infect two species of Caenorhabditis nematodes, C. elegans and C. briggsae. We performed RNA-seq at several time points for each host infected with either microsporidia species. We observed that Nematocida transcription was largely independent of its host. We also observed that the host transcriptional response was similar when infected with either microsporidia species. Finally, we analyzed if the host response to microsporidia infection was conserved across host species. We observed that although many of the genes upregulated in response to infection are not direct orthologs, the same expanded gene families are upregulated in both Caenorhabditis hosts. Together our results describe the transcriptional interactions of Nematocida infection in Caenorhabditis hosts and demonstrate that these responses are evolutionarily conserved.
Collapse
Affiliation(s)
- Yin Chen Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Gang SS, Grover M, Reddy KC, Raman D, Chang YT, Ekiert DC, Barkoulas M, Troemel ER. A pals-25 gain-of-function allele triggers systemic resistance against natural pathogens of C. elegans. PLoS Genet 2022; 18:e1010314. [PMID: 36191002 PMCID: PMC9560605 DOI: 10.1371/journal.pgen.1010314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Regulation of immunity throughout an organism is critical for host defense. Previous studies in the nematode Caenorhabditis elegans have described an "ON/OFF" immune switch comprised of the antagonistic paralogs PALS-25 and PALS-22, which regulate resistance against intestinal and epidermal pathogens. Here, we identify and characterize a PALS-25 gain-of-function mutant protein with a premature stop (Q293*), which we find is freed from physical repression by its negative regulator, the PALS-22 protein. PALS-25(Q293*) activates two related gene expression programs, the Oomycete Recognition Response (ORR) against natural pathogens of the epidermis, and the Intracellular Pathogen Response (IPR) against natural intracellular pathogens of the intestine. A subset of ORR/IPR genes is upregulated in pals-25(Q293*) mutants, and they are resistant to oomycete infection in the epidermis, and microsporidia and virus infection in the intestine, but without compromising growth. Surprisingly, we find that activation of PALS-25 seems to primarily stimulate the downstream bZIP transcription factor ZIP-1 in the epidermis, with upregulation of gene expression in both the epidermis and in the intestine. Interestingly, we find that PALS-22/25-regulated epidermal-to-intestinal signaling promotes resistance to the N. parisii intestinal pathogen, demonstrating cross-tissue protective immune induction from one epithelial tissue to another in C. elegans.
Collapse
Affiliation(s)
- Spencer S. Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Kirthi C. Reddy
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Deevya Raman
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ya-Ting Chang
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Damian C. Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
36
|
Herman MA, Irazoqui JE, Samuel B, Vega N. Editorial: C. elegans host-microbiome interactions: From medical to ecological and evolutionary model. Front Cell Infect Microbiol 2022; 12:1035545. [PMID: 36225234 PMCID: PMC9549332 DOI: 10.3389/fcimb.2022.1035545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael A. Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Michael A. Herman,
| | - Javier E. Irazoqui
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Nic Vega
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
37
|
Rivera DE, Lažetić V, Troemel ER, Luallen RJ. RNA Fluorescence in situ Hybridization (FISH) to Visualize Microbial Colonization and Infection in Caenorhabditis elegans Intestines. J Vis Exp 2022:10.3791/63980. [PMID: 35969095 PMCID: PMC9969837 DOI: 10.3791/63980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The intestines of wild Caenorhabditis nematodes are inhabited by a variety of microorganisms, including gut microbiome bacteria and pathogens, such as microsporidia and viruses. Because of the similarities between Caenorhabditis elegans and mammalian intestinal cells, as well as the power of the C. elegans system, this host has emerged as a model system to study host intestine-microbe interactions in vivo. While it is possible to observe some aspects of these interactions with bright-field microscopy, it is difficult to accurately classify microbes and characterize the extent of colonization or infection without more precise tools. RNA fluorescence in situ hybridization (FISH) can be used as a tool to identify and visualize microbes in nematodes from the wild or to experimentally characterize and quantify infection in nematodes infected with microbes in the lab. FISH probes, labeling the highly abundant small subunit ribosomal RNA, produce a bright signal for bacteria and microsporidian cells. Probes designed to target conserved regions of ribosomal RNA common to many species can detect a broad range of microbes, whereas targeting divergent regions of the ribosomal RNA is useful for narrower detection. Similarly, probes can be designed to label viral RNA. A protocol for RNA FISH staining with either paraformaldehyde (PFA) or acetone fixation is presented. PFA fixation is ideal for nematodes associated with bacteria, microsporidia, and viruses, whereas acetone fixation is necessary for the visualization of microsporida spores. Animals were first washed and fixed in paraformaldehyde or acetone. After fixation, FISH probes were incubated with samples to allow for the hybridization of probes to the desired target. The animals were again washed and then examined on microscope slides or using automated approaches. Overall, this FISH protocol enables detection, identification, and quantification of the microbes that inhabit the C. elegans intestine, including microbes for which there are no genetic tools available.
Collapse
Affiliation(s)
| | - Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego
| | | |
Collapse
|
38
|
Caravello G, Franchet A, Niehus S, Ferrandon D. Phagocytosis Is the Sole Arm of Drosophila melanogaster Known Host Defenses That Provides Some Protection Against Microsporidia Infection. Front Immunol 2022; 13:858360. [PMID: 35493511 PMCID: PMC9043853 DOI: 10.3389/fimmu.2022.858360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microsporidia are obligate intracellular parasites able to infest specifically a large range of species, including insects. The knowledge about the biology of microsporidial infections remains confined to mostly descriptive studies, including molecular approaches such as transcriptomics or proteomics. Thus, functional data to understand insect host defenses are currently lacking. Here, we have undertaken a genetic analysis of known host defenses of the Drosophila melanogaster using an infection model whereby Tubulinosema ratisbonensis spores are directly injected in this insect. We find that phagocytosis does confer some protection in this infection model. In contrast, the systemic immune response, extracellular reactive oxygen species, thioester proteins, xenophagy, and intracellular antiviral response pathways do not appear to be involved in the resistance against this parasite. Unexpectedly, several genes such as PGRP-LE seem to promote this infection. The prophenol oxidases that mediate melanization have different functions; PPO1 presents a phenotype similar to that of PGRP-LE whereas that of PPO2 suggests a function in the resilience to infection. Similarly, eiger and Unpaired3, which encode two cytokines secreted by hemocytes display a resilience phenotype with a strong susceptibility to T. ratisbonensis.
Collapse
Affiliation(s)
| | | | | | - Dominique Ferrandon
- UPR9022, University of Strasbourg, Institut de Biologie Moléculaire et Cellulaire (IBMC), Modèles Insectes D’Immunité Innée (M3I) Unité Propre Recherche (UPR) 9022 du Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
39
|
Hamsanathan S, Anthonymuthu T, Han S, Shinglot H, Siefken E, Sims A, Sen P, Pepper HL, Snyder NW, Bayir H, Kagan V, Gurkar AU. Integrated -omics approach reveals persistent DNA damage rewires lipid metabolism and histone hyperacetylation via MYS-1/Tip60. SCIENCE ADVANCES 2022; 8:eabl6083. [PMID: 35171671 PMCID: PMC8849393 DOI: 10.1126/sciadv.abl6083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Although DNA damage is intricately linked to metabolism, the metabolic alterations that occur in response to DNA damage are not well understood. We use a DNA repair-deficient model of ERCC1-XPF in Caenorhabditis elegans to gain insights on how genotoxic stress drives aging. Using multi-omic approach, we discover that nuclear DNA damage promotes mitochondrial β-oxidation and drives a global loss of fat depots. This metabolic shift to β-oxidation generates acetyl-coenzyme A to promote histone hyperacetylation and an associated change in expression of immune-effector and cytochrome genes. We identify the histone acetyltransferase MYS-1, as a critical regulator of this metabolic-epigenetic axis. We show that in response to DNA damage, polyunsaturated fatty acids, especially arachidonic acid (AA) and AA-related lipid mediators, are elevated and this is dependent on mys-1. Together, these findings reveal that DNA damage alters the metabolic-epigenetic axis to drive an immune-like response that can promote age-associated decline.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Tamil Anthonymuthu
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Adeptrix Corp., Beverly, MA 01915, USA
| | - Suhao Han
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Himaly Shinglot
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Ella Siefken
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Austin Sims
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hannah L. Pepper
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hulya Bayir
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Environmental Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Valerian Kagan
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Environmental Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aditi U. Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
40
|
van Sluijs L, Bosman KJ, Pankok F, Blokhina T, Wilten JIHA, te Molder DM, Riksen JAG, Snoek BL, Pijlman GP, Kammenga JE, Sterken MG. Balancing Selection of the Intracellular Pathogen Response in Natural Caenorhabditis elegans Populations. Front Cell Infect Microbiol 2022; 11:758331. [PMID: 35174100 PMCID: PMC8841876 DOI: 10.3389/fcimb.2021.758331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic variation in host populations may lead to differential viral susceptibilities. Here, we investigate the role of natural genetic variation in the Intracellular Pathogen Response (IPR), an important antiviral pathway in the model organism Caenorhabditis elegans against Orsay virus (OrV). The IPR involves transcriptional activity of 80 genes including the pals-genes. We examine the genetic variation in the pals-family for traces of selection and explore the molecular and phenotypic effects of having distinct pals-gene alleles. Genetic analysis of 330 global C. elegans strains reveals that genetic diversity within the IPR-related pals-genes can be categorized in a few haplotypes worldwide. Importantly, two key IPR regulators, pals-22 and pals-25, are in a genomic region carrying signatures of balancing selection, suggesting that different evolutionary strategies exist in IPR regulation. We infected eleven C. elegans strains that represent three distinct pals-22 pals-25 haplotypes with Orsay virus to determine their susceptibility. For two of these strains, N2 and CB4856, the transcriptional response to infection was also measured. The results indicate that pals-22 pals-25 haplotype shapes the defense against OrV and host genetic variation can result in constitutive activation of IPR genes. Our work presents evidence for balancing genetic selection of immunity genes in C. elegans and provides a novel perspective on the functional diversity that can develop within a main antiviral response in natural host populations.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Kobus J. Bosman
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Frederik Pankok
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Tatiana Blokhina
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Jop I. H. A. Wilten
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Dennie M. te Molder
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Basten L. Snoek
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Mark G. Sterken,
| |
Collapse
|
41
|
Lažetić V, Wu F, Cohen LB, Reddy KC, Chang YT, Gang SS, Bhabha G, Troemel ER. The transcription factor ZIP-1 promotes resistance to intracellular infection in Caenorhabditis elegans. Nat Commun 2022; 13:17. [PMID: 35013162 PMCID: PMC8748929 DOI: 10.1038/s41467-021-27621-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Defense against intracellular infection has been extensively studied in vertebrate hosts, but less is known about invertebrate hosts; specifically, the transcription factors that induce defense against intracellular intestinal infection in the model nematode Caenorhabditis elegans remain understudied. Two different types of intracellular pathogens that naturally infect the C. elegans intestine are the Orsay virus, which is an RNA virus, and microsporidia, which comprise a phylum of fungal pathogens. Despite their molecular differences, these pathogens induce a common host transcriptional response called the intracellular pathogen response (IPR). Here we show that zip-1 is an IPR regulator that functions downstream of all known IPR-activating and regulatory pathways. zip-1 encodes a putative bZIP transcription factor, and we show that zip-1 controls induction of a subset of genes upon IPR activation. ZIP-1 protein is expressed in the nuclei of intestinal cells, and is at least partially required in the intestine to upregulate IPR gene expression. Importantly, zip-1 promotes resistance to infection by the Orsay virus and by microsporidia in intestinal cells. Altogether, our results indicate that zip-1 represents a central hub for triggers of the IPR, and that this transcription factor has a protective function against intracellular pathogen infection in C. elegans. Intestinal immune responses to intracellular infection of Caenorhabditis elegans and other Invertebrate hosts are not well understood. Here the authors show a key role for the transcription factor ZIP-1 during intestinal intracellular infection.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Fengting Wu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Lianne B Cohen
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Kirthi C Reddy
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Ya-Ting Chang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Emily R Troemel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, CA, USA.
| |
Collapse
|
42
|
Tamim El Jarkass H, Mok C, Schertzberg MR, Fraser AG, Troemel ER, Reinke AW. An intestinally secreted host factor promotes microsporidia invasion of C. elegans. eLife 2022; 11:e72458. [PMID: 34994689 PMCID: PMC8806185 DOI: 10.7554/elife.72458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Microsporidia are ubiquitous obligate intracellular pathogens of animals. These parasites often infect hosts through an oral route, but little is known about the function of host intestinal proteins that facilitate microsporidia invasion. To identify such factors necessary for infection by Nematocida parisii, a natural microsporidian pathogen of Caenorhabditis elegans, we performed a forward genetic screen to identify mutant animals that have a Fitness Advantage with Nematocida (Fawn). We isolated four fawn mutants that are resistant to Nematocida infection and contain mutations in T14E8.4, which we renamed aaim-1 (Antibacterial and Aids invasion by Microsporidia). Expression of AAIM-1 in the intestine of aaim-1 animals restores N. parisii infectivity and this rescue of infectivity is dependent upon AAIM-1 secretion. N. parisii spores in aaim-1 animals are improperly oriented in the intestinal lumen, leading to reduced levels of parasite invasion. Conversely, aaim-1 mutants display both increased colonization and susceptibility to the bacterial pathogen Pseudomonas aeruginosa and overexpression ofaaim-1 reduces P. aeruginosa colonization. Competitive fitness assays show that aaim-1 mutants are favored in the presence of N. parisii but disadvantaged on P. aeruginosa compared to wild-type animals. Together, this work demonstrates how microsporidia exploits a secreted protein to promote host invasion. Our results also suggest evolutionary trade-offs may exist to optimizing host defense against multiple classes of pathogens.
Collapse
Affiliation(s)
| | - Calvin Mok
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | | | - Andrew G Fraser
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Emily R Troemel
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Aaron W Reinke
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
43
|
Insights from C. elegans into Microsporidia Biology and Host-Pathogen Relationships. EXPERIENTIA SUPPLEMENTUM 2022; 114:115-136. [PMID: 35544001 PMCID: PMC9208714 DOI: 10.1007/978-3-030-93306-7_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microsporidia are poorly understood, ubiquitous eukaryotic parasites that are completely dependent on their hosts for replication. With the discovery of microsporidia species naturally infecting the genetically tractable transparent nematode C. elegans, this host has been used to explore multiple areas of microsporidia biology. Here we review results about microsporidia infections in C. elegans, which began with the discovery of the intestinal-infecting species Nematocida parisii. Recent findings include new species identification in the Nematocida genus, with more intestinal-infecting species, and also a species with broader tissue tropism, the epidermal and muscle-infecting species Nematocida displodere. This species has a longer polar tube infection apparatus, which may enable its wider tissue range. After invasion, multiple Nematocida species appear to fuse host cells, which likely promotes their dissemination within host organs. Localized proteomics identified Nematocida proteins that have direct contact with the C. elegans intestinal cytosol and nucleus, and many of these host-exposed proteins belong to expanded, species-specific gene families. On the host side, forward genetic screens have identified regulators of the Intracellular Pathogen Response (IPR), which is a transcriptional response induced by both microsporidia and the Orsay virus, which is also a natural, obligate intracellular pathogen of the C. elegans intestine. The IPR constitutes a novel immune/stress response that promotes resistance against microsporidia, virus, and heat shock. Overall, the Nematocida/C. elegans system has provided insights about strategies for microsporidia pathogenesis, as well as innate defense pathways against these parasites.
Collapse
|
44
|
van Sluijs L, Liu J, Schrama M, van Hamond S, Vromans SPJM, Scholten MH, Žibrat N, Riksen JAG, Pijlman GP, Sterken MG, Kammenga JE. Virus infection modulates male sexual behaviour in Caenorhabditis elegans. Mol Ecol 2021; 30:6776-6790. [PMID: 34534386 PMCID: PMC9291463 DOI: 10.1111/mec.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022]
Abstract
Mating dynamics follow from natural selection on mate choice and individuals maximizing their reproductive success. Mate discrimination reveals itself by a plethora of behaviours and morphological characteristics, each of which can be affected by pathogens. A key question is how pathogens affect mate choice and outcrossing behaviour. Here we investigated the effect of Orsay virus on the mating dynamics of the androdiecious (male and hermaphrodite) nematode Caenorhabditis elegans. We tested genetically distinct strains and found that viral susceptibility differed between sexes in a genotype-dependent manner with males of reference strain N2 being more resistant than hermaphrodites. Males displayed a constitutively higher expression of intracellular pathogen response (IPR) genes, whereas the antiviral RNAi response did not have increased activity in males. Subsequent monitoring of sex ratios over 10 generations revealed that viral presence can change mating dynamics in isogenic populations. Sexual attraction assays showed that males preferred mating with uninfected rather than infected hermaphrodites. Together our results illustrate for the first time that viral infection can significantly affect male mating choice and suggest altered mating dynamics as a novel cause benefitting outcrossing under pathogenic stress conditions in C. elegans.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Jie Liu
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Mels Schrama
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Sanne van Hamond
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | | | - Marèl H. Scholten
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Nika Žibrat
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Joost A. G. Riksen
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Gorben P. Pijlman
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Jan E. Kammenga
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
45
|
An integrated view of innate immune mechanisms in C. elegans. Biochem Soc Trans 2021; 49:2307-2317. [PMID: 34623403 DOI: 10.1042/bst20210399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
The simple notion 'infection causes an immune response' is being progressively refined as it becomes clear that immune mechanisms cannot be understood in isolation, but need to be considered in a more global context with other cellular and physiological processes. In part, this reflects the deployment by pathogens of virulence factors that target diverse cellular processes, such as translation or mitochondrial respiration, often with great molecular specificity. It also reflects molecular cross-talk between a broad range of host signalling pathways. Studies with the model animal C. elegans have uncovered a range of examples wherein innate immune responses are intimately connected with different homeostatic mechanisms, and can influence reproduction, ageing and neurodegeneration, as well as various other aspects of its biology. Here we provide a short overview of a number of such connections, highlighting recent discoveries that further the construction of a fully integrated view of innate immunity.
Collapse
|
46
|
Grover M, Fasseas MK, Essmann C, Liu K, Braendle C, Félix MA, Glockling SL, Barkoulas M. Infection of C. elegans by Haptoglossa Species Reveals Shared Features in the Host Response to Oomycete Detection. Front Cell Infect Microbiol 2021; 11:733094. [PMID: 34722333 PMCID: PMC8552708 DOI: 10.3389/fcimb.2021.733094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oomycetes are a group of eukaryotic organisms that includes many important pathogens of animals and plants. Within this group, the Haptoglossa genus is characterised by the presence of specialised gun cells carrying a harpoon-like infection apparatus. While several Haptoglossa pathogens have been morphologically described, there are currently no host systems developed to study the infection process or host responses in the lab. In this study, we report that Haptoglossa species are potent natural pathogens of Caenorhabditis nematodes. Using electron microscopy, we characterise the infection process in C. elegans and demonstrate that the oomycete causes excessive tissue degradation upon entry in the body cavity, whilst leaving the host cuticle intact. We also report that the host transcriptional response to Haptoglossa infection shares similarities with the response against the oomycete Myzocytiopsis humicola, a key example of which is the induction of chitinase-like (chil) genes in the hypodermis. We demonstrate that this shared feature of the host response can be mounted by pathogen detection without any infection, as previously shown for M. humicola. These results highlight similarities in the nematode immune response to natural infection by phylogenetically distinct oomycetes.
Collapse
Affiliation(s)
- Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Michael K Fasseas
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Clara Essmann
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Kenneth Liu
- Department of Life Sciences, Imperial College, London, United Kingdom
| | | | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | | | | |
Collapse
|
47
|
Lažetić V, Troemel ER. Conservation lost: host-pathogen battles drive diversification and expansion of gene families. FEBS J 2021; 288:5289-5299. [PMID: 33190369 PMCID: PMC10901648 DOI: 10.1111/febs.15627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
One of the strongest drivers in evolution is the struggle to survive a host-pathogen battle. This pressure selects for diversity among the factors directly involved in this battle, including virulence factors deployed by pathogens, their corresponding host targets, and host immune factors. A logical outcome of this diversification is that over time, the sequence of many immune factors will not be evolutionarily conserved across a broad range of species. Thus, while universal sequence conservation is often hailed as the hallmark of the importance of a particular gene, the immune system does not necessarily play by these rules when defending against co-evolving pathogens. This loss of sequence conservation is in contrast to many signaling pathways in development and basic cell biology that are not targeted by pathogens. In addition to diversification, another consequence of host-pathogen battles can be an amplification in gene number, thus leading to large gene families that have sequence relatively specific to a particular strain, species, or clade. Here we highlight this general theme across a variety of pathogen virulence factors and host immune factors. We summarize the wide range and number across species of these expanded, lineage-specific host-pathogen factors including ubiquitin ligases, nucleotide-binding leucine-rich repeat receptors, GTPases, and proteins without obvious biochemical function but that nonetheless play key roles in immunity.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Emily R Troemel
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
48
|
Huang Y, Sterken MG, van Zwet K, van Sluijs L, Pijlman GP, Kammenga JE. Heat Stress Reduces the Susceptibility of Caenorhabditis elegans to Orsay Virus Infection. Genes (Basel) 2021; 12:1161. [PMID: 34440335 PMCID: PMC8392475 DOI: 10.3390/genes12081161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The nematode Caenorhabditis elegans has been a versatile model for understanding the molecular responses to abiotic stress and pathogens. In particular, the response to heat stress and virus infection has been studied in detail. The Orsay virus (OrV) is a natural virus of C. elegans and infection leads to intracellular infection and proteostatic stress, which activates the intracellular pathogen response (IPR). IPR related gene expression is regulated by the genes pals-22 and pals-25, which also control thermotolerance and immunity against other natural pathogens. So far, we have a limited understanding of the molecular responses upon the combined exposure to heat stress and virus infection. We test the hypothesis that the response of C. elegans to OrV infection and heat stress are co-regulated and may affect each other. We conducted a combined heat-stress-virus infection assay and found that after applying heat stress, the susceptibility of C. elegans to OrV was decreased. This difference was found across different wild types of C. elegans. Transcriptome analysis revealed a list of potential candidate genes associated with heat stress and OrV infection. Subsequent mutant screens suggest that pals-22 provides a link between viral response and heat stress, leading to enhanced OrV tolerance of C. elegans after heat stress.
Collapse
Affiliation(s)
- Yuqing Huang
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Koen van Zwet
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| |
Collapse
|
49
|
Lee D, Zdraljevic S, Stevens L, Wang Y, Tanny RE, Crombie TA, Cook DE, Webster AK, Chirakar R, Baugh LR, Sterken MG, Braendle C, Félix MA, Rockman MV, Andersen EC. Balancing selection maintains hyper-divergent haplotypes in Caenorhabditis elegans. Nat Ecol Evol 2021; 5:794-807. [PMID: 33820969 PMCID: PMC8202730 DOI: 10.1038/s41559-021-01435-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Across diverse taxa, selfing species have evolved independently from outcrossing species thousands of times. The transition from outcrossing to selfing decreases the effective population size, effective recombination rate and heterozygosity within a species. These changes lead to a reduction in genetic diversity, and therefore adaptive potential, by intensifying the effects of random genetic drift and linked selection. Within the nematode genus Caenorhabditis, selfing has evolved at least three times, and all three species, including the model organism Caenorhabditis elegans, show substantially reduced genetic diversity relative to outcrossing species. Selfing and outcrossing Caenorhabditis species are often found in the same niches, but we still do not know how selfing species with limited genetic diversity can adapt to these environments. Here, we examine the whole-genome sequences from 609 wild C. elegans strains isolated worldwide and show that genetic variation is concentrated in punctuated hyper-divergent regions that cover 20% of the C. elegans reference genome. These regions are enriched in environmental response genes that mediate sensory perception, pathogen response and xenobiotic stress response. Population genomic evidence suggests that genetic diversity in these regions has been maintained by long-term balancing selection. Using long-read genome assemblies for 15 wild strains, we show that hyper-divergent haplotypes contain unique sets of genes and show levels of divergence comparable to levels found between Caenorhabditis species that diverged millions of years ago. These results provide an example of how species can avoid the evolutionary dead end associated with selfing.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Timothy A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Amy K Webster
- Department of Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
50
|
Zhang X, Harding BW, Aggad D, Courtine D, Chen JX, Pujol N, Ewbank JJ. Antagonistic fungal enterotoxins intersect at multiple levels with host innate immune defences. PLoS Genet 2021; 17:e1009600. [PMID: 34166401 PMCID: PMC8263066 DOI: 10.1371/journal.pgen.1009600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/07/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.
Collapse
Affiliation(s)
- Xing Zhang
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Benjamin W. Harding
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Dina Aggad
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Damien Courtine
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Jonathan J. Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|