1
|
Dombrovski M, Zang Y, Frighetto G, Vaccari A, Jang H, Mirshahidi PS, Xie F, Sanfilippo P, Hina BW, Rehan A, Hussein RH, Mirshahidi PS, Lee C, Morris A, Frye MA, von Reyn CR, Kurmangaliyev YZ, Card GM, Zipursky SL. Gradients of Cell Recognition Molecules Wire Visuomotor Transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.04.610846. [PMID: 39974884 PMCID: PMC11838220 DOI: 10.1101/2024.09.04.610846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Converting sensory information into motor commands is fundamental to most of our actions 1,2 . In Drosophila , visuomotor transformations are mediated by Visual Projection Neurons (VPNs) 3,4 . These neurons encode object location and motion to drive directional behaviors through a synaptic gradient mechanism 5 . However, the molecular origins of such graded connectivity remain unknown. We addressed this question in a VPN cell type called LPLC2 6 , which integrates looming motion and transforms it into an escape response through two separate dorsoventral synaptic gradients at its inputs and outputs. We identified two corresponding dorsoventral expression gradients of cell recognition molecules within the LPLC2 population that regulate this synaptic connectivity. Dpr13 determines synaptic outputs of LPLC2 axons by interacting with its binding partner, DIP-ε, expressed in the Giant Fiber - a neuron that mediates escape 7 . Similarly, Beat-VI regulates synaptic inputs onto LPLC2 dendrites by interacting with Side-II expressed in upstream motion-detecting neurons. Behavioral, physiological, and molecular experiments demonstrate that these coordinated molecular gradients regulate synaptic connectivity, enabling the accurate transformation of visual features into motor commands. As continuous variation in gene expression within a neuronal type is also observed in the mammalian brain 8 , graded expression of cell recognition molecules may represent a common mechanism underlying synaptic specificity.
Collapse
|
2
|
Kuhar R, Williamson M, Yee P, Naik G, Cursain SM, Condron B. Do wild-caught fly larvae cooperatively forage? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:199-208. [PMID: 39589543 PMCID: PMC12003498 DOI: 10.1007/s00359-024-01724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/27/2024]
Abstract
Animals often form organized cooperative foraging groups, where individual members must adhere to specific rules to maintain cohesiveness. These groups face the challenge of managing potential intruders, who may or may not assist in foraging. In semi-liquid food environments, Drosophila larvae learn to synchronize their movements into clusters, which are thought to make feeding more efficient. Individuals who do not synchronize with the group are excluded from the cluster. Whether clustering behavior occurs in wild-caught larvae, and if so, the extent of their selectivity in group membership, remains unknown. Here, we show that clustering occurs across a number of fly species, and the capacity to join different clusters varies both between and within species. We collected and observed a larval cluster from rotting fruit in the field, yielding seven fly species. Subsequent tests for clustering on five lines from this collection and 20 other inbred wild-caught lines revealed that all species, except D. suzukii, exhibit clustering behavior. Each line demonstrates varying capacities to become members of different clusters. This study also indicates that there is high genetic variance in how individual lines cluster with each other that is not explained by cross species features. Additionally, combinations of wild species with lab benchmark strains give varied outcomes in resultant adult fitness. The ability to co-cluster varies between and within species boundaries. However, fly lines that cluster with another tend to impart fitness both to themselves and their host. Our findings demonstrate that multiple species of fly larvae can co-cluster. This behavior tends to confer mutual benefits to cluster members, suggesting significant ecological implications in Drosophila communities.
Collapse
Affiliation(s)
- Rives Kuhar
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Madeline Williamson
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Peyton Yee
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Guzel Naik
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | | | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
3
|
Tleiss F, Montanari M, Milleville R, Pierre O, Royet J, Osman D, Gallet A, Kurz CL. Spatial and temporal coordination of Duox/TrpA1/Dh31 and IMD pathways is required for the efficient elimination of pathogenic bacteria in the intestine of Drosophila larvae. eLife 2024; 13:RP98716. [PMID: 39576741 PMCID: PMC11584180 DOI: 10.7554/elife.98716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.
Collapse
Affiliation(s)
- Fatima Tleiss
- Université Côte d'Azur, CNRS, INRAE, ISA, Nice, France
| | | | | | | | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France
| | - Dani Osman
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192-INSERM 1187-IRD 249-Université de La Réunion, île de La Réunion, France
| | - Armel Gallet
- Université Côte d'Azur, CNRS, INRAE, ISA, Nice, France
| | | |
Collapse
|
4
|
Liao A, Qian C, Abdi S, Yee P, Cursain SM, Condron N, Condron B. Population parameters of Drosophila larval cooperative foraging. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:843-851. [PMID: 38594346 PMCID: PMC11551076 DOI: 10.1007/s00359-024-01701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
Cooperative foraging behavior can be advantageous when there is a common exploitable resource. By cooperating, members of the group can take advantage of the potential of increased efficiency of working together as well as equitable distribution of the product. An experimental signature of cooperative foraging is an Allee effect where at a certain number of individuals, there is a peak of fitness. What happens when there are intruders especially ones that do not contribute to any work required for foraging? Drosophila larvae secrete digestive enzymes and exodigest food. Under crowded conditions in liquid food these larvae form synchronized feeding clusters which provides a fitness benefit. A key for this synchronized feeding behavior is the visually guided alignment between adjacent larvae in a feeding cluster. Larvae who do not align their movements are excluded from the groups and subsequently lose the benefit. This may be a way of editing the group to include only known members. To test the model, the fitness benefit from cooperative behavior was further investigated to establish an Allee effect for a number of strains including those who cannot exodigest or cluster. In a standard lab vial, about 40 larvae is the optimal number for fitness. Combinations of these larvae were also examined. The expectation was that larvae who do not contribute to exodigestion are obligate cheaters and would be expelled. Indeed, obligate cheaters gain greatly from the hosts but paradoxically, so do the hosts. Clusters that include cheaters are more stable. Therefore, clustering and the benefits from it are dependent on more than just the contribution to exodigestion. This experimental system should provide a rich future model to understand the metrics of cooperative behavior.
Collapse
Affiliation(s)
- Amy Liao
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Christy Qian
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Sepideh Abdi
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Peyton Yee
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | | | - Niav Condron
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
5
|
Wu Y, Wang Q, Yang W, Zhang S, Mao CX, He N, Zhou S, Zhou C, Liu W. The cluster digging behavior of larvae confers trophic benefits to fitness in insects. INSECT SCIENCE 2024; 31:870-884. [PMID: 38161191 DOI: 10.1111/1744-7917.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Collective behaviors efficiently impart benefits to a diversity of species ranging from bacteria to humans. Fly larvae tend to cluster and form coordinated digging groups under crowded conditions, yet understanding the rules governing this behavior is in its infancy. We primarily took advantage of the Drosophila model to investigate cooperative foraging behavior. Here, we report that Drosophila-related species and the black soldier fly have evolved a conserved strategy of cluster digging in food foraging. Subsequently, we investigated relative factors, including larval stage, population density, and food stiffness and quality, that affect the cluster digging behavior. Remarkably, oxygen supply through the posterior breathing spiracles is necessary for the organization of digging clusters. More importantly, we theoretically devise a mathematical model to accurately calculate how the cluster digging behavior expands food resources by diving depth, cross-section area, and food volume. We found that cluster digging behavior approximately increases 2.2 fold depth, 1.7-fold cross-section area, and 1.9 fold volume than control groups, respectively. Amplification of food sources significantly facilitates survival, larval development, and reproductive success of Drosophila challenged with competition for limited food resources, thereby conferring trophic benefits to fitness in insects. Overall, our findings highlight that the cluster digging behavior is a pivotal behavior for their adaptation to food scarcity, advancing a better understanding of how this cooperative behavior confers fitness benefits in the animal kingdom.
Collapse
Affiliation(s)
- Yujie Wu
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qiang Wang
- School of Teacher Education, Nanjing Xiaozhuang University, Nanjing, China
| | - Weikang Yang
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Sheng Zhang
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Nana He
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Shaojie Zhou
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Chuanming Zhou
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| | - Wei Liu
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, China
| |
Collapse
|
6
|
Williams HJ, Sridhar VH, Hurme E, Gall GE, Borrego N, Finerty GE, Couzin ID, Galizia CG, Dominy NJ, Rowland HM, Hauber ME, Higham JP, Strandburg-Peshkin A, Melin AD. Sensory collectives in natural systems. eLife 2023; 12:e88028. [PMID: 38019274 PMCID: PMC10686622 DOI: 10.7554/elife.88028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a 'sensory collective'; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify 'sensescapes'. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.
Collapse
Affiliation(s)
- Hannah J Williams
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Vivek H Sridhar
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Edward Hurme
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Gabriella E Gall
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | | | | | - Iain D Couzin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - C Giovanni Galizia
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | - Nathaniel J Dominy
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, Dartmouth CollegeHanoverUnited States
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical EcologyJenaGermany
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-ChampaignUrbana-ChampaignUnited States
| | - James P Higham
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, New York UniversityNew YorkUnited States
| | - Ariana Strandburg-Peshkin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Amanda D Melin
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology and Archaeology, University of CalgaryCalgaryCanada
- Alberta Children’s Hospital Research Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
7
|
Bleichman I, Yadav P, Ayali A. Visual processing and collective motion-related decision-making in desert locusts. Proc Biol Sci 2023; 290:20221862. [PMID: 36651041 PMCID: PMC9845972 DOI: 10.1098/rspb.2022.1862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Collectively moving groups of animals rely on the decision-making of locally interacting individuals in order to maintain swarm cohesion. However, the complex and noisy visual environment poses a major challenge to the extraction and processing of relevant information. We addressed this challenge by studying swarming-related decision-making in desert locust last-instar nymphs. Controlled visual stimuli, in the form of random dot kinematograms, were presented to tethered locust nymphs in a trackball set-up, while monitoring movement trajectory and walking parameters. In a complementary set of experiments, the neurophysiological basis of the observed behavioural responses was explored. Our results suggest that locusts use filtering and discrimination upon encountering multiple stimuli simultaneously. Specifically, we show that locusts are sensitive to differences in speed at the individual conspecific level, and to movement coherence at the group level, and may use these to filter out non-relevant stimuli. The locusts also discriminate and assign different weights to different stimuli, with an observed interactive effect of stimulus size, relative abundance and motion direction. Our findings provide insights into the cognitive abilities of locusts in the domain of decision-making and visual-based collective motion, and support locusts as a model for investigating sensory-motor integration and motion-related decision-making in the intricate swarm environment.
Collapse
Affiliation(s)
| | - Pratibha Yadav
- School of Zoology, Tel Aviv University, 6997801 Israel,Sagol School of Neuroscience, Tel Aviv University, 6997801 Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, 6997801 Israel,Sagol School of Neuroscience, Tel Aviv University, 6997801 Israel
| |
Collapse
|
8
|
Ferreira CH, Heinemans M, Farias M, Gonçalves R, Moita MA. Social Cues of Safety Can Override Differences in Threat Level. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.885795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animals in groups integrate social with directly gathered information about the environment to guide decisions regarding reproduction, foraging, and defence against predatory threats. In the context of predation, usage of social information has acute fitness benefits, aiding the detection of predators, the mounting of concerted defensive responses, or allowing the inference of safety, permitting other beneficial behaviors, such as foraging for food. We previously showed that Drosophila melanogaster exposed to an inescapable visual threat use freezing by surrounding flies as a cue of danger and movement resumption as a cue of safety. Moreover, group responses were primarily guided by the safety cues, resulting in a net social buffering effect, i.e., a graded decrease in freezing behavior with increasing group sizes, similar to other animals. Whether and how different threat levels affect the use of social cues to guide defense responses remains elusive. Here, we investigated this issue by exposing flies individually and in groups to two threat imminences using looms of different speeds. We showed that freezing responses are stronger to the faster looms regardless of social condition. However, social buffering was stronger for groups exposed to the fast looms, such that the increase in freezing caused by the higher threat was less prominent in flies tested in groups than those tested individually. Through artificial control of movement, we created groups composed of moving and freezing flies and by varying group composition, we titrated the motion cues that surrounding flies produce, which were held constant across threat levels. We found that the same level of safety motion cues had a bigger weight on the flies’ decisions when these were exposed to the higher threat, thus overriding differences in perceived threat levels. These findings shed light on the “safety in numbers” effect, revealing the modulation of the saliency of social safety cues across threat intensities, a possible mechanism to regulate costly defensive responses.
Collapse
|
9
|
Couzin-Fuchs E, Ayali A. The social brain of 'non-eusocial' insects. CURRENT OPINION IN INSECT SCIENCE 2021; 48:1-7. [PMID: 33933684 DOI: 10.1016/j.cois.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Decisions are seldom entirely devoid of social influence. Even in organisms that have traditionally been considered non-social, the social environment plays an important role in mediating behavior. Here we review the current knowledge regarding the neural basis of social behaviors in non-eusocial insects, with a particular focus on fruit flies, cockroaches and locusts. Each are shown to offer valuable, and complementary, insights into how social behavior is mediated at the neural level. The presented studies demonstrate that social cues, which are integrated in primary sensory areas, exert a considerable influence on behavior. Further studies with these models, and others, will provide important insights into the diversity of social behaviors, and into the way that these are encoded in dedicated brain and neuronal structures.
Collapse
Affiliation(s)
- Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany.
| | - Amir Ayali
- School of Zoology, Tel Aviv University, 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, 6997801, Israel
| |
Collapse
|
10
|
Williamson M, Mitchell A, Condron B. Birth temperature followed by a visual critical period determines cooperative group membership. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:739-746. [PMID: 34611741 DOI: 10.1007/s00359-021-01512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
Abstract
Cooperative behavior often arises when a common exploitable resource is generated. Cooperation can provide equitable distribution and protection from raiding of a common resource such as processed food. Under crowded conditions in liquid food, Drosophila larvae adopt synchronized feeding behavior which provides a fitness benefit. A key for this synchronized feeding behavior is the visually guided alignment of a 1-2 s locomotion stride between adjacent larvae in a feeding cluster. The locomotion stride is thought to be set by embryonic incubation temperature. This raises a question as to whether sib larvae will only cluster efficiently if they hatch at the same temperature. To test this, larvae were first collected and incubated in outdoor conditions. Morning hatched lower temperature larvae move slower than their afternoon higher temperature sibs. Both temperature types synchronize but tend to exclude the other type of larvae from their clusters. In addition, fitness, as measured by adult wing size, is highest when larvae cluster with their own temperature type. Thus, the temperature at which an egg is laid sets a type of behavioral stamp or password which locks in membership for later cooperative feeding.
Collapse
Affiliation(s)
- Madeline Williamson
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Alexandra Mitchell
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
11
|
Poe AR, Mace KD, Kayser MS. Getting into rhythm: developmental emergence of circadian clocks and behaviors. FEBS J 2021; 289:6576-6588. [PMID: 34375504 DOI: 10.1111/febs.16157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Circadian clocks keep time to coordinate diverse behaviors and physiological functions. While molecular circadian rhythms are evident during early development, most behavioral rhythms, such as sleep-wake, do not emerge until far later. Here, we examine the development of circadian clocks, outputs, and behaviors across phylogeny, with a particular focus on Drosophila. We explore potential mechanisms for how central clocks and circadian output loci establish communication, and discuss why from an evolutionary perspective sleep-wake and other behavioral rhythms emerge long after central clocks begin keeping time.
Collapse
Affiliation(s)
- Amy R Poe
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kyla D Mace
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Dhawan S, Myers P, Bailey DMD, Ostrovsky AD, Evers JF, Landgraf M. Reactive Oxygen Species Mediate Activity-Regulated Dendritic Plasticity Through NADPH Oxidase and Aquaporin Regulation. Front Cell Neurosci 2021; 15:641802. [PMID: 34290589 PMCID: PMC8288108 DOI: 10.3389/fncel.2021.641802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Neurons utilize plasticity of dendritic arbors as part of a larger suite of adaptive plasticity mechanisms. This explicitly manifests with motoneurons in the Drosophila embryo and larva, where dendritic arbors are exclusively postsynaptic and are used as homeostatic devices, compensating for changes in synaptic input through adapting their growth and connectivity. We recently identified reactive oxygen species (ROS) as novel plasticity signals instrumental in this form of dendritic adjustment. ROS correlate with levels of neuronal activity and negatively regulate dendritic arbor size. Here, we investigated NADPH oxidases as potential sources of such activity-regulated ROS and implicate Dual Oxidase (but not Nox), which generates hydrogen peroxide extracellularly. We further show that the aquaporins Bib and Drip, but not Prip, are required for activity-regulated ROS-mediated adjustments of dendritic arbor size in motoneurons. These results suggest a model whereby neuronal activity leads to activation of the NADPH oxidase Dual Oxidase, which generates hydrogen peroxide at the extracellular face; aquaporins might then act as conduits that are necessary for these extracellular ROS to be channeled back into the cell where they negatively regulate dendritic arbor size.
Collapse
Affiliation(s)
- Serene Dhawan
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Neural Circuits and Evolution Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Philip Myers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David M. D. Bailey
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Aaron D. Ostrovsky
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jan Felix Evers
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Collie J, Granela O, Brown EB, Keene AC. Aggression Is Induced by Resource Limitation in the Monarch Caterpillar. iScience 2020; 23:101791. [PMID: 33376972 PMCID: PMC7756136 DOI: 10.1016/j.isci.2020.101791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/27/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
Food represents a limiting resource for the growth and developmental progression of many animal species. As a consequence, competition over food, space, or other resources can trigger territoriality and aggressive behavior. In the monarch butterfly, Danaus plexippus, caterpillars feed predominantly on milkweed, raising the possibility that access to milkweed is critical for growth and survival. Here, we characterize the role of food availability on aggression in monarch caterpillars and find that monarch caterpillars display stereotyped aggressive lunges that increase during development, peaking during the fourth and fifth instar stages. The number of lunges toward a conspecific caterpillar was significantly increased under conditions of low food availability, suggesting resource defense may trigger aggression. These findings establish monarch caterpillars as a model for investigating interactions between resource availability and aggressive behavior under ecologically relevant conditions and set the stage for future investigations into the neuroethology of aggression in this system.
Collapse
Affiliation(s)
- Joseph Collie
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Odelvys Granela
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Elizabeth B. Brown
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Corresponding author
| | - Alex C. Keene
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Corresponding author
| |
Collapse
|
14
|
Dombrovski M, Condron B. Critical periods shaping the social brain: A perspective from Drosophila. Bioessays 2020; 43:e2000246. [PMID: 33215730 DOI: 10.1002/bies.202000246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022]
Abstract
Many sensory processing regions of the central brain undergo critical periods of experience-dependent plasticity. During this time ethologically relevant information shapes circuit structure and function. The mechanisms that control critical period timing and duration are poorly understood, and this is of special importance for those later periods of development, which often give rise to complex cognitive functions such as social behavior. Here, we review recent findings in Drosophila, an organism that has some unique experimental advantages, and introduce novel views for manipulating plasticity in the post-embryonic brain. Critical periods in larval and young adult flies resemble classic vertebrate models with distinct onset and termination, display clear connections with complex behaviors, and provide opportunities to control the time course of plasticity. These findings may extend our knowledge about mechanisms underlying extension and reopening of critical periods, a concept that has great relevance to many human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Dombrovski M, Kuhar R, Mitchell A, Shelton H, Condron B. Cooperative foraging during larval stage affects fitness in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:743-755. [PMID: 32623493 PMCID: PMC7392940 DOI: 10.1007/s00359-020-01434-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
Cooperative behavior can confer advantages to animals. This is especially true for cooperative foraging which provides fitness benefits through more efficient acquisition and consumption of food. While examples of group foraging have been widely described, the principles governing formation of such aggregations and rules that determine group membership remain poorly understood. Here, we take advantage of an experimental model system featuring cooperative foraging behavior in Drosophila. Under crowded conditions, fly larvae form coordinated digging groups (clusters), where individuals are linked together by sensory cues and group membership requires prior experience. However, fitness benefits of Drosophila larval clustering remain unknown. We demonstrate that animals raised in crowded conditions on food partially processed by other larvae experience a developmental delay presumably due to the decreased nutritional value of the substrate. Intriguingly, same conditions promote the formation of cooperative foraging clusters which further extends larval stage compared to non-clustering animals. Remarkably, this developmental retardation also results in a relative increase in wing size, serving an indicator of adult fitness. Thus, we find that the clustering-induced developmental delay is accompanied by fitness benefits. Therefore, cooperative foraging, while delaying development, may have evolved to give Drosophila larvae benefits when presented with competition for limited food resources.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rives Kuhar
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Alexandra Mitchell
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Hunter Shelton
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
16
|
Jiang L, Cheng Y, Gao S, Zhong Y, Ma C, Wang T, Zhu Y. Emergence of social cluster by collective pairwise encounters in Drosophila. eLife 2020; 9:51921. [PMID: 31959283 PMCID: PMC6989122 DOI: 10.7554/elife.51921] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Many animals exhibit an astonishing ability to form groups of large numbers of individuals. The dynamic properties of such groups have been the subject of intensive investigation. The actual grouping processes and underlying neural mechanisms, however, remain elusive. Here, we established a social clustering paradigm in Drosophila to investigate the principles governing social group formation. Fruit flies spontaneously assembled into a stable cluster mimicking a distributed network. Social clustering was exhibited as a highly dynamic process including all individuals, which participated in stochastic pair-wise encounters mediated by appendage touches. Depriving sensory inputs resulted in abnormal encounter responses and a high failure rate of cluster formation. Furthermore, the social distance of the emergent network was regulated by ppk-specific neurons, which were activated by contact-dependent social grouping. Taken together, these findings revealed the development of an orderly social structure from initially unorganised individuals via collective actions.
Collapse
Affiliation(s)
- Lifen Jiang
- School of Life Science, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Cheng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shan Gao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yincheng Zhong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengrui Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Ferreira CH, Moita MA. What can a non-eusocial insect tell us about the neural basis of group behaviour? CURRENT OPINION IN INSECT SCIENCE 2019; 36:118-124. [PMID: 31563022 DOI: 10.1016/j.cois.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Group behaviour has been extensively studied in canonically social swarming, shoaling and flocking vertebrates and invertebrates, providing great insight into the behavioural and ecological aspects of group living. However, the search for its neuronal basis is lagging behind. In the natural environment, Drosophila melanogaster, increasingly used as a model to study neuronal circuits and behaviour, spend their lives surrounded by several conspecifics of different stages, as well as heterospecifics. Despite their dynamic multi-organism natural environment, the neuronal basis of social behaviours has been typically studied in dyadic interactions, such as mating or aggression. This review will focus on recent studies regarding how the behaviour of fruit flies can be shaped by the nature of the surrounding group. We argue that the rich social environment of Drosophila melanogaster, its arsenal of neurogenetic tools and the ability to use large sample sizes for detailed quantitative behavioural analysis makes this species ideal for mechanistic studies of group behaviour.
Collapse
Affiliation(s)
- Clara H Ferreira
- Champalimaud Research, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal.
| | - Marta A Moita
- Champalimaud Research, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
18
|
Qin B, Humberg TH, Kim A, Kim HS, Short J, Diao F, White BH, Sprecher SG, Yuan Q. Muscarinic acetylcholine receptor signaling generates OFF selectivity in a simple visual circuit. Nat Commun 2019; 10:4093. [PMID: 31501438 PMCID: PMC6733798 DOI: 10.1038/s41467-019-12104-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/21/2019] [Indexed: 11/30/2022] Open
Abstract
ON and OFF selectivity in visual processing is encoded by parallel pathways that respond to either light increments or decrements. Despite lacking the anatomical features to support split channels, Drosophila larvae effectively perform visually-guided behaviors. To understand principles guiding visual computation in this simple circuit, we focus on investigating the physiological properties and behavioral relevance of larval visual interneurons. We find that the ON vs. OFF discrimination in the larval visual circuit emerges through light-elicited cholinergic signaling that depolarizes a cholinergic interneuron (cha-lOLP) and hyperpolarizes a glutamatergic interneuron (glu-lOLP). Genetic studies further indicate that muscarinic acetylcholine receptor (mAchR)/Gαo signaling produces the sign-inversion required for OFF detection in glu-lOLP, the disruption of which strongly impacts both physiological responses of downstream projection neurons and dark-induced pausing behavior. Together, our studies identify the molecular and circuit mechanisms underlying ON vs. OFF discrimination in the Drosophila larval visual system. Drosophila larvae are able to perform visually-guided behaviours yet the molecular and circuit mechanisms for discriminating changes in light intensity are not known. Here, the authors report that ON versus OFF discrimination results from opposing cholinergic and glutamatergic mechanisms.
Collapse
Affiliation(s)
- Bo Qin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Anna Kim
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hyong S Kim
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jacob Short
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fengqiu Diao
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Benjamin H White
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|