1
|
Meyerhof GT, Dhavan P, Blunk S, Bourd A, Singh R, Chandel A, Montell C. Visual threat avoidance while host seeking by Aedes aegypti mosquitoes. Cell Rep 2025; 44:115435. [PMID: 40112001 PMCID: PMC12077400 DOI: 10.1016/j.celrep.2025.115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The mosquito Aedes aegypti infects hundreds of millions of people annually with disease-causing viruses. When a mosquito approaches a host, the host often swats defensively. Here, we reveal the mosquito's escape behavior during host seeking in response to a threatening visual cue-a newly appearing shadow. We found that reactions to a shadow are far more aversive when it appears quickly versus slowly. Remarkably, mosquitoes evade shadows under very dim light conditions. Knockout of the TRP channel compromises the ability of mosquitoes to avoid threatening shadows, but only under high light conditions. Conversely, removing two of the five rhodopsins normally present in the compound eyes, Op1 and Op2, diminishes shadow aversion, but only under low light. Upon removal of a threatening visual cue, mosquitoes quickly re-initiate host seeking. Thus, female Aedes balance their need to host seek with visual threat avoidance by rapidly transitioning between these two behavioral states.
Collapse
Affiliation(s)
- Geoff T Meyerhof
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pratik Dhavan
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Summer Blunk
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Allison Bourd
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ramandeep Singh
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Avinash Chandel
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
2
|
Ibarra Bouzada LME, Beningaza AM, Di Benedetto IMD, Guerenstein PG. An improved, multimodal, trap for Triatoma infestans, a kissing bug vector of Chagas disease: laboratory tests. Acta Trop 2025; 266:107626. [PMID: 40268156 DOI: 10.1016/j.actatropica.2025.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Triatomines, commonly known as kissing bugs, are vectors of the protozoan Trypanosoma cruzi, responsible for Chagas disease in the Americas. In South America, Triatoma infestans is one of the main vectors of that disease. Triatomine control programs require practical, economical, and reliable tools and methods to monitor infestation in homes, especially when insects are present at low densities, and detection sensitivity must be improved. In a previous work, a sticky pitfall trap baited with a human-based synthetic odor blend (L(+)lactic acid + valeric acid + ammonia) was developed. That trap captured a significant number of bugs although less than a host-baited trap. In the present work, we added a CO2 source (a yeast culture) and a heat source (heated paraffin wax) to that odor blend, and tested the resulting multimodal bait in the trap used previously. As the resulting multimodal trap captured as many bugs as a host-baited trap, we also aimed at evaluating the role of the bait constituents in its capture performance. Tests were conducted with two nymphal stages (third and fourth) of T. infestans, within three experimental boxes (containing one trap each) under semi-controlled laboratory conditions, overnight. The percentage of insects captured per trap per treatment was statistically analyzed using a binomial Generalized Linear Mixed Model. The multimodal trap captured as many fourth and third instar nymphs as a trap baited with a mouse (80 % for fourth instar and 57.1 % for third instar nymphs) and more than an unbaited trap (20 % for fourth instar and 14.3 % for third instar nymphs). While the yeast culture plus the odor blend evoked a very good capture performance, (64.3 % for third instar nymphs), the heated paraffin wax appeared to decrease the bait performance when the yeast culture was absent (7.1 % capture for third instar nymphs). Different hypotheses are proposed to explain this. Our results suggest that the addition of the yeast culture to the odor blend was responsible for the improvement of the bait. In summary, we reached a high-performance trap to capture T. infestans nymphs in the laboratory. This trap deserves to be tested in a field setting.
Collapse
Affiliation(s)
- Lucía M E Ibarra Bouzada
- Laboratorio del Estudio de la Biología de Insectos (LEBI), Centro de Investigación Científica y de Transferencia Tecnológica a la Producción (CICYTTP CONICET-Prov. de Entre Ríos-UADER), Diamante, Entre Ríos E3105, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Escuela Superior de Sanidad, Universidad Nacional del Litoral, Santa Fe S3000, Argentina.
| | - Andrea Martínez Beningaza
- Laboratorio del Estudio de la Biología de Insectos (LEBI), Centro de Investigación Científica y de Transferencia Tecnológica a la Producción (CICYTTP CONICET-Prov. de Entre Ríos-UADER), Diamante, Entre Ríos E3105, Argentina
| | - Ingrid María Desiree Di Benedetto
- Laboratorio del Estudio de la Biología de Insectos (LEBI), Centro de Investigación Científica y de Transferencia Tecnológica a la Producción (CICYTTP CONICET-Prov. de Entre Ríos-UADER), Diamante, Entre Ríos E3105, Argentina
| | - Pablo G Guerenstein
- Laboratorio del Estudio de la Biología de Insectos (LEBI), Centro de Investigación Científica y de Transferencia Tecnológica a la Producción (CICYTTP CONICET-Prov. de Entre Ríos-UADER), Diamante, Entre Ríos E3105, Argentina; Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Entre Ríos E3100, Argentina.
| |
Collapse
|
3
|
Ochwedo KO, Wang X, Céspedes N, Bentil RE, Wild R, Hernandez E, Hernandez A, Kaylor HL, Debebe Y, Datta J, Robert MA, Riffell JA, Lewis EE, Luckhart S. Regulation of diel locomotor activity and retinal responses of Anopheles stephensi by ingested histamine and serotonin is temperature- and infection-dependent. PLoS Pathog 2025; 21:e1013139. [PMID: 40294029 PMCID: PMC12058162 DOI: 10.1371/journal.ppat.1013139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 05/07/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Disrupting behaviors linked to movement of primary mosquito vectors, such as diel locomotor activity and visual sensitivity, is a novel and plausible malaria control intervention. Diel locomotor activity is an output of arthropod circadian activity and is influenced by factors such as light, temperature, and infection status. The biogenic amines histamine and serotonin (5-HT) are ingested with blood and differ between healthy hosts and those with severe malaria. They regulate malaria parasite infection in Anopheles stephensi, but the degree to which aging, temperature, and infection interact with ingested biogenic amines to influence mosquito behavior was unknown prior to these studies. We provisioned A. stephensi with histamine and 5-HT at healthy- and malaria-associated levels to examine diel locomotor activity of uninfected A. stephensi across lifespan, at temperatures that A. stephensi could encounter within its range, and on Plasmodium yoelii-infected mosquitoes during sporogony. We further evaluated treatment effects on retinal sensitivity of uninfected mosquitoes during light and dark periods typically associated with low and high activity for this crepuscular species. Treatment with malaria-associated levels of histamine and 5-HT significantly increased the locomotor activity of A. stephensi across lifespan and enhanced retinal sensitivity to a broad spectrum of wavelengths at the onset of light. This treatment in combination with higher temperatures also increased activity levels and broadened the peak hours of activity of A. stephensi. Notably, these effects were infection dependent. Together, our data suggest that histaminergic and serotonergic signaling within the gut-brain axis of A. stephensi could be targeted to alter mosquito activity and visual sensitivity as the basis for novel transmission-blocking strategies for malaria control.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Xiaodi Wang
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nora Céspedes
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Ronald E. Bentil
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Ryan Wild
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Emily Hernandez
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Amy Hernandez
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Yared Debebe
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Jyotishka Datta
- Department of Statistics and Center of Biostatics and Health Data Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael A. Robert
- Department of Mathematics, Center for the Mathematics of Biosystems; and Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens (CeZAP), Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
4
|
Shankar S, Giraldo D, Tauxe GM, Spikol ED, Li M, Akbari OS, Wohl MP, McMeniman CJ. Optimized genetic tools for neuroanatomical and functional mapping of the Aedes aegypti olfactory system. G3 (BETHESDA, MD.) 2025; 15:jkae307. [PMID: 39853276 PMCID: PMC11917485 DOI: 10.1093/g3journal/jkae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/26/2025]
Abstract
The mosquito Aedes aegypti is an emerging model insect for invertebrate neurobiology. We detail the application of a dual transgenesis marker system that reports the nature of transgene integration with circular donor template for CRISPR-Cas9-mediated homology-directed repair at target mosquito chemoreceptor genes. Employing this approach, we demonstrate the establishment of cell-type-specific T2A-QF2 driver lines for the A. aegypti olfactory co-receptor genes Ir8a and orco via canonical homology-directed repair and the CO2 receptor complex gene Gr1 via noncanonical homology-directed repair involving duplication of the intended T2A-QF2 integration cassette separated by intervening donor plasmid sequence. Using Gr1+ olfactory sensory neurons as an example, we show that introgression of such T2A-QF2 driver and QUAS responder transgenes into a yellow cuticular pigmentation mutant strain facilitates transcuticular calcium imaging of CO2-evoked neural activity on the maxillary palps with enhanced sensitivity relative to wild-type mosquitoes enveloped by dark melanized cuticle. We further apply Cre-loxP excision to derive marker-free T2A-QF2 in-frame fusions to clearly map axonal projection patterns from olfactory sensory neurons expressing these 3 chemoreceptors into the A. aegypti antennal lobe devoid of background interference from 3xP3-based fluorescent transgenesis markers. The marker-free Gr1 T2A-QF2 driver facilitates clear recording of CO2-evoked responses in this central brain region using the genetically encoded calcium indicators GCaMP6s and CaMPARI2. Systematic application of these optimized methods to different chemoreceptors stands to enable mapping A. aegypti olfactory circuits at peripheral and central levels of olfactory coding at high resolution.
Collapse
Affiliation(s)
- Shruti Shankar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Diego Giraldo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Genevieve M Tauxe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Emma D Spikol
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ming Li
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Margot P Wohl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Blake AJ, Riffell JA. Spectral preferences of mosquitos are altered by odors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636723. [PMID: 39974938 PMCID: PMC11839079 DOI: 10.1101/2025.02.05.636723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Vision underlies many important behaviors in insects generally and in mosquitos specifically. Mosquito vision plays a role in predator avoidance, mate finding, oviposition, locating vertebrate hosts, and vectoring disease. Recent work has shown that when sensitized to CO2, the visual responses of Aedes aegypti are wavelength-dependent, but little is known about how other olfactory stimuli can modulate visual responses. The visual cues associated with flowers, vertebrate hosts, or oviposition sites differs substantially and it is possible that odors might prime the mosquito visual system to respond to these different resources. To investigate the interplay of olfactory and visual cues, we adapted previously used wind tunnel bioassays to use quasi-monochromatic targets (390-740 nm) created with a novel LED synth. We coupled these visual targets with CO2 and the odors representative of vertebrate hosts, floral nectar or oviposition sites and assessed responses via 3D tracking of female mosquitos. When CO2 alone is present, we observe a lower preference for wavelengths in the green portion of the visible spectrum with a gradual increase as wavelengths moved towards the violet and red ends of the spectrum. However, when odors associated both with flowers and oviposition sites, we observed significant increases in mosquito preference for green (475-575 nm) stimuli. In contrast when vertebrate host odor was present, we saw increased preference for stimuli across the entire visible spectrum. These odor shifts in the mosquito spectral preferences suggest these preferences are not fixed and shift depending on behavioral context.
Collapse
Affiliation(s)
- Adam J. Blake
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800
| |
Collapse
|
6
|
Couper LI, Dodge TO, Hemker JA, Kim BY, Exposito-Alonso M, Brem RB, Mordecai EA, Bitter MC. Evolutionary adaptation under climate change: Aedes sp. demonstrates potential to adapt to warming. Proc Natl Acad Sci U S A 2025; 122:e2418199122. [PMID: 39772738 PMCID: PMC11745351 DOI: 10.1073/pnas.2418199122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, promoting expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in Aedes sierrensis, a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population. We found pervasive evidence of heritable genetic variation in mosquito heat tolerance, and phenotypic trade-offs in tolerance to prolonged versus acute heat exposure. Further, we found genomic variation associated with prolonged heat tolerance was clustered in several regions of the genome, suggesting the presence of larger structural variants such as chromosomal inversions. A simple evolutionary model based on our data estimates that the maximum rate of evolutionary adaptation in mosquito heat tolerance will exceed the projected rate of climate warming, implying the potential for mosquitoes to track warming via genetic adaptation.
Collapse
Affiliation(s)
- Lisa I. Couper
- Department of Biology, Stanford University, Stanford, CA94305
- Division of Environmental Health Sciences, University of California, Berkeley, CA94704
| | | | - James A. Hemker
- Department of Biology, Stanford University, Stanford, CA94305
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA94305
| | - Moi Exposito-Alonso
- Department of Integrative Biology, University of California, Berkeley, CA94704
- HHMI, Chevy Chase, MD20815
| | - Rachel B. Brem
- Department of Plant & Microbial Biology, University of California, Berkeley, CA94704
| | | | - Mark C. Bitter
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
7
|
Hu R, Li M, Chen S, Wang M, Tao X, Zhu Y, Yan H, Liu Y. Sniffer restricts arboviral brain infections by regulating ROS levels and protecting blood-brain barrier integrity in Drosophila and mosquitoes. PLoS Pathog 2024; 20:e1012797. [PMID: 39680616 PMCID: PMC11684763 DOI: 10.1371/journal.ppat.1012797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Arthropod-borne viruses (arboviruses) are transmitted to humans by arthropod vectors and pose a serious threat to global public health. Neurotropic arboviruses including Sindbis virus (SINV) persistently infect the central nervous system (CNS) of vector insects without causing notable pathological changes or affecting their behavior or lifespan. However, the mechanisms by which vector insects evade these viral infections in the brains are poorly understood. In this study, we found that loss of the carbonyl reductase Sniffer (Sni) led to a significant increase in SINV infection in the Drosophila brain. Sni regulates reactive oxygen species (ROS) levels, and its depletion leads to elevated ROS, which in turn disrupts the septate junctions (SJs) between subperineurial glia (SPG) cells, compromising the integrity and barrier function of the blood-brain barrier (BBB). Genetic and pharmacological reduction of ROS restored BBB integrity and reduced viral load in the brains of Sni-depleted flies. Additionally, we identified Sni homologs and revealed that the antiviral function of Sni is highly conserved in mosquitoes, where it regulates ROS and protects BBB integrity. Our results revealed an evolutionarily conserved antiviral mechanism in which Sni acts as an antioxidant that protects BBB integrity and restricts viral infection in the vector insect brain.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengzhu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shulin Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinjun Tao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yihan Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado when feeding on cynomolgus macaques or squirrel monkeys. iScience 2024; 27:111198. [PMID: 39555418 PMCID: PMC11563999 DOI: 10.1016/j.isci.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Viruses transmitted by Aedes mosquitoes (e.g., dengue [DENV], Zika [ZIKV]) have demonstrated high potential to spill over from their ancestral, sylvatic cycles in non-human primates to establish transmission in humans. Epidemiological models require accurate knowledge of the contact structure between hosts and vectors, which is highly sensitive to any impacts of virus infection in mosquitoes or hosts on mosquito feeding behavior. Current evidence for whether these viruses affect vector behavior is mixed. Here we leveraged a study on sylvatic DENV-2 and ZIKV transmission between two species of monkey and Aedes albopictus to determine whether virus infection of either host or vector alters vector feeding behavior. Engorgement rates varied from 0% to 100%, but this was not driven by vector nor host infection, but rather by the individual host, host species, and host body temperature. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
- Information School, University of Washington, Seattle, WA 98105, USA
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
9
|
Baik LS, Talross GJS, Gray S, Pattisam HS, Peterson TN, Nidetz JE, Hol FJH, Carlson JR. Mosquito taste responses to human and floral cues guide biting and feeding. Nature 2024; 635:639-646. [PMID: 39415007 PMCID: PMC11578787 DOI: 10.1038/s41586-024-08047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The taste system controls many insect behaviours, yet little is known about how tastants are encoded in mosquitoes or how they regulate critical behaviours. Here we examine how taste stimuli are encoded by Aedes albopictus mosquitoes-a highly invasive disease vector-and how these cues influence biting, feeding and egg laying. We find that neurons of the labellum, the major taste organ of the head, differentially encode a wide variety of human and other cues. We identify three functional classes of taste sensilla with an expansive coding capacity. In addition to excitatory responses, we identify prevalent inhibitory responses, which are predictive of biting behaviour. Certain bitter compounds suppress physiological and behavioural responses to sugar, suggesting their use as potent stop signals against appetitive cues. Complex cues, including human sweat, nectar and egg-laying site water, elicit distinct response profiles from the neuronal repertoire. We identify key tastants on human skin and in sweat that synergistically promote biting behaviours. Transcriptomic profiling identifies taste receptors that could be targeted to disrupt behaviours. Our study sheds light on key features of the taste system that suggest new ways of manipulating chemosensory function and controlling mosquito vectors.
Collapse
Affiliation(s)
- Lisa S Baik
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sydney Gray
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Himani S Pattisam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Taylor N Peterson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - James E Nidetz
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Felix J H Hol
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Gupta S, Cribellier A, Poda SB, Roux O, Muijres FT, Riffell JA. Mosquitoes integrate visual and acoustic cues to mediate conspecific interactions in swarms. Curr Biol 2024; 34:4091-4103.e4. [PMID: 39216484 PMCID: PMC11491102 DOI: 10.1016/j.cub.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Male mosquitoes form aerial aggregations, known as swarms, to attract females and maximize their chances of finding a mate. Within these swarms, individuals must be able to recognize potential mates and navigate the social environment to successfully intercept a mating partner. Prior research has almost exclusively focused on the role of acoustic cues in mediating the male mosquito's ability to recognize and pursue females. However, the role of other sensory modalities in this behavior has not been explored. Moreover, how males avoid collisions with one another in the swarm while pursuing females remains poorly understood. In this study, we combined free-flight and tethered-flight simulator experiments to demonstrate that swarming Anopheles coluzzii mosquitoes integrate visual and acoustic information to track conspecifics and avoid collisions. Our tethered experiments revealed that acoustic stimuli gated mosquito steering responses to visual objects simulating nearby mosquitoes, especially in males that exhibited a strong response toward visual objects in the presence of female flight tones. Additionally, we observed that visual cues alone could trigger changes in mosquitoes' wingbeat amplitude and frequency. These findings were corroborated by our free-flight experiments, which revealed that Anopheles coluzzii modulate their thrust-based flight responses to nearby conspecifics in a similar manner to tethered animals, potentially allowing for collision avoidance within swarms. Together, these results demonstrate that both males and females integrate multiple sensory inputs to mediate swarming behavior, and for males, the change in flight kinematics in response to multimodal cues might allow them to simultaneously track females while avoiding collisions.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Antoine Cribellier
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Serge B Poda
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands; Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 2779, Bobo-Dioulasso, Burkina Faso
| | - Olivier Roux
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 2779, Bobo-Dioulasso, Burkina Faso; MIVEGEC, University of Montpellier, IRD, CNRS, 34394 Montpellier, France
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Couper LI, Dodge TO, Hemker JA, Kim BY, Exposito-Alonso M, Brem RB, Mordecai EA, Bitter MC. Evolutionary adaptation under climate change: Aedes sp. demonstrates potential to adapt to warming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609454. [PMID: 39229052 PMCID: PMC11370604 DOI: 10.1101/2024.08.23.609454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, facilitating expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in Aedes sierrensis, a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population. We found pervasive evidence of heritable genetic variation in acute heat tolerance, which phenotypically trades off with tolerance to prolonged heat exposure. A simple evolutionary model based on our data shows that the estimated maximum rate of evolutionary adaptation in mosquito heat tolerance typically exceeds that of projected climate warming under idealized conditions. Our findings indicate that natural mosquito populations may have the potential to track projected warming via genetic adaptation. Prior climate-based projections may thus underestimate the range of mosquito and mosquito-borne disease distributions under future climate conditions.
Collapse
Affiliation(s)
- Lisa I Couper
- Stanford University, Department of Biology
- University of California, Berkeley, Division of Environmental Health Sciences
| | | | | | | | - Moi Exposito-Alonso
- University of California, Berkeley, Department of Integrative Biology
- Howard Hughes Medical Institute
| | - Rachel B Brem
- University of California, Berkeley, Department of Plant & Microbial Biology
| | | | | |
Collapse
|
12
|
Lebovich L, Alisch T, Redhead ES, Parker MO, Loewenstein Y, Couzin ID, de Bivort BL. Spatiotemporal dynamics of locomotor decisions in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611038. [PMID: 39282352 PMCID: PMC11398310 DOI: 10.1101/2024.09.04.611038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Decision-making in animals often involves choosing actions while navigating the environment, a process markedly different from static decision paradigms commonly studied in laboratory settings. Even in decision-making assays in which animals can freely locomote, decision outcomes are often interpreted as happening at single points in space and single moments in time, a simplification that potentially glosses over important spatiotemporal dynamics. We investigated locomotor decision-making in Drosophila melanogaster in Y-shaped mazes, measuring the extent to which their future choices could be predicted through space and time. We demonstrate that turn-decisions can be reliably predicted from flies' locomotor dynamics, with distinct predictability phases emerging as flies progress through maze regions. We show that these predictability dynamics are not merely the result of maze geometry or wall-following tendencies, but instead reflect the capacity of flies to move in ways that depend on sustained locomotor signatures, suggesting an active, working memory-like process. Additionally, we demonstrate that fly mutants known to have sensory and information-processing deficits exhibit altered spatial predictability patterns, highlighting the role of visual, mechanosensory, and dopaminergic signaling in locomotor decision-making. Finally, highlighting the broad applicability of our analyses, we generalize our findings to other species and tasks. We show that human participants in a virtual Y-maze exhibited similar decision predictability dynamics as flies. This study advances our understanding of decision-making processes, emphasizing the importance of spatial and temporal dynamics of locomotor behavior in the lead-up to discrete choice outcomes.
Collapse
Affiliation(s)
- Lior Lebovich
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tom Alisch
- Department of Organismic & Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, Massachusetts, U.S.A
| | | | | | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, Dept. of Cognitive and Brain Sciences and The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Benjamin L de Bivort
- Department of Organismic & Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, Massachusetts, U.S.A
| |
Collapse
|
13
|
Zhao SY, Wu PL, Fu JY, Wu YM, Liu HK, Cai LJ, Gu JB, Zhou XH, Chen XG. Gustatory receptor 11 is involved in detecting the oviposition water of Asian tiger mosquito, Aedes albopictus. Parasit Vectors 2024; 17:367. [PMID: 39210465 PMCID: PMC11363565 DOI: 10.1186/s13071-024-06452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Aedes albopictus is a major arbovirus vector with small stagnant water containers being its oviposition sites. Mosquitoes search for these sites based on their olfactory cues (odor and moisture emanating from the water at the oviposition site), visual cues (size and color of the site), and gustatory cues (ion and nutrient concentration in that water). The gustatory mechanism through which mosquitoes search for oviposition sites remains unknown. METHODS To investigate the role of taste receptors in Ae. albopictus oviposition site selection, we developed a laboratory model. This model assessed mosquito behavior in locating and detecting oviposition sites, using a location index to quantify site preference and detection time to measure response to water presence. We compared oviposition site-searching efficiency between mosquitoes with blocked and unblocked appendages, targeting the taste organs. Transcriptome sequencing was conducted to identify differentially expressed genes between water-exposed and unexposed mosquitoes. CRISPR/Cas9 technology was then employed to generate a mutant strain with a targeted gene knockout. RESULTS There was no significant difference between the blocked and unblocked groups in the location index. In contrast, the detection time of the unblocked group differed significantly from all other groups, including those with blocked foreleg tarsus, midleg tarsus, hindleg tarsus, all tibia, and all tarsus. Transcriptome sequencing analyses of water-exposed and unexposed mosquitoes revealed that the taste-related gene gustatory receptor 11(gr11) was differentially expressed. This gene was knocked out with CRISPR/Cas9 technology to generate a pure mutant strain with 2- and 4-bp deletions, which exhibited a significantly longer detection time than the wild-type strain. CONCLUSIONS This study reveals the role of Ae. albopictus gr11 in water detection at oviposition sites, thereby providing a theoretical basis and scientific guidelines for managing the breeding sites of these mosquitoes.
Collapse
Affiliation(s)
- Si Yu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei Lin Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jun Yu Fu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Ming Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Kai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Jun Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jin Bao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao Hong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Weiss L, McBride CS. Mosquitoes as a model for understanding the neural basis of natural behaviors. Curr Opin Neurobiol 2024; 87:102897. [PMID: 39002351 DOI: 10.1016/j.conb.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Mosquito behaviors have been the subject of extensive research for over a century due to their role in the spread of human disease. However, these behaviors are also beginning to be appreciated as excellent models for neurobiological research in their own right. Many of the same behaviors and sensory abilities that help mosquitoes survive and reproduce alongside humans represent striking examples of generalizable phenomena of longstanding neurobiological interest. In this review, we highlight four prominent examples that promise new insight into (1) precise circadian tuning of sensory systems, (2) processing of complex natural odors, (3) multisensory integration, and (4) modulation of behavior by internal states.
Collapse
Affiliation(s)
- Lukas Weiss
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carolyn S McBride
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
15
|
Vainer Y, Wang Y, Huff RM, Perets D, Sar-Shalom E, Yakir E, Ghaninia M, Coutinho-Abreu Gomes IV, Ruiz C, Rajamanickam D, Warburg A, Akbari OS, Papathanos PA, Ignell R, Riffell JA, Pitts RJ, Bohbot JD. A conserved odorant receptor underpins borneol-mediated repellency in culicine mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.548337. [PMID: 37577635 PMCID: PMC10418152 DOI: 10.1101/2023.08.01.548337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The use of essential oils derived from the camphor tree to repel mosquitoes is an ancient practice that originated in Southeast Asia and gradually spread to China and across Europe via the Maritime Silk Road. The olfactory mechanisms by which these oils elicit avoidance behavior are unclear. Here we show that plant bicyclic monoterpenoids and borneol specifically activate a neural pathway that originates in the orphan olfactory receptor neuron of the capitate peg sensillum in the maxillary palp, and projects to the mediodorsal glomerulus 3 in the antennal lobe. This neuron co-locates with two olfactory receptor neurons tuned to carbon dioxide and octenol that mediate human-host detection. We also confirm that borneol elicits repellency against human-seeking female mosquitoes. Understanding the functional role of the mosquito maxillary palp is essential to investigating olfactory signal integration and host-selection behavior.
Collapse
Affiliation(s)
- Yuri Vainer
- Department of Entomology, The Hebrew University of Jerusalem, Israel
| | - Yinliang Wang
- Department of Entomology, The Hebrew University of Jerusalem, Israel
- Northeast Normal University, China
| | | | - Dor Perets
- Department of Entomology, The Hebrew University of Jerusalem, Israel
| | | | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, Israel
| | - Majid Ghaninia
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden
| | | | - Carlos Ruiz
- Department of Biology, University of Washington, USA
| | | | - A. Warburg
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Israel
| | - Omar S. Akbari
- Division of Biological Sciences, University of California, USA
| | | | - R. Ignell
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden
| | | | | | | |
Collapse
|
16
|
Alonso San Alberto D, Rusch C, Riffell JA. Conducting an Analysis of Mosquito Flight Behaviors in a Wind Tunnel. Cold Spring Harb Protoc 2024; 2024:pdb.prot108257. [PMID: 37137568 DOI: 10.1101/pdb.prot108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Prior to conducting wind tunnel experiments, mosquitoes must be prepared for testing. Important factors and state-dependent processes of the mosquito-like the sex, age, infection status, reproductive status, or nutritional status-should be evaluated and motivated by questions and hypotheses one seeks to address. Other critical external factors that can impact the mosquitoes' behavior and should be controlled for both in the colony and in the room where the wind tunnel experiments take place include the circadian rhythm, room temperature, light intensity, and relative humidity. Together, the internal and external factors, and wind tunnel design, ultimately control the behavior of the mosquito and, hence, the success of the experiments. In the present protocol, we describe methods using a standard wind tunnel design in which the fan pulls the air through the working section of the wind tunnel and the mosquito behavior is recorded by a multicamera system. Variations around the camera tracking system can be adapted according to the research questions being asked and include real-time tracking for both closed-loop and open-loop control of the stimulus environment or recording of the videos for off-line digitization and analysis. Within the working section, the sensory environment (odor, visual, wind) can be controlled to test the mosquito responses to different stimuli, and below we include different equipment and tools for modifying the stimuli the mosquito experiences during flight. Finally, the methods described here are applicable to multiple mosquito species, although the experiment parameters may need to be changed (e.g., ambient luminosity).
Collapse
Affiliation(s)
| | - Claire Rusch
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
17
|
Alonso San Alberto D, Rusch C, Riffell JA. Experiments and Analysis of Mosquito Flight Behaviors in a Wind Tunnel: An Introduction. Cold Spring Harb Protoc 2024; 2024:pdb.top107674. [PMID: 37137567 DOI: 10.1101/pdb.top107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mosquitoes detect and navigate to important resources, like a host, using combinations of different sensory stimuli. The relative importance of the sensory cues can change as the mosquito gets closer to their target. Other factors, both internal and external, can also influence the mosquito behavior. A mechanistic understanding of these sensory stimuli, and how they impact mosquito navigation, can now be readily studied using wind tunnels and associated computer vision systems. In this introduction, we present a behavioral paradigm using a wind tunnel for flight behavior analysis. The wind tunnel's large size with its associated cameras and software system for analysis of the mosquito flight tracks can be sophisticated and sometimes cost-prohibitive. Nevertheless, the wind tunnel's flexibility in allowing the testing of multimodal stimuli and scaling of environmental stimuli makes it possible to reproduce conditions from the field and test them in the laboratory, while also allowing the observation of natural flight kinematics.
Collapse
Affiliation(s)
| | - Claire Rusch
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
18
|
Gupta S, Cribellier A, Poda SB, Roux O, Muijres FT, Riffell JA. Multisensory integration in Anopheles mosquito swarms: The role of visual and acoustic information in mate tracking and collision avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590128. [PMID: 38712209 PMCID: PMC11071295 DOI: 10.1101/2024.04.18.590128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Male mosquitoes form aerial aggregations, known as swarms, to attract females and maximize their chances of finding a mate. Within these swarms, individuals must be able to recognize potential mates and navigate the dynamic social environment to successfully intercept a mating partner. Prior research has almost exclusively focused on the role of acoustic cues in mediating the male mosquito's ability to recognize and pursue flying females. However, the role of other sensory modalities in this behavior has not been explored. Moreover, how males avoid collisions with one another in the dense swarm while pursuing females remains poorly understood. In this study, we combined free-flight and tethered flight simulator experiments to demonstrate that swarming Anopheles coluzzii mosquitoes integrate visual and acoustic information to track conspecifics and avoid collisions. Our tethered experiments revealed that acoustic stimuli gated mosquito steering responses to visual objects simulating nearby mosquitoes, especially in males that exhibited attraction to visual objects in the presence of female flight tones. Additionally, we observed that visual cues alone could trigger changes in mosquitoes' wingbeat amplitude and frequency. These findings were corroborated by our free-flight experiments, which revealed that mosquitoes modulate their flight responses to nearby conspecifics in a similar manner to tethered animals, allowing for collision avoidance within swarms. Together, these results demonstrate that both males and females integrate multiple sensory inputs to mediate swarming behavior, and for males, the change in flight kinematics in response to multimodal cues allows them to simultaneously track females while avoiding collisions.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Antoine Cribellier
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, Netherlands
| | - Serge B. Poda
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, Netherlands
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Olivier Roux
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, Netherlands
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
19
|
Städele C. The black-legged tick Ixodes scapularis detects CO2 without the Haller's organ. J Exp Biol 2024; 227:jeb246874. [PMID: 38372197 DOI: 10.1242/jeb.246874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Both male and female ticks have a strong innate drive to find and blood-feed on hosts. Carbon dioxide (CO2) is considered a critical behavioral activator and attractant for ticks and an essential sensory cue to find hosts. Yet, how CO2 activates and promotes host seeking in ticks is poorly understood. CO2 responses were studied in the black-legged tick Ixodes scapularis, the primary vector for Lyme disease in North America. Adult males and females were exposed to 1%, 2%, 4% or 8% CO2, and changes in walking behavior and foreleg movement were analyzed. CO2 is a potent stimulant for adult I. scapularis, even at lower concentrations (1%). Behavioral reactions depended on the animal's state: walking ticks increased their walking speed, while stationary ticks started to wave their forelegs and began to quest - both behaviors resembling aspects of host seeking. Only in sporadic cases did stationary animals start to walk when exposed to CO2, supporting the hypothesis that CO2 acts as an activator rather than an attractant. Furthermore, I. scapularis did not show a clear concentration preference and was not tuned more robustly to breath-like CO2 concentrations (∼4%) than to the other concentrations tested. Moreover, convincing evidence is provided showing that the foreleg Haller's organ is not necessary for CO2 detection. Even with a disabled or amputated Haller's organ, I. scapularis responded robustly to CO2, signifying that there must be CO2-sensitive structures important for tick host seeking that have not yet been identified.
Collapse
Affiliation(s)
- Carola Städele
- Institute for Neuro- and Sensory Physiology; University of Göttingen Medical Center, Göttingen, Lower Saxony 37073, Germany
| |
Collapse
|
20
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado - Impacts of sylvatic flavivirus infection in vectors and hosts on mosquito engorgement on non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580944. [PMID: 38559148 PMCID: PMC10979881 DOI: 10.1101/2024.02.19.580944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| |
Collapse
|
21
|
Mokhtari M, Khoshbakht S, Ziyaei K, Akbari ME, Moravveji SS. New classifications for quantum bioinformatics: Q-bioinformatics, QCt-bioinformatics, QCg-bioinformatics, and QCr-bioinformatics. Brief Bioinform 2024; 25:bbae074. [PMID: 38446742 PMCID: PMC10939336 DOI: 10.1093/bib/bbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 02/07/2021] [Indexed: 03/08/2024] Open
Abstract
Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | - Kobra Ziyaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
22
|
Vinauger C, Riffell JA. Tethered Preparation for the Analysis of Mosquito Visual-Motor Responses Using Modular Visual Displays. Cold Spring Harb Protoc 2023; 2023:679-684. [PMID: 36997276 DOI: 10.1101/pdb.prot108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
In the present protocol, we describe methods to assess mosquito visual-motor responses using the Reiser-Dickinson light-emitting diode (LED) panels arranged in a cylindrical arena and fixed-tethered preparations where the insect cannot adjust its orientation relative to the visual display. Variations around this approach might be better adapted for the specific requirements of each research project and must be considered by the investigators. Other types of displays may provide other stimulation possibilities (e.g., color range, refresh rate, field of view). Also, other types of preparations, such as rotating (magneto-tethered) preparations where the insect can rotate around a vertical axis and reorient relative to the visual display, may reveal other aspects of mosquito optomotor responses. Finally, the methods described here are applicable to multiple species and were used to produce data published previously using 6-d-old Aedes aegypti females.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
23
|
Vinauger C, Riffell JA. Retrospective Review of and Introduction to the Analysis of Mosquito Optomotor Responses. Cold Spring Harb Protoc 2023; 2023:614-617. [PMID: 36997277 DOI: 10.1101/pdb.top107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Adult hematophagous female mosquitoes require nutrients and proteins from vertebrate blood to produce progeny. To find these hosts, mosquitoes rely on olfactory, thermal, and visual cues. Among these sensory modalities, vision has received far less attention than olfaction, in part because of a lack of experimental tools providing sufficient control on the delivery of visual stimuli and the recording of mosquito responses. Although free-flight experiments (e.g., wind tunnel and cage) ensure higher ecological relevance and allow the observation of more natural flight dynamics, tethered flight assays offer a greater level of control on the suite of sensory stimuli experienced by mosquitoes. In addition, these tethered assays provide a stepping stone toward understanding the neural underpinnings of mosquito optomotor behavior. Advances in computer vision tracking systems and programmable light-emitting diode displays have permitted significant discoveries in models such as the fly Drosophila melanogaster Here, we introduce the use of these methods with mosquitoes.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
24
|
Lahondère C, Vinauger C, Liaw JE, Tobin KKS, Joiner JM, Riffell JA. Effect of Temperature on Mosquito Olfaction. Integr Comp Biol 2023; 63:356-367. [PMID: 37309024 PMCID: PMC10445414 DOI: 10.1093/icb/icad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Mosquitoes use a wide range of cues to find a host to feed on, eventually leading to the transmission of pathogens. Among them, olfactory cues (e.g., host-emitted odors, including CO2, and skin volatiles) play a central role in mediating host-seeking behaviors. While mosquito olfaction can be impacted by many factors, such as the physiological state of the insect (e.g., age, reproductive state), the impact of environmental temperature on the olfactory system remains unknown. In this study, we quantified the behavioral responses of Aedes aegypti mosquitoes, vectors of dengue, yellow fever, and Zika viruses, among other pathogens, to host and plant-related odors under different environmental temperatures.
Collapse
Affiliation(s)
- Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jessica E Liaw
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kennedy K S Tobin
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jillian M Joiner
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Dahake A, Raguso RA, Goyret J. Context and the functional use of information in insect sensory ecology. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101058. [PMID: 37217002 DOI: 10.1016/j.cois.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Context-specific behaviors emerge from the interaction between an animal's internal state and its external environment. Although the importance of context is acknowledged in the field of insect sensory ecology, there is a lack of synthesis on this topic stemming from challenges in conceptualizing 'context'. We address this challenge by gleaning over the recent findings on the sensory ecology of mosquitoes and other insect pollinators. We discuss internal states and their temporal dynamics, from those lasting minutes to hours (host-seeking) to those lasting days to weeks (diapause, migration). Of the many patterns reviewed, at least three were common to all taxa studied. First, different sensory cues gain prominence depending on the insect's internal state. Second, similar sensory circuits between related species can result in different behavioral outcomes. And third, ambient conditions can dramatically alter internal states and behaviors.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Joaquin Goyret
- Department of Biological Sciences, University of Tennessee Martin, Martin, TN, USA.
| |
Collapse
|
26
|
Coles TA, Briggs AM, Hambly MG, Céspedes N, Fellows AM, Kaylor HL, Adams AD, Van Susteren G, Bentil RE, Robert MA, Riffell JA, Lewis EE, Luckhart S. Ingested histamine and serotonin interact to alter Anopheles stephensi feeding and flight behavior and infection with Plasmodium parasites. Front Physiol 2023; 14:1247316. [PMID: 37555020 PMCID: PMC10405175 DOI: 10.3389/fphys.2023.1247316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Blood levels of histamine and serotonin (5-HT) are altered in human malaria, and, at these levels, we have shown they have broad, independent effects on Anopheles stephensi following ingestion by this invasive mosquito. Given that histamine and 5-HT are ingested together under natural conditions and that histaminergic and serotonergic signaling are networked in other organisms, we examined effects of combinations of these biogenic amines provisioned to A. stephensi at healthy human levels (high 5-HT, low histamine) or levels associated with severe malaria (low 5-HT, high histamine). Treatments were delivered in water (priming) before feeding A. stephensi on Plasmodium yoelii-infected mice or via artificial blood meal. Relative to effects of histamine and 5-HT alone, effects of biogenic amine combinations were complex. Biogenic amine treatments had the greatest impact on the first oviposition cycle, with high histamine moderating low 5-HT effects in combination. In contrast, clutch sizes were similar across combination and individual treatments. While high histamine alone increased uninfected A. stephensi weekly lifetime blood feeding, neither combination altered this tendency relative to controls. The tendency to re-feed 2 weeks after the first blood meal was altered by combination treatments, but this depended on mode of delivery. For blood delivery, malaria-associated treatments yielded higher percentages of fed females relative to healthy-associated treatments, but the converse was true for priming. Female mosquitoes treated with the malaria-associated combination exhibited enhanced flight behavior and object inspection relative to controls and healthy combination treatment. Mosquitoes primed with the malaria-associated combination exhibited higher mean oocysts and sporozoite infection prevalence relative to the healthy combination, with high histamine having a dominant effect on these patterns. Compared with uninfected A. stephensi, the tendency of infected mosquitoes to take a second blood meal revealed an interaction of biogenic amines with infection. We used a mathematical model to project the impacts of different levels of biogenic amines and associated changes on outbreaks in human populations. While not all outbreak parameters were impacted the same, the sum of effects suggests that histamine and 5-HT alter the likelihood of transmission by mosquitoes that feed on hosts with symptomatic malaria versus a healthy host.
Collapse
Affiliation(s)
- Taylor A. Coles
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Anna M. Briggs
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Nora Céspedes
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Abigail M. Fellows
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Alexandria D. Adams
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Grace Van Susteren
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Ronald E. Bentil
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Michael A. Robert
- Department of Mathematics, Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens (CeZAP), Virginia Tech, Blacksburg, VA, United States
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
27
|
Giraldo D, Rankin-Turner S, Corver A, Tauxe GM, Gao AL, Jackson DM, Simubali L, Book C, Stevenson JC, Thuma PE, McCoy RC, Gordus A, Mburu MM, Simulundu E, McMeniman CJ. Human scent guides mosquito thermotaxis and host selection under naturalistic conditions. Curr Biol 2023; 33:2367-2382.e7. [PMID: 37209680 PMCID: PMC10824255 DOI: 10.1016/j.cub.2023.04.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/22/2023]
Abstract
The African malaria mosquito Anopheles gambiae exhibits a strong innate drive to seek out humans in its sensory environment, classically entering homes to land on human skin in the hours flanking midnight. To gain insight into the role that olfactory cues emanating from the human body play in generating this epidemiologically important behavior, we developed a large-scale multi-choice preference assay in Zambia with infrared motion vision under semi-field conditions. We determined that An. gambiae prefers to land on arrayed visual targets warmed to human skin temperature during the nighttime when they are baited with carbon dioxide (CO2) emissions reflective of a large human over background air, body odor from one human over CO2, and the scent of one sleeping human over another. Applying integrative whole body volatilomics to multiple humans tested simultaneously in competition in a six-choice assay, we reveal high attractiveness is associated with whole body odor profiles from humans with increased relative abundances of the volatile carboxylic acids butyric acid, isobutryic acid, and isovaleric acid, and the skin microbe-generated methyl ketone acetoin. Conversely, those least preferred had whole body odor that was depleted of carboxylic acids among other compounds and enriched with the monoterpenoid eucalyptol. Across expansive spatial scales, heated targets without CO2 or whole body odor were minimally or not attractive at all to An. gambiae. These results indicate that human scent acts critically to guide thermotaxis and host selection by this prolific malaria vector as it navigates towards humans, yielding intrinsic heterogeneity in human biting risk.
Collapse
Affiliation(s)
- Diego Giraldo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stephanie Rankin-Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Abel Corver
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Genevieve M Tauxe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anne L Gao
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dorian M Jackson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Christopher Book
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Macha Research Trust, Choma District, PO Box 630166, Zambia
| | - Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Macha Research Trust, Choma District, PO Box 630166, Zambia
| | - Philip E Thuma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Macha Research Trust, Choma District, PO Box 630166, Zambia
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Singh P, Goyal S, Gupta S, Garg S, Tiwari A, Rajput V, Bates AS, Gupta AK, Gupta N. Combinatorial encoding of odors in the mosquito antennal lobe. Nat Commun 2023; 14:3539. [PMID: 37322224 PMCID: PMC10272161 DOI: 10.1038/s41467-023-39303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Among the cues that a mosquito uses to find a host for blood-feeding, the smell of the host plays an important role. Previous studies have shown that host odors contain hundreds of chemical odorants, which are detected by different receptors on the peripheral sensory organs of mosquitoes. But how individual odorants are encoded by downstream neurons in the mosquito brain is not known. We developed an in vivo preparation for patch-clamp electrophysiology to record from projection neurons and local neurons in the antennal lobe of Aedes aegypti. Combining intracellular recordings with dye-fills, morphological reconstructions, and immunohistochemistry, we identify different sub-classes of antennal lobe neurons and their putative interactions. Our recordings show that an odorant can activate multiple neurons innervating different glomeruli, and that the stimulus identity and its behavioral preference are represented in the population activity of the projection neurons. Our results provide a detailed description of the second-order olfactory neurons in the central nervous system of mosquitoes and lay a foundation for understanding the neural basis of their olfactory behaviors.
Collapse
Affiliation(s)
- Pranjul Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Shefali Goyal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Smith Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Sanket Garg
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Department of Economic Sciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Abhinav Tiwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Varad Rajput
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Alexander Shakeel Bates
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Arjit Kant Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
29
|
Lahondère C, Vinauger C, Liaw JE, Tobin KK, Joiner JM, Riffell JA. Effect of temperature on mosquito olfaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.535894. [PMID: 37090630 PMCID: PMC10120655 DOI: 10.1101/2023.04.10.535894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Mosquitoes use a wide range of cues to find a host to feed on, eventually leading to the transmission of pathogens. Among them, olfactory cues ( e.g. , host emitted odors, including CO 2 , and skin volatiles) play a central role in mediating host seeking behaviors. While mosquito olfaction can be impacted by many factors, such as the physiological state of the insect ( e.g. , age, reproductive state), the impact of environmental temperature on the olfactory system remains unknown. In this study, we quantified the behavioral responses of Aedes aegypti mosquitoes, vectors of dengue, yellow fever and Zika viruses, to host and plant related odors under different environmental temperatures.
Collapse
Affiliation(s)
- Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jessica E. Liaw
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | - Jillian M. Joiner
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
30
|
Carcaud J, Otte M, Grünewald B, Haase A, Sandoz JC, Beye M. Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee. PLoS Biol 2023; 21:e3001984. [PMID: 36719927 PMCID: PMC9917304 DOI: 10.1371/journal.pbio.3001984] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 02/10/2023] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding of the neural bases for complex behaviors in Hymenoptera insect species has been limited by a lack of tools that allow measuring neuronal activity simultaneously in different brain regions. Here, we developed the first pan-neuronal genetic driver in a Hymenopteran model organism, the honey bee, and expressed the calcium indicator GCaMP6f under the control of the honey bee synapsin promoter. We show that GCaMP6f is widely expressed in the honey bee brain, allowing to record neural activity from multiple brain regions. To assess the power of this tool, we focused on the olfactory system, recording simultaneous responses from the antennal lobe, and from the more poorly investigated lateral horn (LH) and mushroom body (MB) calyces. Neural responses to 16 distinct odorants demonstrate that odorant quality (chemical structure) and quantity are faithfully encoded in the honey bee antennal lobe. In contrast, odor coding in the LH departs from this simple physico-chemical coding, supporting the role of this structure in coding the biological value of odorants. We further demonstrate robust neural responses to several bee pheromone odorants, key drivers of social behavior, in the LH. Combined, these brain recordings represent the first use of a neurogenetic tool for recording large-scale neural activity in a eusocial insect and will be of utility in assessing the neural underpinnings of olfactory and other sensory modalities and of social behaviors and cognitive abilities.
Collapse
Affiliation(s)
- Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
- * E-mail:
| | - Marianne Otte
- Evolutionnary Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft, FB Biowissenschaften, Goethe-University, Frankfurt am Main, Germany
| | - Albrecht Haase
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| | - Martin Beye
- Evolutionnary Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
31
|
Wolff GH, Lahondère C, Vinauger C, Rylance E, Riffell JA. Neuromodulation and differential learning across mosquito species. Proc Biol Sci 2023; 290:20222118. [PMID: 36629098 PMCID: PMC9832544 DOI: 10.1098/rspb.2022.2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Mosquitoes can change their feeding behaviours based on past experiences, such as shifting from biting animals to biting humans or avoiding defensive hosts (Wolff & Riffell 2018 J. Exp. Biol. 221, jeb157131. (doi:10.1242/jeb.157131)). Dopamine is a critical neuromodulator for insects, allowing flexibility in their feeding preferences, but its role in the primary olfactory centre, the antennal lobe (AL), remains unclear (Vinauger et al. 2018 Curr. Biol. 28, 333-344.e8. (doi:10.1016/j.cub.2017.12.015)). It is also unknown whether mosquitoes can learn some odours and not others, or whether different species learn the same odour cues. We assayed aversive olfactory learning in four mosquito species with different host preferences, and found that they differentially learn odours salient to their preferred host. Mosquitoes that prefer humans learned odours found in mammalian skin, but not a flower odour, and a nectar-feeding species only learned a floral odour. Comparing the brains of these four species revealed significantly different innervation patterns in the AL by dopaminergic neurons. Calcium imaging in the Aedes aegypti AL and three-dimensional image analyses of dopaminergic innervation show that glomeruli tuned to learnable odours have significantly higher dopaminergic innervation. Changes in dopamine expression in the insect AL may be an evolutionary mechanism to adapt olfactory learning circuitry without changing brain structure and confer to mosquitoes an ability to adapt to new hosts.
Collapse
Affiliation(s)
- Gabriella H. Wolff
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Chloé Lahondère
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Clément Vinauger
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Elizabeth Rylance
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-7270, USA
| |
Collapse
|
32
|
Wechsler SP, Bhandawat V. Behavioral algorithms and neural mechanisms underlying odor-modulated locomotion in insects. J Exp Biol 2023; 226:jeb200261. [PMID: 36637433 PMCID: PMC10086387 DOI: 10.1242/jeb.200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them. Here, we review changes in odor-mediated locomotion across many insect species. We emphasize that changes in locomotion induced by odors are diverse. In particular, the olfactory stimulus is sporadic at long distances and becomes more continuous at short distances. This distance-dependent change in temporal profile produces a corresponding change in an insect's locomotory strategy. We also discuss the neural circuits underlying odor modulation of locomotion.
Collapse
Affiliation(s)
- Samuel P. Wechsler
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Wynne NE, Chandrasegaran K, Fryzlewicz L, Vinauger C. Visual threats reduce blood-feeding and trigger escape responses in Aedes aegypti mosquitoes. Sci Rep 2022; 12:21354. [PMID: 36494463 PMCID: PMC9734121 DOI: 10.1038/s41598-022-25461-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The diurnal mosquitoes Aedes aegypti are vectors of several arboviruses, including dengue, yellow fever, and Zika viruses. To find a host to feed on, they rely on the sophisticated integration of olfactory, visual, thermal, and gustatory cues emitted by the hosts. If detected by their target, this latter may display defensive behaviors that mosquitoes need to be able to detect and escape in order to survive. In humans, a typical response is a swat of the hand, which generates both mechanical and visual perturbations aimed at a mosquito. Here, we used programmable visual displays to generate expanding objects sharing characteristics with the visual component of an approaching hand and quantified the behavioral response of female mosquitoes. Results show that Ae. aegypti is capable of using visual information to decide whether to feed on an artificial host mimic. Stimulations delivered in a LED flight arena further reveal that landed Ae. aegypti females display a stereotypical escape strategy by taking off at an angle that is a function of the direction of stimulus introduction. Altogether, this study demonstrates that mosquitoes landed on a host mimic can use isolated visual cues to detect and avoid a potential threat.
Collapse
Affiliation(s)
- Nicole E. Wynne
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Karthikeyan Chandrasegaran
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Lauren Fryzlewicz
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| | - Clément Vinauger
- grid.438526.e0000 0001 0694 4940Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
34
|
Barredo E, Raji JI, Ramon M, DeGennaro M, Theobald J. Carbon dioxide and blood-feeding shift visual cue tracking during navigation in Aedes aegypti mosquitoes. Biol Lett 2022; 18:20220270. [PMID: 36166270 PMCID: PMC9514554 DOI: 10.1098/rsbl.2022.0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Haematophagous mosquitoes need a blood meal to complete their reproductive cycle. To accomplish this, female mosquitoes seek vertebrate hosts, land on them and bite. As their eggs mature, they shift attention away from hosts and towards finding sites to lay eggs. We asked whether females were more tuned to visual cues when a host-related signal, carbon dioxide, was present, and further examined the effect of a blood meal, which shifts behaviour to ovipositing. Using a custom, tethered-flight arena that records wing stroke changes while displaying visual cues, we found the presence of carbon dioxide enhances visual attention towards discrete stimuli and improves contrast sensitivity for host-seeking Aedes aegypti mosquitoes. Conversely, intake of a blood meal reverses vertical bar tracking, a stimulus that non-fed females readily follow. This switch in behaviour suggests that having a blood meal modulates visual attention in mosquitoes, a phenomenon that has been described before in olfaction but not in visually driven behaviours.
Collapse
Affiliation(s)
- Elina Barredo
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Joshua I. Raji
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Michael Ramon
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
35
|
Liu X, Yang S, Yao Y, Wu S, Wu P, Zhai Z. Opsin1 regulates light-evoked avoidance behavior in Aedes albopictus. BMC Biol 2022; 20:110. [PMID: 35549721 PMCID: PMC9103082 DOI: 10.1186/s12915-022-01308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Mosquitoes locate a human host by integrating various sensory cues including odor, thermo, and vision. However, their innate light preference and its genetic basis that may predict the spatial distribution of mosquitoes, a prerequisite to encounter a potential host and initiate host-seeking behaviors, remains elusive. RESULTS Here, we first studied mosquito visual features and surprisingly uncovered that both diurnal (Aedes aegypti and Aedes albopictus) and nocturnal (Culex quinquefasciatus) mosquitoes significantly avoided stronger light when given choices. With consistent results from multiple assays, we found that such negative phototaxis maintained throughout development to adult stages. Notably, female mosquitoes significantly preferred to bite hosts in a shaded versus illuminated area. Furthermore, silencing Opsin1, a G protein-coupled receptor that is most enriched in compound eyes, abolished light-evoked avoidance behavior of Aedes albopictus and attenuated photonegative behavior in Aedes aegypti. Finally, we found that field-collected Aedes albopictus also prefers darker area in an Opsin1-dependent manner. CONCLUSIONS This study reveals that mosquitoes consistently prefer darker environment and identifies the first example of a visual molecule that modulates mosquito photobehavior.
Collapse
Affiliation(s)
- Xinyi Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shuzhen Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yuan Yao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Si Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pa Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
36
|
Kanwal JK, Parker J. The neural basis of interspecies interactions in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100891. [PMID: 35218937 DOI: 10.1016/j.cois.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
As insects move through the world, they continuously engage in behavioral interactions with other species. These interactions take on a spectrum of forms, from inconsequential encounters to predation, defense, and specialized symbiotic partnerships. All such interactions rely on sensorimotor pathways that carry out efficient categorization of different organisms and enact behaviors that cross species boundaries. Despite the universality of interspecies interactions, how insect brains perceive and process salient features of other species remains unexplored. Here, we present an overview of major questions concerning the neurobiology and evolution of behavioral interactions between species, providing a framework for future research on this critical role of the insect nervous system.
Collapse
Affiliation(s)
- Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| |
Collapse
|
37
|
Gupta A, Singh SS, Mittal AM, Singh P, Goyal S, Kannan KR, Gupta AK, Gupta N. Mosquito Olfactory Response Ensemble enables pattern discovery by curating a behavioral and electrophysiological response database. iScience 2022; 25:103938. [PMID: 35265812 PMCID: PMC8899409 DOI: 10.1016/j.isci.2022.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022] Open
Abstract
Many experimental studies have examined behavioral and electrophysiological responses of mosquitoes to odors. However, the differences across studies in data collection, processing, and reporting make it difficult to perform large-scale analyses combining data from multiple studies. Here we extract and standardize data for 12 mosquito species, along with Drosophila melanogaster for comparison, from over 170 studies and curate the Mosquito Olfactory Response Ensemble (MORE), publicly available at https://neuralsystems.github.io/MORE. We demonstrate the ability of MORE in generating biological insights by finding patterns across studies. Our analyses reveal that ORs are tuned to specific ranges of several physicochemical properties of odorants; the empty-neuron recording technique for measuring OR responses is more sensitive than the Xenopus oocyte technique; there are systematic differences in the behavioral preferences reported by different types of assays; and odorants tend to become less attractive or more aversive at higher concentrations. MORE is a database of behavioral and electrophysiological responses to odors MORE includes data from 170 studies covering 12 species of mosquitoes along with flies MORE shows differences in odor preferences measured with different assays Empty-neuron technique measures responses more sensitively than the oocyte technique
Collapse
|
38
|
Coutinho-Abreu IV, Riffell JA, Akbari OS. Human attractive cues and mosquito host-seeking behavior. Trends Parasitol 2022; 38:246-264. [PMID: 34674963 PMCID: PMC10789295 DOI: 10.1016/j.pt.2021.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Female mosquitoes use chemical and physical cues, including vision, smell, heat, and humidity, to orient toward hosts. Body odors are produced by skin resident bacteria that convert metabolites secreted in sweat into odorants that confer the characteristic body scent. Mosquitoes detect these compounds using olfactory receptors in their antennal olfactory receptor neurons. Such information is further integrated with the senses of temperature and humidity, as well as vision, processed in the brain into a behavioral output, leading to host finding. Knowledge of human scent components unveils a variety of odorants that are attractive to mosquitoes, but also odor-triggering repellency. Finding ways to divert human-seeking behavior by female mosquitoes using odorants can possibly mitigate mosquito-borne pathogen transmission.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Studies on the Volatiles Composition of Stored Sheep Wool, and Attractancy toward Aedes aegypti Mosquitoes. INSECTS 2022; 13:insects13020208. [PMID: 35206782 PMCID: PMC8879698 DOI: 10.3390/insects13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023]
Abstract
To discover new natural materials for insect management, commercially available stored sheep wool was investigated for attractancy to female adult Aedes aegypti mosquitoes. The volatiles from sheep wool were collected by various techniques of headspace (HS) extractions and hydrodistillation. These extracts were analyzed using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID) coupled with GC-MS. Fifty-two volatile compounds were detected, many of them known for their mosquito attractant activity. Seven compounds were not previously reported in sheep products. The volatile composition of the extracts varied significantly across collections, depending on the extraction techniques or types of fibers applied. Two types of bioassay were conducted to study attractancy of the sheep wool volatiles to mosquitoes: laboratory bioassays using glass tubes, and semi-field bioassays using large, screened outdoor cages. In bioassays with glass tubes, the sheep wool hydrodistillate and its main component, thialdine, did not show any significant attractant activity against female adult Ae. aegypti mosquitoes. Semi-field bioassays in two large screened outdoor cages, each equipped with a U.S. Centers for Disease Control (CDC) trap and the various bait setups with Vortex apparatus, revealed that vibrating wool improved mosquito catches compared to the setups without wool or with wool but not vibrating. Sheep wool, when vibrated, may release intensively volatile compounds, which could serve as olfactory cues, and play significant role in making the bait attractive to mosquitoes. Sheep wool is a readily available, affordable, and environment-friendly material. It should have the potential to be used as a mosquito management and surveillance component in dynamic bait setups.
Collapse
|
40
|
Alonso San Alberto D, Rusch C, Zhan Y, Straw AD, Montell C, Riffell JA. The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nat Commun 2022; 13:555. [PMID: 35121739 PMCID: PMC8816903 DOI: 10.1038/s41467-022-28195-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023] Open
Abstract
Mosquitoes track odors, locate hosts, and find mates visually. The color of a food resource, such as a flower or warm-blooded host, can be dominated by long wavelengths of the visible light spectrum (green to red for humans) and is likely important for object recognition and localization. However, little is known about the hues that attract mosquitoes or how odor affects mosquito visual search behaviors. We use a real-time 3D tracking system and wind tunnel that allows careful control of the olfactory and visual environment to quantify the behavior of more than 1.3 million mosquito trajectories. We find that CO2 induces a strong attraction to specific spectral bands, including those that humans perceive as cyan, orange, and red. Sensitivity to orange and red correlates with mosquitoes’ strong attraction to the color spectrum of human skin, which is dominated by these wavelengths. The attraction is eliminated by filtering the orange and red bands from the skin color spectrum and by introducing mutations targeting specific long-wavelength opsins or CO2 detection. Collectively, our results show that odor is critical for mosquitoes’ wavelength preferences and that the mosquito visual system is a promising target for inhibiting their attraction to human hosts. Vision in mosquitoes plays a critical but understudied role in their attraction to hosts. Here, the authors show that encounter with an attractive odor gates the mosquito attraction to specific colors, especially the long wavelengths reflected from human skin. Filtering the long wavelengths reflected from the human skin or knocking-out the ability for the mosquito to detect the wavelengths, suppressed their attraction. This work transforms our understanding of mosquito vision from the conventional view that vision does little in mediating mosquito-host interactions, to the recognition that vision plays a critical role.
Collapse
|
41
|
Elimination of vision-guided target attraction in Aedes aegypti using CRISPR. Curr Biol 2021; 31:4180-4187.e6. [PMID: 34331858 PMCID: PMC8478898 DOI: 10.1016/j.cub.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/19/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023]
Abstract
Blood-feeding insects, such as the mosquito, Aedes (Ae.) aegypti, use multiple senses to seek out and bite humans.1,2 Upon exposure to the odor of CO2, the attention of female mosquitoes to potential targets is greatly increased. Female mosquitoes are attracted to high-contrast visual cues and use skin olfactory cues to assist them in homing in on targets several meters away.3-9 Within close range, convective heat from skin and additional skin odors further assist the mosquitoes' evaluation as to whether the object of interest might be a host.10,11 Here, using CRISPR-Cas9, we mutated the gene encoding Op1, which is the most abundant of the five rhodopsins expressed in the eyes of Ae. aegypti. Using cage and wind-tunnel assays, we found that elimination of op1 did not impair CO2-induced target seeking. We then mutated op2, which encodes the rhodopsin most similar to Op1, and also found that there was no impact on this behavior. Rather, mutation of both op1 and op2 was required for abolishing vision-guided target attraction. In contrast, the double mutants exhibited normal phototaxis and odor-tracking responses. By measuring the walking optomotor response, we found that the double mutants still perceived optic flow. In further support of the conclusion that the double mutant is not blind, the animals retained an electrophysiological response to light, although it was diminished. This represents the first genetic perturbation of vision in mosquitoes and indicates that vision-guided target attraction by Ae. aegypti depends on two highly related rhodopsins.
Collapse
|
42
|
Fikrig K, Harrington LC. Understanding and interpreting mosquito blood feeding studies: the case of Aedes albopictus. Trends Parasitol 2021; 37:959-975. [PMID: 34497032 DOI: 10.1016/j.pt.2021.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
Blood feeding is a fundamental mosquito behavior with consequences for pathogen transmission and control. Feeding behavior can be studied through two lenses - patterns and preference. Feeding patterns are assessed via blood meal analyses, reflecting mosquito-host associations influenced by environmental and biological parameters. Bias can profoundly impact results, and we provide recommendations for mitigating these effects. We also outline design choices for host preference research, which can take many forms, and highlight their respective (dis)advantages for preference measurement. Finally, Aedes albopictus serves as a case study for how to apply these lessons to interpret data and understand feeding biology. We illustrate how assumptions and incomplete evidence can lead to inconsistent interpretations by reviewing Ae. albopictus feeding studies alongside prevalent narratives about perceived behavior.
Collapse
Affiliation(s)
- Kara Fikrig
- Department of Entomology, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
43
|
Mongeau JM, Schweikert LE, Davis AL, Reichert MS, Kanwal JK. Multimodal integration across spatiotemporal scales to guide invertebrate locomotion. Integr Comp Biol 2021; 61:842-853. [PMID: 34009312 DOI: 10.1093/icb/icab041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Locomotion is a hallmark of organisms that has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard, therefore sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g. gating) and weighting-which are inherent computations of spiking neurons-underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lorian E Schweikert
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181. University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, NC, U.S.A
| | | | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
44
|
Contributions of the Conserved Insect Carbon Dioxide Receptor Subunits to Odor Detection. Cell Rep 2021; 31:107510. [PMID: 32294446 DOI: 10.1016/j.celrep.2020.03.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/19/2019] [Accepted: 03/23/2020] [Indexed: 01/18/2023] Open
Abstract
The CO2 receptor in mosquitoes is broadly tuned to detect many diverse odorants. The receptor consists of three subunits (Gr1, Gr2, and Gr3) in mosquitoes but only two subunits in Drosophila: Gr21a (Gr1 ortholog) and Gr63a (Gr3 ortholog). We demonstrate that Gr21a is required for CO2 responses in Drosophila, as has been shown for Gr63a. Next, we generate a Drosophila double mutant for Gr21a and Gr63a, and in this background, we functionally express combinations of Aedes Gr1, Gr2, and Gr3 genes in the CO2 empty neuron. Only two subunits, Gr2 and Gr3, suffice for response to CO2. Addition of Gr1 increases sensitivity to CO2, whereas it decreases the response to pyridine. The inhibitory effect of the antagonist isobutyric acid is observed upon addition of Gr1. Gr1 therefore increases the diversity of ligands of the receptor and modulates the response of the receptor complex.
Collapse
|
45
|
Carnaghi M, Belmain SR, Hopkins RJ, Hawkes FM. Multimodal synergisms in host stimuli drive landing response in malaria mosquitoes. Sci Rep 2021; 11:7379. [PMID: 33795798 PMCID: PMC8016827 DOI: 10.1038/s41598-021-86772-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Anopheles mosquitoes transmit malaria, which affects one-fifth of the world population. A comprehensive understanding of mosquito behaviour is essential for the development of novel tools for vector control and surveillance. Despite abundant research on mosquito behaviour, little is known on the stimuli that drive malaria vectors during the landing phase of host-seeking. Using behavioural assays with a multimodal step approach we quantified both the individual and the combined effect of three host-associated stimuli in eliciting landing in Anopheles coluzzii females. We demonstrated that visual, olfactory and thermal sensory stimuli interact synergistically to increase the landing response. Furthermore, if considering only the final outcome (i.e. landing response), our insect model can bypass the absence of either a thermal or a visual stimulus, provided that at least one of these is presented simultaneously with the olfactory stimuli, suggesting that landing is the result of a flexible but accurate stimuli integration. These results have important implications for the development of mosquito control and surveillance tools.
Collapse
Affiliation(s)
- Manuela Carnaghi
- grid.55594.38Department of Agriculture Health and Environment, Natural Resources Institute, University of Greenwich at Medway, Kent, ME7 4TB UK
| | - Steven R. Belmain
- grid.55594.38Department of Agriculture Health and Environment, Natural Resources Institute, University of Greenwich at Medway, Kent, ME7 4TB UK
| | - Richard J. Hopkins
- grid.55594.38Department of Agriculture Health and Environment, Natural Resources Institute, University of Greenwich at Medway, Kent, ME7 4TB UK
| | - Frances M. Hawkes
- grid.55594.38Department of Agriculture Health and Environment, Natural Resources Institute, University of Greenwich at Medway, Kent, ME7 4TB UK
| |
Collapse
|
46
|
Yan J, Gangoso L, Ruiz S, Soriguer R, Figuerola J, Martínez-de la Puente J. Understanding host utilization by mosquitoes: determinants, challenges and future directions. Biol Rev Camb Philos Soc 2021; 96:1367-1385. [PMID: 33686781 DOI: 10.1111/brv.12706] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
Mosquito host utilization is a key factor in the transmission of vector-borne pathogens given that it greatly influences host-vector contact rates. Blood-feeding patterns of mosquitoes are not random, as some mosquitoes feed on particular species and/or individuals more than expected by chance. Mosquitoes use a number of cues including visual, olfactory, acoustic, and thermal stimuli emitted by vertebrate hosts to locate and identify their blood meal sources. Thus, differences in the quality/intensity of the released cues may drive host selection by mosquitoes at both inter- and intra-specific levels. Such patterns of host selection by mosquitoes in space and time can be structured by factors related to mosquitoes (e.g. innate host preference, behavioural plasticity), to hosts (e.g. emission of host-seeking cues, host availability) or to both (e.g. pathogen infection). In this study, we review current evidence, from phenomena to mechanisms, of how these factors influence host utilization by mosquitoes. We also review the methodologies commonly used in this research field and identify the major challenges for future studies. To bridge the knowledge gaps, we propose improvements to strengthen traditional approaches and the use of a functional trait-based approach to infer mosquito host utilization in natural communities.
Collapse
Affiliation(s)
- Jiayue Yan
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), C/Americo Vespucio 26, Seville, 41092, Spain.,Illinois Natural History Survey, University of Illinois, 1816 S Oak St., Champaign, IL, 61821, U.S.A
| | - Laura Gangoso
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), C/Americo Vespucio 26, Seville, 41092, Spain.,Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, C/José Antonio Novais 2, Madrid, 28040, Spain
| | - Santiago Ruiz
- CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos 3-5, Madrid, 28029, Spain.,Service of Mosquito Control, Diputación Provincial de Huelva, Ctra. Hospital Infanta Elena s/n, Huelva, 21007, Spain
| | - Ramón Soriguer
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), C/Americo Vespucio 26, Seville, 41092, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Jordi Figuerola
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), C/Americo Vespucio 26, Seville, 41092, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos 3-5, Madrid, 28029, Spain
| | - Josué Martínez-de la Puente
- Doñana Biological Station, Spanish National Research Council (EBD-CSIC), C/Americo Vespucio 26, Seville, 41092, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos 3-5, Madrid, 28029, Spain.,Department of Parasitology, Faculty of Pharmacy, University of Granada (UGR), Campus Universitario de Cartuja, Granada, 18.071, Spain
| |
Collapse
|
47
|
Winsor AM, Pagoti GF, Daye DJ, Cheries EW, Cave KR, Jakob EM. What gaze direction can tell us about cognitive processes in invertebrates. Biochem Biophys Res Commun 2021; 564:43-54. [PMID: 33413978 DOI: 10.1016/j.bbrc.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Most visually guided animals shift their gaze using body movements, eye movements, or both to gather information selectively from their environments. Psychological studies of eye movements have advanced our understanding of perceptual and cognitive processes that mediate visual attention in humans and other vertebrates. However, much less is known about how these processes operate in other organisms, particularly invertebrates. We here make the case that studies of invertebrate cognition can benefit by adding precise measures of gaze direction. To accomplish this, we briefly review the human visual attention literature and outline four research themes and several experimental paradigms that could be extended to invertebrates. We briefly review selected studies where the measurement of gaze direction in invertebrates has provided new insights, and we suggest future areas of exploration.
Collapse
Affiliation(s)
- Alex M Winsor
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Guilherme F Pagoti
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| | - Daniel J Daye
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Graduate Program in Biological and Environmental Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Erik W Cheries
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kyle R Cave
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Elizabeth M Jakob
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
48
|
Wheelwright M, Whittle CR, Riabinina O. Olfactory systems across mosquito species. Cell Tissue Res 2021; 383:75-90. [PMID: 33475852 PMCID: PMC7873006 DOI: 10.1007/s00441-020-03407-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
There are 3559 species of mosquitoes in the world (Harbach 2018) but, so far, only a handful of them have been a focus of olfactory neuroscience and neurobiology research. Here we discuss mosquito olfactory anatomy and function and connect these to mosquito ecology. We highlight the least well-known and thus most interesting aspects of mosquito olfactory systems and discuss promising future directions. We hope this review will encourage the insect neuroscience community to work more broadly across mosquito species instead of focusing narrowly on the main disease vectors.
Collapse
Affiliation(s)
- Matthew Wheelwright
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Catherine R Whittle
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Olena Riabinina
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
49
|
Abstract
Mosquitoes are a widely diverse group of organisms, comprising ∼3,500 species that live in an enormous range of habitats. Some species are vectors of diseases that afflict hundreds of millions of people each year. Although understanding of mosquito olfaction has progressed dramatically in recent years, mosquito taste remains greatly understudied. Since taste is essential to feeding, egg laying, and mating decisions in insects, improved understanding of taste in mosquitoes could provide new mechanistic insight into many aspects of their behavior. We provide a guide to current knowledge in the field, and we suggest a wealth of opportunities for research that are now enabled by recent scientific and technological advances. We also propose means by which taste might be exploited in new strategies for mosquito control, which may be urgently needed as the geographical ranges of vector species increase with climate change.
Collapse
Affiliation(s)
- Lisa S Baik
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
| |
Collapse
|
50
|
Riffell JA. The neuroecology of insect-plant interactions: the importance of physiological state and sensory integration. CURRENT OPINION IN INSECT SCIENCE 2020; 42:118-124. [PMID: 33127509 PMCID: PMC7749044 DOI: 10.1016/j.cois.2020.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Natural behaviorally important stimuli are combinations of cues that are integrated by the nervous system to elicit behavior. Nonetheless, these cues dynamically change in time and space. In turn, the animal's internal state can cause changes in the encoding and representation of these stimuli. Despite abundant behavioral examples, links between the neural bases of sensory integration and the internal state-dependency of these responses remains an active study area. Recent studies in different insect models have provided new insights into how plasticity and the insect's internal state may influence odor representation. These studies show that complex stimuli are represented in unique percepts that are different from their sensory channels and that the representations may be modulated by physiological state.
Collapse
Affiliation(s)
- Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195-1800, United States.
| |
Collapse
|