1
|
Pan J, Chen S, Chen S, Wang J, Su M, Jia R, Jie J, Zhang X. Self-Adaptive Polarized Photoresponse in Organic Single-Crystal Phototransistors for Bionic Night-Time Polarization Perception. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415530. [PMID: 39887496 DOI: 10.1002/adma.202415530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/02/2025] [Indexed: 02/01/2025]
Abstract
The emerging semiconductor micro/nanocrystals with intrinsic anisotropy have provided new perspectives for low-cost and simplified polarimetry. However, the low polarization sensitivity of state-of-the-art polarimeters based on anisotropic semiconductors under weak and partially polarized light severely hinders their practical application in complex dim environments. Here, a photo-adaptive polarization-sensitive organic phototransistor (POL-OPT) is demonstrated for bionic weak-light polarization perception. The combination of highly anisotropic organic crystals with charge-storage accumulative effect enables a self-adaptive polarized photoresponse of the phototransistor to imitate the bionic scotopic adaptation process. Consequently, an ultrahigh dichroic ratio (DR) of over 105 is achieved through time accumulation under an ultraweak light intensity of 200 nW cm-2, which is among the highest in polarization-sensitive photodetectors. Furthermore, POL-OPT array is constructed for effective polarization perception in an artificial moonlit environment with a low degree of linear polarization (DoLP) down to 0.26, reaching the detection threshold of night-active dung beetles. This study offers a new opportunity for the development of new-generation high-performance polarimeters for polarization imaging, bionic navigation, and artificial visual systems.
Collapse
Affiliation(s)
- Jing Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- State Key Laboratory of Photovoltaic Science and Technology, Trina Solar, Changzhou, Jiangsu, 213031, P. R. China
| | - Shuai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shuang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jinwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mingming Su
- Macao Institute of Materials Science and Engineering, MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ruofei Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiansheng Jie
- Macao Institute of Materials Science and Engineering, MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
2
|
Tao Y, Lucas M, Perera A, Teague S, McIntyre T, Ogunwa T, Warrant E, Chahl J. A Deep Learning Biomimetic Milky Way Compass. Biomimetics (Basel) 2024; 9:620. [PMID: 39451825 PMCID: PMC11505024 DOI: 10.3390/biomimetics9100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Moving in straight lines is a behaviour that enables organisms to search for food, move away from threats, and ultimately seek suitable environments in which to survive and reproduce. This study explores a vision-based technique for detecting a change in heading direction using the Milky Way (MW), one of the navigational cues that are known to be used by night-active insects. An algorithm is proposed that combines the YOLOv8m-seg model and normalised second central moments to calculate the MW orientation angle. This method addresses many likely scenarios where segmentation of the MW from the background by image thresholding or edge detection is not applicable, such as when the moon is substantial or when anthropogenic light is present. The proposed YOLOv8m-seg model achieves a segment mAP@0.5 of 84.7% on the validation dataset using our own training dataset of MW images. To explore its potential role in autonomous system applications, we compare night sky imagery and GPS heading data from a field trial in rural South Australia. The comparison results show that for short-term navigation, the segmented MW image can be used as a reliable orientation cue. There is a difference of roughly 5-10° between the proposed method and GT as the path involves left or right 90° turns at certain locations.
Collapse
Affiliation(s)
- Yiting Tao
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia; (M.L.); (S.T.); (T.M.); (T.O.); (J.C.)
| | - Michael Lucas
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia; (M.L.); (S.T.); (T.M.); (T.O.); (J.C.)
| | - Asanka Perera
- School of Engineering, University of Southern Queensland, Springfield, QLD 4300, Australia;
| | - Samuel Teague
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia; (M.L.); (S.T.); (T.M.); (T.O.); (J.C.)
- Platforms Division, Defence Science and Technology Group, Edinburgh, SA 5095, Australia
| | - Timothy McIntyre
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia; (M.L.); (S.T.); (T.M.); (T.O.); (J.C.)
- Platforms Division, Defence Science and Technology Group, Edinburgh, SA 5095, Australia
| | - Titilayo Ogunwa
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia; (M.L.); (S.T.); (T.M.); (T.O.); (J.C.)
| | - Eric Warrant
- Lund Vision Group, Department of Biology, University of Lund, 22100 Lund, Sweden;
| | - Javaan Chahl
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia; (M.L.); (S.T.); (T.M.); (T.O.); (J.C.)
- Platforms Division, Defence Science and Technology Group, Edinburgh, SA 5095, Australia
| |
Collapse
|
3
|
Mathejczyk TF, Babo ÉJ, Schönlein E, Grinda NV, Greiner A, Okrožnik N, Belušič G, Wernet MF. Behavioral responses of free-flying Drosophila melanogaster to shiny, reflecting surfaces. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:929-941. [PMID: 37796303 PMCID: PMC10643280 DOI: 10.1007/s00359-023-01676-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
Active locomotion plays an important role in the life of many animals, permitting them to explore the environment, find vital resources, and escape predators. Most insect species rely on a combination of visual cues such as celestial bodies, landmarks, or linearly polarized light to navigate or orient themselves in their surroundings. In nature, linearly polarized light can arise either from atmospheric scattering or from reflections off shiny non-metallic surfaces like water. Multiple reports have described different behavioral responses of various insects to such shiny surfaces. Our goal was to test whether free-flying Drosophila melanogaster, a molecular genetic model organism and behavioral generalist, also manifests specific behavioral responses when confronted with such polarized reflections. Fruit flies were placed in a custom-built arena with controlled environmental parameters (temperature, humidity, and light intensity). Flight detections and landings were quantified for three different stimuli: a diffusely reflecting matt plate, a small patch of shiny acetate film, and real water. We compared hydrated and dehydrated fly populations, since the state of hydration may change the motivation of flies to seek or avoid water. Our analysis reveals for the first time that flying fruit flies indeed use vision to avoid flying over shiny surfaces.
Collapse
Affiliation(s)
- Thomas F Mathejczyk
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Édouard J Babo
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Erik Schönlein
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Nikolai V Grinda
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Andreas Greiner
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Nina Okrožnik
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mathias F Wernet
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Beetz MJ, Kraus C, El Jundi B. Neural representation of goal direction in the monarch butterfly brain. Nat Commun 2023; 14:5859. [PMID: 37730704 PMCID: PMC10511513 DOI: 10.1038/s41467-023-41526-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Neural processing of a desired moving direction requires the continuous comparison between the current heading and the goal direction. While the neural basis underlying the current heading is well-studied, the coding of the goal direction remains unclear in insects. Here, we used tetrode recordings in tethered flying monarch butterflies to unravel how a goal direction is represented in the insect brain. While recording, the butterflies maintained robust goal directions relative to a virtual sun. By resetting their goal directions, we found neurons whose spatial tuning was tightly linked to the goal directions. Importantly, their tuning was unaffected when the butterflies changed their heading after compass perturbations, showing that these neurons specifically encode the goal direction. Overall, we here discovered invertebrate goal-direction neurons that share functional similarities to goal-direction cells reported in mammals. Our results give insights into the evolutionarily conserved principles of goal-directed spatial orientation in animals.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Christian Kraus
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Quinlan PD, Katz PS. State-dependent, visually guided behaviors in the nudibranch Berghia stephanieae. J Exp Biol 2023; 226:jeb245213. [PMID: 37661725 PMCID: PMC10560555 DOI: 10.1242/jeb.245213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Nudibranch mollusks have structurally simple eyes whose behavioral roles have not been established. We tested the effects of visual stimuli on the behavior of the nudibranch Berghia stephanieae under different food and hunger conditions. In an arena that was half-shaded, animals spent most of their time in the dark, where they also decreased their speed and made more changes in heading. These behavioral differences between the light and dark were less evident in uniformly illuminated or darkened arenas, suggesting that they were not caused by the level of illumination. Berghia stephanieae responded to distant visual targets; animals approached a black stripe that was at least 15 deg wide on a white background. They did not approach a stripe that was lighter than the background but approached a stripe that was isoluminant with the background, suggesting the detection of spatial information. Animals traveled in convoluted paths in a featureless arena but straightened their paths when a visual target was present even if they did not approach it, suggesting that visual cues were used for navigation. Individuals were less responsive to visual stimuli when food deprived or in the presence of food odor. Thus, B. stephanieae exhibits visually guided behaviors that are influenced by odors and hunger state.
Collapse
Affiliation(s)
- Phoenix D. Quinlan
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA 01003, USA
| | - Paul S. Katz
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Mitchell R, Shaverdian S, Dacke M, Webb B. A model of cue integration as vector summation in the insect brain. Proc Biol Sci 2023; 290:20230767. [PMID: 37357865 PMCID: PMC10291719 DOI: 10.1098/rspb.2023.0767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023] Open
Abstract
Ball-rolling dung beetles are known to integrate multiple cues in order to facilitate their straight-line orientation behaviour. Recent work has suggested that orientation cues are integrated according to a vector sum, that is, compass cues are represented by vectors and summed to give a combined orientation estimate. Further, cue weight (vector magnitude) appears to be set according to cue reliability. This is consistent with the popular Bayesian view of cue integration: cues are integrated to reduce or minimize an agent's uncertainty about the external world. Integration of orientation cues is believed to occur at the input to the insect central complex. Here, we demonstrate that a model of the head direction circuit of the central complex, including plasticity in input synapses, can act as a substrate for cue integration as vector summation. Further, we show that cue influence is not necessarily driven by cue reliability. Finally, we present a dung beetle behavioural experiment which, in combination with simulation, strongly suggests that these beetles do not weight cues according to reliability. We suggest an alternative strategy whereby cues are weighted according to relative contrast, which can also explain previous results.
Collapse
Affiliation(s)
- Robert Mitchell
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| | - Shahrzad Shaverdian
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
7
|
Li S, Kong F, Xu H, Guo X, Li H, Ruan Y, Cao S, Guo Y. Biomimetic Polarized Light Navigation Sensor: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5848. [PMID: 37447698 DOI: 10.3390/s23135848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
A polarized light sensor is applied to the front-end detection of a biomimetic polarized light navigation system, which is an important part of analyzing the atmospheric polarization mode and realizing biomimetic polarized light navigation, having received extensive attention in recent years. In this paper, biomimetic polarized light navigation in nature, the mechanism of polarized light navigation, point source sensor, imaging sensor, and a sensor based on micro nano machining technology are compared and analyzed, which provides a basis for the optimal selection of different polarized light sensors. The comparison results show that the point source sensor can be divided into basic point source sensor with simple structure and a point source sensor applied to integrated navigation. The imaging sensor can be divided into a simple time-sharing imaging sensor, a real-time amplitude splitting sensor that can detect images of multi-directional polarization angles, a real-time aperture splitting sensor that uses a light field camera, and a real-time focal plane light splitting sensor with high integration. In recent years, with the development of micro and nano machining technology, polarized light sensors are developing towards miniaturization and integration. In view of this, this paper also summarizes the latest progress of polarized light sensors based on micro and nano machining technology. Finally, this paper summarizes the possible future prospects and current challenges of polarized light sensor design, providing a reference for the feasibility selection of different polarized light sensors.
Collapse
Affiliation(s)
- Shunzi Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fang Kong
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Han Xu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaohan Guo
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haozhe Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yaohuang Ruan
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shouhu Cao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yinjing Guo
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
8
|
Beetz MJ, El Jundi B. The influence of stimulus history on directional coding in the monarch butterfly brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01633-x. [PMID: 37095358 DOI: 10.1007/s00359-023-01633-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
The central complex is a brain region in the insect brain that houses a neural network specialized to encode directional information. Directional coding has traditionally been investigated with compass cues that revolve in full rotations and at constant angular velocities around the insect's head. However, these stimulus conditions do not fully simulate an insect's sensory perception of compass cues during navigation. In nature, an insect flight is characterized by abrupt changes in moving direction as well as constant changes in velocity. The influence of such varying cue dynamics on compass coding remains unclear. We performed long-term tetrode recordings from the brain of monarch butterflies to study how central complex neurons respond to different stimulus velocities and directions. As these butterflies derive directional information from the sun during migration, we measured the neural response to a virtual sun. The virtual sun was either presented as a spot that appeared at random angular positions or was rotated around the butterfly at different angular velocities and directions. By specifically manipulating the stimulus velocity and trajectory, we dissociated the influence of angular velocity and direction on compass coding. While the angular velocity substantially affected the tuning directedness, the stimulus trajectory influenced the shape of the angular tuning curve. Taken together, our results suggest that the central complex flexibly adjusts its directional coding to the current stimulus dynamics ensuring a precise compass even under highly demanding conditions such as during rapid flight maneuvers.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Honkanen A, Hensgen R, Kannan K, Adden A, Warrant E, Wcislo W, Heinze S. Parallel motion vision pathways in the brain of a tropical bee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01625-x. [PMID: 37017717 DOI: 10.1007/s00359-023-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
Spatial orientation is a prerequisite for most behaviors. In insects, the underlying neural computations take place in the central complex (CX), the brain's navigational center. In this region different streams of sensory information converge to enable context-dependent navigational decisions. Accordingly, a variety of CX input neurons deliver information about different navigation-relevant cues. In bees, direction encoding polarized light signals converge with translational optic flow signals that are suited to encode the flight speed of the animals. The continuous integration of speed and directions in the CX can be used to generate a vector memory of the bee's current position in space in relation to its nest, i.e., perform path integration. This process depends on specific, complex features of the optic flow encoding CX input neurons, but it is unknown how this information is derived from the visual periphery. Here, we thus aimed at gaining insight into how simple motion signals are reshaped upstream of the speed encoding CX input neurons to generate their complex features. Using electrophysiology and anatomical analyses of the halictic bees Megalopta genalis and Megalopta centralis, we identified a wide range of motion-sensitive neurons connecting the optic lobes with the central brain. While most neurons formed pathways with characteristics incompatible with CX speed neurons, we showed that one group of lobula projection neurons possess some physiological and anatomical features required to generate the visual responses of CX optic-flow encoding neurons. However, as these neurons cannot explain all features of CX speed cells, local interneurons of the central brain or alternative input cells from the optic lobe are additionally required to construct inputs with sufficient complexity to deliver speed signals suited for path integration in bees.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Ronja Hensgen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Kavitha Kannan
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Neural Circuits and Evolution Lab, The Francis Crick Institute, London, UK
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, República de Panamá
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.
- NanoLund, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Zittrell F, Pabst K, Carlomagno E, Rosner R, Pegel U, Endres DM, Homberg U. Integration of optic flow into the sky compass network in the brain of the desert locust. Front Neural Circuits 2023; 17:1111310. [PMID: 37187914 PMCID: PMC10175609 DOI: 10.3389/fncir.2023.1111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Flexible orientation through any environment requires a sense of current relative heading that is updated based on self-motion. Global external cues originating from the sky or the earth's magnetic field and local cues provide a reference frame for the sense of direction. Locally, optic flow may inform about turning maneuvers, travel speed and covered distance. The central complex in the insect brain is associated with orientation behavior and largely acts as a navigation center. Visual information from global celestial cues and local landmarks are integrated in the central complex to form an internal representation of current heading. However, it is less clear how optic flow is integrated into the central-complex network. We recorded intracellularly from neurons in the locust central complex while presenting lateral grating patterns that simulated translational and rotational motion to identify these sites of integration. Certain types of central-complex neurons were sensitive to optic-flow stimulation independent of the type and direction of simulated motion. Columnar neurons innervating the noduli, paired central-complex substructures, were tuned to the direction of simulated horizontal turns. Modeling the connectivity of these neurons with a system of proposed compass neurons can account for rotation-direction specific shifts in the activity profile in the central complex corresponding to turn direction. Our model is similar but not identical to the mechanisms proposed for angular velocity integration in the navigation compass of the fly Drosophila.
Collapse
Affiliation(s)
- Frederick Zittrell
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
| | - Kathrin Pabst
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Elena Carlomagno
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Ronny Rosner
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Dominik M. Endres
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- *Correspondence: Uwe Homberg
| |
Collapse
|
11
|
de Souza RB, Guimarães JR. Effects of Avermectins on the Environment Based on Its Toxicity to Plants and Soil Invertebrates-a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:259. [PMID: 35789787 PMCID: PMC9243718 DOI: 10.1007/s11270-022-05744-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Avermectins are pharmaceutical drugs widely used mainly in livestock to combat both ectoparasites and endoparasites. Drugs belonging to this family include ivermectin, abamectin, doramectin, selamectin, eprinomectin, and emamectin benzoate, and they share similar chemical characteristics. When administered to livestock, between 80 and 98% of the drug is estimated to leave the body without being metabolized in feces, thus reaching the soil. For this reason, concern for avermectin contamination in soil is increasing, and researchers are focused on estimating the effects on non-target organisms, such as plants and soil invertebrates. This review aimed to compile and discuss updated data of avermectin toxicity on non-target organisms to better comprehend its effect on the environment. Effects on plants are scarcely studied, since they were not believed to absorb these drugs. However, recent studies suggest that plants can be negatively affected. Regarding soil invertebrates, negative effects such as increased mortality and reduced reproduction are best known to dung-beetles. Recently, some studies have also suggested that earthworms, springtails, and enchytraeids can be adversely affected by avermectin exposure. Since ivermectin was the first avermectin marketed, most of the data refers to this product. According to new data on scientific literature, avermectins can now be considered harmful to non-target organisms, and its prudent use is recommended in order to reduce negative effects on the environment. For future investigations, inclusion of avermectins other than ivermectin, as well as field and "omics" studies is suggested.
Collapse
Affiliation(s)
- Raphael B. de Souza
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| | - José Roberto Guimarães
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, R. Saturnino de Brito, 224 - Cidade Universitária, Campinas, SP 13083-889 Brazil
| |
Collapse
|
12
|
Kind E, Longden KD, Nern A, Zhao A, Sancer G, Flynn MA, Laughland CW, Gezahegn B, Ludwig HDF, Thomson AG, Obrusnik T, Alarcón PG, Dionne H, Bock DD, Rubin GM, Reiser MB, Wernet MF. Synaptic targets of photoreceptors specialized to detect color and skylight polarization in Drosophila. eLife 2021; 10:e71858. [PMID: 34913436 PMCID: PMC8789284 DOI: 10.7554/elife.71858] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in Drosophila, and we have used light microscopy to confirm many of our findings. We identified known and novel downstream targets that are selective for different wavelengths or polarized light, and followed their projections to other areas in the optic lobes and the central brain. Our results revealed many synapses along the photoreceptor axons between brain regions, new pathways in the optic lobes, and spatially segregated projections to central brain regions. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, and lack strong connections to the lobula, a neuropil involved in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.
Collapse
Affiliation(s)
- Emil Kind
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Kit D Longden
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gizem Sancer
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Miriam A Flynn
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Connor W Laughland
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Bruck Gezahegn
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Henrique DF Ludwig
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alex G Thomson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tessa Obrusnik
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Paula G Alarcón
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Heather Dionne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Mathias F Wernet
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| |
Collapse
|
13
|
Baldaccini NE. Moving towards a far-away goal: a foreword. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1908493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Leitch KJ, Ponce FV, Dickson WB, van Breugel F, Dickinson MH. The long-distance flight behavior of Drosophila supports an agent-based model for wind-assisted dispersal in insects. Proc Natl Acad Sci U S A 2021; 118:e2013342118. [PMID: 33879607 PMCID: PMC8092610 DOI: 10.1073/pnas.2013342118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the ecological importance of long-distance dispersal in insects, its mechanistic basis is poorly understood in genetic model species, in which advanced molecular tools are readily available. One critical question is how insects interact with the wind to detect attractive odor plumes and increase their travel distance as they disperse. To gain insight into dispersal, we conducted release-and-recapture experiments in the Mojave Desert using the fruit fly, Drosophila melanogaster We deployed chemically baited traps in a 1 km radius ring around the release site, equipped with cameras that captured the arrival times of flies as they landed. In each experiment, we released between 30,000 and 200,000 flies. By repeating the experiments under a variety of conditions, we were able to quantify the influence of wind on flies' dispersal behavior. Our results confirm that even tiny fruit flies could disperse ∼12 km in a single flight in still air and might travel many times that distance in a moderate wind. The dispersal behavior of the flies is well explained by an agent-based model in which animals maintain a fixed body orientation relative to celestial cues, actively regulate groundspeed along their body axis, and allow the wind to advect them sideways. The model accounts for the observation that flies actively fan out in all directions in still air but are increasingly advected downwind as winds intensify. Our results suggest that dispersing insects may strike a balance between the need to cover large distances while still maintaining the chance of intercepting odor plumes from upwind sources.
Collapse
Affiliation(s)
- Katherine J Leitch
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Francesca V Ponce
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - William B Dickson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Floris van Breugel
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
15
|
Grob R, el Jundi B, Fleischmann PN. Towards a common terminology for arthropod spatial orientation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1905075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Basil el Jundi
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Pauline N. Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
16
|
Navigation and orientation in Coleoptera: a review of strategies and mechanisms. Anim Cogn 2021; 24:1153-1164. [PMID: 33846895 DOI: 10.1007/s10071-021-01513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Spatial orientation is important for animals to forage, mate, migrate, and escape certain threats, and can require simple to complex cognitive abilities and behaviours. As these behaviours are more difficult to experimentally test in vertebrates, considerable research has focussed on investigating spatial orientation in insects. However, the majority of insect spatial orientation research tends to focus on a few taxa of interest, especially social insects. Beetles present an interesting insect group to study in this respect, due to their diverse taxonomy and biology, and prevalence as agricultural pests. In this article, I review research on beetle spatial orientation. Then, I use this synthesis to discuss mechanisms beetles employ in the context of different behaviours that require orientation or navigation. I conclude by discussing two future avenues for behavioural research on this topic, which could lead to more robust conclusions on how species in this diverse order are able to traverse through a wide variety of environments.
Collapse
|
17
|
Dacke M, Baird E, El Jundi B, Warrant EJ, Byrne M. How Dung Beetles Steer Straight. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:243-256. [PMID: 32822556 DOI: 10.1146/annurev-ento-042020-102149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Distant and predictable features in the environment make ideal compass cues to allow movement along a straight path. Ball-rolling dung beetles use a wide range of different signals in the day or night sky to steer themselves along a fixed bearing. These include the sun, the Milky Way, and the polarization pattern generated by the moon. Almost two decades of research into these remarkable creatures have shown that the dung beetle's compass is flexible and readily adapts to the cues available in its current surroundings. In the morning and afternoon, dung beetles use the sun to orient, but at midday, they prefer to use the wind, and at night or in a forest, they rely primarily on polarized skylight to maintain straight paths. We are just starting to understand the neuronal substrate underlying the dung beetle's compass and the mystery of why these beetles start each journey with a dance.
Collapse
Affiliation(s)
- Marie Dacke
- Department of Biology, Lund University, 223 62 Lund, Sweden; ,
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | - Emily Baird
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden;
| | - Basil El Jundi
- Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany;
| | - Eric J Warrant
- Department of Biology, Lund University, 223 62 Lund, Sweden; ,
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| |
Collapse
|
18
|
Krochmal AR, Roth TC, Simmons NT. The geomagnetic field does not appear to influence navigation in Eastern painted turtles. Ethology 2020. [DOI: 10.1111/eth.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Timothy C. Roth
- Department of Psychology Franklin and Marshall College Lancaster Pennsylvania
| | - Nathaniel T. Simmons
- Department of Biology Washington College Chestertown Maryland
- Still Pond Chestertown, Maryland
| |
Collapse
|
19
|
Le Moël F, Wystrach A. Towards a multi-level understanding in insect navigation. CURRENT OPINION IN INSECT SCIENCE 2020; 42:110-117. [PMID: 33252043 DOI: 10.1016/j.cois.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
To understand the brain is to understand behaviour. However, understanding behaviour itself requires consideration of sensory information, body movements and the animal's ecology. Therefore, understanding the link between neurons and behaviour is a multi-level problem, which can be achieved when considering Marr's three levels of understanding: behaviour, computation, and neural implementation. Rather than establishing direct links between neurons and behaviour, the matter boils down to understanding two transitions: the link between neurons and brain computation on one hand, and the link between brain computations and behaviour on the other hand. The field of insect navigation illustrates well the power of such two-sided endeavour. We provide here examples revealing that each transition requires its own approach with its own intrinsic difficulties, and show how modelling can help us reach the desired multi-level understanding.
Collapse
Affiliation(s)
- Florent Le Moël
- Centre de recherches sur la cognition animale, Toulouse, France.
| | | |
Collapse
|
20
|
Chou A, Lin C, Cronin TW. Visual metamorphoses in insects and malacostracans: Transitions between an aquatic and terrestrial life. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100974. [PMID: 32822960 DOI: 10.1016/j.asd.2020.100974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Arthropods operate in an outrageous diversity of environments. From the deep sea to dense tropical forests, to wide open arctic tundra, they have colonized almost every possible habitat. Within these environments, the presence of light is nearly ubiquitous, varying in intensity, wavelength, and polarization. Light provides critical information about the environment, such as time of day or where food sources may be located. Animals take advantage of this prevalent and informative cue to make behavioral choices. However, the types of choices animals face depend greatly on their environments and needs at any given time. In particular, animals that undergo metamorphosis, with arthropods being the prime example, experience dramatic changes in both behavior and ecology, which in turn may require altering the structure and function of sensory systems such as vision. Amphibiotic organisms maintain aquatic lifestyles as juveniles before transitioning to terrestrial lifestyles as adults. However, light behaves differently in water than in air, resulting in distinct aquatic and terrestrial optical environments. Visual changes in response to these optical differences can occur on multiple levels, from corneal structure down to neural organization. In this review, we summarize examples of alterations in the visual systems of amphibiotic larval and adult insects and malacostracan crustaceans, specifically those attributed to environmental differences between metamorphic phases.
Collapse
Affiliation(s)
- Alice Chou
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Chan Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC, 20560, USA
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
21
|
Homberg U, Hensgen R, Rieber E, Seyfarth J, Kern M, Dippel S, Dircksen H, Spänig L, Kina YP. Orcokinin in the central complex of the locust Schistocerca gregaria: Identification of immunostained neurons and colocalization with other neuroactive substances. J Comp Neurol 2020; 529:1876-1894. [PMID: 33128250 DOI: 10.1002/cne.25062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
The central complex is a group of highly interconnected neuropils in the insect brain. It is involved in the control of spatial orientation, based on external compass cues and various internal needs. The functional and neurochemical organization of the central complex has been studied in detail in the desert locust Schistocerca gregaria. In addition to classical neurotransmitters, immunocytochemistry has provided evidence for a major contribution of neuropeptides to neural signaling within the central complex. To complement these data, we have identified all orcokinin-immunoreactive neurons in the locust central complex and associated brain areas. About 50 bilateral pairs of neurons innervating all substructures of the central complex exhibit orcokinin immunoreactivity. Among these were about 20 columnar neurons, 33 bilateral pairs of tangential neurons of the central body, and seven pairs of tangential neurons of the protocerebral bridge. In silico transcript analysis suggests the presence of eight different orcokinin-A type peptides in the desert locust. Double label experiments showed that all orcokinin-immunostained tangential neurons of the lateral accessory lobe cluster were also immunoreactive for GABA and the GABA-synthesizing enzyme glutamic acid decarboxylase. Two types of tangential neurons of the upper division of the central body were, furthermore, also labeled with an antiserum against Dip-allatostatin I. No colocalization was found with serotonin immunostaining. The data provide additional insights into the neurochemical organization of the locust central complex and suggest that orcokinin-peptides of the orcokinin-A gene act as neuroactive substances at all stages of signal processing in this brain area.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Ronja Hensgen
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Evelyn Rieber
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Martina Kern
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Stefan Dippel
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | | | - Lisa Spänig
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Yelda Pakize Kina
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
22
|
Okubo TS, Patella P, D'Alessandro I, Wilson RI. A Neural Network for Wind-Guided Compass Navigation. Neuron 2020; 107:924-940.e18. [PMID: 32681825 PMCID: PMC7507644 DOI: 10.1016/j.neuron.2020.06.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 11/27/2022]
Abstract
Spatial maps in the brain are most accurate when they are linked to external sensory cues. Here, we show that the compass in the Drosophila brain is linked to the direction of the wind. Shifting the wind rightward rotates the compass as if the fly were turning leftward, and vice versa. We describe the mechanisms of several computations that integrate wind information into the compass. First, an intensity-invariant representation of wind direction is computed by comparing left-right mechanosensory signals. Then, signals are reformatted to reduce the coding biases inherent in peripheral mechanics, and wind cues are brought into the same circular coordinate system that represents visual cues and self-motion signals. Because the compass incorporates both mechanosensory and visual cues, it should enable navigation under conditions where no single cue is consistently reliable. These results show how local sensory signals can be transformed into a global, multimodal, abstract representation of space.
Collapse
Affiliation(s)
- Tatsuo S Okubo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Paola Patella
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Franzke M, Kraus C, Dreyer D, Pfeiffer K, Beetz MJ, Stöckl AL, Foster JJ, Warrant EJ, El Jundi B. Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. J Exp Biol 2020; 223:jeb223800. [PMID: 32341174 DOI: 10.1242/jeb.223800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022]
Abstract
Monarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to their overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. Although the compass has been studied in detail in migrating butterflies, little is known about the orientation abilities of non-migrating butterflies. Here, we investigated whether non-migrating butterflies - which stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences, suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies incorporate both cues in their compass. Taken together, we show here that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration.
Collapse
Affiliation(s)
- Myriam Franzke
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Christian Kraus
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - David Dreyer
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Keram Pfeiffer
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - M Jerome Beetz
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Anna L Stöckl
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - James J Foster
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Eric J Warrant
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| |
Collapse
|
24
|
von Hadeln J, Hensgen R, Bockhorst T, Rosner R, Heidasch R, Pegel U, Quintero Pérez M, Homberg U. Neuroarchitecture of the central complex of the desert locust: Tangential neurons. J Comp Neurol 2019; 528:906-934. [PMID: 31625611 DOI: 10.1002/cne.24796] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli. It receives prominent input from the visual system and plays a major role in spatial orientation of the animals. Vertical slices and horizontal layers of the CX are formed by columnar, tangential, and pontine neurons. While pontine and columnar neurons have been analyzed in detail, especially in the fruit fly and desert locust, understanding of the organization of tangential cells is still rudimentary. As a basis for future functional studies, we have studied the morphologies of tangential neurons of the CX of the desert locust Schistocerca gregaria. Intracellular dye injections revealed 43 different types of tangential neuron, 8 of the PB, 5 of the CBL, 24 of the CBU, 2 of the noduli, and 4 innervating multiple substructures. Cell bodies of these neurons were located in 11 different clusters in the cell body rind. Judging from the presence of fine versus beaded terminals, the vast majority of these neurons provide input into the CX, especially from the lateral complex (LX), the superior protocerebrum, the posterior slope, and other surrounding brain areas, but not directly from the mushroom bodies. Connections are largely subunit- and partly layer-specific. No direct connections were found between the CBU and the CBL. Instead, both subdivisions are connected in parallel with the PB and distinct layers of the noduli.
Collapse
Affiliation(s)
- Joss von Hadeln
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronja Hensgen
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Tobias Bockhorst
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Rosner
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Heidasch
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Manuel Quintero Pérez
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
25
|
Abstract
South African ball-rolling dung beetles exhibit a unique orientation behavior to avoid competition for food: after forming a piece of dung into a ball, they efficiently escape with it from the dung pile along a straight-line path. To keep track of their heading, these animals use celestial cues, such as the sun, as an orientation reference. Here we show that wind can also be used as a guiding cue for the ball-rolling beetles. We demonstrate that this mechanosensory compass cue is only used when skylight cues are difficult to read, i.e., when the sun is close to the zenith. This raises the question of how the beetles combine multimodal orientation input to obtain a robust heading estimate. To study this, we performed behavioral experiments in a tightly controlled indoor arena. This revealed that the beetles register directional information provided by the sun and the wind and can use them in a weighted manner. Moreover, the directional information can be transferred between these 2 sensory modalities, suggesting that they are combined in the spatial memory network in the beetle's brain. This flexible use of compass cue preferences relative to the prevailing visual and mechanosensory scenery provides a simple, yet effective, mechanism for enabling precise compass orientation at any time of the day.
Collapse
|
26
|
El Jundi B, Baird E, Byrne MJ, Dacke M. The brain behind straight-line orientation in dung beetles. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb192450. [PMID: 30728239 DOI: 10.1242/jeb.192450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
Collapse
Affiliation(s)
- Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, Emmy-Noether Group, 97074 Würzburg, Germany
| | - Emily Baird
- Stockholm University, Faculty of Science, Department of Zoology, Division of Functional Morphology, 10691 Stockholm, Sweden
| | - Marcus J Byrne
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa
| | - Marie Dacke
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa.,Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| |
Collapse
|
27
|
Dupeyroux J, Viollet S, Serres JR. Polarized skylight-based heading measurements: a bio-inspired approach. J R Soc Interface 2019; 16:20180878. [PMID: 30958149 PMCID: PMC6364636 DOI: 10.1098/rsif.2018.0878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/20/2018] [Indexed: 11/12/2022] Open
Abstract
Many insects such as desert ants, crickets, locusts, dung beetles, bees and monarch butterflies have been found to extract their navigation cues from the regular pattern of the linearly polarized skylight. These species are equipped with ommatidia in the dorsal rim area of their compound eyes, which are sensitive to the angle of polarization of the skylight. In the polarization-based robotic vision, most of the sensors used so far comprise high-definition CCD or CMOS cameras topped with linear polarizers. Here, we present a 2-pixel polarization-sensitive visual sensor, which was strongly inspired by the dorsal rim area of desert ants' compound eyes, designed to determine the direction of polarization of the skylight. The spectral sensitivity of this minimalistic sensor, which requires no lenses, is in the ultraviolet range. Five different methods of computing the direction of polarization were implemented and tested here. Our own methods, the extended and AntBot method, outperformed the other three, giving a mean angular error of only 0.62° ± 0.40° (median: 0.24°) and 0.69° ± 0.52° (median: 0.39°), respectively (mean ± standard deviation). The results obtained in outdoor field studies show that our celestial compass gives excellent results at a very low computational cost, which makes it highly suitable for autonomous outdoor navigation purposes.
Collapse
|
28
|
El Jundi B, Warrant EJ, Pfeiffer K, Dacke M. Neuroarchitecture of the dung beetle central complex. J Comp Neurol 2018; 526:2612-2630. [PMID: 30136721 DOI: 10.1002/cne.24520] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
Despite their tiny brains, insects show impressive abilities when navigating over short distances during path integration or during migration over thousands of kilometers across entire continents. Celestial compass cues often play an important role as references during navigation. In contrast to many other insects, South African dung beetles rely exclusively on celestial cues for visual reference during orientation. After finding a dung pile, these animals cut off a piece of dung from the pat, shape it into a ball and roll it away along a straight path until a suitable place for underground consumption is found. To maintain a constant bearing, a brain region in the beetle's brain, called the central complex, is crucially involved in the processing of skylight cues, similar to what has already been shown for path-integrating and migrating insects. In this study, we characterized the neuroanatomy of the sky-compass network and the central complex in the dung beetle brain in detail. Using tracer injections, combined with imaging and 3D modeling, we describe the anatomy of the possible sky-compass network in the central brain. We used a quantitative approach to study the central-complex network and found that several types of neuron exhibit a highly organized connectivity pattern. The architecture of the sky-compass network and central complex is similar to that described in insects that perform path integration or are migratory. This suggests that, despite their different orientation behaviors, this neural circuitry for compass orientation is highly conserved among the insects.
Collapse
Affiliation(s)
- Basil El Jundi
- Biocenter, Zoology II, Emmy Noether Animal Navigation Group, University of Würzburg, Germany
| | - Eric J Warrant
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Marie Dacke
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|