1
|
Li Y, Hou P, Li R, Li P, Ma Z, Wu H, Jiang Z. A functional study of the trehalase genes in Tribolium castaneum and their application in the construction of RNAi engineering bacteria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106315. [PMID: 40015907 DOI: 10.1016/j.pestbp.2025.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Tribolium castaneum, belonging to the order Coleoptera, family Tenebrionidae, is a global grain storage pest. The enzyme trehalase can catalyze trehalose decomposition and participate in chitin synthesis, which is of great significance in insect physiology and may be a key target for T. castaneum pest prevention and control. This study focused on T. castaneum and explored the function of its trehalase (TcTre) in test insects' growth and development process. We analyzed the roles of TcTre in different growth stages and tissues of T. castaneum by measuring its spatio and temporal expression patterns. The silencing of TcTre by RNAi technology reduced the transcription level of the target gene, affected the enzyme activity of trehalase, disturbed the sugar balance, blocked the pathway of chitin synthesis, and caused abnormal molting and wing development of the tested insects. Key genes about pest control such as TcTre1-1, TcTre1-3, and TcTre2 were screened, which caused the accumulated mortality of 53.33 %, 56.67 %, and 50.00 % respectively. Subsequently, an engineered bacterium, Tre-L4440-HT115 (DE3), was developed to efficiently express dsRNA and mediate insecticidal activity. The dsRNA produced by the bacterial solution, targeting TcTre1-1, TcTre1-3, and TcTre2 fragments for silencing, could cause the death of 44.44 %, 48.89 %, and 46.67 % of the test insects cumulatively. This advancement was aimed at reducing the production costs of dsRNA and laying a scientific foundation for the industrial development of nucleic acid pesticides for T. castaneum.
Collapse
Affiliation(s)
- Yue Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Puxing Hou
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Ruyu Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Pei Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| | - Zhili Jiang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
2
|
Ishikawa K, Soejima S, Nishimura T, Saitoh S. Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability. J Cell Biol 2025; 224:e202404085. [PMID: 39378339 PMCID: PMC11465072 DOI: 10.1083/jcb.202404085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/06/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
The fission yeast, Schizosaccharomyces pombe, is an excellent eukaryote model organism for studying essential biological processes. Its genome contains ∼1,200 genes essential for cell viability, most of which are evolutionarily conserved. To study these essential genes, resources enabling conditional perturbation of target genes are required. Here, we constructed comprehensive arrayed libraries of plasmids and strains to knock down essential genes in S. pombe using dCas9-mediated CRISPRi. These libraries cover ∼98% of all essential genes in fission yeast. We estimate that in ∼60% of these strains, transcription of a target gene was repressed so efficiently that cell proliferation was significantly inhibited. To demonstrate the usefulness of these libraries, we performed metabolic analyses with knockdown strains and revealed flexible interaction among metabolic pathways. Libraries established in this study enable comprehensive functional analyses of essential genes in S. pombe and will facilitate the understanding of essential biological processes in eukaryotes.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Cell Biology, Institute of Life Science, Kurume University, Kurume, Japan
| | - Saeko Soejima
- Department of Cell Biology, Institute of Life Science, Kurume University, Kurume, Japan
| | - Takashi Nishimura
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Shigeaki Saitoh
- Department of Cell Biology, Institute of Life Science, Kurume University, Kurume, Japan
| |
Collapse
|
3
|
Yoshinari Y, Nishimura T, Yoshii T, Kondo S, Tanimoto H, Kobayashi T, Matsuyama M, Niwa R. A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster. Nat Commun 2024; 15:10819. [PMID: 39737959 PMCID: PMC11685984 DOI: 10.1038/s41467-024-55050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Takashi Nishimura
- Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| | - Taishi Yoshii
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
4
|
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, Zhai Y. Insulin Signaling Pathway Mediates FoxO-Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int J Mol Sci 2024; 25:10441. [PMID: 39408770 PMCID: PMC11482478 DOI: 10.3390/ijms251910441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The agricultural pest Drosophila suzukii exhibits a strong preference for feeding on fresh fruits, demonstrating high adaptability to sugary environments. Meanwhile, high sugar levels stimulate insulin secretion, thereby regulating the steady state of sugar metabolism. Understanding the mechanisms related to sugar metabolism in D. suzukii is crucial due to its adaptation to these specific environmental conditions. The insulin signaling pathway is an evolutionarily conserved phosphorylation cascade with significant roles in development and metabolism. We observed that the activation of the insulin signaling pathway inhibited FoxO activity and downregulated the expression of Pepck, thereby activating glycolysis and reducing glucose levels. By contrast, inhibiting insulin signaling increased the FoxO activity and upregulated the expression of Pepck, which activated gluconeogenesis and led to increased glucose levels. Our findings demonstrated the crucial role of the insulin signaling pathway in mediating glucose metabolism through the FoxO-Pepck axis, which supports the ecological adaptation of D. suzukii to high-sugar niches, thereby providing insights into its metabolic control and suggesting potential strategies for pest management. Elucidating these molecular processes is important for understanding metabolic regulation and ecological specialization in D. suzukii.
Collapse
Affiliation(s)
- Shuting Zang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
5
|
Gu SH, Lin PL, Chang CH. Expressions of sugar transporters/trehalases in relation to PTTH-stimulated ecdysteroidogenesis in the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104672. [PMID: 38981575 DOI: 10.1016/j.jinsphys.2024.104672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
The prothoracic gland (PG) is the source of ecdysteoids in larval insects. Although numerous studies have been conducted on signaling networks involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in PGs, less is known about regulation of metabolism in PGs. In the present study, we investigated correlations between expressions of sugar transporter (St)/trehalase (Treh) genes and PTTH-stimulated ecdysteroidogenesis in Bombyx mori PGs. Our results showed that in vitro PTTH treatment stimulated expression of the St1 gene, but not other transporter genes. Expression of the Treh1 gene was also stimulated by PTTH treatment. An immunoblotting analysis showed that St1 protein levels in Bombyx PGs increased during the later stage of the last larval instar and were not affect by PTTH treatment. PTTH treatment enhanced Treh enzyme activity in a time-dependent manner. Blocking either extracellular signal-regulated kinase (ERK) signaling with U0126 or phosphatidylinositol 3-kinase (PI3K) signaling with LY294002 decreased PTTH-stimulated Treh enzyme activity, indicating a link from the ERK and PI3K signaling pathways to Treh activity. Treatment with the Treh inhibitor, validamycin A, blocked PTTH-stimulated Treh enzyme activity and partially inhibited PTTH-stimulated ecdysteroidogenesis. Treatment with either a sugar transport inhibitor (cytochalasin B) or a specific glycolysis inhibitor (2-deoxy-D-glucose, 2-DG) partially inhibited PTTH-stimulated ecdysteroidogenesis. Taken together, these results indicate that increased expressions of St1/Treh1 and Treh activity, which lie downstream of PTTH signaling, are involved in PTTH stimulation in B. mori PGs.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
6
|
Yi Q, Xi Y, Li J, Wu Z, Ma Y, Jiang Y, Yang D, Huang S. The interaction between 20-hydroxyecdysone and AMPK through PI3K activation in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105194. [PMID: 38754572 DOI: 10.1016/j.dci.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
In crustaceans, the steroid hormone 20-hydroxyecdysone (20E) initiates molting, and the molting process is also regulated by energy metabolism. AMPK is an energy sensor and plays a critical role in systemic energy balance. Here, the regulatory mechanism in the interaction between 20E and AMPK was investigated in Chinese mitten crab, Eriocheir sinensis. The results showed that the 20E concentration and the mRNA expression levels of 20E receptors in hepatopancreas were down-regulated post AMPK activator (AICAR) treatment, and were up-regulated after AMPK inhibitor (Compound C) injection in crabs. Besides, the molt-inhibiting hormone (MIH) gene expression in eyestalk showed the opposite patterns in response to the AICAR and Compound C treatment, respectively. Further investigation found that there was a significant reduction in 20E concentration post PI3K inhibitor (LY294002) treatment, and the phosphorylation level of PI3K was increased in hepatopancreas after AMPK inhibitor injection. On the other hand, the positive regulation of PI3K-mediated activation of AMPK was also observed, the phosphorylation levels of AMPKα, AMPKβ and PI3K in hepatopancreas were significantly increased post 20E injection. In addition, the phosphorylation levels of AMPKα and AMPKβ induced by 20E were decreased after the injection of PI3K inhibitor. Taken together, these results suggest that the regulatory cross-talk between 20E and AMPK is likely to act through PI3K pathway in E. sinensis, which appeared to be helpful for a better understanding in molting regulation.
Collapse
Affiliation(s)
- Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
7
|
Hashimoto S, Yamazaki M, Uehara H, Yamazaki S, Kobayashi M, Yokoyama T, Yazawa K, Shiomi K. Evaluating bio-physicochemical properties of raw powder prepared from whole larvae containing liquid silk of the domestic silkworm. Front Nutr 2024; 11:1404489. [PMID: 38903626 PMCID: PMC11188413 DOI: 10.3389/fnut.2024.1404489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
The domestic silkworm, Bombyx mori, has been widely used in silk production for centuries. It is also used as a bioreactor by the textile and pharmaceutical industries to mass produce recombinant bioactive proteins containing silk-based materials. Furthermore, silkworms are well-known as a source of food and have also been orally administered to prevent and treat several human disorders. In this study, we aimed to investigate the inherent bio-physicochemical properties of edible silkworms to accurately evaluate their clinical and nutritional potential. We prepared raw powder from whole larvae of silkworm. The yield rate of the powder derived from dried larvae was almost 100% (98.1-99.1% in replicates). As "percentage yield" translates to "Budomari" in Japanese, this raw powder was named "B100rw." We further prepared B100dn that was denatured through autoclaving. Thereafter, we examined whether B100rw sustained the original bio-physicochemical properties by comparing it with B100dn. There was no significant difference in nutritional content between B100rw and B100dn. B100rw contained proteins derived from silkworm larvae and mulberry leaves, whereas the proteins of B100dn were mostly degraded. On measuring the enzymatic activity of both powders using trehalase as an indicator enzyme, B100rw was found to maintain trehalase activity. B100rw also maintained a random coil conformation, similar to that of liquid silk. This suggested that B100rw sustained the unique bio-physicochemical properties of living larvae. These findings may facilitate the development of novel food products or orally administered vaccines.
Collapse
Affiliation(s)
- Shusuke Hashimoto
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Hiroshi Uehara
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
- Morus Inc., Tokyo, Japan
| | - Shinya Yamazaki
- Department of Food Technology, Nagano Prefecture General Industrial Technology Center, Nagano, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Takeshi Yokoyama
- Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kenjiro Yazawa
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
8
|
Bamgbose G, Bordet G, Lodhi N, Tulin A. Mono-methylated histones control PARP-1 in chromatin and transcription. eLife 2024; 13:RP91482. [PMID: 38690995 PMCID: PMC11062633 DOI: 10.7554/elife.91482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.
Collapse
Affiliation(s)
- Gbolahan Bamgbose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North DakotaGrand ForksUnited States
| | - Guillaume Bordet
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North DakotaGrand ForksUnited States
| | - Niraj Lodhi
- Fox Chase Cancer CenterPhiladelphiaUnited States
| | - Alexei Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North DakotaGrand ForksUnited States
| |
Collapse
|
9
|
Tellis MB, Mohite SD, Nair VS, Chaudhari BY, Ahmed S, Kotkar HM, Joshi RS. Inhibition of Trehalose Synthesis in Lepidoptera Reduces Larval Fitness. Adv Biol (Weinh) 2024; 8:e2300404. [PMID: 37968550 DOI: 10.1002/adbi.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/01/2023] [Indexed: 11/17/2023]
Abstract
Trehalose is synthesized in insects through the trehalose 6-phosphate synthase and phosphatase (TPS/TPP) pathway. TPP dephosphorylates trehalose 6-phosphate to release trehalose. Trehalose is involved in metamorphosis, but its relation with body weight, size, and developmental timing is unexplored. The expression and activity of TPS/TPP fluctuate depending on trehalose demand. Thus, TPS/TPP inhibition can highlight the significance of trehalose in insect physiology. TPS/TPP transcript levels are elevated in the pre-pupal and pupal stages in Helicoverpa armigera. The inhibition of recombinantly expressed TPP by N-(phenylthio)phthalimide (NPP), is validated by in vitro assays. In vivo inhibition of trehalose synthesis reduces larval weight and size, hampers metamorphosis, and reduces its overall fitness. Insufficient trehalose leads to a shift in glucose flux, reduced energy, and dysregulated fatty acid oxidation. Metabolomics reaffirms the depletion of trehalose, glucose, glucose 6-phosphate, and suppressed tricarboxylic acid cycle. Reduced trehalose hampers the energy level affecting larval vitality. Through trehalose synthesis inhibition, the importance of trehalose in insect physiology and development is investigated. Also, in two other lepidopterans, TPP inhibition impedes physiology and survival. NPP is also found to be effective as an insecticidal formulation. Overall, trehalose levels affect the larval size, weight, and metabolic homeostasis for larval-pupal transition in lepidoptera.
Collapse
Affiliation(s)
- Meenakshi B Tellis
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Sharada D Mohite
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vineetkumar S Nair
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Bhagyashri Y Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shadab Ahmed
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Hemlata M Kotkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Rakesh S Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
10
|
Bamgbose G, Tulin A. PARP-1 is a transcriptional rheostat of metabolic and bivalent genes during development. Life Sci Alliance 2024; 7:e202302369. [PMID: 38012002 PMCID: PMC10682175 DOI: 10.26508/lsa.202302369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
PARP-1 participates in various cellular processes, including gene regulation. In Drosophila, PARP-1 mutants undergo developmental arrest during larval-to-pupal transition. In this study, we investigated PARP-1 binding and its transcriptional regulatory role at this stage. Our findings revealed that PARP-1 binds and represses active metabolic genes, including glycolytic genes, whereas activating low-expression developmental genes, including a subset of "bivalent" genes in third-instar larvae. These bivalent promoters, characterized by dual enrichment of low H3K4me3 and high H3K27me3, a unimodal H3K4me1 enrichment at the transcription start site (conserved in C. elegans and zebrafish), H2Av depletion, and high accessibility, may persist throughout development. In PARP-1 mutant third-instar larvae, metabolic genes typically down-regulated during the larval-to-pupal transition in response to reduced energy needs were repressed by PARP-1. Simultaneously, developmental and bivalent genes typically active at this stage were activated by PARP-1. In addition, glucose and ATP levels were significantly reduced in PARP-1 mutants, suggesting an imbalance in metabolic regulation. We propose that PARP-1 is essential for maintaining the delicate balance between metabolic and developmental gene expression programs to ensure proper developmental progression.
Collapse
Affiliation(s)
- Gbolahan Bamgbose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Alexei Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
11
|
Chiang ACY, Ježek J, Mu P, Di Y, Klucnika A, Jabůrek M, Ježek P, Ma H. Two mitochondrial DNA polymorphisms modulate cardiolipin binding and lead to synthetic lethality. Nat Commun 2024; 15:611. [PMID: 38242869 PMCID: PMC10799063 DOI: 10.1038/s41467-024-44964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Genetic screens have been used extensively to probe interactions between nuclear genes and their impact on phenotypes. Probing interactions between mitochondrial genes and their phenotypic outcome, however, has not been possible due to a lack of tools to map the responsible polymorphisms. Here, using a toolkit we previously established in Drosophila, we isolate over 300 recombinant mitochondrial genomes and map a naturally occurring polymorphism at the cytochrome c oxidase III residue 109 (CoIII109) that fully rescues the lethality and other defects associated with a point mutation in cytochrome c oxidase I (CoIT300I). Through lipidomics profiling, biochemical assays and phenotypic analyses, we show that the CoIII109 polymorphism modulates cardiolipin binding to prevent complex IV instability caused by the CoIT300I mutation. This study demonstrates the feasibility of genetic interaction screens in animal mitochondrial DNA. It unwraps the complex intra-genomic interplays underlying disorders linked to mitochondrial DNA and how they influence disease expression.
Collapse
Affiliation(s)
- Ason C Y Chiang
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jan Ježek
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- University College London Queen Square Institute of Neurology, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Peiqiang Mu
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Tianhe District, 510642, Guangzhou, Guangdong, P. R. China
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anna Klucnika
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Laverock Therapeutics, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Martin Jabůrek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Hansong Ma
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Wellcome/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
12
|
Bordet G, Bamgbose G, Tulin AV. Poly(ADP-ribosyl)ating enzymes coordinate changes in the expression of metabolic genes with developmental progression. Sci Rep 2023; 13:20320. [PMID: 37985852 PMCID: PMC10661653 DOI: 10.1038/s41598-023-47691-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Metabolism, known to be temporally regulated to meet evolving energy demands, plays a crucial role in shaping developmental pace. Recent studies have demonstrated that two key proteins PARP1 and PARG play a regulatory role in the transcription of both morphogenic and metabolic genes. Intriguingly, in Drosophila, the depletion of PARP1 or PARG proteins causes a developmental arrest before pupation, resulting in individuals unable to complete their development. This phenotype highlights the critical involvement of poly(ADP-ribosyl)ating enzymes in regulating the metamorphic process. In this study, we provide compelling evidence that these enzymes intricately coordinate transcriptional changes in both developmental and metabolic pathways during metamorphosis. Specifically, they promote the expression of genes crucial for pupation, while simultaneously negatively regulating the expression of metabolic genes before the transition to the pupal stage. Additionally, these enzymes suppress the expression of genes that are no longer required during this transformative period. Our findings shed light on the intricate interplay between poly(ADP-ribosyl)ating enzymes, developmental processes, and metabolic regulation before metamorphosis and highlight a new role of poly(ADP-ribosyl)ating enzymes in the global regulation of transcription.
Collapse
Affiliation(s)
- Guillaume Bordet
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | - Gbolahan Bamgbose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | - Alexei V Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA.
| |
Collapse
|
13
|
Gu SH, Lin PL, Chang CH. Expressions of sugar transporter genes during Bombyx mori embryonic development. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:788-798. [PMID: 37407486 DOI: 10.1002/jez.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Sugar transporters (Sts) play important roles in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells. Few studies have been conducted on expressions of Sts during insect embryonic development. In the present study, we investigated temporal expressions of St genes during the embryonic diapause process in Bombyx mori. We found that in HCl-treated developing eggs, high gene expressions of trehalose transporter 1 (Tret1) were detected during middle and later embryonic development. St4 and St3 gene expressions gradually increased during the early stages, reached a small peak on Day 3, and large peaks were again detected on Day 7. However, in diapause eggs, expression levels of the Tret1, St4, and St3 genes all remained at low levels. Differential temporal changes in expressions of the Tret1, St4, and St3 genes found between diapause and HCl-treated eggs were further confirmed using nondiapause eggs. Our results showed that nondiapause eggs exhibited similar changing patterns as those of HCl-treated eggs, thus clearly indicating potential correlations between expressions of these genes and embryonic development. In addition, high gene expressions of Tret1 were also detected when dechorionated eggs were incubated in the medium. The addition of LY294002 (a specific phosphatidylinositol 3-kinase [PI3K] inhibitor) and U0126 (a mitogen-activated protein kinase/extracellular signal-regulated kinase [ERK] kinase [MEK] inhibitor) partially inhibited Tret1 gene expression in dechorionated eggs, but did not affect either ecdysteroid-phosphate phosphatase gene expression or ecdysteroid biosynthesis, clearly indicating that both PI3K and ERK are involved in increased gene expression of Tret1 that was independent of ecdysteroid levels. To our knowledge, this is the first comprehensive report to demonstrate the transcriptional regulation of St genes during embryonic development, thus providing useful information for a clearer understanding of insect egg diapause mechanisms.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, Taiwan, Taichung, Republic of China
| |
Collapse
|
14
|
Yamada T, Yoshinari Y, Tobo M, Habara O, Nishimura T. Nacα protects the larval fat body from cell death by maintaining cellular proteostasis in Drosophila. Nat Commun 2023; 14:5328. [PMID: 37658058 PMCID: PMC10474126 DOI: 10.1038/s41467-023-41103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Protein homeostasis (proteostasis) is crucial for the maintenance of cellular homeostasis. Impairment of proteostasis activates proteotoxic and unfolded protein response pathways to resolve cellular stress or induce apoptosis in damaged cells. However, the responses of individual tissues to proteotoxic stress and evoking cell death program have not been extensively explored in vivo. Here, we show that a reduction in Nascent polypeptide-associated complex protein alpha subunit (Nacα) specifically and progressively induces cell death in Drosophila fat body cells. Nacα mutants disrupt both ER integrity and the proteasomal degradation system, resulting in caspase activation through JNK and p53. Although forced activation of the JNK and p53 pathways was insufficient to induce cell death in the fat body, the reduction of Nacα sensitized fat body cells to intrinsic and environmental stresses. Reducing overall protein synthesis by mTor inhibition or Minute mutants alleviated the cell death phenotype in Nacα mutant fat body cells. Our work revealed that Nacα is crucial for protecting the fat body from cell death by maintaining cellular proteostasis, thus demonstrating the coexistence of a unique vulnerability and cell death resistance in the fat body.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Yuto Yoshinari
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Masayuki Tobo
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
15
|
Rand MD, Tennessen JM, Mackay TFC, Anholt RRH. Perspectives on the Drosophila melanogaster Model for Advances in Toxicological Science. Curr Protoc 2023; 3:e870. [PMID: 37639638 PMCID: PMC10463236 DOI: 10.1002/cpz1.870] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The use of Drosophila melanogaster for studies of toxicology has grown considerably in the last decade. The Drosophila model has long been appreciated as a versatile and powerful model for developmental biology and genetics because of its ease of handling, short life cycle, low cost of maintenance, molecular genetic accessibility, and availability of a wide range of publicly available strains and data resources. These features, together with recent unique developments in genomics and metabolomics, make the fly model especially relevant and timely for the development of new approach methodologies and movements toward precision toxicology. Here, we offer a perspective on how flies can be leveraged to identify risk factors relevant to environmental exposures and human health. First, we review and discuss fundamental toxicologic principles for experimental design with Drosophila. Next, we describe quantitative and systems genetics approaches to resolve the genetic architecture and candidate pathways controlling susceptibility to toxicants. Finally, we summarize the current state and future promise of the emerging field of Drosophila metabolomics for elaborating toxic mechanisms. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Matthew D. Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| | - Robert R. H. Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| |
Collapse
|
16
|
Roux N, Miura S, Dussenne M, Tara Y, Lee SH, de Bernard S, Reynaud M, Salis P, Barua A, Boulahtouf A, Balaguer P, Gauthier K, Lecchini D, Gibert Y, Besseau L, Laudet V. The multi-level regulation of clownfish metamorphosis by thyroid hormones. Cell Rep 2023; 42:112661. [PMID: 37347665 PMCID: PMC10467156 DOI: 10.1016/j.celrep.2023.112661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
Most marine organisms have a biphasic life cycle during which pelagic larvae transform into radically different juveniles. In vertebrates, the role of thyroid hormones (THs) in triggering this transition is well known, but how the morphological and physiological changes are integrated in a coherent way with the ecological transition remains poorly explored. To gain insight into this question, we performed an integrated analysis of metamorphosis of a marine teleost, the false clownfish (Amphiprion ocellaris). We show how THs coordinate a change in color vision as well as a major metabolic shift in energy production, highlighting how it orchestrates this transformation. By manipulating the activity of liver X regulator (LXR), a major regulator of metabolism, we also identify a tight link between metabolic changes and metamorphosis progression. Strikingly, we observed that these regulations are at play in the wild, explaining how hormones coordinate energy needs with available resources during the life cycle.
Collapse
Affiliation(s)
- Natacha Roux
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Saori Miura
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Mélanie Dussenne
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Yuki Tara
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Shu-Hua Lee
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd., Jiau Shi, I-Lan 262, Taiwan
| | | | - Mathieu Reynaud
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Pauline Salis
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Agneesh Barua
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, University of Montpellier, 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, University of Montpellier, 34090 Montpellier, France
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69007 Lyon, France
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS-UAR 3278 CRIOBE BP 1013, 98729 Papetoai, Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL," 66100 Perpignan, France
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France.
| | - Vincent Laudet
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan; Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd., Jiau Shi, I-Lan 262, Taiwan.
| |
Collapse
|
17
|
Bhuiyan SH, Bordet G, Bamgbose G, Tulin AV. The Drosophila gene encoding JIG protein (CG14850) is critical for CrebA nuclear trafficking during development. Nucleic Acids Res 2023; 51:5647-5660. [PMID: 37144466 PMCID: PMC10287909 DOI: 10.1093/nar/gkad343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Coordination of mitochondrial and nuclear processes is key to the cellular health; however, very little is known about the molecular mechanisms regulating nuclear-mitochondrial crosstalk. Here, we report a novel molecular mechanism controlling the shuttling of CREB (cAMP response element-binding protein) protein complex between mitochondria and nucleoplasm. We show that a previously unknown protein, herein termed as Jig, functions as a tissue-specific and developmental timing-specific coregulator in the CREB pathway. Our results demonstrate that Jig shuttles between mitochondria and nucleoplasm, interacts with CrebA protein and controls its delivery to the nucleus, thus triggering CREB-dependent transcription in nuclear chromatin and mitochondria. Ablating the expression of Jig prevents CrebA from localizing to the nucleoplasm, affecting mitochondrial functioning and morphology and leads to Drosophila developmental arrest at the early third instar larval stage. Together, these results implicate Jig as an essential mediator of nuclear and mitochondrial processes. We also found that Jig belongs to a family of nine similar proteins, each of which has its own tissue- and time-specific expression profile. Thus, our results are the first to describe the molecular mechanism regulating nuclear and mitochondrial processes in a tissue- and time-specific manner.
Collapse
|
18
|
Force E, Couzi P, Dacher M, Debernard S. Diet Impacts the Reproductive System's Maturation in the Male Moth Agrotis ipsilon (Noctuidae, Lepidoptera). JOURNAL OF INSECT PHYSIOLOGY 2023; 148:104532. [PMID: 37353192 DOI: 10.1016/j.jinsphys.2023.104532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
In male moth Agrotis ipsilon, sexual maturation occurs between the third and the fifth day of adult life and is characterized by the development of the reproductive organs such as testes and accessory sex glands. Since sexual maturation requires considerable energy investment, we hypothesized that diet would be an essential regulatory factor in this developmental process. Indeed, the links between the male diet and reproductive physiology have not been described as in females. To test the previous hypothesis, we offered male moths diets corresponding to different flower nectars found in nature, and measured morphological and functional changes in the testes and accessory sex glands. In comparison to a diet composed of sucrose only, males fed with a diet composed of diverse sugars, including glucose, supplemented with sodium led to an earlier increase in the length and the protein content of accessory sex glands, as well as a reduction of the testicular volume accompanied by an acceleration of the sperm bundle transfer from the testes to the duplex. These results show that these specific diets accelerate the maturation of the reproductive system in male moth Agrotis ipsilon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-78026 Versailles, France; Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-75005 Paris, France.
| | - Philippe Couzi
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-78026 Versailles, France
| | - Matthieu Dacher
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-78026 Versailles, France; Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, F-75005 Paris, France.
| |
Collapse
|
19
|
Suzuki T, Akiba C, Izawa M, Iwami M. Steroid hormone-dependent changes in trehalose physiology in the silkworm, Bombyx mori. J Comp Physiol B 2023:10.1007/s00360-023-01497-2. [PMID: 37221306 DOI: 10.1007/s00360-023-01497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Holometabolous insects undergo metamorphosis to reconstruct their body to the adult form during pupal period. Since pupae cannot take any diets from the outside because of a hard pupal cuticle, those insects stock up on nutrients sufficient for successful metamorphosis during larval feeding period. Among those nutrients, carbohydrates are stored as glycogen or trehalose, which is the major blood sugar in insects. The hemolymph trehalose is constantly high during the feeding period but suddenly decreases at the beginning of the prepupal period. It is believed that trehalase, which is a trehalose-hydrolyzing enzyme, becomes highly active to reduce hemolymph trehalose level during prepupal period. This change in the hemolymph trehalose level has been interpreted as the physiological shift from storage to utilization of trehalose at that stage. Although this shift in trehalose physiology is indispensable for energy production required for successful metamorphosis, little is known on the regulatory mechanisms of trehalose metabolism in accordance with developmental progress. Here, we show that ecdysone, an insect steroid hormone, plays essential roles in the regulation of soluble trehalase activity and its distribution in the midgut of silkworm, Bombyx mori. In the end of larval period, soluble trehalase was highly activated in the midgut lumen. This activation was disappeared in the absence of ecdysone and also restored by ecdysone administration. Our present results suggest that ecdysone is essentially required for the changes in the function of the midgut on trehalose physiology as development progresses.
Collapse
Affiliation(s)
- Takumi Suzuki
- Laboratory of Developmental Biology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Laboratory of Developmental Biology and Physiology, College of Science, Ibaraki University, 1-1-2 Bunkyo, Mito, 310-8512, Japan.
- Laboratory of Developmental Biology and Physiology, Division of Science, Graduate School of Science and Engineering, Ibaraki University, 1-1-2 Bunkyo, Mito, 310-8512, Japan.
| | - Chika Akiba
- Laboratory of Developmental Biology and Physiology, Division of Science, Graduate School of Science and Engineering, Ibaraki University, 1-1-2 Bunkyo, Mito, 310-8512, Japan
| | - Misaki Izawa
- Laboratory of Developmental Biology and Physiology, Division of Science, Graduate School of Science and Engineering, Ibaraki University, 1-1-2 Bunkyo, Mito, 310-8512, Japan
| | - Masafumi Iwami
- Laboratory of Developmental Biology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
20
|
Rumpf S, Sanal N, Marzano M. Energy metabolic pathways in neuronal development and function. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad004. [PMID: 38596236 PMCID: PMC10913822 DOI: 10.1093/oons/kvad004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2024]
Abstract
Neuronal development and function are known to be among the most energy-demanding functions of the body. Constant energetic support is therefore crucial at all stages of a neuron's life. The two main adenosine triphosphate (ATP)-producing pathways in cells are glycolysis and oxidative phosphorylation. Glycolysis has a relatively low yield but provides fast ATP and enables the metabolic versatility needed in dividing neuronal stem cells. Oxidative phosphorylation, on the other hand, is highly efficient and therefore thought to provide most or all ATP in differentiated neurons. However, it has recently become clear that due to their distinct properties, both pathways are required to fully satisfy neuronal energy demands during development and function. Here, we provide an overview of how glycolysis and oxidative phosphorylation are used in neurons during development and function.
Collapse
Affiliation(s)
- Sebastian Rumpf
- Correspondence address. Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany. E-mail:
| | - Neeraja Sanal
- Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Marco Marzano
- Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| |
Collapse
|
21
|
Hoshino R, Sano H, Yoshinari Y, Nishimura T, Niwa R. Circulating fructose regulates a germline stem cell increase via gustatory receptor-mediated gut hormone secretion in mated Drosophila. SCIENCE ADVANCES 2023; 9:eadd5551. [PMID: 36827377 PMCID: PMC9956130 DOI: 10.1126/sciadv.add5551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Oogenesis is influenced by multiple environmental factors. In the fruit fly, Drosophila melanogaster, nutrition and mating have large impacts on an increase in female germline stem cells (GSCs). However, it is unclear whether these two factors affect this GSC increase interdependently. Here, we report that dietary sugars are crucial for the GSC increase after mating. Dietary glucose is required for mating-induced release of neuropeptide F (NPF) from enteroendocrine cells (EECs), followed by NPF-mediated enhancement of GSC niche signaling. Unexpectedly, dietary glucose does not directly act on NPF-positive EECs. Rather, it contributes to elevation of hemolymph fructose generated through the polyol pathway. Elevated fructose stimulates the fructose-specific gustatory receptor, Gr43a, in NPF-positive EECs, leading to NPF secretion. This study demonstrates that circulating fructose, derived from dietary sugars, is a prerequisite for the GSC increase that leads to enhancement of egg production after mating.
Collapse
Affiliation(s)
- Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Sano
- Department of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Yuto Yoshinari
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Nishimura
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
22
|
Okamoto N, Fujinaga D, Yamanaka N. Steroid hormone signaling: What we can learn from insect models. VITAMINS AND HORMONES 2023; 123:525-554. [PMID: 37717997 DOI: 10.1016/bs.vh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ecdysteroids are a group of steroid hormones in arthropods with pleiotropic functions throughout their life history. Ecdysteroid research in insects has made a significant contribution to our current understanding of steroid hormone signaling in metazoans, but how far can we extrapolate our findings in insects to other systems, such as mammals? In this chapter, we compare steroid hormone signaling in insects and mammals from multiple perspectives and discuss similarities and differences between the two lineages. We also highlight a few understudied areas and remaining questions of steroid hormone biology in metazoans and propose potential future research directions.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Fujinaga
- Department of Entomology, University of California, Riverside, CA, United States
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, United States.
| |
Collapse
|
23
|
Banzai K, Nishimura T. Isolation of a novel missense mutation in insulin receptor as a spontaneous revertant in ImpL2 mutants in Drosophila. Development 2023; 150:285910. [PMID: 36504086 DOI: 10.1242/dev.201248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Evolutionarily conserved insulin/insulin-like growth factor (IGF) signaling (IIS) correlates nutrient levels to metabolism and growth, thereby playing crucial roles in development and adult fitness. In the fruit fly Drosophila, ImpL2, an ortholog of IGFBP7, binds to and inhibits the function of Drosophila insulin-like peptides. In this study, we isolated a temperature-sensitive mutation in the insulin receptor (InR) gene as a spontaneous revertant in ImpL2 null mutants. The p.Y902C missense mutation is located at the functionally conserved amino acid residue of the first fibronectin type III domain of InR. The hypomorphic InR mutant animals showed a temperature-dependent reduction in IIS and body size. The mutant animals also exhibited metabolic defects, such as increased triglyceride and carbohydrate levels. Metabolomic analysis further revealed that defects in InR caused dysregulation of amino acid and ribonucleotide metabolism. We also observed that InR mutant females produced tiny irregular-shaped embryos with reduced fecundity. In summary, this novel allele of InR is a valuable tool for the Drosophila genetic model of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Kota Banzai
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
24
|
Gu SH, Chang CH, Lin PL. Bombyxin-stimulated ecdysteroidogenesis in relation to sugar transporter/trehalase expressions in Bombyx prothoracic glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103864. [PMID: 36336193 DOI: 10.1016/j.ibmb.2022.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Our previous studies showed that bombyxin stimulated ecdysteroidogenesis in Bombyx mori prothoracic glands (PGs) during a long-term incubation period in a phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. In the present study, we further investigated the downstream signaling cascade in bombyxin-stimulated PGs. Our results showed that upon treatment with bombyxin, expression levels of the sugar transport 1 (St1) and St4 genes and trehalase 1 (Treh1) gene, but not ecdysteroid biosynthesis genes were greatly enhanced compared to the controls. Treatment with LY294002 (an inhibitor of PI3K) reduced the enhanced St1 and Treh1 expression levels, clearly indicating the involvement of PI3K. Treatment with 1 mM of mpV(pic) (a potent inhibitor of protein phosphotyrosine phosphatase and activator of insulin receptor (InR) kinase) also stimulated expression levels of the St1 and Treh1 genes, thus further confirming the involvement of the InR. Determining Treh enzyme activity showed that bombyxin treatment stimulated Treh enzyme activity in time- and PI3K-dependent manners. Validamycin A (a Treh inhibitor) blocked bombyxin-stimulated Treh enzyme activity and partly decreased bombyxin-stimulated ecdysteroidogenesis. A specific sugar transport inhibitor (cytochalasin B) and a glycolysis inhibitor (2-deoxy-D-glucose (2-DG)) also reduced bombyxin-stimulated ecdysteroidogenesis. Taken together, these results indicated that increased expressions of Sts and Treh1 and enhanced Treh enzyme activity downstream of InR/PI3K are involved in bombyxin-stimulated ecdysteroidogenesis in B. mori PGs.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung, 404, Taiwan, ROC.
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung, 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung, 404, Taiwan, ROC
| |
Collapse
|
25
|
Liu X, Yang J, Chen J, Li F, Sun H, Wei J, Li B. Impact of sublethal chlorantraniliprole on epidermis of Bombyx mori during prepupal-pupal transition. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105200. [PMID: 36127071 DOI: 10.1016/j.pestbp.2022.105200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The silkworm Bombyx mori, an economically important insect with a long domestication history, exhibits high sensitivity to chemical pesticides. Extensive application of chlorantraniliprole (CAP) in control of pests of agricultural crops and mulberry plants causes residue toxicity to silkworm. We have demonstrated that sublethal concentration of CAP exposure causes defects in the formation of new epidermis and incomplete shedding of old epidermis during prepupal-pupal transition of B. mori. However, the underlying mechanism still remains unclear. Here, we investigated the transcriptional responses of the epidermis of B. mori on day 2 at prepupal stage to sublethal CAP exposure using digital gene expression (DGE) profiling sequencing. We identified 5823 differentially expressed genes (DEGs), with 4830 genes up-regulated and 993 genes down-regulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that CAP exposure induced disruption of energy homeostasis, oxidative stress, autophagy and apoptosis in the epidermis of B. mori. Meanwhile, trehalose content was increased while most of the genes involved in trehalose metabolism were down-regulated. In addition, chitin contents in CAP-exposed silkworms were decreased. Taken together, these results reveal that sublethal concentration of CAP probably targets trehalose metabolism to impair chitin synthesis, leading to perturbation of pupation metamorphosis in B. mori.
Collapse
Affiliation(s)
- Xinyi Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Yang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
26
|
Gáliková M, Klepsatel P. Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Semin Cell Dev Biol 2022; 138:104-116. [PMID: 35393234 DOI: 10.1016/j.semcdb.2022.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, the combination of genetics, transcriptomic and proteomic approaches yielded substantial insights into the mechanisms behind the synthesis and breakdown of energy stores in the model organisms. The fruit fly Drosophila melanogaster has been particularly useful to unravel genetic regulations of energy metabolism. Despite the considerable evolutionary distance between humans and flies, the energy storage organs, main metabolic pathways, and even their genetic regulations remained relatively conserved. Glycogen and fat are universal energy reserves used in all animal phyla and several of their endocrine regulators, such as the insulin pathway, are highly evolutionarily conserved. Nevertheless, some of the factors inducing catabolism of energy stores have diverged significantly during evolution. Moreover, even within a single insect species, D. melanogaster, there are substantial developmental and context-dependent variances in the regulation of energy stores. These differences include, among others, the endocrine pathways that govern the catabolic events or the predominant fuel which is utilized for the given process. For example, many catabolic regulators that control energy reserves in adulthood seem to be largely dispensable for energy mobilization during development. In this review, we focus on a selection of the most important catabolic regulators from the group of peptide hormones (Adipokinetic hormone, Corazonin), catecholamines (octopamine), steroid hormones (20-hydroxyecdysone), and other factors (extracellular adenosine, regulators of lipase Brummer). We discuss their roles in the mobilization of energy reserves for processes such as development through non-feeding stages, flight or starvation survival. Finally, we conclude with future perspectives on the energy balance research in the fly model.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
27
|
Gong C, Yang Z, Hu Y, Wu Q, Wang S, Guo Z, Zhang Y. Silencing of the BtTPS genes by transgenic plant-mediated RNAi to control Bemisia tabaci MED. PEST MANAGEMENT SCIENCE 2022; 78:1128-1137. [PMID: 34796637 DOI: 10.1002/ps.6727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Whitefly (Bemisia tabaci) is a typical pest that causes severe damage to hundreds of agricultural crops. The trehalose-6-phosphate synthase (TPS) genes, as the key genes in the insect trehalose synthesis pathway, are important for insect growth and development. The whitefly TPS genes may be a main reason for the severe damage and may represent potential targets for the control of whiteflies. RESULTS In this study, we identified and cloned three TPS genes from B. tabaci MED and found that the BtTPS1 and BtTPS2 genes showed higher expression levels than the BtTPS3 gene. Then, RNA interference (RNAi) of BtTPS1 and BtTPS2 resulted in significant mortality and influenced the expression of related genes involved in energy metabolism and chitin biosynthesis in whitefly adults. Finally, the transgenic tobacco plants showed a significant effect on B. tabaci, and knockdown of BtTPS1 or BtTPS2 led to retarded growth and low hatchability in whitefly nymphs, and caused 90% mortality and decreased the fecundity in whitefly adults. Additionally, the transgenic tobacco with combinatorial RNAi of BtTPS1 and BtTPS2 showed a better efficacy against whiteflies than individual silencing. CONCLUSION Our results suggest that silencing of the BtTPS genes can compromise the growth and development of whiteflies, offering not only a new option for whitefly control but also a secure and environmentally friendly management strategy.
Collapse
Affiliation(s)
- Cheng Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Hu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Marzano M, Herzmann S, Elsbroek L, Sanal N, Tarbashevich K, Raz E, Krahn MP, Rumpf S. AMPK adapts metabolism to developmental energy requirement during dendrite pruning in Drosophila. Cell Rep 2021; 37:110024. [PMID: 34788610 DOI: 10.1016/j.celrep.2021.110024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/30/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022] Open
Abstract
To reshape neuronal connectivity in adult stages, Drosophila sensory neurons prune their dendrites during metamorphosis using a genetic degeneration program that is induced by the steroid hormone ecdysone. Metamorphosis is a nonfeeding stage that imposes metabolic constraints on development. We find that AMP-activated protein kinase (AMPK), a regulator of energy homeostasis, is cell-autonomously required for dendrite pruning. AMPK is activated by ecdysone and promotes oxidative phosphorylation and pyruvate usage, likely to enable neurons to use noncarbohydrate metabolites such as amino acids for energy production. Loss of AMPK or mitochondrial deficiency causes specific defects in pruning factor translation and the ubiquitin-proteasome system. Our findings distinguish pruning from pathological neurite degeneration, which is often induced by defects in energy production, and highlight how metabolism is adapted to fit energy-costly developmental transitions.
Collapse
Affiliation(s)
- Marco Marzano
- Institute for Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Svende Herzmann
- Institute for Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Leonardo Elsbroek
- Institute for Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Neeraja Sanal
- Institute for Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Michael P Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - Sebastian Rumpf
- Institute for Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany.
| |
Collapse
|
29
|
Oliveira AC, Rebelo AR, Homem CCF. Integrating animal development: How hormones and metabolism regulate developmental transitions and brain formation. Dev Biol 2021; 475:256-264. [PMID: 33549549 PMCID: PMC7617117 DOI: 10.1016/j.ydbio.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Our current knowledge on how individual tissues or organs are formed during animal development is considerable. However, the development of each organ does not occur in isolation and thus their formation needs to be done in a coordinated manner. This coordination is regulated by hormones, systemic signals that instruct the simultaneous development of all organs and direct tissue specific developmental programs. In addition, multi- and individual-organ development requires the integration of the nutritional state of the animal, since this affects nutrient availability necessary for the progression of development and growth. Variations in the nutritional state of the animal are normal during development, as the sources and access to nutrients greatly differ depending on the animal stage. Furthermore, adversities of the external environment also exert major alterations in extrinsic nutritional conditions. Thus, both in normal and malnutrition circumstances, the animal needs to trigger metabolic changes to maintain energy homeostasis and sustain growth and development. This metabolic flexibility is mediated by hormones, that drive both developmental encoded metabolic transitions throughout development and adaptation responses according to the nutritional state of the animal. This review aims to provide a comprehensive summary of the current knowledge of how endocrine regulation coordinates multi-organ development by orchestrating metabolic transitions and how it integrates metabolic adaptation responses to starvation. We also focus on the particular case of brain development, as it is extremely sensitive to hormonally induced metabolic changes. Finally, we discuss how brain development is prioritized over the development of other organs, as its growth can be spared from nutrient deprivation.
Collapse
Affiliation(s)
- Andreia C Oliveira
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Ana R Rebelo
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
30
|
Gillette CM, Tennessen JM, Reis T. Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development. Dev Biol 2021; 475:234-244. [DOI: 10.1016/j.ydbio.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
|
31
|
Yamada T, Hironaka KI, Habara O, Morishita Y, Nishimura T. A developmental checkpoint directs metabolic remodelling as a strategy against starvation in Drosophila. Nat Metab 2020; 2:1096-1112. [PMID: 33046910 DOI: 10.1038/s42255-020-00293-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023]
Abstract
Steroid hormones are crucial regulators of life-stage transitions during development in animals. However, the molecular mechanisms by which developmental transition through these stages is coupled with optimal metabolic homeostasis remains poorly understood. Here, we demonstrate through mathematical modelling and experimental validation that ecdysteroid-induced metabolic remodelling from resource consumption to conservation can be a successful life-history strategy to maximize fitness in Drosophila larvae in a fluctuating environment. Specifically, the ecdysteroid-inducible protein ImpL2 protects against hydrolysis of circulating trehalose following pupal commitment in larvae. Stored glycogen and triglycerides in the fat body are also conserved, even under fasting conditions. Moreover, pupal commitment dictates reduced energy expenditure upon starvation to maintain available resources, thus negotiating trade-offs in resource allocation at the physiological and behavioural levels. The optimal stage-specific metabolic shift elucidated by our predictive and empirical approaches reveals that Drosophila has developed a highly controlled system for ensuring robust development that may be conserved among higher-order organisms in response to intrinsic and extrinsic cues.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Ken-Ichi Hironaka
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | | | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|