1
|
Zhang Y, Chen F, Yu M, Li Y, Chen S, Choudhary MI, Liu X, Jiang N. Sex differences in reward-based operant conditioning performance and neurotransmitter changes following chronic sleep restriction stress in rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:3. [PMID: 40022197 PMCID: PMC11871611 DOI: 10.1186/s12993-025-00268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Sleep deprivation significantly impairs cognitive function, which disrupts daily life. However, sex differences in these impairments are not well understood, as most preclinical studies primarily use male animals, neglecting potential differences between sexes. This study aims to investigate sex-specific differences in cognitive function under sleep deprivation using reward-based operant conditioning tasks. RESULTS Sprague-Dawley rats were pre-trained on a lever-press task and subsequently divided into control and chronic sleep restriction (CSR) groups. The CSR group underwent 14 days of sleep restriction. After CSR modeling, rats were assessed using the open field test, retraining on the lever-pressing task, signal discrimination task, and extinction task to evaluate motor abilities, memory formation, learning, and cognitive flexibility. CSR significantly impaired task performance in both sexes, with rats requiring more time and exhibiting lower accuracy. In the signal discrimination task, male rats showed longer feeding latency and lower accuracy compared to females. CSR also specifically increased the frequency of operant responses in male rats. In the extinction task, CSR enhanced exploration time and frequency in both sexes, with females exhibiting significantly higher exploration frequencies than males. Biochemically, CSR induced sex-specific alterations, including elevated serum MDA and MAO levels in males and increased serotonin, dopamine, and epinephrine in both sexes. Although activation was observed in metabolites of the tryptophan-kynurenine pathway, sex differences were evident in the kynurenic acid metabolism levels in the prefrontal cortex. CONCLUSIONS CSR impairs cognitive function in both male and female rats, with significant sex differences observed. Male CSR rats exhibited impaired signal discrimination, while CSR impaired extinction learning in female rats. These impairments are accompanied by CSR-induced oxidative stress, neurotransmitter dysregulation, and disturbances in the tryptophan metabolic pathway. These findings underscore the importance of considering sex differences in understanding the effects of sleep deprivation on cognitive function and developing targeted intervention strategies.
Collapse
Affiliation(s)
- Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mubiao Yu
- Testing Center, SHINVA Medical Instrument Co., Ltd, Shandong, China
| | - Yinghui Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Shanguang Chen
- National Laboratory of Human Factors Engineering, State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Xinmin Liu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China.
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Sato A, Sekiguchi M, Nakada K, Yoshii T, Itoh TQ. Effect of temperature cycles on the sleep-like state in Hydra vulgaris. ZOOLOGICAL LETTERS 2025; 11:2. [PMID: 39876001 PMCID: PMC11773864 DOI: 10.1186/s40851-025-00248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states. However, the manner in which environmental cues affect sleep-like states in these organisms remains unknown. In the present study, we investigated the effects of light and temperature cycles on the sleep-like state in Hydra vulgaris. RESULTS Our findings indicate that Hydra responds to temperature cycles with a difference of up to 5° C, resulting in decreased sleep duration under light conditions and increased sleep duration in dark conditions. Furthermore, our results reveal that Hydra prioritizes temperature changes over light as an environmental cue. Additionally, our body resection experiments show tissue-specific responsiveness in the generation ofthe sleep-like state under different environmental cues. Specifically, the upper body can generate the sleep-like state in response to a single environmental cue. In contrast, the lower body did not respond to 12-h light-dark cycles at a constant temperature. CONCLUSIONS These findings indicate that both light and temperature influence the regulation of the sleep-like state in Hydra. Moreover, these observations highlight the existence of distinct regulatory mechanisms that govern patterns of the sleep-like state in brainless organisms, suggesting the potential involvement of specific regions for responsiveness of environmental cues for regulation of the sleep-like state.
Collapse
Affiliation(s)
- Aya Sato
- Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Manabu Sekiguchi
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Koga Nakada
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Taichi Q Itoh
- Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan.
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Ma YM, Zhang DP, Zhang HL, Cao FZ, Zhou Y, Wu B, Wang LZ, Xu B. Why is vestibular migraine associated with many comorbidities? J Neurol 2024; 271:7422-7433. [PMID: 39302416 DOI: 10.1007/s00415-024-12692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Vestibular migraine (VM) is a usual trigger of episodic vertigo. Patients with VM often experience spinning, shaking, or unsteady sensations, which are usually also accompanied by photophobia, phonophobia, motor intolerance, and more. VM is often associated with a number of comorbidities. Recurrent episodes of VM can affect the patient's emotions, sleep, and cognitive functioning to varying degrees. Patients with VM may be accompanied by adverse moods such as anxiety, fear, and depression, which can gradually develop into anxiety disorders or depressive disorders. Sleep disorders are also a common concomitant symptom of VM, which significantly lower patients' quality of life. The influence of anxiety disorders and sleep disorders may reduce cognitive functions of VM, such as visuospatial ability, attention, and memory decline. Clinically, it is also common to see VM comorbid with other vestibular disorders, making the diagnosis more difficult. VM episodes are relieved but lingering, in which case VM may coexist with persistent postural-perceptual dizziness (PPPD). Anxiety may be an important bridge between recurrent VM and PPPD. The clinical manifestations of VM and Meniere's disease (MD) overlap considerably, and those who meet the diagnostic criteria for both can be said to have VM/MD comorbidity. VM can also present with positional vertigo, and some patients with VM present with typical benign paroxysmal positional vertigo (BPPV) nystagmus on positional testing. In this paper, we synthesize and analyze the pathomechanisms of VM comorbidity by reviewing the literature. The results show that it may be related to the extensive connectivity of the vestibular system with different brain regions and the close connection of the trigeminovascular system with the periphery of the vestibule. Therefore, it is necessary to pay attention to the diagnosis of comorbidities in VM, synthesize its pathogenesis, and give comprehensive treatment to patients.
Collapse
Affiliation(s)
- Yan-Min Ma
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Dao-Pei Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Huai-Liang Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Fang-Zheng Cao
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Yu Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Bin Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Ling-Zhe Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Bin Xu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, 310053, China.
| |
Collapse
|
4
|
Yan L, Wu L, Wiggin TD, Su X, Yan W, Li H, Li L, Lu Z, Li Y, Meng Z, Guo F, Li F, Griffith LC, Liu C. Brief disruption of activity in a subset of dopaminergic neurons during consolidation impairs long-term memory by fragmenting sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563499. [PMID: 37961167 PMCID: PMC10634733 DOI: 10.1101/2023.10.23.563499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sleep disturbances are associated with poor long-term memory (LTM) formation, yet the underlying cell types and neural circuits involved have not been fully decoded. Dopamine neurons (DANs) are involved in memory processing at multiple stages. Here, using both male and female flies, Drosophila melanogaster , we show that, during the first few hours of memory consolidation, disruption of basal activity of a small subset of protocerebral anterior medial DANs (PAM-DANs), by either brief activation or inhibition of the two dorsal posterior medial (DPM) neurons, impairs 24 h LTM. Interestingly, these brief changes in activity using female flies result in sleep loss and fragmentation, especially at night. Pharmacological rescue of sleep after manipulation restores LTM. A specific subset of PAM-DANs (PAM-α1) that synapse onto DPM neurons specify the microcircuit that links sleep and memory. PAM-DANs, including PAM-α1, form functional synapses onto DPM mainly via multiple dopamine receptor subtypes. This PAM-α1 to DPM microcircuit exhibits a synchronized, transient, post-training increase in activity during the critical memory consolidation window, suggesting an effect of this microcircuit on maintaining the sleep necessary for LTM consolidation. Our results provide a new cellular and circuit basis for the complex relationship between sleep and memory.
Collapse
|
5
|
Wang X, Song SM, Yue HM. Burdened breaths: The influence of depression on obstructive sleep apnea. World J Psychiatry 2024; 14:1411-1414. [PMID: 39319231 PMCID: PMC11417651 DOI: 10.5498/wjp.v14.i9.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Depression and metabolic syndrome could exacerbate the risks of the other, leading to a series of severe coexisting conditions. One notable comorbidity that must be mentioned is obstructive sleep apnea (OSA). Current studies suggested that depression increases susceptibility to OSA. As the prevalence of depression rises, it becomes critical to prevent and manage its complications or comorbidities, including OSA. Predictive models, non-invasive electroencephalogram monitoring, genetic research, and other promising technologies are being applied to the prevention, diagnosis, and personalized treatment of depression and OSA.
Collapse
Affiliation(s)
- Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Shao-Ming Song
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Hong-Mei Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
6
|
Guo W, Nazari N, Sadeghi M. Cognitive-behavioral treatment for insomnia and mindfulness-based stress reduction in nurses with insomnia: a non-inferiority internet delivered randomized controlled trial. PeerJ 2024; 12:e17491. [PMID: 39071123 PMCID: PMC11283175 DOI: 10.7717/peerj.17491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 07/30/2024] Open
Abstract
Background Insomnia is a highly prevalent sleep disorder frequently comorbid with mental health conditions in nurses. Despite the effectiveness of evidence-based cognitive behavioral therapy for insomnia (CBT-I), there is a critical need for alternative approaches. This study investigated whether internet-delivered mindfulness-based stress reduction (IMBSR) for insomnia could be an alternative to internet-delivered CBT-I (ICBT-I). Objective The hypothesis was that the IMBSR would be noninferior to the ICBT-I in reducing the severity of insomnia among nurses with insomnia. Additionally, it was expected that ICBT-I would produce a greater reduction in the severity of insomnia and depression than IMBSR. Method Among 240 screened nurses, 134 with insomnia were randomly allocated (IMBSR, n = 67; ICBT-I, n = 67). The assessment protocol comprised clinical interviews and self-reported outcome measures, including the Insomnia Severity Index (ISI), Patient Health Questionnaire-9 (PHQ-9), the 15-item Five Facet Mindfulness Questionnaire (FFMQ), and the Client Satisfaction Questionnaire (CSQ-I). Results The retention rate was 55% with 77.6% (n = 104) of participants completing the study. At post-intervention, the noninferiority analysis of the ISI score showed that the upper limit of the 95% confidence interval was 4.88 (P = 0.46), surpassing the pre-specified noninferiority margin of 4 points. Analysis of covariance revealed that the ICBT-I group had significantly lower ISI (Cohen's d = 1.37) and PHQ-9 (Cohen's d = 0.71) scores than did the IMBSR group. In contrast, the IMBSR group showed a statistically significant increase in the FFMQ-15 score (Cohen's d = 0.67). Within-group differences showed that both the IMBSR and ICBT-I were effective at reducing insomnia severity and depression severity and improving mindfulness. Conclusion Overall, nurses demonstrated high levels of satisfaction and adherence to both interventions. The IMBSR significantly reduced insomnia severity and depression, but the findings of this study do not provide strong evidence that the IMBSR is at least as effective as the ICBT-I in reducing insomnia symptoms among nurses with insomnia. The ICBT-I was found to be significantly superior to the IMBSR in reducing insomnia severity, making it a recommended treatment option for nurses with insomnia.
Collapse
Affiliation(s)
- Wanran Guo
- School of Public Policy and Administration, Nanchang University, Nanchang, Nanchang, China
| | - Nabi Nazari
- Department of Psychology, Faculty of Human Sciences, University of Lorestan, Khorramabad, Lorestan, Iran
| | - Masoud Sadeghi
- Department of Psychology, Faculty of Human Sciences, University of Lorestan, Khorramabad, Lorestan, Iran
| |
Collapse
|
7
|
Itoh MT. The influence of self-generated song during aggression on brain serotonin levels in male crickets. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:29. [PMID: 39348594 PMCID: PMC11441574 DOI: 10.1093/jisesa/ieae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024]
Abstract
Pairs of adult male crickets, Gryllus bimaculatus, fight and immediately determine winner and loser statuses. The winner male repeatedly produces an aggressive (rival) song by rubbing his forewings together. In this study, I removed the plectrum, a sound-producing structure in the forewing, from male crickets and measured their brain serotonin (5-hydroxytryptamine: 5-HT) levels immediately after a 10-min aggressive interaction. Pairs of plectrum-removed males fought and established clear winner-loser relationships, like the case of intact males. The plectrum-removed winner males frequently rubbed their forewings together, but were unable to produce song. Aggressive interaction reduced significantly brain 5-HT levels in the plectrum-removed males, regardless of their winner and loser statuses. Furthermore, the reduction of brain 5-HT was detected primarily in the central body, a group of neuropils spanning the midline of the brain. In contrast, in pairs of intact males, aggressive interaction reduced brain 5-HT levels in the loser males, but not in the winner males. Plectrum removal alone did not affect the brain's 5-HT levels. These results suggest that aggressive song emitted by the winner male cricket prevents the reduction of 5-HT levels in his own brain, especially in the central body.
Collapse
Affiliation(s)
- Masanori T Itoh
- Department of Biology, Liberal Arts and Sciences Division, Institute of Education, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| |
Collapse
|
8
|
Yano J, Nave C, Larratt K, Honey P, Roberts M, Jingco C, Fung ML, Trotter D, He X, Elezi G, Whitelegge JP, Wasserman S, Donlea JM. Elevated sleep quota in a stress-resilient Drosophila species. Curr Biol 2024; 34:2487-2501.e3. [PMID: 38772361 PMCID: PMC11163955 DOI: 10.1016/j.cub.2024.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Sleep is broadly conserved across the animal kingdom but can vary widely between species. It is currently unclear which selective pressures and regulatory mechanisms influence differences in sleep between species. The fruit fly Drosophila melanogaster has become a successful model system for examining sleep regulation and function, but little is known about the sleep patterns in many related fly species. Here, we find that fly species with adaptations to extreme desert environments, including D. mojavensis, exhibit strong increases in baseline sleep compared with D. melanogaster. Long-sleeping D. mojavensis show intact homeostasis, indicating that desert flies carry an elevated drive for sleep. In addition, D. mojavensis exhibit altered abundance or distribution of several sleep/wake-related neuromodulators and neuropeptides that are consistent with their reduced locomotor activity and increased sleep. Finally, we find that in a nutrient-deprived environment, the sleep patterns of individual D. mojavensis are strongly correlated with their survival time and that disrupting sleep via constant light stimulation renders D. mojavensis more sensitive to starvation. Our results demonstrate that D. mojavensis is a novel model for studying organisms with high sleep drive and for exploring sleep strategies that provide resilience in extreme environments.
Collapse
Affiliation(s)
- Jessica Yano
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular, Cellular & Integrative Physiology Interdepartmental PhD Program, UCLA, Los Angeles, CA 90095, USA
| | - Ceazar Nave
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Katherine Larratt
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Phia Honey
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Makayla Roberts
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Cassandra Jingco
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Melanie L Fung
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Damion Trotter
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular, Cellular & Integrative Physiology Interdepartmental PhD Program, UCLA, Los Angeles, CA 90095, USA
| | - Xin He
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gazmend Elezi
- Pasarow Mass Spectrometry Laboratory, Jane & Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Cotsen Institute of Archaeology, UCLA, Los Angeles, CA 90095, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane & Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sara Wasserman
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
10
|
Wang X, Song S, Dong N, Lv R, He Y, Zhao Y, Yue H. The causal relationship between depression and obstructive sleep apnea: A bidirectional Mendelian randomization study. J Psychosom Res 2024; 179:111620. [PMID: 38430795 DOI: 10.1016/j.jpsychores.2024.111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Numerous studies have reported the close association of depression with obstructive sleep apnea (OSA). However, the causal nature and direction remain unclear. This study aimed to identify the genetic causal relationship between depression and OSA using Mendelian randomization (MR). METHODS Based on publicly available genome-wide association studies data of depression and OSA, we conducted a bidirectional two-sample MR study. The inverse-variance weighted (IVW) was used as the main analysis method. Moreover, multivariable MR was performed to further explore the underlying genetic causality of OSA and depression after adjusting for several potential mediators. RESULTS The univariable MR analysis revealed a significant causality of depression on the susceptibility of OSA (ORivw = 1.29, 95%CI:1.11,1.50; p < 0.001). This relationship was evidenced by the phenotypes for broad depression (ORivw = 3.30, 95%CI: 1.73, 6.29; p < 0.001), probable major depression (ORivw = 18.79, 95%CI: 5.69, 61.99; p < 0.001), and ICD-10 major depression (ORivw = 23.67, 95%CI: 4.13, 135.74; p < 0.001). In the reverse direction, no significant causal effect of OSA on depression was found. After adjusting for smoking, alcohol use, obesity, type 2 diabetes, insomnia, age, gender, and codeine, most of these results suggested that depression remained significantly and positively associated with OSA. CONCLUSION These findings may contribute to the understanding of the etiology of depression and OSA and also suggest the clinical significance of controlling depression for the prevention of OSA.
Collapse
Affiliation(s)
- Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Shaoming Song
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100000, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Hongmei Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Shrestha K, Venton BJ. Transient Adenosine Modulates Serotonin Release Indirectly in the Dorsal Raphe Nuclei. ACS Chem Neurosci 2024; 15:798-807. [PMID: 38336455 PMCID: PMC10885004 DOI: 10.1021/acschemneuro.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Rapid adenosine transiently regulates dopamine and glutamate via A1 receptors, but other neurotransmitters, such as serotonin, have not been studied. In this study, we examined the rapid modulatory effect of adenosine on serotonin release in the dorsal raphe nuclei (DRN) of mouse brain slices by using fast-scan cyclic voltammetry. To mimic adenosine release during damage, a rapid microinjection of adenosine at 50 pmol was applied before electrical stimulation of serotonin release. Transient adenosine significantly reduced electrically evoked serotonin release in the first 20 s after application, but serotonin release recovered to baseline as adenosine was cleared from the slice. The continuous perfusion of adenosine did not change the evoked serotonin release. Surprisingly, the modulatory effects of adenosine were not regulated by A1 receptors as adenosine still inhibited serotonin release in A1KO mice and also after perfusion of an A1 antagonist (8-cyclopentyl-1,3-dipropyl xanthine). The inhibition was also not regulated by A3 receptors as perfusion of the A3 antagonist (MRS 1220) in A1KO brain slices did not eliminate the inhibitory effects of transient adenosine. In addition, adenosine also inhibited serotonin release in A2AKO mice, showing that A2A did not modulate serotonin. However, perfusion of a selective 5HT1A autoreceptor antagonist drug [(S)-WAY 100135 dihydrochloride] abolished the inhibitory effect of transient adenosine on serotonin release. Thus, the transient neuromodulatory effect of adenosine on DRN serotonin release is regulated by serotonin autoreceptors and not by adenosine receptors. Rapid, transient adenosine modulation of neurotransmitters such as serotonin may have important implications for diseases such as depression and brain injury.
Collapse
Affiliation(s)
- Kailash Shrestha
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22901, United States
| | - B. Jill Venton
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
12
|
Dopp J, Ortega A, Davie K, Poovathingal S, Baz ES, Liu S. Single-cell transcriptomics reveals that glial cells integrate homeostatic and circadian processes to drive sleep-wake cycles. Nat Neurosci 2024; 27:359-372. [PMID: 38263460 PMCID: PMC10849968 DOI: 10.1038/s41593-023-01549-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
The sleep-wake cycle is determined by circadian and sleep homeostatic processes. However, the molecular impact of these processes and their interaction in different brain cell populations are unknown. To fill this gap, we profiled the single-cell transcriptome of adult Drosophila brains across the sleep-wake cycle and four circadian times. We show cell type-specific transcriptomic changes, with glia displaying the largest variation. Glia are also among the few cell types whose gene expression correlates with both sleep homeostat and circadian clock. The sleep-wake cycle and sleep drive level affect the expression of clock gene regulators in glia, and disrupting clock genes specifically in glia impairs homeostatic sleep rebound after sleep deprivation. These findings provide a comprehensive view of the effects of sleep homeostatic and circadian processes on distinct cell types in an entire animal brain and reveal glia as an interaction site of these two processes to determine sleep-wake dynamics.
Collapse
Affiliation(s)
- Joana Dopp
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Antonio Ortega
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Kristofer Davie
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Suresh Poovathingal
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - El-Sayed Baz
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Sha Liu
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Wu L, Liu C. Integrated neural circuits of sleep and memory regulation in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101105. [PMID: 37625641 DOI: 10.1016/j.cois.2023.101105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Sleep and memory are highly intertwined, yet the integrative neural network of these two fundamental physiological behaviors remains poorly understood. Multiple cell types and structures of the Drosophila brain have been shown involved in the regulation of sleep and memory, and recent efforts are focusing on bridging them at molecular and circuit levels. Here, we briefly review 1) identified neurons as key nodes of olfactory-associative memory circuits involved in different memory processes; 2) how neurons of memory circuits participate in sleep regulation; and 3) other cell types and circuits besides the mushroom body in linking sleep and memory. We also attempt to provide the remaining gaps of circuitry integration of sleep and memory, which may spark some new thinking for future efforts.
Collapse
Affiliation(s)
- Litao Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China.
| |
Collapse
|
14
|
Singh P, Aleman A, Omoto JJ, Nguyen BC, Kandimalla P, Hartenstein V, Donlea JM. Examining Sleep Modulation by Drosophila Ellipsoid Body Neurons. eNeuro 2023; 10:ENEURO.0281-23.2023. [PMID: 37679041 PMCID: PMC10523840 DOI: 10.1523/eneuro.0281-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Recent work in Drosophila has uncovered several neighboring classes of sleep-regulatory neurons within the central complex. However, the logic of connectivity and network motifs remains limited by the incomplete examination of relevant cell types. Using a recent genetic-anatomic classification of ellipsoid body ring neurons, we conducted a thermogenetic screen in female flies to assess sleep/wake behavior and identified two wake-promoting drivers that label ER3d neurons and two sleep-promoting drivers that express in ER3m cells. We then used intersectional genetics to refine driver expression patterns. Activation of ER3d cells shortened sleep bouts, suggesting a key role in sleep maintenance. While sleep-promoting drivers from our mini-screen label overlapping ER3m neurons, intersectional strategies cannot rule out sleep regulatory roles for additional neurons in their expression patterns. Suppressing GABA synthesis in ER3m neurons prevents postinjury sleep, and GABAergic ER3d cells are required for thermogenetically induced wakefulness. Finally, we use an activity-dependent fluorescent reporter for putative synaptic contacts to embed these neurons within the known sleep-regulatory network. ER3m and ER3d neurons may receive connections from wake-active Helicon/ExR1 cells, and ER3m neurons likely inhibit ER3d neurons. Together, these data suggest a neural mechanism by which previously uncharacterized circuit elements stabilize sleep-wake states.
Collapse
Affiliation(s)
- Prabhjit Singh
- Department of Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Abigail Aleman
- Department of Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
- Molecular, Cellular & Integrative Physiology Interdepartmental Program, University of California-Los Angeles, Los Angeles, California 90095
| | - Jaison Jiro Omoto
- Department of Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Bao-Chau Nguyen
- Department of Molecular, Cell, & Developmental Biology, University of California-Los Angeles, Los Angeles, California 90095
| | - Pratyush Kandimalla
- Department of Molecular, Cell, & Developmental Biology, University of California-Los Angeles, Los Angeles, California 90095
| | - Volker Hartenstein
- Department of Molecular, Cell, & Developmental Biology, University of California-Los Angeles, Los Angeles, California 90095
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| |
Collapse
|
15
|
Homberg U, Kirchner M, Kowalewski K, Pitz V, Kinoshita M, Kern M, Seyfarth J. Comparative morphology of serotonin-immunoreactive neurons innervating the central complex in the brain of dicondylian insects. J Comp Neurol 2023. [PMID: 37478205 DOI: 10.1002/cne.25529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
Serotonin (5-hydroxytryptamine) acts as a widespread neuromodulator in the nervous system of vertebrates and invertebrates. In insects, it promotes feeding, enhances olfactory sensitivity, modulates aggressive behavior, and, in the central complex of Drosophila, serves a role in sleep homeostasis. In addition to a role in sleep-wake regulation, the central complex has a prominent role in spatial orientation, goal-directed locomotion, and navigation vector memory. To further understand the role of serotonergic signaling in this brain area, we analyzed the distribution and identity of serotonin-immunoreactive neurons across a wide range of insect species. While one bilateral pair of tangential neurons innervating the central body was present in all species studied, a second type was labeled in all neopterans but not in dragonflies and firebrats. Both cell types show conserved major fiber trajectories but taxon-specific differences in dendritic targets outside the central body and axonal terminals in the central body, noduli, and lateral accessory lobes. In addition, numerous tangential neurons of the protocerebral bridge were labeled in all studied polyneopteran species except for Phasmatodea, but not in Holometabola. Lepidoptera and Diptera showed additional labeling of two bilateral pairs of neurons of a third type. The presence of serotonin in systems of columnar neurons apparently evolved independently in dragonflies and desert locusts. The data suggest distinct evolutionary changes in the composition of serotonin-immunolabeled neurons of the central complex and provides a promising basis for a phylogenetic study in a wider range of arthropod species.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Michelle Kirchner
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kevin Kowalewski
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Vanessa Pitz
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Martina Kern
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
16
|
Kandimalla P, Omoto JJ, Hong EJ, Hartenstein V. Lineages to circuits: the developmental and evolutionary architecture of information channels into the central complex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:679-720. [PMID: 36932234 PMCID: PMC10354165 DOI: 10.1007/s00359-023-01616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 03/19/2023]
Abstract
The representation and integration of internal and external cues is crucial for any organism to execute appropriate behaviors. In insects, a highly conserved region of the brain, the central complex (CX), functions in the representation of spatial information and behavioral states, as well as the transformation of this information into desired navigational commands. How does this relatively invariant structure enable the incorporation of information from the diversity of anatomical, behavioral, and ecological niches occupied by insects? Here, we examine the input channels to the CX in the context of their development and evolution. Insect brains develop from ~ 100 neuroblasts per hemisphere that divide systematically to form "lineages" of sister neurons, that project to their target neuropils along anatomically characteristic tracts. Overlaying this developmental tract information onto the recently generated Drosophila "hemibrain" connectome and integrating this information with the anatomical and physiological recording of neurons in other species, we observe neuropil and lineage-specific innervation, connectivity, and activity profiles in CX input channels. We posit that the proliferative potential of neuroblasts and the lineage-based architecture of information channels enable the modification of neural networks across existing, novel, and deprecated modalities in a species-specific manner, thus forming the substrate for the evolution and diversification of insect navigational circuits.
Collapse
Affiliation(s)
- Pratyush Kandimalla
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| | - Jaison Jiro Omoto
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Duan W, Zhang Y, Zhang X, Yang J, Shan H, Liu L, Wei H. A Visual Pathway into Central Complex for High-Frequency Motion-Defined Bars in Drosophila. J Neurosci 2023; 43:4821-4836. [PMID: 37290936 PMCID: PMC10312062 DOI: 10.1523/jneurosci.0128-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Relative motion breaks a camouflaged target from a same-textured background, thus eliciting discrimination of a motion-defined object. Ring (R) neurons are critical components in the Drosophila central complex, which has been implicated in multiple visually guided behaviors. Using two-photon calcium imaging with female flies, we demonstrated that a specific population of R neurons that innervate the superior domain of bulb neuropil, termed superior R neurons, encoded a motion-defined bar with high spatial frequency contents. Upstream superior tuberculo-bulbar (TuBu) neurons transmitted visual signals by releasing acetylcholine within synapses connected with superior R neurons. Blocking TuBu or R neurons impaired tracking performance of the bar, which reveals their importance in motion-defined feature encoding. Additionally, the presentation of a low spatial frequency luminance-defined bar evoked consistent excitation in R neurons of the superior bulb, whereas either excited or inhibited responses were evoked in the inferior bulb. The distinct properties of the responses to the two bar stimuli indicate there is a functional division between the bulb subdomains. Moreover, physiological and behavioral tests with restricted lines suggest that R4d neurons play a vital role in tracking motion-defined bars. We conclude that the central complex receives the motion-defined features via a visual pathway from superior TuBu to R neurons and might encode different visual features via distinct response patterns at the population level, thereby driving visually guided behaviors.SIGNIFICANCE STATEMENT Animals could discriminate a motion-defined object that is indistinguishable with a same-textured background until it moves, but little is known about the underlying neural mechanisms. In this study, we identified that R neurons and their upstream partners, TuBu neurons, innervating the superior bulb of Drosophila central brain are involved in the discrimination of high-frequency motion-defined bars. Our study provides new evidence that R neurons receive multiple visual inputs from distinct upstream neurons, indicating a population coding mechanism for the fly central brain to discriminate diverse visual features. These results build progress in unraveling neural substrates for visually guided behaviors.
Collapse
Affiliation(s)
- Wenlan Duan
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Zhang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jihua Yang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Heying Shan
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
- Chinese Academy of Sciences Key Laboratory of Mental Health, Beijing 100101, China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
18
|
Yano J, Nave C, Larratt K, Honey P, Jingco C, Roberts M, Trotter D, He X, Elezi G, Whitelegge JP, Wasserman S, Donlea JM. Elevated sleep need in a stress-resilient Drosophila species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.27.542279. [PMID: 37292829 PMCID: PMC10245952 DOI: 10.1101/2023.05.27.542279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sleep is broadly conserved across the animal kingdom, but can vary widely between species. It is currently unclear which types of selective pressures and sleep regulatory mechanisms influence differences in sleep between species. The fruit fly Drosophila melanogaster has become a successful model system for examining sleep regulation and function, but little is known about the sleep patterns and need for sleep in many related fly species. Here, we find that Drosophila mojavensis, a fly species that has adapted to extreme desert environments, exhibits strong increases in sleep compared to D. melanogaster. Long-sleeping D. mojavensis show intact sleep homeostasis, indicating that these flies carry an elevated need for sleep. In addition, D. mojavensis exhibit altered abundance or distribution of several sleep/wake related neuromodulators and neuropeptides that are consistent with their reduced locomotor activity, and increased sleep. Finally, we find that in a nutrient-deprived environment, the sleep responses of individual D. mojavensis are correlated with their survival time. Our results demonstrate that D. mojavensis is a novel model for studying organisms with high sleep need, and for exploring sleep strategies that provide resilience in extreme environments.
Collapse
Affiliation(s)
- Jessica Yano
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Interdepartmental PhD Program, UCLA, Los Angeles, CA 90095, USA
| | - Ceazar Nave
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Katherine Larratt
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Phia Honey
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Cassandra Jingco
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Makayla Roberts
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Damion Trotter
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Interdepartmental PhD Program, UCLA, Los Angeles, CA 90095, USA
| | - Xin He
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gazmend Elezi
- Pasarow Mass Spectrometry Laboratory, Jane & Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Cotsen Institute of Archaeology, UCLA, Los Angeles, CA 90095, USA
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane & Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sara Wasserman
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Jeffrey M. Donlea
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Okray Z, Jacob PF, Stern C, Desmond K, Otto N, Talbot CB, Vargas-Gutierrez P, Waddell S. Multisensory learning binds neurons into a cross-modal memory engram. Nature 2023; 617:777-784. [PMID: 37100911 PMCID: PMC10208976 DOI: 10.1038/s41586-023-06013-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.
Collapse
Affiliation(s)
- Zeynep Okray
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| | - Pedro F Jacob
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Ciara Stern
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Kieran Desmond
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Nils Otto
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Clifford B Talbot
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | | | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Zhou L, Kong J, Li X, Ren Q. Sex differences in the effects of sleep disorders on cognitive dysfunction. Neurosci Biobehav Rev 2023; 146:105067. [PMID: 36716906 DOI: 10.1016/j.neubiorev.2023.105067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Sleep is an essential physiological function that sustains human life. Sleep disorders involve problems with the quality, duration, and abnormal behaviour of sleep. Insomnia is the most common sleep disorder, followed by sleep-disordered breathing (SDB). Sleep disorders often occur along with medical conditions or other mental health conditions. Of particular interest to researchers is the role of sleep disorders in cognitive dysfunction. Sleep disorder is a risk factor for cognitive dysfunction, yet the exact pathogenesis is still far from agreement. Little is known about how sex differences influence the changes in cognitive functions caused by sleep disorders. This narrative review examines how sleep disorders might affect cognitive impairment, and then explores the sex-specific consequences of sleep disorders as a risk factor for dementia and the potential underlying mechanisms. Some insights on the direction of further research are also presented.
Collapse
Affiliation(s)
- Lv Zhou
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jingting Kong
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoli Li
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Qingguo Ren
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China.
| |
Collapse
|
21
|
Gajardo I, Guerra S, Campusano JM. Navigating Like a Fly: Drosophila melanogaster as a Model to Explore the Contribution of Serotonergic Neurotransmission to Spatial Navigation. Int J Mol Sci 2023; 24:ijms24054407. [PMID: 36901836 PMCID: PMC10002024 DOI: 10.3390/ijms24054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Serotonin is a monoamine that acts in vertebrates and invertebrates as a modulator promoting changes in the structure and activity of brain areas relevant to animal behavior, ranging from sensory perception to learning and memory. Whether serotonin contributes in Drosophila to human-like cognitive abilities, including spatial navigation, is an issue little studied. Like in vertebrates, the serotonergic system in Drosophila is heterogeneous, meaning that distinct serotonergic neurons/circuits innervate specific fly brain regions to modulate precise behaviors. Here we review the literature that supports that serotonergic pathways modify different aspects underlying the formation of navigational memories in Drosophila.
Collapse
Affiliation(s)
- Ivana Gajardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Neurociencia, Instituto Milenio de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Simón Guerra
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge M. Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: ; Tel.: +56-2-2354-2133
| |
Collapse
|
22
|
Yan W, Lin H, Yu J, Wiggin TD, Wu L, Meng Z, Liu C, Griffith LC. Subtype-Specific Roles of Ellipsoid Body Ring Neurons in Sleep Regulation in Drosophila. J Neurosci 2023; 43:764-786. [PMID: 36535771 PMCID: PMC9899086 DOI: 10.1523/jneurosci.1350-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
The ellipsoid body (EB) is a major structure of the central complex of the Drosophila melanogaster brain. Twenty-two subtypes of EB ring neurons have been identified based on anatomic and morphologic characteristics by light-level microscopy and EM connectomics. A few studies have associated ring neurons with the regulation of sleep homeostasis and structure. However, cell type-specific and population interactions in the regulation of sleep remain unclear. Using an unbiased thermogenetic screen of EB drivers using female flies, we found the following: (1) multiple ring neurons are involved in the modulation of amount of sleep and structure in a synergistic manner; (2) analysis of data for ΔP(doze)/ΔP(wake) using a mixed Gaussian model detected 5 clusters of GAL4 drivers which had similar effects on sleep pressure and/or depth: lines driving arousal contained R4m neurons, whereas lines that increased sleep pressure had R3m cells; (3) a GLM analysis correlating ring cell subtype and activity-dependent changes in sleep parameters across all lines identified several cell types significantly associated with specific sleep effects: R3p was daytime sleep-promoting, and R4m was nighttime wake-promoting; and (4) R3d cells present in 5HT7-GAL4 and in GAL4 lines, which exclusively affect sleep structure, were found to contribute to fragmentation of sleep during both day and night. Thus, multiple subtypes of ring neurons distinctively control sleep amount and/or structure. The unique highly interconnected structure of the EB suggests a local-network model worth future investigation; understanding EB subtype interactions may provide insight how sleep circuits in general are structured.SIGNIFICANCE STATEMENT How multiple brain regions, with many cell types, can coherently regulate sleep remains unclear, but identification of cell type-specific roles can generate opportunities for understanding the principles of integration and cooperation. The ellipsoid body (EB) of the fly brain exhibits a high level of connectivity and functional heterogeneity yet is able to tune multiple behaviors in real-time, including sleep. Leveraging the powerful genetic tools available in Drosophila and recent progress in the characterization of the morphology and connectivity of EB ring neurons, we identify several EB subtypes specifically associated with distinct aspects of sleep. Our findings will aid in revealing the rules of coding and integration in the brain.
Collapse
Affiliation(s)
- Wei Yan
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, 200032, China
| | - Junwei Yu
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Timothy D Wiggin
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Litao Wu
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
| | - Zhiqiang Meng
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, 518000, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen, 518000, China
| | - Chang Liu
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, 518000, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen, 518000, China
| | - Leslie C Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
23
|
Zhang T, Guan T, Yao H, Wang LA, Wang Y, Guan Z. Brown Slime Cap Mushroom (Chroogomphus rutilus, Agaricomycetes) Polysaccharide Resists Motion Sickness by Inhibiting the Activity of the Serotonin System in Mice. Int J Med Mushrooms 2023; 25:1-13. [PMID: 37947060 DOI: 10.1615/intjmedmushrooms.2023050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Motion sickness (MS) is a disorder of the autonomic nervous system caused by abnormal exercise with symptoms such as nausea, vomiting and drowsiness. More than 90% of the human population has experienced different degrees of MS. At present, anticholinergics, antihistamines, and sympathomimetic drugs are used for treating MS, but these drugs generally have some adverse reactions and are not suitable for all people. Therefore, it is necessary to develop anti-MS drugs that have high efficiency and no adverse effects. Previous studies have found that Chroogomphus rutilus polysaccharide (CRP) is effective at preventing and treating MS in rats and mice. However, its mechanism of action is not clear. To clarify whether the CRP has anti-MS effects in mice, and to clarify its mechanism, we performed behavioral, biochemical, and morphological tests in a Kunming mouse model. Our results indicate that CRPs can significantly relieve the symptoms of MS, and their effect is equivalent to that of scopolamine, a commonly used anti-MS medicine. Our results indicate that CRPs may directly act on the gastrointestinal chromaffin cells to inhibit the synthesis and release of serotonin (5-hydroxytryptamine, or 5-HT) and thus reduce the signal from the gastrointestinal tract.
Collapse
Affiliation(s)
- Tao Zhang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Tianyuan Guan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, P.R. China
| | - Hui Yao
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Li-An Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Yanqin Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Zhenlong Guan
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| |
Collapse
|
24
|
Rosikon KD, Bone MC, Lawal HO. Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans. Front Physiol 2023; 14:970405. [PMID: 36875033 PMCID: PMC9978017 DOI: 10.3389/fphys.2023.970405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Neurotransmitters are crucial for the relay of signals between neurons and their target. Monoamine neurotransmitters dopamine (DA), serotonin (5-HT), and histamine are found in both invertebrates and mammals and are known to control key physiological aspects in health and disease. Others, such as octopamine (OA) and tyramine (TA), are abundant in invertebrates. TA is expressed in both Caenorhabditis elegans and Drosophila melanogaster and plays important roles in the regulation of essential life functions in each organism. OA and TA are thought to act as the mammalian homologs of epinephrine and norepinephrine respectively, and when triggered, they act in response to the various stressors in the fight-or-flight response. 5-HT regulates a wide range of behaviors in C. elegans including egg-laying, male mating, locomotion, and pharyngeal pumping. 5-HT acts predominantly through its receptors, of which various classes have been described in both flies and worms. The adult brain of Drosophila is composed of approximately 80 serotonergic neurons, which are involved in modulation of circadian rhythm, feeding, aggression, and long-term memory formation. DA is a major monoamine neurotransmitter that mediates a variety of critical organismal functions and is essential for synaptic transmission in invertebrates as it is in mammals, in which it is also a precursor for the synthesis of adrenaline and noradrenaline. In C. elegans and Drosophila as in mammals, DA receptors play critical roles and are generally grouped into two classes, D1-like and D2-like based on their predicted coupling to downstream G proteins. Drosophila uses histamine as a neurotransmitter in photoreceptors as well as a small number of neurons in the CNS. C. elegans does not use histamine as a neurotransmitter. Here, we review the comprehensive set of known amine neurotransmitters found in invertebrates, and discuss their biological and modulatory functions using the vast literature on both Drosophila and C. elegans. We also suggest the potential interactions between aminergic neurotransmitters systems in the modulation of neurophysiological activity and behavior.
Collapse
Affiliation(s)
- Katarzyna D Rosikon
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Megan C Bone
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Hakeem O Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
25
|
Yin JCP, Cui E, Hardin PE, Zhou H. Circadian disruption of memory consolidation in Drosophila. Front Syst Neurosci 2023; 17:1129152. [PMID: 37034015 PMCID: PMC10073699 DOI: 10.3389/fnsys.2023.1129152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
The role of the circadian system in memory formation is an important question in neurobiology. Despite this hypothesis being intuitively appealing, the existing data is confusing. Recent work in Drosophila has helped to clarify certain aspects of the problem, but the emerging sense is that the likely mechanisms are more complex than originally conceptualized. In this report, we identify a post-training window of time (during consolidation) when the circadian clock and its components are involved in memory formation. In the broader context, our data suggest that circadian biology might have multiple roles during memory formation. Testing for its roles at multiple timepoints, and in different cells, will be necessary to resolve some of the conflicting data.
Collapse
Affiliation(s)
- Jerry C. P. Yin
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Neurology Department, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- *Correspondence: Jerry C. P. Yin
| | - Ethan Cui
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Paul E. Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, College Station, TX, United States
| | - Hong Zhou
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
26
|
Wang T, Wang X, Tian Y, Gang W, Li X, Yan J, Yuan Y. Modulation effect of low-intensity transcranial ultrasound stimulation on REM and NREM sleep. Cereb Cortex 2022; 33:5238-5250. [PMID: 36376911 DOI: 10.1093/cercor/bhac413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Previous studies have shown that modulating neural activity can affect rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. Low-intensity transcranial ultrasound stimulation (TUS) can effectively modulate neural activity. However, the modulation effect of TUS on REM and NREM sleep is still unclear. In this study, we used ultrasound to stimulate motor cortex and hippocampus, respectively, and found the following: (i) In healthy mice, TUS increased the NREM sleep ratio and decreased the REM sleep ratio, and altered the relative power and sample entropy of the delta band and spindle in NREM sleep and that of the theta and gamma bands in REM sleep. (ii) In sleep-deprived mice, TUS decreased the ratio of REM sleep or the relative power of the theta band during REM sleep. (iii) In sleep-disordered Alzheimer’s disease (AD) mice, TUS increased the total sleep time and the ratio of NREM sleep and modulated the relative power and the sample entropy of the delta and spindle bands during NREM and that of the theta band during REM sleep. These results demonstrated that TUS can effectively modulate REM and NREM sleep and that modulation effect depends on the sleep state of the samples, and can improve sleep in sleep-disordered AD mice.
Collapse
Affiliation(s)
- Teng Wang
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| | - Xingran Wang
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| | - Yanfei Tian
- Hebei Medical University Department of Pharmacology, , Shijiazhuang, Hebei 050017 , China
| | - Wei Gang
- Hebei Medical University Department of Pharmacology, , Shijiazhuang, Hebei 050017 , China
| | - Xiaoli Li
- Beijing Normal University State Key Laboratory of Cognitive Neuroscience and Learning, , Beijing 100875 , China
| | - Jiaqing Yan
- North China University of Technology College of Electrical and Control Engineering, , Beijing 100041 , China
| | - Yi Yuan
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| |
Collapse
|
27
|
Knapp EM, Kaiser A, Arnold RC, Sampson MM, Ruppert M, Xu L, Anderson MI, Bonanno SL, Scholz H, Donlea JM, Krantz DE. Mutation of the Drosophila melanogaster serotonin transporter dSERT impacts sleep, courtship, and feeding behaviors. PLoS Genet 2022; 18:e1010289. [PMID: 36409783 PMCID: PMC9721485 DOI: 10.1371/journal.pgen.1010289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The Serotonin Transporter (SERT) regulates extracellular serotonin levels and is the target of most current drugs used to treat depression. The mechanisms by which inhibition of SERT activity influences behavior are poorly understood. To address this question in the model organism Drosophila melanogaster, we developed new loss of function mutations in Drosophila SERT (dSERT). Previous studies in both flies and mammals have implicated serotonin as an important neuromodulator of sleep, and our newly generated dSERT mutants show an increase in total sleep and altered sleep architecture that is mimicked by feeding the SSRI citalopram. Differences in daytime versus nighttime sleep architecture as well as genetic rescue experiments unexpectedly suggest that distinct serotonergic circuits may modulate daytime versus nighttime sleep. dSERT mutants also show defects in copulation and food intake, akin to the clinical side effects of SSRIs and consistent with the pleomorphic influence of serotonin on the behavior of D. melanogaster. Starvation did not overcome the sleep drive in the mutants and in male dSERT mutants, the drive to mate also failed to overcome sleep drive. dSERT may be used to further explore the mechanisms by which serotonin regulates sleep and its interplay with other complex behaviors.
Collapse
Affiliation(s)
- Elizabeth M. Knapp
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Andrea Kaiser
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Rebecca C. Arnold
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Maureen M. Sampson
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Manuela Ruppert
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Li Xu
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | | | - Shivan L. Bonanno
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Henrike Scholz
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Jeffrey M. Donlea
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - David E. Krantz
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| |
Collapse
|
28
|
Xu YYJ, Loh YM, Lee TT, Ohashi TS, Su MP, Kamikouchi A. Serotonin modulation in the male Aedes aegypti ear influences hearing. Front Physiol 2022; 13:931567. [PMID: 36105279 PMCID: PMC9465180 DOI: 10.3389/fphys.2022.931567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Male Aedes aegypti (Ae. aegypti) mosquitoes rely on hearing to identify conspecific females for mating, with the male attraction to the sound of flying females (“phonotaxis”) an important behavior in the initial courtship stage. Hearing thus represents a promising target for novel methods of mosquito control, and hearing behaviors (such as male phonotaxis) can be targeted via the use of sound traps. These traps unfortunately have proven to be relatively ineffective during field deployment. Shifting the target from hearing behavior to hearing function could therefore offer a novel method of interfering with Ae. aegypti mating. Numerous neurotransmitters, including serotonin (5-hydroxytryptamine, or 5-HT) and octopamine, are expressed in the male ear, with modulation of the latter proven to influence the mechanical responses of the ear to sound. The effect of serotonin modulation however remains underexplored despite its significant role in determining many key behaviors and biological processes of animals. Here we investigated the influence of serotonin on the Ae. aegypti hearing function and behaviors. Using immunohistochemistry, we found significant expression of serotonin in the male and female Ae. aegypti ears. In the male ear, presynaptic sites identified via antibody labelling showed only partial overlap with serotonin. Next, we used RT-qPCR to identify and quantify the expression levels of three different serotonin receptor families (5-HT1, 5-HT2, and 5-HT7) in the mosquito heads and ears. Although all receptors were identified in the ears of both sexes, those from the 5-HT7 family were significantly more expressed in the ears relative to the heads. We then thoracically injected serotonin-related compounds into the mosquitoes and found a significant, reversible effect of serotonin exposure on the male ear mechanical tuning frequency. Finally, oral administration of a serotonin-synthesis inhibitor altered male phonotaxis. The mosquito serotonergic system and its receptors thus represent interesting targets for novel methods of mosquito, and thus disease, control.
Collapse
Affiliation(s)
- Yifeng Y. J. Xu
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tai-Ting Lee
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- *Correspondence: Matthew P. Su, ; Azusa Kamikouchi,
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Matthew P. Su, ; Azusa Kamikouchi,
| |
Collapse
|
29
|
New-Onset Sleepwalking in a Patient Treated With Buspirone. J Clin Psychopharmacol 2022; 42:96-98. [PMID: 34928565 PMCID: PMC8946643 DOI: 10.1097/jcp.0000000000001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Jin X, Gu P, Han J. Protocol for Drosophila sleep deprivation using single-chip board. STAR Protoc 2021; 2:100827. [PMID: 34585161 PMCID: PMC8456114 DOI: 10.1016/j.xpro.2021.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sleep behavior is characterized by long-term quiescence and increased arousal threshold, and it is homeostatically regulated. The sleep rebound after deprivation is utilized to verify the abilities to maintain homeostasis. This protocol shows how to build a programmed mechanic oscillation system and detailed procedures to conduct sleep deprivation in Drosophila. This deprivation system is featured by its programming flexibility. The knowledge of electronic circuits and a certain level of programming are both required to fulfill this protocol. For complete details on the use and execution of this protocol, please refer to Jin et al. (2021). The retrofitted oscillator is controlled by a pseudo-random trigger signal A programmable single-chip board enables system flexibility The modular design simplifies debugging and maintenance
Collapse
Affiliation(s)
- Xi Jin
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Pengyu Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
31
|
Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura SY, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 2021; 10:e66039. [PMID: 34696823 PMCID: PMC9477501 DOI: 10.7554/elife.66039] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly's head direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.
Collapse
Affiliation(s)
- Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hannah Haberkern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel Turner-Evans
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
32
|
Driscoll M, Buchert SN, Coleman V, McLaughlin M, Nguyen A, Sitaraman D. Compartment specific regulation of sleep by mushroom body requires GABA and dopaminergic signaling. Sci Rep 2021; 11:20067. [PMID: 34625611 PMCID: PMC8501079 DOI: 10.1038/s41598-021-99531-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Sleep is a fundamental behavioral state important for survival and is universal in animals with sufficiently complex nervous systems. As a highly conserved neurobehavioral state, sleep has been described in species ranging from jellyfish to humans. Biogenic amines like dopamine, serotonin and norepinephrine have been shown to be critical for sleep regulation across species but the precise circuit mechanisms underlying how amines control persistence of sleep, arousal and wakefulness remain unclear. The fruit fly, Drosophila melanogaster, provides a powerful model system for the study of sleep and circuit mechanisms underlying state transitions and persistence of states to meet the organisms motivational and cognitive needs. In Drosophila, two neuropils in the central brain, the mushroom body (MB) and the central complex (CX) have been shown to influence sleep homeostasis and receive aminergic neuromodulator input critical to sleep–wake switch. Dopamine neurons (DANs) are prevalent neuromodulator inputs to the MB but the mechanisms by which they interact with and regulate sleep- and wake-promoting neurons within MB are unknown. Here we investigate the role of subsets of PAM-DANs that signal wakefulness and project to wake-promoting compartments of the MB. We find that PAM-DANs are GABA responsive and require GABAA-Rdl receptor in regulating sleep. In mapping the pathways downstream of PAM neurons innervating γ5 and β′2 MB compartments we find that wakefulness is regulated by both DopR1 and DopR2 receptors in downstream Kenyon cells (KCs) and mushroom body output neurons (MBONs). Taken together, we have identified and characterized a dopamine modulated sleep microcircuit within the mushroom body that has previously been shown to convey information about positive and negative valence critical for memory formation. These studies will pave way for understanding how flies balance sleep, wakefulness and arousal.
Collapse
Affiliation(s)
- Margaret Driscoll
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Steven N Buchert
- Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA
| | - Victoria Coleman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Morgan McLaughlin
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Amanda Nguyen
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Divya Sitaraman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA. .,Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA.
| |
Collapse
|
33
|
Weiss JT, Donlea JM. Sleep deprivation results in diverse patterns of synaptic scaling across the Drosophila mushroom bodies. Curr Biol 2021; 31:3248-3261.e3. [PMID: 34107302 PMCID: PMC8355077 DOI: 10.1016/j.cub.2021.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Sleep is essential for a variety of plastic processes, including learning and memory. However, the consequences of insufficient sleep on circuit connectivity remain poorly understood. To better appreciate the effects of sleep loss on synaptic connectivity across a memory-encoding circuit, we examined changes in the distribution of synaptic markers in the Drosophila mushroom body (MB). Protein-trap tags for active zone components indicate that recent sleep time is inversely correlated with Bruchpilot (BRP) abundance in the MB lobes; sleep loss elevates BRP while sleep induction reduces BRP across the MB. Overnight sleep deprivation also elevated levels of dSyd-1 and Cacophony, but not other pre-synaptic proteins. Cell-type-specific genetic reporters show that MB-intrinsic Kenyon cells (KCs) exhibit increased pre-synaptic BRP throughout the axonal lobes after sleep deprivation; similar increases were not detected in projections from large interneurons or dopaminergic neurons that innervate the MB. These results indicate that pre-synaptic plasticity in KCs is responsible for elevated levels of BRP in the MB lobes of sleep-deprived flies. Because KCs provide synaptic inputs to several classes of post-synaptic partners, we next used a fluorescent reporter for synaptic contacts to test whether each class of KC output connections is scaled uniformly by sleep loss. The KC output synapses that we observed here can be divided into three classes: KCs to MB interneurons; KCs to dopaminergic neurons; and KCs to MB output neurons. No single class showed uniform scaling across each constituent member, indicating that different rules may govern plasticity during sleep loss across cell types.
Collapse
Affiliation(s)
- Jacqueline T Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Sareen PF, McCurdy LY, Nitabach MN. A neuronal ensemble encoding adaptive choice during sensory conflict in Drosophila. Nat Commun 2021; 12:4131. [PMID: 34226544 PMCID: PMC8257655 DOI: 10.1038/s41467-021-24423-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/18/2021] [Indexed: 01/02/2023] Open
Abstract
Feeding decisions are fundamental to survival, and decision making is often disrupted in disease. Here, we show that neural activity in a small population of neurons projecting to the fan-shaped body higher-order central brain region of Drosophila represents food choice during sensory conflict. We found that food deprived flies made tradeoffs between appetitive and aversive values of food. We identified an upstream neuropeptidergic and dopaminergic network that relays internal state and other decision-relevant information to a specific subset of fan-shaped body neurons. These neurons were strongly inhibited by the taste of the rejected food choice, suggesting that they encode behavioral food choice. Our findings reveal that fan-shaped body taste responses to food choices are determined not only by taste quality, but also by previous experience (including choice outcome) and hunger state, which are integrated in the fan-shaped body to encode the decision before relay to downstream motor circuits for behavioral implementation.
Collapse
Affiliation(s)
- Preeti F Sareen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Li Yan McCurdy
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
35
|
Flores-Valle A, Gonçalves PJ, Seelig JD. Integration of sleep homeostasis and navigation in Drosophila. PLoS Comput Biol 2021; 17:e1009088. [PMID: 34252086 PMCID: PMC8297946 DOI: 10.1371/journal.pcbi.1009088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/22/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022] Open
Abstract
During sleep, the brain undergoes dynamic and structural changes. In Drosophila, such changes have been observed in the central complex, a brain area important for sleep control and navigation. The connectivity of the central complex raises the question about how navigation, and specifically the head direction system, can operate in the face of sleep related plasticity. To address this question, we develop a model that integrates sleep homeostasis and head direction. We show that by introducing plasticity, the head direction system can function in a stable way by balancing plasticity in connected circuits that encode sleep pressure. With increasing sleep pressure, the head direction system nevertheless becomes unstable and a sleep phase with a different plasticity mechanism is introduced to reset network connectivity. The proposed integration of sleep homeostasis and head direction circuits captures features of their neural dynamics observed in flies and mice.
Collapse
Affiliation(s)
- Andres Flores-Valle
- Center of Advanced European Studies and Research (caesar), Bonn, Germany
- International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Pedro J. Gonçalves
- Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Bonn, Germany
- Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Johannes D. Seelig
- Center of Advanced European Studies and Research (caesar), Bonn, Germany
| |
Collapse
|
36
|
Wiggin TD, Hsiao Y, Liu JB, Huber R, Griffith LC. Rest Is Required to Learn an Appetitively-Reinforced Operant Task in Drosophila. Front Behav Neurosci 2021; 15:681593. [PMID: 34220464 PMCID: PMC8250850 DOI: 10.3389/fnbeh.2021.681593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Maladaptive operant conditioning contributes to development of neuropsychiatric disorders. Candidate genes have been identified that contribute to this maladaptive plasticity, but the neural basis of operant conditioning in genetic model organisms remains poorly understood. The fruit fly Drosophila melanogaster is a versatile genetic model organism that readily forms operant associations with punishment stimuli. However, operant conditioning with a food reward has not been demonstrated in flies, limiting the types of neural circuits that can be studied. Here we present the first sucrose-reinforced operant conditioning paradigm for flies. In the paradigm, flies walk along a Y-shaped track with reward locations at the terminus of each hallway. When flies turn in the reinforced direction at the center of the track, they receive a sucrose reward at the end of the hallway. Only flies that rest early in training learn the reward contingency normally. Flies rewarded independently of their behavior do not form a learned association but have the same amount of rest as trained flies, showing that rest is not driven by learning. Optogenetically-induced sleep does not promote learning, indicating that sleep itself is not sufficient for learning the operant task. We validated the sensitivity of this assay to detect the effect of genetic manipulations by testing the classic learning mutant dunce. Dunce flies are learning-impaired in the Y-Track task, indicating a likely role for cAMP in the operant coincidence detector. This novel training paradigm will provide valuable insight into the molecular mechanisms of disease and the link between sleep and learning.
Collapse
Affiliation(s)
- Timothy D. Wiggin
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Yungyi Hsiao
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Jeffrey B. Liu
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Robert Huber
- Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, MA, United States
- Juvatech, Toledo, MA, United States
| | - Leslie C. Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| |
Collapse
|
37
|
Lyu Y, Promislow DEL, Pletcher SD. Serotonin signaling modulates aging-associated metabolic network integrity in response to nutrient choice in Drosophila melanogaster. Commun Biol 2021; 4:740. [PMID: 34131274 PMCID: PMC8206115 DOI: 10.1038/s42003-021-02260-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
Aging arises from complex interactions among multiple biochemical products. Systems-level analyses of biological networks may provide insights into the causes and consequences of aging that evade single-gene studies. We have previously found that dietary choice is sufficient to modulate aging in the vinegar fly, Drosophila melanogaster. Here we show that nutrient choice influenced several measures of metabolic network integrity, including connectivity, community structure, and robustness. Importantly, these effects are mediated by serotonin signaling, as a mutation in serotonin receptor 2A (5-HT2A) eliminated the effects of nutrient choice. Changes in network structure were associated with organism resilience and increased susceptibility to genetic perturbation. Our data suggest that the behavioral or perceptual consequences of exposure to individual macronutrients, involving serotonin signaling through 5-HT2A, qualitatively change the state of metabolic networks throughout the organism from one that is highly connected and robust to one that is fragmented, fragile, and vulnerable to perturbations.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel E L Promislow
- Department of Lab Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Pütz SM, Kram J, Rauh E, Kaiser S, Toews R, Lueningschroer-Wang Y, Rieger D, Raabe T. Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like phenotypes in Drosophila. Dis Model Mech 2021; 14:dmm047811. [PMID: 34125184 PMCID: PMC8246267 DOI: 10.1242/dmm.047811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD-inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes.
Collapse
Affiliation(s)
- Stephanie M. Pütz
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Jette Kram
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Elisa Rauh
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Sophie Kaiser
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Romy Toews
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Yi Lueningschroer-Wang
- Neurobiology and Genetics, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Thomas Raabe
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
39
|
Coll-Tané M, Gong NN, Belfer SJ, van Renssen LV, Kurtz-Nelson EC, Szuperak M, Eidhof I, van Reijmersdal B, Terwindt I, Durkin J, Verheij MMM, Kim CN, Hudac CM, Nowakowski TJ, Bernier RA, Pillen S, Earl RK, Eichler EE, Kleefstra T, Kayser MS, Schenck A. The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. SCIENCE ADVANCES 2021; 7:eabe2626. [PMID: 34088660 PMCID: PMC8177706 DOI: 10.1126/sciadv.abe2626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/19/2021] [Indexed: 05/11/2023]
Abstract
Sleep disturbances in autism and neurodevelopmental disorders are common and adversely affect patient's quality of life, yet the underlying mechanisms are understudied. We found that individuals with mutations in CHD8, among the highest-confidence autism risk genes, or CHD7 suffer from disturbed sleep maintenance. These defects are recapitulated in Drosophila mutants affecting kismet, the sole CHD8/CHD7 ortholog. We show that Kismet is required in glia for early developmental and adult sleep architecture. This role localizes to subperineurial glia constituting the blood-brain barrier. We demonstrate that Kismet-related sleep disturbances are caused by high serotonin during development, paralleling a well-established but genetically unsolved autism endophenotype. Despite their developmental origin, Kismet's sleep architecture defects can be reversed in adulthood by a behavioral regime resembling human sleep restriction therapy. Our findings provide fundamental insights into glial regulation of sleep and propose a causal mechanistic link between the CHD8/CHD7/Kismet family, developmental hyperserotonemia, and autism-associated sleep disturbances.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| | - Naihua N Gong
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel J Belfer
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lara V van Renssen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | | | - Milan Szuperak
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Isabel Terwindt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Jaclyn Durkin
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, Netherlands
| | - Chang N Kim
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Caitlin M Hudac
- Center for Youth Development and Intervention and Department of Psychology, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tomasz J Nowakowski
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Sigrid Pillen
- Center for Sleep Medicine, Kempenhaeghe, Heeze, Netherlands
| | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Matthew S Kayser
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| |
Collapse
|
40
|
Mahishi D, Triphan T, Hesse R, Huetteroth W. The Panopticon-Assessing the Effect of Starvation on Prolonged Fly Activity and Place Preference. Front Behav Neurosci 2021; 15:640146. [PMID: 33841109 PMCID: PMC8026880 DOI: 10.3389/fnbeh.2021.640146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Animal behaviours are demonstrably governed by sensory stimulation, previous experience and internal states like hunger. With increasing hunger, priorities shift towards foraging and feeding. During foraging, flies are known to employ efficient path integration strategies. However, general long-term activity patterns for both hungry and satiated flies in conditions of foraging remain to be better understood. Similarly, little is known about how permanent contact chemosensory stimulation affects locomotion. To address these questions, we have developed a novel, simplistic fly activity tracking setup—the Panopticon. Using a 3D-printed Petri dish inset, our assay allows recording of walking behaviour, of several flies in parallel, with all arena surfaces covered by a uniform substrate layer. We tested two constellations of providing food: (i) in single patches and (ii) omnipresent within the substrate layer. Fly tracking is done with FIJI, further assessment, analysis and presentation is done with a custom-built MATLAB analysis framework. We find that starvation history leads to a long-lasting reduction in locomotion, as well as a delayed place preference for food patches which seems to be not driven by immediate hunger motivation.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Tilman Triphan
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ricarda Hesse
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Wolf Huetteroth
- Department of Genetics, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
41
|
Ni L. Genetic Transsynaptic Techniques for Mapping Neural Circuits in Drosophila. Front Neural Circuits 2021; 15:749586. [PMID: 34675781 PMCID: PMC8524129 DOI: 10.3389/fncir.2021.749586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
A neural circuit is composed of a population of neurons that are interconnected by synapses and carry out a specific function when activated. It is the structural framework for all brain functions. Its impairments often cause diseases in the nervous system. To understand computations and functions in a brain circuit, it is of crucial importance to identify how neurons in this circuit are connected. Genetic transsynaptic techniques provide opportunities to efficiently answer this question. These techniques label synapses or across synapses to unbiasedly label synaptic partners. They allow for mapping neural circuits with high reproducibility and throughput, as well as provide genetic access to synaptically connected neurons that enables visualization and manipulation of these neurons simultaneously. This review focuses on three recently developed Drosophila genetic transsynaptic tools for detecting chemical synapses, highlights their advantages and potential pitfalls, and discusses the future development needs of these techniques.
Collapse
|
42
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
43
|
Duhart JM, Baccini V, Zhang Y, Machado DR, Koh K. Modulation of sleep-courtship balance by nutritional status in Drosophila. eLife 2020; 9:60853. [PMID: 33084567 PMCID: PMC7609064 DOI: 10.7554/elife.60853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Sleep is essential but incompatible with other behaviors, and thus sleep drive competes with other motivations. We previously showed Drosophila males balance sleep and courtship via octopaminergic neurons that act upstream of courtship-regulating P1 neurons (Machado et al., 2017). Here, we show nutrition modulates the sleep-courtship balance and identify sleep-regulatory neurons downstream of P1 neurons. Yeast-deprived males exhibited attenuated female-induced nighttime sleep loss yet normal daytime courtship, which suggests male flies consider nutritional status in deciding whether the potential benefit of pursuing female partners outweighs the cost of losing sleep. Trans-synaptic tracing and calcium imaging identified dopaminergic neurons projecting to the protocerebral bridge (DA-PB) as postsynaptic partners of P1 neurons. Activation of DA-PB neurons led to reduced sleep in normally fed but not yeast-deprived males. Additional PB-projecting neurons regulated male sleep, suggesting several groups of PB-projecting neurons act downstream of P1 neurons to mediate nutritional modulation of the sleep-courtship balance.
Collapse
Affiliation(s)
- José M Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States
| | - Victoria Baccini
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States
| | - Yanan Zhang
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States
| | - Daniel R Machado
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
44
|
Hu SW, Yang YT, Sun Y, Zhan YP, Zhu Y. Serotonin Signals Overcome Loser Mentality in Drosophila. iScience 2020; 23:101651. [PMID: 33117967 PMCID: PMC7581928 DOI: 10.1016/j.isci.2020.101651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 10/01/2020] [Indexed: 12/03/2022] Open
Abstract
Traumatic experiences generate stressful neurological effects in the exposed persons and animals. Previous studies have demonstrated that in many species, including Drosophila, the defeated animal has a higher probability of losing subsequent fights. However, the neural basis of this “loser effect” is largely unknown. We herein report that elevated serotonin (5-HT) signaling helps a loser to overcome suppressive neurological states. Coerced activation of 5-HT neurons increases aggression in males and promotes losers to both vigorously re-engage in fights and even defeat the previous winners and regain mating motivation. P1 neurons act upstream and 5-HT1B neurons in the ellipsoid body act downstream of 5-HT neurons to arouse losers. Our results demonstrate an ancient neural mechanism of regulating depressive behavioral states after distressing events. Activating a small subset of serotonin neurons promotes losers to fight Serotonin is necessary and sufficient for modulating aggression in losers The neural circuit for motivating losers includes P1, 5-HT, and 5-HT1B neurons Elevating 5-HT signaling overcomes the depressive behavioral state in losers
Collapse
Affiliation(s)
- Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Peng Zhan
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Serotonergic modulation of visual neurons in Drosophila melanogaster. PLoS Genet 2020; 16:e1009003. [PMID: 32866139 PMCID: PMC7485980 DOI: 10.1371/journal.pgen.1009003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory systems rely on neuromodulators, such as serotonin, to provide flexibility for information processing as stimuli vary, such as light intensity throughout the day. Serotonergic neurons broadly innervate the optic ganglia of Drosophila melanogaster, a widely used model for studying vision. It remains unclear whether serotonin modulates the physiology of interneurons in the optic ganglia. To address this question, we first mapped the expression patterns of serotonin receptors in the visual system, focusing on a subset of cells with processes in the first optic ganglion, the lamina. Serotonin receptor expression was found in several types of columnar cells in the lamina including 5-HT2B in lamina monopolar cell L2, required for spatiotemporal luminance contrast, and both 5-HT1A and 5-HT1B in T1 cells, whose function is unknown. Subcellular mapping with GFP-tagged 5-HT2B and 5-HT1A constructs indicated that these receptors localize to layer M2 of the medulla, proximal to serotonergic boutons, suggesting that the medulla neuropil is the primary site of serotonergic regulation for these neurons. Exogenous serotonin increased basal intracellular calcium in L2 terminals in layer M2 and modestly decreased the duration of visually induced calcium transients in L2 neurons following repeated dark flashes, but otherwise did not alter the calcium transients. Flies without functional 5-HT2B failed to show an increase in basal calcium in response to serotonin. 5-HT2B mutants also failed to show a change in amplitude in their response to repeated light flashes but other calcium transient parameters were relatively unaffected. While we did not detect serotonin receptor expression in L1 neurons, they, like L2, underwent serotonin-induced changes in basal calcium, presumably via interactions with other cells. These data demonstrate that serotonin modulates the physiology of interneurons involved in early visual processing in Drosophila. Serotonergic neurons innervate the Drosophila melanogaster eye, but it was not known whether serotonin signaling could induce acute physiological responses in visual interneurons. We found serotonin receptors expressed in all neuropils of the optic lobe and identified specific neurons involved in visual information processing that express serotonin receptors. Activation of these receptors increased intracellular calcium in first order interneurons L1 and L2 and may enhance visually induced calcium transients in L2 neurons. These data support a role for the serotonergic neuromodulation of interneurons in the Drosophila visual system.
Collapse
|
46
|
Wang YY, Ma WW, Peng IF. Screening of sleep assisting drug candidates with a Drosophila model. PLoS One 2020; 15:e0236318. [PMID: 32726319 PMCID: PMC7390450 DOI: 10.1371/journal.pone.0236318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Lately, Drosophila has been favored as a model in sleep and circadian rhythm research due to its conserved mechanism and easily manageable operation. These studies have revealed the sophisticated parameters in whole-day sleep profiles of Drosophila, drawing connections between Drosophila sleep and human sleep. In this study, we tested several sleep deprivation protocols (mechanical shakes and light interruptions) on Drosophila and delineated their influences on Drosophila sleep. We applied a daytime light-deprivation protocol (DD) mimicking jet-lag to screen drugs that alleviate sleep deprivation. Characteristically, classical sleep-aid compounds exhibited different forms of influence: phenobarbital and pentobarbital modified total sleep time, while melatonin only shortened the latency to sleep. Such results construct the basis for further research on sleep benefits in other treatments in Drosophila. We screened seven herb extracts, and found very diverse results regarding their effect on sleep regulation. For instance, Panax notoginseng and Withania somnifera extracts displayed potent influence on total sleep time, while Melissa officinalis increased the number of sleep episodes. By comparing these treatments, we were able to rank drug potency in different aspects of sleep regulation. Notably, we also confirmed the presence of sleep difficulties in a Drosophila Alzheimer’s disease (AD) model with an overexpression of human Abeta, and recognized clear differences between the portfolios of drug screening effects in AD flies and in the control group. Overall, potential drug candidates and receipts for sleep problems can be identified separately for normal and AD Drosophila populations, outlining Drosophila’s potential in drug screening tests in other populations if combined with the use of other genetic disease tools.
Collapse
Affiliation(s)
- Yan-Ying Wang
- Research Department, Suzhou Joekai Biotech LLC, Kunshan City, Jiangsu, China
| | - Wei-Wei Ma
- Research Department, Suzhou Joekai Biotech LLC, Kunshan City, Jiangsu, China
- School of Life Science, Tsinghua University, Beijing, China
| | - I-Feng Peng
- Research Department, Suzhou Joekai Biotech LLC, Kunshan City, Jiangsu, China
- * E-mail:
| |
Collapse
|
47
|
Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience 2020; 445:12-30. [PMID: 32730949 DOI: 10.1016/j.neuroscience.2020.07.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental disorders (NDDs) include a large number of conditions such as Fragile X syndrome, autism spectrum disorders and Down syndrome, among others. They are characterized by limitations in adaptive and social behaviors, as well as intellectual disability (ID). Whole-exome and whole-genome sequencing studies have highlighted a large number of NDD/ID risk genes. To dissect the genetic causes and underlying biological pathways, in vivo experimental validation of the effects of these mutations is needed. The fruit fly, Drosophila melanogaster, is an ideal model to study NDDs, with highly tractable genetics, combined with simple behavioral and circuit assays, permitting rapid medium-throughput screening of NDD/ID risk genes. Here, we review studies where the use of well-established assays to study mechanisms of learning and memory in Drosophila has permitted insights into molecular mechanisms underlying IDs. We discuss how technologies in the fly model, combined with a high degree of molecular and physiological conservation between flies and mammals, highlight the Drosophila system as an ideal model to study neurodevelopmental disorders, from genetics to behavior.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
48
|
Abstract
Research over the last 20 years has firmly established the existence of sleep states across the animal kingdom. Work in non-mammalian animal models such as nematodes, fruit flies, and zebrafish has now uncovered many evolutionarily conserved aspects of sleep physiology and regulation, including shared circuit architecture, homeostatic and circadian control elements, and principles linking sleep physiology to function. Non-mammalian sleep research is now shedding light on fundamental aspects of the genetic and neuronal circuit regulation of sleep, with direct implications for the understanding of how sleep is regulated in mammals.
Collapse
Affiliation(s)
- Declan G. Lyons
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, United Kingdom, WC1E 6BT
| |
Collapse
|
49
|
Dissel S. Drosophila as a Model to Study the Relationship Between Sleep, Plasticity, and Memory. Front Physiol 2020; 11:533. [PMID: 32547415 PMCID: PMC7270326 DOI: 10.3389/fphys.2020.00533] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
Humans spend nearly a third of their life sleeping, yet, despite decades of research the function of sleep still remains a mystery. Sleep has been linked with various biological systems and functions, including metabolism, immunity, the cardiovascular system, and cognitive functions. Importantly, sleep appears to be present throughout the animal kingdom suggesting that it must provide an evolutionary advantage. Among the many possible functions of sleep, the relationship between sleep, and cognition has received a lot of support. We have all experienced the negative cognitive effects associated with a night of sleep deprivation. These can include increased emotional reactivity, poor judgment, deficit in attention, impairment in learning and memory, and obviously increase in daytime sleepiness. Furthermore, many neurological diseases like Alzheimer’s disease often have a sleep disorder component. In some cases, the sleep disorder can exacerbate the progression of the neurological disease. Thus, it is clear that sleep plays an important role for many brain functions. In particular, sleep has been shown to play a positive role in the consolidation of long-term memory while sleep deprivation negatively impacts learning and memory. Importantly, sleep is a behavior that is adapted to an individual’s need and influenced by many external and internal stimuli. In addition to being an adaptive behavior, sleep can also modulate plasticity in the brain at the level of synaptic connections between neurons and neuronal plasticity influences sleep. Understanding how sleep is modulated by internal and external stimuli and how sleep can modulate memory and plasticity is a key question in neuroscience. In order to address this question, several animal models have been developed. Among them, the fruit fly Drosophila melanogaster with its unparalleled genetics has proved to be extremely valuable. In addition to sleep, Drosophila has been shown to be an excellent model to study many complex behaviors, including learning, and memory. This review describes our current knowledge of the relationship between sleep, plasticity, and memory using the fly model.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
50
|
Covert sleep-related biological processes are revealed by probabilistic analysis in Drosophila. Proc Natl Acad Sci U S A 2020; 117:10024-10034. [PMID: 32303656 PMCID: PMC7211995 DOI: 10.1073/pnas.1917573117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reduced sleep duration and disrupted sleep quality are correlated with adverse mental and physical health outcomes. Better tools for measuring the internal drives for sleep and wake in model organisms would facilitate understanding the role of sleep quality in health. We defined two conditional probabilities, P(Wake) and P(Doze), that can be calculated from recordings of Drosophila activity without disturbing the animal. We demonstrated that P(Wake) is a measure of sleep depth and that P(Doze) is a measure of sleep pressure. In parallel, we developed an automatic classifier for state-based analysis of Drosophila behavior. These analysis tools will improve our understanding of the pharmacology and neuronal regulation of behavioral drives in the Drosophila brain. Sleep pressure and sleep depth are key regulators of wake and sleep. Current methods of measuring these parameters in Drosophila melanogaster have low temporal resolution and/or require disrupting sleep. Here we report analysis tools for high-resolution, noninvasive measurement of sleep pressure and depth from movement data. Probability of initiating activity, P(Wake), measures sleep depth while probability of ceasing activity, P(Doze), measures sleep pressure. In vivo and computational analyses show that P(Wake) and P(Doze) are largely independent and control the amount of total sleep. We also develop a Hidden Markov Model that allows visualization of distinct sleep/wake substates. These hidden states have a predictable relationship with P(Doze) and P(Wake), suggesting that the methods capture the same behaviors. Importantly, we demonstrate that both the Doze/Wake probabilities and the sleep/wake substates are tied to specific biological processes. These metrics provide greater mechanistic insight into behavior than measuring the amount of sleep alone.
Collapse
|