1
|
Stockmann L, Kabbech H, Kremers GJ, van Herk B, Dille B, van den Hout M, van IJcken WF, Dekkers DH, Demmers JA, Smal I, Huylebroeck D, Basu S, Galjart N. KIF2A stabilizes intercellular bridge microtubules to maintain mouse embryonic stem cell cytokinesis. J Cell Biol 2025; 224:e202409157. [PMID: 40353778 PMCID: PMC12077228 DOI: 10.1083/jcb.202409157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/12/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Cytokinesis, the final stage of cell division, serves to physically separate daughter cells. In cultured naïve mouse embryonic stem cells, cytokinesis lasts unusually long. Here, we describe a novel function for the kinesin-13 member KIF2A in this process. In genome-engineered mouse embryonic stem cells, we find that KIF2A localizes to spindle poles during metaphase and regulates spindle length in a manner consistent with its known role as a microtubule minus-end depolymerase. In contrast, during cytokinesis we observe tight binding of KIF2A to intercellular bridge microtubules. At this stage, KIF2A maintains microtubule length and number and controls microtubule acetylation. We propose that the conversion of KIF2A from a depolymerase to a stabilizer is driven by both the inhibition of its ATPase activity, which increases lattice affinity, and a preference for compacted lattices. In turn, KIF2A might maintain the compacted microtubule state at the intercellular bridge, thereby dampening acetylation. As KIF2A depletion causes pluripotency problems and affects mRNA homeostasis, our results furthermore indicate that KIF2A-mediated microtubule stabilization prolongs cytokinesis to maintain pluripotency.
Collapse
Affiliation(s)
- Lieke Stockmann
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brent van Herk
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas Dille
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mirjam van den Hout
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilfred F.J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick H.W. Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A.A. Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sreya Basu
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Men J, Wang X, Zhou Y, Huang Y, Zheng Y, Wang Y, Yang S, Chen N, Yan N, Duan X. Neurodegenerative diseases: Epigenetic regulatory mechanisms and therapeutic potential. Cell Signal 2025; 131:111715. [PMID: 40089090 DOI: 10.1016/j.cellsig.2025.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Neurodegenerative diseases (NDDs) are a class of diseases in which the progressive loss of subtype-specific neurons leads to dysfunction. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), among others. Previous studies have demonstrated that the pathogenesis of NDDs involves various mechanisms, including genetic factors, oxidative stress, apoptosis, and the immune response. Recent studies have shown that epigenetic regulation mediates the interactions between DNA methylation, chromatin remodeling, histone modification, and non-coding RNAs, thus affecting gene transcription. A growing body of research links epigenetic modifications to crucial pathways involved in the occurrence and development of NDDs. Epigenetics has also been found to regulate and maintain nervous system function, and its imbalance is closely related to the occurrence and development of NDDs. The present review summarizes focuses on the role of epigenetic modifications in the pathogenesis of NDDs and provides an overview of the key genes regulated by DNA methylation, histone modification, and non-coding RNAs in NDDs. Further, the current research status of epigenetics in NDDs is summarized and the potential application of epigenetics in the clinical diagnosis and treatment of NDDs is discussed.
Collapse
Affiliation(s)
- Jianbing Men
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Xinyue Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yunnuo Zhou
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yumeng Huang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yue Zheng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yingze Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Shuang Yang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Nan Chen
- Liaoning Provincial Health Service Center,Shenyang 110034, PR China
| | - Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang 110034, PR China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China.
| |
Collapse
|
3
|
Dev S, Dong Y, Hamilton JP. Hepatic microtubule destabilization facilitates liver fibrosis in the mouse model of Wilson disease. J Mol Med (Berl) 2025; 103:531-545. [PMID: 40140071 PMCID: PMC12078373 DOI: 10.1007/s00109-025-02535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Wilson disease (WD) is a potentially fatal metabolic disorder caused by the inactivation of the copper (Cu) transporter ATP7B, resulting in systemic Cu overload and fibroinflammatory liver disease. The molecular mechanism and effects of elevated Cu on cytoskeletal dynamics in liver fibrogenesis are not clear. Here, we tested the regulation of hepatic cytoskeleton and fibrogenesis with respect to Cu overload in WD. Atp7b-/- (knockout) mice with established liver disease, hepatocyte-specific Atp7b△Hep knockout mice without fibroinflammatory disease, and the age-and sex-matched controls were compared using Western blotting, real-time quantitative reverse transcription PCR (qRT-PCR), immunohistochemical (IHC) staining and transcriptomics (RNA-sequencing) analysis. In Atp7b-/- mice with developed liver disease, there is a significant increase in cytoskeletal protein expression with a reduction in α-tubulin acetylation. In these mice before the onset of liver pathology, no significant changes in cytoskeletal nor hepatic stellate cell activation are observed. As hepatic copper levels rise, an increase in cytoskeletal proteins with a decrease in acetylated-α-tubulin/α-tubulin ratio occurs. RNA-sequencing, qRT-PCR, and immunostaining confirm that the tubulin is upregulated at the transcriptional level and hepatocytes are the primary source of early tubulin increases before fibrosis. An increase in α-tubulin with a decrease in α-tubulin acetylation via Hdac6 and Sirt2 induction facilitates fibrosis as reflected by concomitant increases in desmin and α-SMA immunostaining in Atp7b-/- mice at 20 weeks. Moreover, strongly positive correlations between α-tubulin and α-tubulin deacetylase with the expression of liver fibrosis markers are observed in animal and human WD. Hepatocyte-specific Atp7b△Hep mice lack significant changes in tubulin as well as fibrosis despite hepatic steatosis. This study provides evidence that microtubule destabilization causes cytoskeletal rearrangement and facilitates hepatic stellate cell (HSC) activation and fibrosis in the murine model of WD. KEY MESSAGES: Hepatic cytoskeleton system is induced in Wilson disease. Hepatic microtubules acetylation is dysregulated in murine Wilson disease. Microtubules destabilization is positively associated with liver fibrosis in Wilson disease. Microtubules destabilization concomitant with fibrogenesis exacerbates WD progression.
Collapse
Affiliation(s)
- Som Dev
- Department of Biochemistry, All India Institute of Medical Sciences, Kalyani, West Bengal, 741245, India.
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | - Yixuan Dong
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - James P Hamilton
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, Johns Hopkins University, School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
| |
Collapse
|
4
|
Diaz PJ, Shi Q, McNeish PY, Banerjee S. Tubulin Polymerization Promoting Proteins: Functional Diversity With Implications in Neurological Disorders. J Neurosci Res 2025; 103:e70044. [PMID: 40317801 PMCID: PMC12047068 DOI: 10.1002/jnr.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Tubulin Polymerization Promoting Proteins (TPPPs) are highly conserved across species but remain poorly understood. There are three TPPP genes in humans, with only one homologous TPPP gene in invertebrates, such as Drosophila and C. elegans. The human TPPP (TPPP1/p25/p25α) is enriched in the brain and shares sequence similarities with the invertebrate TPPPs. TPPP/p25 associates with microtubules and plays a pivotal role in microtubule dynamics, bundling, and polymerization, thereby stabilizing the microtubular network. This is essential for cytoskeletal organization and proper functioning of neurons and glial cells, including axonal growth, regeneration, migration, trafficking, synapse formation, and myelination of axons. However, studies have also uncovered that besides its cytoplasmic/microtubular localization, TPPP/p25 is present in other subcellular compartments, including the mitochondria and nucleus, underscoring the presence of additional novel functions. At the molecular level, TPPP/p25 is predicted to exist as an intrinsically disordered protein and is implicated in neurological and neurodegenerative disorders, including Parkinson's and related disorders and Multiple Sclerosis. In this article, we provide a comprehensive overview of TPPP/p25, highlighting its evolutionary conservation, cellular and subcellular localization, established and emerging functions in the nervous system, interacting partners, potential clinical relevance to human neurological disorders, and conclude with unresolved questions and future areas of study.
Collapse
Affiliation(s)
- Paloma J. Diaz
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
| | - Qian Shi
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
- Center for Biomedical NeuroscienceUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
| | - Priscilla Y. McNeish
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
| | - Swati Banerjee
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
- Center for Biomedical NeuroscienceUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
- Perry and Ruby Stevens Parkinson's Disease Center of ExcellenceUniversity of Texas Health Science Center San Antonio, Joe R. and Teresa Lozano Long School of MedicineSan AntonioTexasUSA
| |
Collapse
|
5
|
Acebedo AR, Yamada G, Alcantara MC, Raga DD, Sato T, Nishinakamura R, Suzuki K. Sall1 regulates microtubule acetylation in mesenchymal cells during mouse urethral development. Cells Dev 2025:204027. [PMID: 40306366 DOI: 10.1016/j.cdev.2025.204027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Male embryonic external genitalia (eExG) undergo sexually dimorphic urethral development in response to androgen signaling (urethral masculinization). Whereas androgen is an essential masculinization factor for eExG, the specific molecular and cellular mechanisms are still unclear. Sall1 is a transcription factor that has been linked to the congenital disease Townes-Brocks syndrome, which includes anorectal and urogenital malformations. Currently, the functional role of Sall1 for normal urethral development is still unclear. In this study, we show that Sall1 is required to regulate proper microtubule acetylation to facilitate mesenchymal cell migration during urethral masculinization of mouse eExG. Mutant male mice with loss of function of mesenchymal Sall1 exhibited severe urethral defects, without prominent alteration of androgen signaling. Loss of Sall1 induced hyperacetylated microtubules in the eExG mesenchyme. Microtubule hyperacetylation resulted in defective fibrillar adhesions and fibronectin expression which impaired cell migration. Our findings reveal a novel mechanism of Sall1-regulated mesenchymal cell migration for urethral development. This mechanism for Sall1 may underlie the etiology of diseases such as Townes-Brocks syndrome.
Collapse
Affiliation(s)
- Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Institute of Biology, College of Science, University of the Philippines, Diliman, 1101 Quezon City, NCR, Philippines
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Department of Plastic and Reconstructive Surgery, Graduate School of Medicine Wakayama Medical University, Kimiidera, Wakayama 641-8509, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Dennis D Raga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Tetsuya Sato
- Biomedical Research Center, Faculty of Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
6
|
Iegiani G, Pallavicini G, Pezzotta A, Brix A, Ferraro A, Gai M, Boda E, Bielas SL, Pistocchi A, Di Cunto F. CITK modulates BRCA1 recruitment at DNA double strand breaks sites through HDAC6. Cell Death Dis 2025; 16:320. [PMID: 40254670 PMCID: PMC12009987 DOI: 10.1038/s41419-025-07655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
Citron Kinase (CITK) is a protein encoded by the CIT gene, whose pathogenic variants underlie microcephalic phenotypes that characterize MCPH17 syndrome. In neural progenitors, CITK loss leads to microtubule instability, resulting in mitotic spindle positioning defects, cytokinesis failure, and accumulation of DNA double strand breaks (DSBs), ultimately resulting in TP53-dependent senescence and apoptosis. Although DNA damage accumulation has been associated with impaired homologous recombination (HR), the role of CITK in this process and whether microtubule dynamics are involved is still unknown. In this report we show that CITK is required for proper BRCA1 localization at sites of DNA DSBs. We found that CITK's scaffolding, rather than its catalytic activity, is necessary for maintaining BRCA1 interphase levels in progenitor cells during neurodevelopment. CITK regulates the nuclear levels of HDAC6, a modulator of both microtubule stability and DNA damage repair. Targeting HDAC6 in CITK-deficient cells increases microtubule stability and recovers BRCA1 localization defects and DNA damage levels to that detected in controls. In addition, the CIT-HDAC6 axis is functionally relevant in a MCPH17 zebrafish model, as HDAC6 targeting recovers the head size phenotype produced by interfering with the CIT orthologue gene. These data provide novel insights into the functional interplay between HR and microtubule dynamics and into the pathogenesis of CITK based MCPH17, which may be relevant for development of therapeutic strategies.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Torino, Italy
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Torino, Italy
| | - Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Alessia Brix
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Alessia Ferraro
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Torino, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Enrica Boda
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Torino, Italy
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Torino, Italy.
| |
Collapse
|
7
|
Monfort-Vengut A, Sanz-Gómez N, Ballesteros-Sánchez S, Ortigosa B, Cambón A, Ramos M, Lorenzo ÁMS, Escribano-Cebrián M, Rosa-Rosa JM, Martínez-López J, Sánchez-Prieto R, Sotillo R, de Cárcer G. Osmotic stress influences microtubule drug response via WNK1 kinase signaling. Drug Resist Updat 2025; 79:101203. [PMID: 39855050 DOI: 10.1016/j.drup.2025.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Ion homeostasis is critical for numerous cellular processes, and disturbances in ionic balance underlie diverse pathological conditions, including cancer progression. Targeting ion homeostasis is even considered as a strategy to treat cancer. However, very little is known about how ion homeostasis may influence anticancer drug response. In a genome-wide CRISPR-Cas9 resistance drug screen, we identified and validated the master osmostress regulator WNK1 kinase as a modulator of the response to the mitotic inhibitor rigosertib. Osmotic stress and WNK1 inactivation lead to an altered response not only to rigosertib treatment but also to other microtubule-related drugs, minimizing the prototypical mitotic arrest produced by these compounds. This effect is due to an alteration in microtubule stability and polymerization dynamics, likely maintained by fluctuations in intracellular molecular crowding upon WNK1 inactivation. This promotes resistance to microtubule depolymerizing compounds, and increased sensitivity to microtubule stabilizing drugs. In summary, our data proposes WNK1 osmoregulation activity as an important modulator for microtubule-associated chemotherapy response.
Collapse
Affiliation(s)
- Ana Monfort-Vengut
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain
| | - Natalia Sanz-Gómez
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain; Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sandra Ballesteros-Sánchez
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain; Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain
| | - Aitana Cambón
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Ángela Montes-San Lorenzo
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain; Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Escribano-Cebrián
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain; Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Manuel Rosa-Rosa
- Hematology Department, Hospital 12 de Octubre, Madrid 28041, Spain; H12O-CNIO Hematological Tumour Unit, Spanish National Cancer Center (CNIO), Madrid 28029, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital 12 de Octubre, Madrid 28041, Spain; H12O-CNIO Hematological Tumour Unit, Spanish National Cancer Center (CNIO), Madrid 28029, Spain; Department of Medicine, Complutense University, Madrid 28040, Spain
| | - Ricardo Sánchez-Prieto
- Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Molecular Bases of Chemo and Radioresistance in Tumors Laboratory, Cancer Department, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM) CSIC-UAM, Madrid 28029, Spain; Molecular Oncology Laboratory, Molecular Medicine Unit, Centro Regional de Investigaciones Biomédicas, UCLM, Albacete 02008, Spain; UCLM Biomedicine Unit Associated to CSIC, Spain; CSIC Conexión-Cáncer Hub, Spain
| | - Rocío Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Guillermo de Cárcer
- Translational Cancer Research Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; UCLM Biomedicine Unit Associated to CSIC, Spain; CSIC Conexión-Cáncer Hub, Spain.
| |
Collapse
|
8
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2025; 82:111-129. [PMID: 39056295 PMCID: PMC11762371 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Lee M, Vetter J, Eichwald C. The influence of the cytoskeleton on the development and behavior of viral factories in mammalian orthoreovirus. Virology 2025; 604:110423. [PMID: 39889480 DOI: 10.1016/j.virol.2025.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cytosolic viral factories (VFs) of mammalian orthoreovirus (MRV) are sites for viral genome replication and assembly of virus progeny. Despite advancements in reverse genetics, the formation and dynamics of VFs still need to be clarified. MRV exploits host cytoskeletal components like microtubules (MTs) throughout its life cycle, including cell entry, replication, and release. MRV VFs, membrane-less cytosolic inclusions, rely on the viral proteins μ2 and μNS for formation. Protein μ2 interacts and stabilizes MTs through acetylation, supporting VF formation and viral replication, while scaffold protein μNS influences cellular components to aid VF maturation. The disruption of the MT network reduces viral replication, underscoring its importance. Additionally, μ2 associates with MT-organizing centers, modulating the MT dynamics to favor viral replication. In summary, MRV subverts the cytoskeleton to facilitate VF dynamics and promote viral replication and assembly to promote VF dynamics, replication, and assembly, highlighting the critical role of the cytoskeleton in viral replication.
Collapse
Affiliation(s)
- Melissa Lee
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Janine Vetter
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
10
|
Xiao D, Ran H, Chen L, Li Y, Cai Y, Zhang S, Qi Q, Wu H, Zhang C, Cao S, Mi L, Huang H, Qi J, Han Q, Tu H, Li H, Zhou T, Li F, Li A, Man J. FSD1 inhibits glioblastoma diffuse infiltration through restriction of HDAC6-mediated microtubule deacetylation. SCIENCE CHINA. LIFE SCIENCES 2025; 68:673-688. [PMID: 39808222 DOI: 10.1007/s11427-024-2616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025]
Abstract
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization. This inhibitory interaction is disrupted upon phosphorylation of FSD1 at its Ser317 and Ser324 residues by activated CDK5, leading to FSD1 dissociation from microtubules and facilitating HDAC6-mediated α-tubulin deacetylation. Furthermore, increased expression of FSD1 or interference with FSD1 phosphorylation reduces microtubule deacetylation, suppresses invasion of GBM stem cells, and ultimately mitigates tumor infiltration in orthotopic GBM xenografts. Importantly, GBM tissues exhibit diminished levels of FSD1 expression, correlating with microtubule deacetylation and unfavorable clinical outcomes in GBM patients. These findings elucidate the mechanistic involvement of microtubule deacetylation in driving GBM cell invasion and offer potential avenues for managing GBM infiltration.
Collapse
Affiliation(s)
- Dake Xiao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Haowen Ran
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese PLA, Wuhan, 430070, China
| | - Lishu Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yuanyuan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Songyang Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qinghui Qi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huiran Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Cheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Shuailiang Cao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Lanjuan Mi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China
| | - Haohao Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese PLA, Wuhan, 430070, China
| | - Ji Qi
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Qiuying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Fangye Li
- Department of Neurosurgery, First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Jianghong Man
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| |
Collapse
|
11
|
Lichon DM, LoMascolo NJ, Mounce BC, Campbell EM. Microtubule acetylation is not required for HIV-1 infection or TRIM69-mediated restriction of HIV-1 infection. J Virol 2025; 99:e0102624. [PMID: 39804091 PMCID: PMC11852722 DOI: 10.1128/jvi.01026-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/25/2024] [Indexed: 02/26/2025] Open
Abstract
Microtubule acetylation, a post-translational modification catalyzing the addition of acetyl groups to lysine residues on alpha tubulin, confers mechanical resilience to microtubules and influences intracellular cargo transport. Despite its known cellular functions, its role in viral infections remains poorly understood. The goal of this study was to determine the role of microtubule acetylation in both HIV-1 infection and TRIM69-mediated restriction. To this end, we generated CRIPSR/Cas9 vectors to disrupt alpha-tubulin acetyltransferase (αTAT1), the main enzyme responsible for microtubule acetylation. We assessed the role of acetylation in HIV-1 infectivity and the degree to which TRIM69 relies on microtubule acetylation for its ability to restrict HIV-1. We determined that microtubule acetylation is not required for HIV-1 infection and that preventing microtubule acetylation actually leads to a modest increase in HIV-1 infection. We also determined that TRIM69 can restrict a diverse range of viruses and that its restriction of HIV-1 does not rely on microtubule acetylation. IMPORTANCE Although microtubule acetylation is a well-studied post-translational modification in the context of cellular processes, its role during viral infections remains underexplored. Existing studies often rely on various protein and drug perturbations to indirectly examine microtubule acetylation. In this study, we directly target the enzyme responsible for microtubule acetylation to delineate its role in both HIV-1 infection and TRIM69-mediated restriction.
Collapse
Affiliation(s)
- Drew M. Lichon
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Natalie J. LoMascolo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Bryan C. Mounce
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Edward M. Campbell
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
12
|
Simoes-da-Silva MM, Barisic M. How does the tubulin code facilitate directed cell migration? Biochem Soc Trans 2025; 53:BST20240841. [PMID: 39998313 DOI: 10.1042/bst20240841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Besides being a component of the cytoskeleton that provides structural integrity to the cell, microtubules also serve as tracks for intracellular transport. As the building units of the mitotic spindle, microtubules distribute chromosomes during cell division. By distributing organelles, vesicles, and proteins, they play a pivotal role in diverse cellular processes, including cell migration, during which they reorganize to facilitate cell polarization. Structurally, microtubules are built up of α/β-tubulin dimers, which consist of various tubulin isotypes that undergo multiple post-translational modifications (PTMs). These PTMs allow microtubules to differentiate into functional subsets, influencing the associated processes. This text explores the current understanding of the roles of tubulin PTMs in cell migration, particularly detyrosination and acetylation, and their implications in human diseases.
Collapse
Affiliation(s)
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Huang JY, Ma Q, Qi YJ, Wang ZY, Liu XG, Zhu YM, Li YP. Therapeutic Potential of TUBB6 Inhibition for Hematoma Reduction, Microtubule Stabilization, and Neurological Recovery in an In Vivo Model of Intracerebral Hemorrhage. Neuromolecular Med 2025; 27:15. [PMID: 39979490 DOI: 10.1007/s12017-025-08838-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
This in vivo study explored the impact of TUBB6 inhibition in intracerebral hemorrhage (ICH), focusing on its effects on hematoma volume, microtubule stability, inflammation, neuronal preservation, and sensorimotor recovery. Sprague-Dawley rats was used to induce ICH by collagenase injection into the right striatum, followed by administration of TUBB6 antisense oligonucleotide (ASO) or Control ASO directly into the hematoma site 3 h post-ICH. Outcomes measured included hematoma volume, microtubule stability (acetylated α-tubulin), levels of inflammatory cytokines, mitogen-activated protein kinase (MAPK) pathway activity, neuronal degeneration (Fluoro-Jade C staining), and cell integrity (Cresyl Violet staining). Functional recovery was assessed using neurological severity scores (mNSS), corner turn, forelimb-placing, and rotarod tests, with body weight tracked for up to 28 days. TUBB6 expression increased with the severity of hemorrhage in the ICH models. TUBB6 ASO significantly reduced hematoma volume at 24- and 72-h post-ICH, restored acetylated α-tubulin levels, suppressed MAPK signaling pathway, and decreased pro-inflammatory markers with increased IL-10. TUBB6 ASO also reduced neuronal degeneration and improved cell viability. In terms of functional outcomes, the TUBB6 ASO + ICH group exhibited reduced mNSS scores, improved body weight maintenance, and better performance on corner turn, forelimb-placing and rotarod tests compared to the Control ASO + ICH group. TUBB6 ASO treatment demonstrated therapeutic potential in a rat model of ICH by reducing hematoma volume, stabilizing microtubules, modulating the MAPK signaling pathway, and mitigating inflammation. It also preserved neuronal integrity and enhanced sensorimotor recovery, suggesting its effectiveness as a therapeutic approach to improve ICH outcomes.
Collapse
Affiliation(s)
- Jun-Yao Huang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Qiang Ma
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ya-Jie Qi
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zhi-Yao Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Xiao-Guang Liu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yi-Ming Zhu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yu-Ping Li
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
14
|
Wang Y, Liu X, Liu Z, Hua S, Jiang K. APC orchestrates microtubule dynamics by acting as a positive regulator of KIF2A and a negative regulator of CLASPs. CELL INSIGHT 2025; 4:100210. [PMID: 39640087 PMCID: PMC11617872 DOI: 10.1016/j.cellin.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024]
Abstract
Tumor suppressor protein Adenomatous polyposis coli protein (APC) is an EB-binding and microtubule (MT) plus end-tracking protein; however, how exactly APC regulates MT dynamics remains elusive. Here, we show that in LLC-PK1 cells, APC and KIF2A, an MT depolymerase, form a complex clustering at the cell edge and destabilize MTs at the MT plus ends. Further biochemical characterization and mutational analysis reveal key residues for the APC-KIF2A interaction. In addition, APC counteracts the major MT-stabilizer CLASPs at MT plus ends and promotes directional cell migration via modulating cell adhesion force. Reconstitution experiments demonstrate that APC potentiates KIF2A-induced MT catastrophes and antagonizes the stabilizing effect of CLASP2 in vitro. In summary, APC functions as a positive regulator of MT-destabilizer and a negative regulator of MT-stabilizer to orchestrate MT dynamics.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Xinping Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zheng Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shasha Hua
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Kai Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
15
|
Frappaolo A, Zaccagnini G, Riparbelli MG, Colotti G, Callaini G, Giansanti MG. PACS deficiency disrupts Golgi architecture and causes cytokinesis failures and seizure-like phenotype in Drosophila melanogaster. Open Biol 2025; 15:240267. [PMID: 39999877 PMCID: PMC11858789 DOI: 10.1098/rsob.240267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The PACS (phosphofurin acidic cluster sorting protein) proteins are membrane trafficking regulators, required for maintaining cellular homeostasis and preventing disease states. Mutations in human PACS1 and PACS2 cause human neurodevelopmental disorders, characterized by epileptic seizures and neurodevelopmental delay. In vertebrates, functional analysis of PACS proteins is complicated by the presence of two paralogues which can compensate for the loss of each other. Here, we characterize the unique fly homologue of human PACS proteins. We demonstrate that Drosophila PACS (dPACS) is required for cell division in dividing spermatocytes and neuroblasts. In primary spermatocytes, dPACS colocalizes with GOLPH3 at the Golgi stacks and is essential for maintaining Golgi architecture. In dividing cells, dPACS is necessary for central spindle stability and contractile ring constriction. dPACS and GOLPH3 proteins form a complex and are mutually dependent for localization to the cleavage site. We propose that dPACS, by associating with GOLPH3, mediates the flow of vesicle trafficking that supports furrow ingression during cytokinesis. Furthermore, loss of dPACS leads to defects in tubulin acetylation and severe bang sensitivity, a phenotype associated with seizures in flies. Together our findings suggest that a Drosophila PACS disease model may contribute to understanding the molecular mechanisms underpinning human PACS syndromes.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Gianluca Zaccagnini
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | | | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche ‘A. Rossi-Fanelli’, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Giuliano Callaini
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
16
|
Teoh J, Bartolini F. Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease. Curr Opin Neurobiol 2025; 90:102971. [PMID: 39862522 PMCID: PMC11839326 DOI: 10.1016/j.conb.2025.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function. Recent research has further highlighted that disturbances in tubulin PTMs can lead to neurodegeneration, sparking an emerging field of investigation with numerous questions such as whether and how tubulin PTMs can affect neurotransmission and synaptic plasticity and whether restoring balanced tubulin PTM levels could effectively prevent or mitigate neurodegenerative disease.
Collapse
Affiliation(s)
- JiaJie Teoh
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA.
| |
Collapse
|
17
|
Jun JH, Cha H, Ko JY, Kim HS, Yoo KH, Park JH. Loss of Kat2b impairs intraflagellar transport and the Hedgehog signaling pathway in primary cilia. Sci Rep 2025; 15:2127. [PMID: 39820844 PMCID: PMC11739504 DOI: 10.1038/s41598-025-86292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Primary cilia are sensory organelles that regulate various signaling pathways. When microtubules are compared to a highway, motor proteins carry and transport cargo proteins, which are tuned by post-translational modifications, such as acetylation. However, the role of acetylation in primary cilia regulation remains unclear. In this study, histone K (lysine) acetyltransferase 2 B (Kat2b) was identified as a novel regulator of primary cilia. Kat2b, which mainly regulates transcription as a p300/CBP associated factor, is localized to the cytosol, centrosome, and cilium basal body. In addition, basal Kat2b expression gradually increased during ciliogenesis. Kat2b regulates the rate of cilia assembly, particularly in the early stages, and loss of Kat2b reduces the recruitment of intraflagellar transport (IFT) components to the ciliary axoneme and impairs Hedgehog (Hh) signaling activation. In addition, Kat2b-knockout mice showed mild abnormalities and ciliary IFT defects in the kidneys. These results establish a link between acetylation regulated by Kat2b and its relevance to ciliary assembly and function.
Collapse
Affiliation(s)
- Jae Hee Jun
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hwayeon Cha
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
18
|
Lu PS, Sun SC. Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility. J Adv Res 2025:S2090-1232(25)00041-4. [PMID: 39814223 DOI: 10.1016/j.jare.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causes multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health and progeny by its ability to cross placental barriers. AIM OF REVIEW Due to its wide occurrence and potential toxicity on reproductive health, it is essential to understand the mechanisms of mycotoxin-related reproductive toxicity. This review summarizes the toxicities and mechanisms of mycotoxin on maternal and offspring reproduction among mammalian species. Approaches for effective mycotoxin alleviation are also discussed, providing strategies against mycotoxin contamination. KEY SCIENTIFIC CONCEPTS OF REVIEW The profound mycotoxin toxicities in female mammalian reproduction affect follicle assembly, embryo development, and fetus growth, thereby decreasing offspring fertility. Factors from endocrine system such as hypothalamic-pituitary-gonadal axis and gut-ovarian axis, placenta ABC transporters, organelle and cytoskeleton dynamics, cell cycle control, genomic stability, and redox homeostasis are found to be closely related to mycotoxin toxicities. Approaches from physical, chemical, biological, and supplementation of natural antioxidants are discussed for the mycotoxin elimination, while their applications are not widespread. Available ways for mycotoxin and its toxicities alleviation need further study. Since a species-, time-, and dose-specific response might exist in mycotoxin toxicities, more consideration should be given to the protocols for mycotoxin toxicity studies, such as experimental animal models, exposure duration, and dosage. Specific mechanism for mycotoxin, especially form a molecular biology perspective, could be investigated with multi-omics technologies and advanced imaging techniques. Mass spectrometry with algorithms may provide more accurate exposure assessments, and it may be further helpful to identify the high-risk individuals in the future.
Collapse
Affiliation(s)
- Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
19
|
Luo H, Chen J, Li C, Wu T, Yin S, Yang G, Wang Y, Guo Z, Hu S, He Y, Wang Y, Chen Y, Su Y, Miao C, Qian Y, Feng R. Pathogenic variants of TUBB8 cause oocyte spindle defects by disrupting with EB1/CAKP5 interactions and potential treatment targeting microtubule acetylation through HDAC6 inhibition. Clin Transl Med 2025; 15:e70193. [PMID: 39834092 PMCID: PMC11746963 DOI: 10.1002/ctm2.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained. METHODS Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis. Live-cell imaging and immunofluorescence were utilised to track the dynamic expression of microtubule plus end-tracking proteins in vivo and analysed microtubule nucleation or spindle assembly in vitro, respectively. Immunoprecipitation-mass spectrometry and ultramicro-quantitative proteomics were performed to identify the differential abundance proteins and affected interactome of TUBB8 protein. RESULTS First, we observed a significant depletion of the EB1 signal upon microinjection of mutated TUBB8 mRNA (including R262Q, M300I, and D417N missense variants), indicating disruption of microtubule nucleation caused by these introduced TUBB8 missense variants. Mechanically, we demonstrated that the in vivo TUBB8-D417N missense variant diminished the affinity of EB1 and microtubules. It also harmed the interaction between microtubules and CKAP5/TACC3, which are crucial for initiating microtubule nucleation. Attenuated Ran-GTP pathway was also found in TUBB8-D417N oocytes, leading to disrupted spindle assembly. Stable microtubule was largely abolished on the spindle of TUBB8-D417N oocytes, reflected by reduced tubulin acetylation and accumulated HDAC6. More importantly, selective inhibition of HDAC6 by culturing TUBB8-D417N oocytes with Tubacin or Tubastatin A showed morphologically normal spindle and drastically recovered polar-body extrusion rate. These rescue results shed light on the strategy to treat meiotic defects in a certain group of TUBB8 mutated patients. CONCLUSION Our study provides a comprehensive mechanism elucidating how TUBB8 missense variants cause oocyte maturation arrest and offers new therapeutic avenues for treating female infertility in the clinic.
Collapse
Affiliation(s)
- Hui Luo
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Jianhua Chen
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Cao Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Tian Wu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Siyue Yin
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Guangping Yang
- Yangzhou Maternal and Child Health Care Hospital Affiliated to Yangzhou UniversityYangzhouChina
| | - Yipin Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Zhihan Guo
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Saifei Hu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yanni He
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yingnan Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yao Chen
- Clinical Center of Reproductive MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologySchool of Life SciencesShandong UniversityQingdaoChina
| | - Congxiu Miao
- Department of Reproductive GeneticsHeping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health CommitteeChangzhiChina
| | - Yun Qian
- Clinical Center of Reproductive MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Clinical Center of Reproductive MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Reproductive GeneticsHeping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health CommitteeChangzhiChina
- Innovation Center of Suzhou Nanjing Medical UniversityNanjing Medical UniversitySuzhouChina
| |
Collapse
|
20
|
Xie X, Zhang B, Li D, Gao J, Li J, Liu C, Dan Y, Xu P, Yan L, Huang X, Zhang R, Yao Y, Huang W, Nie J, Wang X, Jiao B, Ren R, Liu P. Suppression of microtubule acetylation mediates the anti-leukemic effect of CDK9 inhibition. Cancer Cell Int 2024; 24:396. [PMID: 39639346 PMCID: PMC11619398 DOI: 10.1186/s12935-024-03588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) is a crucial component of transcription and potential target for anti-cancer therapies, particularly for hematological malignancies. However, the precise mechanisms underlying the therapeutic effects of CDK9 inhibitors remain not fully understood. Here, we found that inhibiting CDK9 either pharmacologically or through gene downregulation, significantly reduced the levels of α-tubulin protein in a time- and dose-dependent manner. We further discovered that CDK9 inhibition led to increased susceptibility of α-tubulin to proteasomal degradation due to reduced acetylation at lysine 40 (K40), an important modification for microtubule stability. An acetylation-mimicking mutant of α-tubulin mitigated the anti-tumor effects of CDK9 inhibition. Mechanically, we identified that CDK9 inhibition downregulated the expression of ATAT1, the acetyltransferase responsible for α-tubulin acetylation, further compromising microtubule stability. We also conducted in vivo studies in a leukemic xenograft model, where AZD4573 treatment led to significant tumor regression, decreased ATAT1 expression, and α-tubulin degradation. Our study unravels a novel molecular mechanism by which CDK9 inhibition disrupts α-tubulin stability and provides valuable insights for exploring effective treatment regimens involving CDK9 inhibitors.
Collapse
Affiliation(s)
- Xi Xie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghe Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaming Gao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxuan Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Dan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Xu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Yan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Huang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunying Yao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinru Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- International Center for Aging and Cancer, Hainan Medical College, Haikou, Hainan Province, China.
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Roy AD, Gonzalez CS, Shahid F, Yadav E, Inoue T. Optogenetically Induced Microtubule Acetylation Unveils the Molecular Dynamics of Actin-Microtubule Crosstalk in Directed Cell Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626286. [PMID: 39677776 PMCID: PMC11642777 DOI: 10.1101/2024.12.01.626286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Microtubule acetylation is implicated in regulating cell motility, yet its physiological role in directional migration and the underlying molecular mechanisms have remained unclear. This knowledge gap has persisted primarily due to a lack of tools capable of rapidly manipulating microtubule acetylation in actively migrating cells. To overcome this limitation and elucidate the causal relationship between microtubule acetylation and cell migration, we developed a novel optogenetic actuator, optoTAT, which enables precise and rapid induction of microtubule acetylation within minutes in live cells. Using optoTAT, we observed striking and rapid responses at both molecular and cellular level. First, microtubule acetylation triggers release of the RhoA activator GEF-H1 from sequestration on microtubules. This release subsequently enhances actomyosin contractility and drives focal adhesion maturation. These subcellular processes collectively promote sustained directional cell migration. Our findings position GEF-H1 as a critical molecular responder to microtubule acetylation in the regulation of directed cell migration, revealing a dynamic crosstalk between the actin and microtubule cytoskeletal networks.
Collapse
Affiliation(s)
- Abhijit Deb Roy
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Cristian Saez Gonzalez
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Farid Shahid
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eesha Yadav
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Bao T, Yang X, Yu J, Li M, Guo L, Wang Q, Bao Y, Yang Z, Liu Y, Guan T. NWD1 influences the extension of neuronal axons by regulating microtubule stability. Biochem Biophys Res Commun 2024; 734:150775. [PMID: 39383832 DOI: 10.1016/j.bbrc.2024.150775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Proteins belonging to the STAND (signal transduction ATPases with numerous domains) family have been implicated in crucial functions across various signal transduction pathways, encompassing both apoptosis and innate immune responses. In this study, we have identified NWD1, a member of the STAND superfamily, as a gene that regulates neurite outgrowth. This was confirmed by siRNA knockdown assay in E18 neurons. A zebrafish model was utilized to create NWD1 knockdown using the NgAgo-gDNA system, revealing the significant role of NWD1 in neurogenesis. We further revealed that NWD1 siRNA reduced the acetylated tubulin protein, and changed the ratio of soluble and polymerized tubulin. Moreover, we investigated the mechanism underlying the regulation of NWD1-mediated microtubule dynamics, and MAP1B may be a target gene. This research unveiled, for the first time, the potential role of NWD1 in regulating axon outgrowth through modulating the ratio of acetylated tubulin.
Collapse
Affiliation(s)
- Tiancheng Bao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Ximan Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jing Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Mingxuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Longyu Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Qin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Ying Bao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Zhangyi Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, China.
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
23
|
Kos P, Baumann O. Spatial arrangement, polarity, and posttranslational modifications of the microtubule system in the Drosophila eye. Cell Tissue Res 2024; 398:123-137. [PMID: 39152365 PMCID: PMC11525301 DOI: 10.1007/s00441-024-03914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
We have analyzed the organization of the microtubule system in photoreceptor cells and pigment cells within the adult Drosophila compound eye. Immunofluorescence localization of tubulin and of Short stop, a spectraplakin that has been reported to be involved in the anchorage of microtubule minus ends at the membrane, suggests the presence of non-centrosomal microtubule-organizing centers at the distal tip of the visual cells. Ultrastructural analyses confirm that microtubules emanate from membrane-associated plaques at the site of contact with cone cells and that all microtubules are aligned in distal-proximal direction within the photoreceptor cells. Determination of microtubule polarities demonstrated that about 95% of the microtubules in photoreceptor cells are oriented with their plus end in the direction of the synapse. Pigment cells in the eye contain only microtubules aligned in distal-proximal direction, with their plus end pointing towards the retinal floor. There, two populations of microtubules can be distinguished, single microtubules and bundled microtubules, the latter associated with actin filaments. Whereas microtubules in both photoreceptor cells and pigment cells are acetylated and mono/bi-glutamylated on α-tubulin, bundled microtubules in pigment cells are apparently also mono/bi-glutamylated on β-tubulin, providing the possibility of binding different microtubule-associated proteins.
Collapse
Affiliation(s)
- Piotr Kos
- Unit of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Otto Baumann
- Unit of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
24
|
Johnson RT, Wostear F, Solanki R, Steward O, Bradford A, Morris C, Bidula S, Warren DT. A microtubule stability switch alters isolated vascular smooth muscle Ca2+ flux in response to matrix rigidity. J Cell Sci 2024; 137:jcs262310. [PMID: 39301761 PMCID: PMC11586521 DOI: 10.1242/jcs.262310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
During ageing, the extracellular matrix of the aortic wall becomes more rigid. In response, vascular smooth muscle cells (VSMCs) generate enhanced contractile forces. Our previous findings demonstrate that VSMC volume is enhanced in response to increased matrix rigidity, but our understanding of the mechanisms regulating this process remain incomplete. In this study, we show that microtubule stability in VSMCs is reduced in response to enhanced matrix rigidity via Piezo1-mediated Ca2+ influx. Moreover, VSMC volume and Ca2+ flux is regulated by microtubule dynamics; microtubule-stabilising agents reduced both VSMC volume and Ca2+ flux on rigid hydrogels, whereas microtubule-destabilising agents increased VSMC volume and Ca2+ flux on pliable hydrogels. Finally, we show that disruption of the microtubule deacetylase HDAC6 uncoupled these processes and increased α-tubulin acetylation on K40, VSMC volume and Ca2+ flux on pliable hydrogels, but did not alter VSMC microtubule stability. These findings uncover a microtubule stability switch that controls VSMC volume by regulating Ca2+ flux. Taken together, these data demonstrate that manipulation of microtubule stability can modify VSMC response to matrix stiffness.
Collapse
Affiliation(s)
- Robert T. Johnson
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Finn Wostear
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Reesha Solanki
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Oliver Steward
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Alice Bradford
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | | | - Stefan Bidula
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Derek T. Warren
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| |
Collapse
|
25
|
Guan Y, Li J, Sun B, Xu K, Zhang Y, Ben H, Feng Y, Liu M, Wang S, Gao Y, Duan Z, Zhang Y, Chen D, Wang Y. HBx-induced upregulation of MAP1S drives hepatocellular carcinoma proliferation and migration via MAP1S/Smad/TGF-β1 loop. Int J Biol Macromol 2024; 281:136327. [PMID: 39374711 DOI: 10.1016/j.ijbiomac.2024.136327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), has a significantly higher risk of recurrence. However, the exact mechanism by which HBV prompts HCC recurrence remains largely unknown. In this study liver microarray test revealed significant upregulation of microtubule associated protein 1S (MAP1S) in metastatic HCC compared to control. MAP1S knockdown suppressed growth of HCCLM3 cells in vitro and in vivo. Mechanistically, HBV-encoded X protein (HBx) upregulates MAP1S, which enhances microtubule (MT) acetylation by promoting the degradation of histone deacetylase 6 (HDAC6), and facilitates the nuclear translocation of Smad complex, and thereby enhancing downstream TGF-β signaling. Smad complex, in turn, increases MAP1S, establishing a feedback loop of MAP1S/Smad/TGF-β1. Finally, survival analysis of 150 HBV-associated HCC patients demonstrated both increased MAP1S and decreased HDAC6 were significantly associated with shorter relapse-free survival. Collectively, this study reveals a unique mechanism whereby HBx-induced upregulation of MAP1S drives HBV-related HCC proliferation and migration through the MAP1S/Smad/TGF-β1 feedback loop. TEASER: MAP1S is a key link between HBV infection and a higher risk of metastatic recurrence of HCC.
Collapse
Affiliation(s)
- Yuanyue Guan
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Tsinghua Changgung Hospital, School Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Jiaxi Li
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Sun
- Clinical Center for Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Intervention Therapy Center of Tumor and Liver Diseases, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yonghong Zhang
- Clinical Center for Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Intervention Therapy Center of Tumor and Liver Diseases, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Haijing Ben
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yingmei Feng
- Department of Science and Development, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Mengcheng Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yuxue Gao
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Clinical Center for Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Artificial Liver Center, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| | - Yanjun Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
26
|
Punetha M, Saini S, Choudhary S, Sharma S, Bala R, Kumar P, Sharma RK, Yadav PS, Datta TK, Kumar D. Establishment of CRISPR-Cas9 ribonucleoprotein mediated MSTN gene edited pregnancy in buffalo: Compare cells transfection and zygotes electroporation. Theriogenology 2024; 229:158-168. [PMID: 39178617 DOI: 10.1016/j.theriogenology.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Genome editing is recognized as a powerful tool in agriculture and research, enhancing our understanding of genetic function, diseases, and productivity. However, its progress in buffaloes has lagged behind other mammals due to several challenges, including long gestational periods, single pregnancies, and high raising costs. In this study, we aimed to generate MSTN-edited buffaloes, known for their distinctive double-muscling phenotype, as a proof of concept. To meet our goal, we used somatic cell nuclear transfer (SCNT) and zygotic electroporation (CRISPR-EP) technique. For this, we firstly identified the best transfection method for introduction of RNP complex into fibroblast which was further used for SCNT. For this, we compared the transfection, cleavage efficiency and cell viability of nucleofection and lipofection in adult fibroblasts. The cleavage, transfection efficiency and cell viability of nucleofection group was found to be significantly (P ≤ 0.05) higher than lipofection group. Four MSTN edited colony were generated using nucleofection, out of which three colonies was found to be biallelic and one was monoallelic. Further, we compared the efficacy, embryonic developmental potential and subsequent pregnancy outcome of SCNT and zygotic electroporation. The blastocyst rate of electroporated group was found to be significantly (P ≤ 0.05) higher than SCNT group. However, the zygotic electroporation group resulted into two pregnancies which were confirmed to be MSTN edited. Since, the zygotic electroporation does not require complex micromanipulation techniques associated with SCNT, it has potential for facilitating the genetic modification in large livestock such as buffaloes. The present study lays the basis for inducing genetic alternation with practical or biological significance.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Suman Choudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Surabhi Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Renu Bala
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - R K Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - T K Datta
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
| |
Collapse
|
27
|
Tsai JF, Yu FY, Liu BH. Citrinin disrupts microtubule assembly in cardiac cells: Impact on mitochondrial organization and function. CHEMOSPHERE 2024; 365:143352. [PMID: 39293683 DOI: 10.1016/j.chemosphere.2024.143352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Citrinin (CTN) is a mycotoxin commonly present in various foods and feeds worldwide, as well as dietary supplements in Asian countries, but the risks and cellular mechanisms associated with its cardiotoxicity remains unclear. In this study, RNA-seq analysis of CTN-treated H9c2 cardiac cells demonstrated significant perturbations in pathways related to microtubule cytoskeleton and mitochondrial network organization. CTN disrupted microtubule polymerization and downregulated mRNA levels of microtubule-assembling genes, Map2 and Tpx2, in H9c2 cardiac cells. Additionally, CTN interfered with the distribution of mitochondrial network along the microtubules, leading to the accumulation of dysfunctional mitochondria characterized by elevated superoxide levels and reduced membrane potential. This disruption also caused the buildup of lysosomes and ubiquitinated proteins, which hindered waste clearance in microtubule-disassembled H9c2 cells. Molecular docking analysis indicated that CTN could bind to the colchicine binding site on β-tubulin, thereby mimicking the microtubule-disrupting effect of colchicine. This study provides morphological, transcriptomic, and mechanistic evidence to elucidate the cardiotoxic mechanisms of CTN, which involve the dysregulated microtubule network, subsequent mitochondrial mislocalization, and impaired proteolysis of damaged proteins/organelles in cardiac cells. Our findings may enhance the fundamental understanding and facilitate future risk assessment of CTN.
Collapse
Affiliation(s)
- Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
Maknis TR, Fussi MF, Pariani AP, Huhn V, Vena R, Favre C, Molinas SM, Larocca MC. Activation of angiotensin II type 2 receptor leads to preservation of primary cilia in tubular cells during renal ischaemia-reperfusion injury. J Physiol 2024; 602:5083-5103. [PMID: 39146457 DOI: 10.1113/jp286514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Ischaemia-reperfusion (IR)-associated acute kidney injury (AKI) is a severe clinical condition that lacks effective pharmacological treatments. Our recent research revealed that pretreatment with the angiotensin II type 2 receptor (AT2R) agonist C21 alleviates kidney damage during IR. Primary cilia are organelles crucial for regulation of epithelial cell homeostasis, which are significantly affected by IR injury. This study aimed to evaluate the impact of AT2R activation on cilia integrity during IR and to identify pathways involved in the nephroprotective effect of C21. Rats were subjected to 40 min of unilateral ischaemia followed by 24 h of reperfusion. Immunofluorescence analysis of the kidneys showed that the nephroprotective effect of C21 was associated with preservation of cilia integrity in tubular cells. AT2R agonists increased α-tubulin acetylation in primary cilia in tubular cells in vivo and in a cell model. Analysis of ERK phosphorylation indicated that AT2R activation led to diminished activation of ERK1/2 in tubular cells. Similar to AT2R agonists, inhibitors of α-tubulin deacetylase HDAC6 or inhibitors of ERK activation ameliorated IR-induced cell death and preserved cilia integrity. Immunofluorescence analysis of tubular cells revealed significant ERK localization at primary cilia and demonstrated that ERK inhibition increased cilia levels of acetylated α-tubulin. Overall, our findings demonstrate that C21 elicits a preconditioning effect that enhances cilia stability in renal tubular cells, thereby preserving their integrity when exposed to IR injury. Furthermore, our results indicate that this effect might be mediated by AT2R-induced inhibition of ERK activation. These findings offer potential insights for the development of pharmacological interventions to mitigate IR-associated AKI. KEY POINTS: The AT2R agonist C21 prevents primary cilia shortening and tubular cell deciliation during renal ischaemia-reperfusion. AT2R activation inhibits ERK1/2 in renal tubular cells. Both AT2R agonists and ERK1/2 inhibitors increase alpha-tubulin acetylation at the primary cilium in tubular cells. AT2R activation, ERK1/2 inhibition or inhibition of alpha-tubulin deacetylation elicit protective effects in tubular cells subjected to ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Tomás Rivabella Maknis
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - M Fernanda Fussi
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Alejandro P Pariani
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Victoria Huhn
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Sara M Molinas
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
29
|
Chen H, Liu Y, Huang Y, Zhang P, Du D, Yu W, Wu C, Ruan H, Zhou P, Ding Z, Xiang H. Bisphenol M inhibits mouse oocyte maturation in vitro by disrupting cytoskeleton architecture and cell cycle processes. Reprod Toxicol 2024; 129:108667. [PMID: 39059776 DOI: 10.1016/j.reprotox.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Bisphenol M (BPM), an alternative to bisphenol A (BPA), is commonly utilized in various industrial applications. However, BPM does not represent a safe substitute for BPA due to its detrimental effects on living beings. This research aimed to assess the influence of BPM exposure on the in vitro maturation of mouse oocytes. The findings revealed that BPM exposure had a notable impact on the germinal vesicle breakdown (GVBD) rate and polar body extrusion (PBE) rate throughout the meiotic progression of mouse oocytes, ultimately resulting in meiotic arrest. Investigations demonstrated that oocytes exposure to BPM led to continued activation of spindle assembly checkpoint. Further studies revealed that securin and cyclin B1 could not be degraded in BPM-exposed oocytes, and meiosis could not realize the transition from the MI to the AI stage. Mechanistically, BPM exposure resulted in abnormal spindle assembly and disrupted chromosome alignment of oocytes. Additionally, abnormal positioning of microtubule organizing center-associated proteins implied that MTOC may be dysfunctional. Furthermore, an elevation in the acetylation level of α-tubulin in oocytes was observed after BPM treatment, leading to decreased microtubule stability. In addition to its impact on microtubules, BPM exposure led to a reduction in the expression of the actin, signifying the disruption of actin assembly. Further research indicated a heightened incidence of DNA damage in oocytes following BPM exposure. Besides, BPM exposure induced alterations in histone modifications. The outcomes of this experiment demonstrate that BPM exposure impairs oocyte quality and inhibits meiotic maturation of mouse oocytes.
Collapse
Affiliation(s)
- Huilei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Yang Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yue Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Pin Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Danli Du
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Wenhua Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
30
|
Shenk T, Kulp III JL, Chiang LW. Drugs Targeting Sirtuin 2 Exhibit Broad-Spectrum Anti-Infective Activity. Pharmaceuticals (Basel) 2024; 17:1298. [PMID: 39458938 PMCID: PMC11510315 DOI: 10.3390/ph17101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
Direct-acting anti-infective drugs target pathogen-coded gene products and are a highly successful therapeutic paradigm. However, they generally target a single pathogen or family of pathogens, and the targeted organisms can readily evolve resistance. Host-targeted agents can overcome these limitations. One family of host-targeted, anti-infective agents modulate human sirtuin 2 (SIRT2) enzyme activity. SIRT2 is one of seven human sirtuins, a family of NAD+-dependent protein deacylases. It is the only sirtuin that is found predominantly in the cytoplasm. Multiple, structurally distinct SIRT2-targeted, small molecules have been shown to inhibit the replication of both RNA and DNA viruses, as well as intracellular bacterial pathogens, in cell culture and in animal models of disease. Biochemical and X-ray structural studies indicate that most, and probably all, of these compounds act as allosteric modulators. These compounds appear to impact the replication cycles of intracellular pathogens at multiple levels to antagonize their replication and spread. Here, we review SIRT2 modulators reported to exhibit anti-infective activity, exploring their pharmacological action as anti-infectives and identifying questions in need of additional study as this family of anti-infective agents advances to the clinic.
Collapse
Affiliation(s)
- Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John L. Kulp III
- Conifer Point Pharmaceuticals, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| | - Lillian W. Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| |
Collapse
|
31
|
Raby A, Missiroli S, Sanatine P, Langui D, Pansiot J, Beaude N, Vezzana L, Saleh R, Marinello M, Laforge M, Pinton P, Buj-Bello A, Burgo A. Spastin regulates ER-mitochondrial contact sites and mitochondrial homeostasis. iScience 2024; 27:110683. [PMID: 39252960 PMCID: PMC11382127 DOI: 10.1016/j.isci.2024.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) emerged to play critical roles in numerous cellular processes, and their dysregulation has been associated to neurodegenerative disorders. Mutations in the SPG4 gene coding for spastin are among the main causes of hereditary spastic paraplegia (HSP). Spastin binds and severs microtubules, and the long isoform of this protein, namely M1, spans the outer leaflet of ER membrane where it interacts with other ER-HSP proteins. Here, we showed that overexpressed M1 spastin localizes in ER-mitochondria intersections and that endogenous spastin accumulates in MERCs. We demonstrated in different cellular models that downregulation of spastin enhances the number of MERCs, alters mitochondrial morphology, and impairs ER and mitochondrial calcium homeostasis. These effects are associated with reduced mitochondrial membrane potential, oxygen species levels, and oxidative metabolism. These findings extend our knowledge on the role of spastin in the ER and suggest MERCs deregulation as potential causes of SPG4-HSP disease.
Collapse
Affiliation(s)
- Amelie Raby
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | | | - Dominique Langui
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Julien Pansiot
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Nissai Beaude
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Lucie Vezzana
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Rachelle Saleh
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Martina Marinello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Mireille Laforge
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Andrea Burgo
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
32
|
Yin YX, Ding MQ, Yi Y, Zou YJ, Liao BY, Sun SC. Insufficient KIF15 during porcine oocyte ageing induces HDAC6-based microtubule instability. Theriogenology 2024; 226:49-56. [PMID: 38838614 DOI: 10.1016/j.theriogenology.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
During aging, oocytes display cytoskeleton dynamics defects and aneuploidy, leading to embryonic aneuploidy, which in turn causes miscarriages, implantation failures, and birth defects. KIF15 (also known as Hklp2), a member of the kinesin-12 superfamily, is a cytoplasmic motor protein reported to be involved in Golgi and vesicle-related transport during mitosis in somatic cells. However, the regulatory mechanisms of KIF15 during meiosis in porcine oocytes and the connection with postovulatory aging remain unclear. In present study, we found that KIF15 is expressed during porcine oocyte maturation, and its localization is dependent on microtubule dynamics. Furthermore, the level of KIF15 expression decreased in postovulatory aged oocytes. The decrease in KIF15 blocked polar body extrusion, thereby hindering oocyte maturation. We demonstrated that KIF15 defects contributed to abnormal spindle morphologies and chromosome misalignment, possibly due to microtubule instability, as evidenced by microtubule depolymerization after cold treatment. Additionally, our data indicated that KIF15 modulates HDAC6 to affect tubulin acetylation in oocytes. Taken together, these results suggest that KIF15 regulates HDAC6-related microtubule stability for spindle organization in porcine oocytes during meiosis, which may contribute to the decline in maturation competence in aged porcine oocytes.
Collapse
Affiliation(s)
- Yan-Xuan Yin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Qi Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Yi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bi-Yun Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Höhler M, Alcázar-Román AR, Schenk K, Aguirre-Huamani MP, Braun C, Zrieq R, Mölleken K, Hegemann JH, Fleig U. Direct targeting of host microtubule and actin cytoskeletons by a chlamydial pathogenic effector protein. J Cell Sci 2024; 137:jcs263450. [PMID: 39099397 PMCID: PMC11444262 DOI: 10.1242/jcs.263450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
To propagate within a eukaryotic cell, pathogenic bacteria hijack and remodulate host cell functions. The Gram-negative obligate intracellular Chlamydiaceae, which pose a serious threat to human and animal health, attach to host cells and inject effector proteins that reprogram host cell machineries. Members of the conserved chlamydial TarP family have been characterized as major early effectors that bind to and remodel the host actin cytoskeleton. We now describe a new function for the Chlamydia pneumoniae TarP member CPn0572, namely the ability to bind and alter the microtubule cytoskeleton. Thus, CPn0572 is unique in being the only prokaryotic protein that directly modulates both dynamic cytoskeletons of a eukaryotic cell. Ectopically expressed GFP-CPn0572 associates in a dose-independent manner with either cytoskeleton singly or simultaneously. In vitro, CPn0572 binds directly to microtubules. Expression of a microtubule-only CPn0572 variant resulted in the formation of an aberrantly thick, stabilized microtubule network. Intriguingly, during infection, secreted CPn0572 also colocalized with altered microtubules, suggesting that this protein also affects microtubule dynamics during infection. Our analysis points to a crosstalk between actin and microtubule cytoskeletons via chlamydial CPn0572.
Collapse
Affiliation(s)
- Mona Höhler
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Katharina Schenk
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Corinna Braun
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Ha'il City 2440, Saudi Arabia
- Applied Science Research Centre, Applied Science Private University, Amman 11931, Jordan
| | - Katja Mölleken
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Kwon H, Joh JY, Hong KU. Human CKAP2L shows a cell cycle-dependent expression pattern and exhibits microtubule-stabilizing properties. FEBS Open Bio 2024; 14:1526-1539. [PMID: 39073037 PMCID: PMC11492392 DOI: 10.1002/2211-5463.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Cytoskeleton-associated protein 2-like (CKAP2L) is a paralogue of cytoskeleton-associated protein 2 (CKAP2). We characterized the expression pattern, subcellular localization, and microtubule-stabilizing properties of human CKAP2L. The levels of both CKAP2L transcript and protein were cell cycle phase-dependent, peaking during the G2/M phase and relatively high in certain human tissues, including testis, intestine, and spleen. CKAP2L protein was detectable in all human cancer cell lines we tested. CKAP2L localized to the mitotic spindle apparatus during mitosis, as reported previously. During interphase, however, CKAP2L localized mainly to the nucleus. Ectopic overexpression of CKAP2L resulted in 'microtubule bundling', and, consequently, an elevated CKAP2L level led to prolonged mitosis. These findings support the mitotic role of CKAP2L during the human cell cycle.
Collapse
Affiliation(s)
- Hyerim Kwon
- School of MedicineSungkyunkwan UniversitySuwonKorea
| | - Jonathan Y. Joh
- Department of Pharmacology & ToxicologyUniversity of Louisville School of MedicineKYUSA
| | - Kyung U. Hong
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMAUSA
| |
Collapse
|
35
|
Moraes JR, Barrinha A, Gonçalves de Lima LS, Vidal JC, Costa Catta-Preta CM, de Souza W, Zuma AA, Motta MCM. Endosymbiosis in trypanosomatids: The bacterium division depends on microtubule dynamism. Exp Cell Res 2024; 440:114126. [PMID: 38857838 DOI: 10.1016/j.yexcr.2024.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.
Collapse
Affiliation(s)
- Júlia Ribeiro Moraes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Azuil Barrinha
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Luan Santana Gonçalves de Lima
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Juliana Cunha Vidal
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil.
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil.
| |
Collapse
|
36
|
Cisterna BA, Skruber K, Jane ML, Camesi CI, Nguyen ID, Liu TM, Warp PV, Black JB, Butler MT, Bear JE, Mor DE, Read TA, Vitriol EA. Prolonged depletion of profilin 1 or F-actin causes an adaptive response in microtubules. J Cell Biol 2024; 223:e202309097. [PMID: 38722279 PMCID: PMC11082369 DOI: 10.1083/jcb.202309097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
In addition to its well-established role in actin assembly, profilin 1 (PFN1) has been shown to bind to tubulin and alter microtubule growth. However, whether PFN1's predominant control over microtubules in cells occurs through direct regulation of tubulin or indirectly through the polymerization of actin has yet to be determined. Here, we manipulated PFN1 expression, actin filament assembly, and actomyosin contractility and showed that reducing any of these parameters for extended periods of time caused an adaptive response in the microtubule cytoskeleton, with the effect being significantly more pronounced in neuronal processes. All the observed changes to microtubules were reversible if actomyosin was restored, arguing that PFN1's regulation of microtubules occurs principally through actin. Moreover, the cytoskeletal modifications resulting from PFN1 depletion in neuronal processes affected microtubule-based transport and mimicked phenotypes that are linked to neurodegenerative disease. This demonstrates how defects in actin can cause compensatory responses in other cytoskeleton components, which in turn significantly alter cellular function.
Collapse
Affiliation(s)
- Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kristen Skruber
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Makenzie L. Jane
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Caleb I. Camesi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ivan D. Nguyen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Tatiana M. Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Peyton V. Warp
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joseph B. Black
- Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mitchell T. Butler
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Danielle E. Mor
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric A. Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
37
|
Kumar A, Larrea D, Pero ME, Infante P, Conenna M, Shin GJ, Van Elias V, Grueber WB, Di Marcotullio L, Area-Gomez E, Bartolini F. MFN2 coordinates mitochondria motility with α-tubulin acetylation and this regulation is disrupted in CMT2A. iScience 2024; 27:109994. [PMID: 38883841 PMCID: PMC11177149 DOI: 10.1016/j.isci.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Mitofusin-2 (MFN2), a large GTPase residing in the mitochondrial outer membrane and mutated in Charcot-Marie-Tooth type 2 disease (CMT2A), is a regulator of mitochondrial fusion and tethering with the ER. The role of MFN2 in mitochondrial transport has however remained elusive. Like MFN2, acetylated microtubules play key roles in mitochondria dynamics. Nevertheless, it is unknown if the α-tubulin acetylation cycle functionally interacts with MFN2. Here, we show that mitochondrial contacts with microtubules are sites of α-tubulin acetylation, which occurs through MFN2-mediated recruitment of α-tubulin acetyltransferase 1 (ATAT1). This activity is critical for MFN2-dependent regulation of mitochondria transport, and axonal degeneration caused by CMT2A MFN2 associated R94W and T105M mutations may depend on the inability to release ATAT1 at sites of mitochondrial contacts with microtubules. Our findings reveal a function for mitochondria in α-tubulin acetylation and suggest that disruption of this activity plays a role in the onset of MFN2-dependent CMT2A.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Elena Pero
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Paola Infante
- Department of Molecular Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Marilisa Conenna
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Molecular Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Grace J. Shin
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Vincent Van Elias
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wesley B. Grueber
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Physiology & Cellular Biophysics, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, Rome, Italy
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
38
|
Shen Y, Ori-McKenney KM. Microtubule-associated protein MAP7 promotes tubulin posttranslational modifications and cargo transport to enable osmotic adaptation. Dev Cell 2024; 59:1553-1570.e7. [PMID: 38574732 PMCID: PMC11187767 DOI: 10.1016/j.devcel.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Cells remodel their cytoskeletal networks to adapt to their environment. Here, we analyze the mechanisms utilized by the cell to tailor its microtubule landscape in response to changes in osmolarity that alter macromolecular crowding. By integrating live-cell imaging, ex vivo enzymatic assays, and in vitro reconstitution, we probe the impact of cytoplasmic density on microtubule-associated proteins (MAPs) and tubulin posttranslational modifications (PTMs). We find that human epithelial cells respond to fluctuations in cytoplasmic density by modulating microtubule acetylation, detyrosination, or MAP7 association without differentially affecting polyglutamylation, tyrosination, or MAP4 association. These MAP-PTM combinations alter intracellular cargo transport, enabling the cell to respond to osmotic challenges. We further dissect the molecular mechanisms governing tubulin PTM specification and find that MAP7 promotes acetylation and inhibits detyrosination. Our data identify MAP7 in modulating the tubulin code, resulting in microtubule cytoskeleton remodeling and alteration of intracellular transport as an integrated mechanism of cellular adaptation.
Collapse
Affiliation(s)
- Yusheng Shen
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
39
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
40
|
Saldanha R, Ho Thanh MT, Krishnan N, Hehnly H, Patteson A. Vimentin supports cell polarization by enhancing centrosome function and microtubule acetylation. J R Soc Interface 2024; 21:20230641. [PMID: 38835244 DOI: 10.1098/rsif.2023.0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 06/06/2024] Open
Abstract
Cell polarity is important for controlling cell shape, motility and cell division processes. Vimentin intermediate filaments are important for cell migration and cell polarization in mesenchymal cells and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts. We find that vimentin mediates the structure of the pericentriolar material, promotes centrosome-mediated microtubule regrowth and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.
Collapse
Affiliation(s)
- Renita Saldanha
- Physics Department, Syracuse University , Syracuse, NY, USA
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
| | - Minh Tri Ho Thanh
- Physics Department, Syracuse University , Syracuse, NY, USA
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
| | - Nikhila Krishnan
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
- Department of Biology, Syracuse University , Syracuse, NY, USA
| | - Heidi Hehnly
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
- Department of Biology, Syracuse University , Syracuse, NY, USA
| | - Alison Patteson
- Physics Department, Syracuse University , Syracuse, NY, USA
- BioInspired Institute, Syracuse University , Syracuse, NY, USA
| |
Collapse
|
41
|
Meher K, Radha G, Lopus M. Induction of autophagy-dependent and caspase- and microtubule-acetylation-independent cell death by phytochemical-stabilized gold nanopolygons in colorectal adenocarcinoma cells. NANOSCALE 2024; 16:7976-7987. [PMID: 38567463 DOI: 10.1039/d4nr00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 μg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.
Collapse
Affiliation(s)
- Kimaya Meher
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai-400098, India.
| | - Gudapureddy Radha
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai-400098, India.
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai-400098, India.
| |
Collapse
|
42
|
Iuzzolino A, Pellegrini FR, Rotili D, Degrassi F, Trisciuoglio D. The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases. Cell Mol Life Sci 2024; 81:193. [PMID: 38652325 PMCID: PMC11039541 DOI: 10.1007/s00018-024-05227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.
Collapse
Affiliation(s)
- Angela Iuzzolino
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Francesca Romana Pellegrini
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Francesca Degrassi
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| | - Daniela Trisciuoglio
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| |
Collapse
|
43
|
Liu JC, Pan ZN, Ju JQ, Zou YJ, Pan MH, Wang Y, Wu X, Sun SC. Kinesin KIF3A regulates meiotic progression and spindle assembly in oocyte meiosis. Cell Mol Life Sci 2024; 81:168. [PMID: 38587639 PMCID: PMC11001723 DOI: 10.1007/s00018-024-05213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
44
|
Wang L, Yan M, Bu T, Wu X, Li L, Silvestrini B, Sun F, Cheng CY, Chen H. Map-1a regulates Sertoli cell BTB dynamics through the cytoskeletal organization of microtubule and F-actin. Reprod Biol Endocrinol 2024; 22:36. [PMID: 38570783 PMCID: PMC10988971 DOI: 10.1186/s12958-024-01204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Microtubule-associated protein 1a (Map1a) is a microtubule (MT) regulatory protein that binds to the MT protofilaments in mammalian cells to promote MT stabilization. Maps work with MT cleavage proteins and other MT catastrophe-inducing proteins to confer MT dynamics to support changes in the Sertoli cell shape to sustain spermatogenesis. However, no functional studies are found in the literature to probe its role in spermatogenesis. Using an RNAi approach, coupled with the use of toxicant-induced testis (in vivo)- and Sertoli cell (in vitro)-injury models, RNA-Seq analysis, transcriptome profiling, and relevant bioinformatics analysis, immunofluorescence analysis, and pertinent biochemical assays for cytoskeletal organization, we have delineated the functional role of Map1a in Sertoli cells and testes. Map1a was shown to support MT structural organization, and its knockdown (KD) also perturbed the structural organization of actin, vimentin, and septin cytoskeletons as these cytoskeletons are intimately related, working in concert to support spermatogenesis. More importantly, cadmium-induced Sertoli cell injury that perturbed the MT structural organization across the cell cytoplasm was associated with disruptive changes in the distribution of Map1a and a surge in p-p38-MAPK (phosphorylated p38-mitogen-activated protein kinase) expression but not total p38-MAPK. These findings thus support the notion that p-p38-MAPK activation is involved in cadmium-induced Sertoli cell injury. This conclusion was supported by studies using doramapimod, a specific p38-MAPK phosphorylation (activation) inhibitor, which was capable of restoring the cadmium-induced disruptive structural organization of MTs across the Sertoli cell cytoplasm. In summary: this study provides mechanistic insights regarding restoration of toxicant-induced Sertoli cell and testis injury and male infertility.
Collapse
Affiliation(s)
- Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang 325027, Wenzhou, China
| | - Bruno Silvestrini
- Faculty of Pharmacy, University of Rome La Sapienza, P. Le Aldo Moro 5, 00185, Rome, Italy
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - C Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
45
|
Li Z, Lai Y, Qiu R, Tang W, Ren J, Xiao S, Fang P, Fang L. Hyperacetylated microtubules assist porcine deltacoronavirus nsp8 to degrade MDA5 via SQSTM1/p62-dependent selective autophagy. J Virol 2024; 98:e0000324. [PMID: 38353538 PMCID: PMC10949429 DOI: 10.1128/jvi.00003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 03/20/2024] Open
Abstract
The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival. Here, we found that nsp8 of porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with a zoonotic potential, inhibits interferon (IFN)-β production by targeting melanoma differentiation gene 5 (MDA5), the main pattern recognition receptor for coronaviruses in the cytoplasm. Mechanistically, PDCoV nsp8 interacted with MDA5 and induced autophagy to degrade MDA5 in wild-type cells, but not in autophagy-related (ATG)5 or ATG7 knockout cells. Further screening for autophagic degradation receptors revealed that nsp8 interacts with sequestosome 1/p62 and promotes p62-mediated selective autophagy to degrade MDA5. Importantly, PDCoV nsp8 induced hyperacetylation of MTs, which in turn triggered selective autophagic degradation of MDA5 and subsequent inhibition of IFN-β production. Overall, our study uncovers a novel mechanism employed by PDCoV nsp8 to evade host innate immune defenses. These findings offer new insights into the interplay among viruses, IFNs, and MTs, providing a promising target to develop anti-viral drugs against PDCoV.IMPORTANCECoronavirus nsp8, a component of the viral replication transcriptional complex, is well conserved and plays a crucial role in viral replication. Exploration of the role mechanism of nsp8 is conducive to the understanding of viral pathogenesis and development of anti-viral strategies against coronavirus. Here, we found that nsp8 of PDCoV, an emerging enteropathogenic coronavirus with a zoonotic potential, is an interferon antagonist. Further studies showed that PDCoV nsp8 interacted with MDA5 and sequestosome 1/p62, promoting p62-mediated selective autophagy to degrade MDA5. We further found that PDCoV nsp8 could induce hyperacetylation of MT, therefore triggering selective autophagic degradation of MDA5 and inhibiting IFN-β production. These findings reveal a novel immune evasion strategy used by PDCoV nsp8 and provide insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yinan Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Runhui Qiu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenbing Tang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Ren
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
46
|
Quigley EB, DeVore SB, Khan SA, Geisterfer ZM, Rothfuss HM, Sequoia AO, Thompson PR, Gatlin JC, Cherrington BD, Navratil AM. GnRH Induces Citrullination of the Cytoskeleton in Murine Gonadotrope Cells. Int J Mol Sci 2024; 25:3181. [PMID: 38542155 PMCID: PMC10970285 DOI: 10.3390/ijms25063181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Peptidylarginine deiminases (PADs or PADIs) catalyze the conversion of positively charged arginine to neutral citrulline, which alters target protein structure and function. Our previous work established that gonadotropin-releasing hormone agonist (GnRHa) stimulates PAD2-catalyzed histone citrullination to epigenetically regulate gonadotropin gene expression in the gonadotrope-derived LβT2 cell line. However, PADs are also found in the cytoplasm. Given this, we used mass spectrometry (MS) to identify additional non-histone proteins that are citrullinated following GnRHa stimulation and characterized the temporal dynamics of this modification. Our results show that actin and tubulin are citrullinated, which led us to hypothesize that GnRHa might induce their citrullination to modulate cytoskeletal dynamics and architecture. The data show that 10 nM GnRHa induces the citrullination of β-actin, with elevated levels occurring at 10 min. The level of β-actin citrullination is reduced in the presence of the pan-PAD inhibitor biphenyl-benzimidazole-Cl-amidine (BB-ClA), which also prevents GnRHa-induced actin reorganization in dispersed murine gonadotrope cells. GnRHa induces the citrullination of β-tubulin, with elevated levels occurring at 30 min, and this response is attenuated in the presence of PAD inhibition. To examine the functional consequence of β-tubulin citrullination, we utilized fluorescently tagged end binding protein 1 (EB1-GFP) to track the growing plus end of microtubules (MT) in real time in transfected LβT2 cells. Time-lapse confocal microscopy of EB1-GFP reveals that the MT average lifetime increases following 30 min of GnRHa treatment, but this increase is attenuated by PAD inhibition. Taken together, our data suggest that GnRHa-induced citrullination alters actin reorganization and MT lifetime in gonadotrope cells.
Collapse
Affiliation(s)
- Elizabeth B. Quigley
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| | - Stanley B. DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | | | - Zachary M. Geisterfer
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Heather M. Rothfuss
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| | - Ari O. Sequoia
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Jesse C. Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA;
| | - Brian D. Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| | - Amy M. Navratil
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (E.B.Q.); (A.O.S.); (A.M.N.)
| |
Collapse
|
47
|
Andreu-Carbó M, Egoldt C, Velluz MC, Aumeier C. Microtubule damage shapes the acetylation gradient. Nat Commun 2024; 15:2029. [PMID: 38448418 PMCID: PMC10918088 DOI: 10.1038/s41467-024-46379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
The properties of single microtubules within the microtubule network can be modulated through post-translational modifications (PTMs), including acetylation within the lumen of microtubules. To access the lumen, the enzymes could enter through the microtubule ends and at damage sites along the microtubule shaft. Here we show that the acetylation profile depends on damage sites, which can be caused by the motor protein kinesin-1. Indeed, the entry of the deacetylase HDAC6 into the microtubule lumen can be modulated by kinesin-1-induced damage sites. In contrast, activity of the microtubule acetylase αTAT1 is independent of kinesin-1-caused shaft damage. On a cellular level, our results show that microtubule acetylation distributes in an exponential gradient. This gradient results from tight regulation of microtubule (de)acetylation and scales with the size of the cells. The control of shaft damage represents a mechanism to regulate PTMs inside the microtubule by giving access to the lumen.
Collapse
Affiliation(s)
| | - Cornelia Egoldt
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | | | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
48
|
Yang J, Li N, Zhao X, Guo W, Wu Y, Nie C, Yuan Z. WP1066, a small molecule inhibitor of STAT3, chemosensitizes paclitaxel-resistant ovarian cancer cells to paclitaxel by simultaneously inhibiting the activity of STAT3 and the interaction of STAT3 with Stathmin. Biochem Pharmacol 2024; 221:116040. [PMID: 38311257 DOI: 10.1016/j.bcp.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/29/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Paclitaxel is widely used to treat cancer, however, drug resistance limits its clinical utility. STAT3 is constitutively activated in some cancers, and contributes to chemotherapy resistance. Currently, several STAT3 inhibitors including WP1066 are used in cancer clinical trials. However, whether WP1066 reverses paclitaxel resistance and the mechanismremains unknown. Here, we report that in contrast to paclitaxel-sensitive parental cells, the expressions of several pro-survival BCL2 family members such as BCL-2, BCL-XL and MCL-1 are higher in paclitaxel-resistant ovarian cancer cells. Meanwhile, STAT3 is constitutively activated while stathmin loses its activity in paclitaxel-resistant cells. Importantly, WP1066 amplifies the inhibition of cell proliferation, colony-forming ability and apoptosis of ovarian cancer cells induced by paclitaxel. Mechanistically, WP1066, on the one hand, interferes the STAT3/Stathmin interaction, causing unleash of STAT3/Stathmin from microtubule, thus destroying microtubule stability. This process results in reduction of Ac-α-tubulin, further causing MCL-1 reduction. On the other hand, WP1066 inhibits phosphorylation of STAT3 by JAK2, and blocks its nuclear translocation, therefore repressing the transcription of pro-survival targets such as BCL-2, BCL-XL and MCL-1. Finally, the two pathways jointly promote cell death. Our findings reveal a new mechanism wherein WP1066 reverses paclitaxel-resistance of ovarian cancer cells by dually inhibiting STAT3 activity and STAT3/Stathmin interaction, which may layfoundation for WP1066 combined with paclitaxel in treating paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Jun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nanjing Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenhao Guo
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yang Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunlai Nie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhu Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
50
|
Liu L, Liu X, Chen Y, Kong M, Zhang J, Jiang M, Zhou H, Yang J, Chen X, Zhang Z, Wu C, Jiang X, Zhang J. Paxillin/HDAC6 regulates microtubule acetylation to promote directional migration of keratinocytes driven by electric fields. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119628. [PMID: 37949303 DOI: 10.1016/j.bbamcr.2023.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Endogenous electric fields (EFs) have been demonstrated to facilitate wound healing by directing the migration of epidermal cells. Despite the identification of numerous molecules and signaling pathways that are crucial for the directional migration of keratinocytes under EFs, the underlying molecular mechanisms remain undefined. Previous studies have indicated that microtubule (MT) acetylation is linked to cell migration, while Paxillin exerts a significant influence on cell motility. Therefore, we postulated that Paxillin could enhance EF-induced directional migration of keratinocytes by modulating MT acetylation. In the present study, we observed that EFs (200 mV/mm) induced migration of human immortalized epidermal cells (HaCaT) towards the anode, while upregulating Paxillin, downregulating HDAC6, and increasing the level of microtubule acetylation. Our findings suggested that Paxillin plays a pivotal role in inhibiting HDAC6-mediated microtubule acetylation during directional migration under EF regulation. Conversely, downregulation of Paxillin decreased microtubule acetylation and electrotaxis of epidermal cells by promoting HDAC6 expression, and this effect could be reversed by the addition of tubacin, an HDAC6-specific inhibitor. Furthermore, we observed that EFs also mediated the polarization of Paxillin and acetylated α-tubulin, which is critical for directional migration. In conclusion, our study revealed that MT acetylation in EF-guided keratinocyte migration is regulated by the Paxillin/HDAC6 signaling pathway, providing a novel theoretical foundation for the molecular mechanism of EF-guided directional migration of keratinocytes.
Collapse
Affiliation(s)
- Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Meng Kong
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Min Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Hongling Zhou
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jinrui Yang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xu Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China.
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China.
| |
Collapse
|