1
|
Guan L, Qiu M, Li N, Zhou Z, Ye R, Zhong L, Xu Y, Ren J, Liang Y, Shao X, Fang J, Fang J, Du J. Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion. Neural Regen Res 2025; 20:2838-2854. [PMID: 39314159 PMCID: PMC11826466 DOI: 10.4103/nrr.nrr-d-24-00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Pain is often comorbid with emotional disorders such as anxiety and depression. Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission. This review primarily aims to outline the main circuitry (including the input and output connectivity) of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons; it also describes the neurotransmitters/neuromodulators affecting these neurons, their intercommunication with other neurons, and their importance in mental comorbidities associated with chronic pain disorders. Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions. However, the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive. It is also unclear as to whether the mechanisms are presynaptic or postsynaptic. Further exploration of the complexities of this system may reveal new pathways for research and drug development.
Collapse
Affiliation(s)
- Lu Guan
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Mengting Qiu
- Fuchun Community Health Service Center of Fuyang District, Hangzhou, Zhejiang Province, China
| | - Na Li
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhengxiang Zhou
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Liyan Zhong
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yashuang Xu
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junhui Ren
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Yao J, Zhou Z, Tong Q, Li L, Wei J, Lu J, Hu S, Bao A, He H. Magnetic resonance imaging of postmortem human brain specimens: methodological considerations and prospects in psychoradiology. PSYCHORADIOLOGY 2025; 5:kkaf012. [PMID: 40395337 PMCID: PMC12090057 DOI: 10.1093/psyrad/kkaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/14/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
Ex vivo magnetic resonance imaging (MRI) has revolutionized psychoradiological research by enabling detailed structural and pathological assessments of the brain in conditions ranging from psychiatric disorders to neurodegenerative diseases. By providing high-resolution images of postmortem brain tissue, ex vivo MRI overcomes several limitations inherent in in vivo imaging, offering unparalleled insights into the underlying pathophysiology of mental disorders. This review critically summarizes the state-of-the-art ex vivo MRI methodologies for neuroanatomical mapping and pathological characterization in psychoradiology, while also establishing standardized specimen processing protocols. Furthermore, we explore the prospects of application in ex vivo MRI in schizophrenia, major depressive disorder and bipolar disorder, highlighting its role in understanding neuroanatomical alterations, disease progression, and the validation of in vivo neuroimaging biomarkers.
Collapse
Affiliation(s)
- Junye Yao
- Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou 310027, China
- Clinical & Technical Support, Philips Healthcare, Shanghai 200072, China
| | - Zihan Zhou
- Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou 310027, China
- Stanford University Graduate School of Education, Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Qiqi Tong
- Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou 310027, China
- Research Center for Data Hub and Security, Zhejiang Lab, Hangzhou 311121, China
| | - Lingyu Li
- Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou 310027, China
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Jintao Wei
- Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou 310027, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Aimin Bao
- National Human Brain Bank for Health and Disease, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou 310027, China
- School of Physics, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China
| |
Collapse
|
3
|
Sachse EM, Widge AS. Neurostimulation to Improve Cognitive Flexibility. Curr Opin Behav Sci 2025; 62:101484. [PMID: 39925871 PMCID: PMC11804887 DOI: 10.1016/j.cobeha.2025.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Cognitive flexibility, the capacity to adapt behaviors in response to changing environments, is impaired across mental illnesses, including depression, anxiety, addiction, and obsessive-compulsive disorder. Cortico-striatal-cortical circuits are integral to cognition and goal-directed behavior and disruptions in these circuits are linked to cognitive inflexibility in mental illnesses. We review evidence that neurostimulation of these circuits can improve cognitive flexibility and ameliorate symptoms, and that this may be a mechanism of action of current clinical therapies. Further, we discuss how animal models can offer insights into the mechanisms underlying cognitive flexibility and effects of neurostimulation. We review research from animal studies that may, if translated, yield better approaches to modulating flexibility. Future research should focus on refining definitions of cognitive flexibility, improving detection of impaired flexibility, and developing new methods for optimizing neurostimulation parameters. This could enhance neurostimulation therapies through more personalized treatments that leverage cognitive flexibility to improve patient outcomes.
Collapse
Affiliation(s)
- Elizabeth M Sachse
- University of Minnesota, Department of Psychiatry, 2312 6 Street South, Floor 2, Suite F-275, Minneapolis+, MN 55454
- University of Minnesota, Department of Neuroscience, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455
| | - Alik S Widge
- University of Minnesota, Department of Psychiatry, 2312 6 Street South, Floor 2, Suite F-275, Minneapolis+, MN 55454
| |
Collapse
|
4
|
Simone L, Caruana F, Elena B, Del Sorbo S, Jezzini A, Rozzi S, Luppino G, Gerbella M. Anatomo-functional organization of insular networks: From sensory integration to behavioral control. Prog Neurobiol 2025; 247:102748. [PMID: 40074022 DOI: 10.1016/j.pneurobio.2025.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/24/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Classically, the insula is considered an associative multisensory cortex where emotional awareness emerges through the integration of interoceptive and exteroceptive information, along with autonomic regulation. However, since early intracortical microstimulation (ICMS) studies, the insular cortex has also been conceived as a mosaic of anatomo-functional sectors processing various types of sensory information to generate specific overt behaviors. Based on this, the insula has been subdivided into distinct functional fields: an anterior field associated with oroalimentary behaviors, a middle field involved dorsally in hand movements and ventrally in emotional reactions, and a posterior field engaged in axial and proximal movements. Nevertheless, the anatomo-functional networks through which these fields produce motor behaviors remain largely unknown. To fill this gap in the present study, we investigated the connectivity of the macaque insula using a multimodal approach which combines resting-state fMRI with data from tract-tracing injections in insular functional fields defined by ICMS, as well as in brain areas known to be connected to the insula and characterized by specific somatotopic organization. The results revealed that each insular functional field takes part in distinct somatotopically organized network modulating specific motor or visceromotor behaviors, extending previous models that subdivide the insula primarily based on the types of interoceptive and exteroceptive information it receives. Our findings posit the various insular sectors as interfaces that synthesize diverse interoceptive and exteroceptive inputs into coherent subjective experiences and decision-making processes, within an embodied and enactive framework, that moves beyond the traditional dichotomy between sensory experience and motor behavior.
Collapse
Affiliation(s)
- Luciano Simone
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy.
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Borra Elena
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Simone Del Sorbo
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Ahmad Jezzini
- Department of Medical Education, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| | - Stefano Rozzi
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy.
| |
Collapse
|
5
|
Muzik O, Diwadkar VA. Human regulatory systems in the age of abundance: A predictive processing perspective. Ann N Y Acad Sci 2025; 1545:16-27. [PMID: 40022426 DOI: 10.1111/nyas.15302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Human regulatory systems largely evolved under conditions of food and information scarcity but are now being forced to deal with abundance. The impact of abundance and the inability of human regulatory systems to adapt to it have fed a surge in dual health challenges: (1) a rise in obesity related to food abundance and (2) a rise in stress and anxiety related to information abundance. No single framework has been developed to describe why and how the transition from scarcity to abundance has been so challenging. Here, we provide a speculative model based on predictive processing. We suggest that whereas scarcity (above destructive lower bounds like famine or information voids) preserves the fidelity of the relationship between prediction errors and predictions, abundance distorts this relationship. Furthermore, prediction error minimization is enhanced under scarcity (as the number of competing states in the niche is restricted), whereas the opposite is true under abundance. We also discuss how abundance warps the fundamental drive for seeking novelty by fueling the brain's exploration (as opposed to exploitation) mode. Ameliorative strategies for regulating food and information abundance may largely depend on simulating scarcity, that environmental condition to which human regulatory systems have adapted over millennia.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
6
|
Datta D, Arnsten AFT. The etiology and prevention of early-stage tau pathology in higher cortical circuits: Insights from aging rhesus macaques. Alzheimers Dement 2025; 21:e14477. [PMID: 39776253 PMCID: PMC11848412 DOI: 10.1002/alz.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Aging rhesus macaques provide a unique model for learning how age and inflammation drive early-stage pathology in sporadic Alzheimer's disease, and for testing potential therapeutics. Unlike mice, aging macaques have extensive association cortices and inflammatory signaling similar to humans, are apolipoprotein E ε4 homozygotes, and naturally develop tau and amyloid pathology with marked cognitive deficits. Importantly, monkeys provide the unique opportunity to study early-stage, soluble hyperphosphorylated tau (p-tau), including p-tau217. As soluble p-tau is rapidly dephosphorylated post mortem, it is not captured in human brains except with biopsy material. However, new macaque data show that soluble p-tau is toxic to neurons and capable of seeding across cortical circuits. Extensive evidence indicates that age-related inflammatory signaling contributes to calcium dysregulation, which drives tau hyperphosphorylation and amyloid beta generation. Pharmacological studies in aged macaques suggest that inhibiting inflammation and restoring calcium regulation can reduce tau hyperphosphorylation with minimal side effects, appropriate for potential preventive therapeutics. HIGHLIGHTS: Aging monkeys provide a unique window into early stage, soluble phosphorylated tau (p-tau). Inflammation with advancing age leads to calcium dysregulation, p-tau, and amyloid beta (Aβ). Macaque research shows p-tau undergoes transsynaptic seeding early in the cortex. p-tau traps amyloid precursor protein-containing endosomes, which may increase Aβ and drive vicious cycles. Restoring calcium regulation in cortex reduced p-tau217 levels in aged macaques.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of PsychiatryYale Medical SchoolNew HavenConnecticutUSA
| | - Amy F. T. Arnsten
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| |
Collapse
|
7
|
Lu JN, Dou JH, Yi ZL, Lian L, Ben XL, Zhang FC, Xu GY. Upregulation of LRRC8A in the anterior cingulate cortex mediates chronic visceral pain in adult male mice with neonatal maternal deprivation. Mol Pain 2025; 21:17448069251324645. [PMID: 39962353 PMCID: PMC11894642 DOI: 10.1177/17448069251324645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder primarily characterized by chronic visceral pain. Studies have reported that the anterior cingulate cortex (ACC) is involved in chronic visceral pain, however, the molecular mechanisms underlying this involvement remain largely unclear. In this study, we aimed to investigate the molecular mechanisms of the ACC in chronic visceral pain induced by neonatal maternal deprivation (NMD) in male mice. We showed that the expression of leucine-rich repeat-containing protein family member 8A (LRRC8A) at both mRNA and protein levels was significantly upregulated in the ACC of NMD male mice, with LRRC8A primarily co-localized in neurons. DCPIB, an inhibitor of LRRC8A, greatly alleviated chronic visceral pain. Moreover, the ATP concentration was significantly upregulated in the ACC of NMD male mice. However, LRRC8A was not involved in somatic pain induced by complete Freund's adjuvant (CFA) injection into the hind paw. In conclusion, our findings demonstrate that LRRC8A plays a critical role in regulating chronic visceral pain in NMD mice. These findings are expected to provide new ideas for the treatment of chronic visceral pain in IBS patients.
Collapse
Affiliation(s)
- Jin-Nan Lu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jing-Heng Dou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Zi-Long Yi
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Lian Lian
- Department of Oncology, Suzhou Xiangcheng People’s Hospital, Suzhou, Jiangsu, P. R. China
| | - Xing-Lei Ben
- Department of Orthopedics, Clinical Medicine Institute of Soochow University and Suzhou BenQ Medical Center, Suzhou, Jiangsu, P. R. China
| | - Fu-Chao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P. R. China
- Department of Oncology, Suzhou Xiangcheng People’s Hospital, Suzhou, Jiangsu, P. R. China
| | - Guang-Yin Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, Henan, P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
8
|
Kosciessa JQ, Mayr U, Lindenberger U, Garrett DD. Broadscale dampening of uncertainty adjustment in the aging brain. Nat Commun 2024; 15:10717. [PMID: 39715747 PMCID: PMC11666723 DOI: 10.1038/s41467-024-55416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
The ability to prioritize among input features according to relevance enables adaptive behaviors across the human lifespan. However, relevance often remains ambiguous, and such uncertainty increases demands for dynamic control. While both cognitive stability and flexibility decline during healthy ageing, it is unknown whether aging alters how uncertainty impacts perception and decision-making, and if so, via which neural mechanisms. Here, we assess uncertainty adjustment across the adult lifespan (N = 100; cross-sectional) via behavioral modeling and a theoretically informed set of EEG-, fMRI-, and pupil-based signatures. On the group level, older adults show a broad dampening of uncertainty adjustment relative to younger adults. At the individual level, older individuals whose modulation more closely resembled that of younger adults also exhibit better maintenance of cognitive control. Our results highlight neural mechanisms whose maintenance plausibly enables flexible task-set, perception, and decision computations across the adult lifespan.
Collapse
Affiliation(s)
- Julian Q Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
9
|
Yuan J, Dong K, Wu H, Zeng X, Liu X, Liu Y, Dai J, Yin J, Chen Y, Guo Y, Luo W, Liu N, Sun Y, Zhang S, Su B. Single-nucleus multi-omics analyses reveal cellular and molecular innovations in the anterior cingulate cortex during primate evolution. CELL GENOMICS 2024; 4:100703. [PMID: 39631404 DOI: 10.1016/j.xgen.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
The anterior cingulate cortex (ACC) of the human brain is involved in higher-level cognitive functions such as emotion and self-awareness. We generated profiles of human and macaque ACC gene expression and chromatin accessibility at single-nucleus resolution. We characterized the conserved patterns of gene expression, chromatin accessibility, and transcription factor binding in different cell types. Combining the published mouse data, we discovered the molecular identities and cell-lineage origin of the primate von Economo neurons (VENs). Our in vitro and in vivo experiments identified a group of primate-shared and human-specific VEN marker genes, such as PCSK6, ADAMTSL3, and CDHR3, potentially contributing to VEN morphogenesis. We demonstrated that the human-specific sequence changes account for the cellular and functional innovations in the ACC during primate evolution and human origin. These findings provide new insights into understanding the cellular composition and molecular regulation of ACC and its evolutionary role in shaping human-owned higher cognitive skills.
Collapse
Affiliation(s)
- Jiamiao Yuan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Kangning Dong
- School of Mathematics, Renmin University of China, Beijing 100872, China; NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixu Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xingyan Liu
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Jichao Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongjie Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenhao Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Na Liu
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
10
|
Hormay E, László B, Szabó I, Mintál K, Berta B, Ollmann T, Péczely L, Nagy B, Tóth A, László K, Lénárd L, Karádi Z. Dopamine-Sensitive Anterior Cingulate Cortical Glucose-Monitoring Neurons as Potential Therapeutic Targets for Gustatory and Other Behavior Alterations. Biomedicines 2024; 12:2803. [PMID: 39767710 PMCID: PMC11672934 DOI: 10.3390/biomedicines12122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The anterior cingulate cortex (ACC) is known for its involvement in various regulatory functions, including in the central control of feeding. Activation of local elements of the central glucose-monitoring (GM) neuronal network appears to be indispensable in these regulatory processes. Destruction of these type 2 glucose transporter protein (GLUT2)-equipped chemosensory cells results in multiple feeding-associated functional alterations. Methods: In order to examine this complex symptomatology, (1) dopamine sensitivity was studied in laboratory rats by means of the single-neuron-recording multibarreled microelectrophoretic technique, and (2) after local bilateral microinjection of the selective type 2 glucose transporter proteindemolishing streptozotocin (STZ), open-field, elevated plus maze, two-bottle and taste reactivity tests were performed. Results: A high proportion of the anterior cingulate cortical neurons changed their firing rate in response to microelectrophoretic administration of D-glucose, thus verifying them as local elements of the central glucose-monitoring network. Approximately 20% of the recorded cells displayed activity changes in response to microelectrophoretic application of dopamine, and almost 50% of the glucose-monitoring units here proved to be dopamine-sensitive. Moreover, taste stimulation experiments revealed even higher (80%) gustatory sensitivity dominance of these chemosensory cells. The anterior cingulate cortical STZ microinjections resulted in extensive behavioral and taste-associated functional deficits. Conclusions: The present findings provided evidence for the selective loss of glucose-monitoring neurons in the anterior cingulate cortex leading to motivated behavioral and gustatory alterations. This complex dataset also underlines the varied significance of the type 2 glucose transporter protein-equipped, dopamine-sensitive glucose-monitoring neurons as potential therapeutic targets. These units appear to be indispensable in adaptive control mechanisms of the homeostatic-motivational-emotional-cognitive balance for the overall well-being of the organism.
Collapse
Affiliation(s)
- Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Bettina László
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - István Szabó
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Tamás Ollmann
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - László Péczely
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Bernadett Nagy
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Attila Tóth
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (B.L.); (B.B.); (T.O.); (Z.K.)
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
11
|
Chen X, Wang H, Tan X, Duan M, Luo C. Flight training and the anterior cingulate cortex. Sci Rep 2024; 14:29908. [PMID: 39622970 PMCID: PMC11612386 DOI: 10.1038/s41598-024-81892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
Pilots are considered the final line of defense for aviation safety. Before becoming a pilot, an ab initio pilot must undergo systematic flight training. This study included 25 male flying cadets. Kendall's coefficient of concordance was used to measure the regional homogeneity of the time series of a given voxel with its 26 nearest neighboring voxels. This operation was performed for all voxels to generate a regional homogeneity map for each participant based on Kendall's coefficient of concordance. A partial correlation analysis was performed to examine the relationship between regional homogeneity maps and flight training hours. We found that the anterior cingulate cortex in the ab initio group was significantly positively correlated with flight hours. These results suggest a potential relationship between flight training experience and the functional properties of the anterior cingulate cortex.
Collapse
Affiliation(s)
- Xi Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Institute of Flight Technology, Civil Aviation Flight university of China, Guanghan, China.
| | - Hongming Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Tan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
12
|
Trayvick J, Adams EM, Nelson BD. Family study of the error-related negativity in adolescent and young adult females and their parents. Psychophysiology 2024; 61:e14669. [PMID: 39145376 DOI: 10.1111/psyp.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The error-related negativity (ERN) has been identified as a potential endophenotype of psychopathology. However, there is limited research investigating familial transmission of the ERN, particularly across developmental phases that are associated with increased risk for psychopathology. The present study included a sample of one hundred thirty-one adolescent and young adult females (Mage = 17.77, SD = 1.84) and their biological parents at a first assessment and 75 females (Mage = 20.48, SD = 1.75) and their biological parents at a second assessment. Participants and their parents completed a flanker task while electroencephalography was recorded to examine parent-daughter associations of the ERN, correct response negativity (CRN), and ΔERN (i.e., ERN-CRN) at two assessments that were separated by approximately 3 years (Myears = 2.84, SD = 0.60). The daughters also completed self-report measures of generalized anxiety and depression symptoms. Results indicated that the ΔERN, but not the ERN or CRN, was positively correlated between parents and their daughters at both assessments. Furthermore, the parent-daughter correlation strength did not differ between assessments. Finally, both daughter and parent ∆ERNs were associated with daughter generalized anxiety and depression symptoms. The present study suggests that, like psychiatric disorders, the ERN runs in families and is associated with both concurrent and familial psychopathology, supporting its conceptualization as an endophenotype of psychopathology.
Collapse
Affiliation(s)
- Jadyn Trayvick
- Department of Psychology, Stony Brook University, Stony Brook, New York, USA
| | - Elise M Adams
- Department of Psychology, Stony Brook University, Stony Brook, New York, USA
| | - Brady D Nelson
- Department of Psychology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
13
|
Zhang L, Cheng Y, Xue Z, Wu S, Qiu Z, Jiang H. Comparative Molecular Taxonomics of Neuron in Cingulate Cortex of Rhesus Monkey and Mouse via Single-Nucleus RNA Sequencing. Neurosci Bull 2024; 40:1751-1756. [PMID: 38780751 PMCID: PMC11607296 DOI: 10.1007/s12264-024-01209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/25/2023] [Indexed: 05/25/2024] Open
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shihao Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zilong Qiu
- Shanghai Jiao Tong University School of Medicine Songjiang Institute, Shanghai, 200025, China.
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
14
|
Medvediev VV, Cherkasov VG, Marushchenko MO, Vaslovych VV, Tsymbaliuk VI. Giant Fusiform Cells of the Brain: Discovery, Identification, and Probable Functions. CYTOL GENET+ 2024; 58:411-427. [DOI: 10.3103/s0095452724050098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 01/05/2025]
|
15
|
Finkelman T, Furman-Haran E, Aberg KC, Paz R, Tal A. Inhibitory mechanisms in the prefrontal-cortex differentially mediate Putamen activity during valence-based learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605168. [PMID: 39131397 PMCID: PMC11312490 DOI: 10.1101/2024.07.29.605168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Learning from appetitive and aversive stimuli involves interactions between the prefrontal cortex and subcortical structures. Preclinical and theoretical studies indicate that inhibition is essential in regulating the relevant neural circuitry. Here, we demonstrate that GABA, the main inhibitory neurotransmitter in the central nervous system, differentially affects how the dACC interacts with subcortical structures during appetitive and aversive learning in humans. Participants engaged in tasks involving appetitive and aversive learning, while using functional magnetic resonance spectroscopy (MRS) at 7T to track GABA concentrations in the dACC, alongside whole-brain fMRI scans to assess BOLD activation. During appetitive learning, dACC GABA concentrations were negatively correlated with learning performance and BOLD activity measured from the dACC and the Putamen. These correlations were absent during aversive learning, where dACC GABA concentrations negatively correlated with the connectivity between the dACC and the Putamen. Our results show that inhibition in the dACC mediates appetitive and aversive learning in humans through distinct mechanisms.
Collapse
Affiliation(s)
- Tal Finkelman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Kristoffer C Aberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Paz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Giersiepen M, Schütz-Bosbach S, Kaiser J. My choice, my actions: self-determination, not instrumental value of outcomes enhances outcome monitoring during learning. Cereb Cortex 2024; 34:bhae325. [PMID: 39118215 DOI: 10.1093/cercor/bhae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Freedom of choice enhances our sense of agency. During goal-directed behavior, the freedom to choose between different response options increases the neural processing of positive and negative feedback, indicating enhanced outcome monitoring under conditions of high agency experience. However, it is unclear whether this enhancement is predominantly driven by an increased salience of self- compared to externally determined action outcomes or whether differences in the perceived instrumental value of outcomes contribute to outcome monitoring in goal-directed tasks. To test this, we recorded electroencephalography while participants performed a reinforcement learning task involving free choices, action-relevant forced choices, and action-irrelevant forced choices. We observed larger midfrontal theta power and N100 amplitudes for feedback following free choices compared with action-relevant and action-irrelevant forced choices. In addition, a Reward Positivity was only present for free but not forced choice outcomes. Crucially, our results indicate that enhanced outcome processing is not driven by the relevance of outcomes for future actions but rather stems from the association of outcomes with recent self-determined choice. Our findings highlight the pivotal role of self-determination in tracking the consequences of our actions and contribute to an understanding of the cognitive processes underlying the choice-induced facilitation in outcome monitoring.
Collapse
Affiliation(s)
- Maren Giersiepen
- General and Experimental Psychology, Ludwig-Maximilians-University, Leopoldstr. 13, D-80802 Munich, Germany
| | - Simone Schütz-Bosbach
- General and Experimental Psychology, Ludwig-Maximilians-University, Leopoldstr. 13, D-80802 Munich, Germany
| | - Jakob Kaiser
- General and Experimental Psychology, Ludwig-Maximilians-University, Leopoldstr. 13, D-80802 Munich, Germany
- Faculty of Electrical Engineering and Information Technology, Technical University Vienna, Autonomous Systems Lab, Gusshausstr. 27, 1040 Vienna, Austria
| |
Collapse
|
17
|
Kabanova A, Fedorov L, Eschenko O. The Projection-Specific Noradrenergic Modulation of Perseverative Spatial Behavior in Adult Male Rats. eNeuro 2024; 11:ENEURO.0063-24.2024. [PMID: 39160074 PMCID: PMC11334950 DOI: 10.1523/eneuro.0063-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 08/21/2024] Open
Abstract
Adaptive behavior relies on efficient cognitive control. The anterior cingulate cortex (ACC) is a key node within the executive prefrontal network. The reciprocal connectivity between the locus ceruleus (LC) and ACC is thought to support behavioral reorganization triggered by the detection of an unexpected change. We transduced LC neurons with either excitatory or inhibitory chemogenetic receptors in adult male rats and trained rats on a spatial task. Subsequently, we altered LC activity and confronted rats with an unexpected change of reward locations. In a new spatial context, rats with decreased noradrenaline (NA) in the ACC entered unbaited maze arms more persistently which was indicative of perseveration. In contrast, the suppression of the global NA transmission reduced perseveration. Neither chemogenetic manipulation nor inactivation of the ACC by muscimol affected the rate of learning, possibly due to partial virus transduction of the LC neurons and/or the compensatory engagement of other prefrontal regions. Importantly, we observed behavioral deficits in rats with LC damage caused by virus injection. The latter finding highlights the importance of careful histological assessment of virus-transduced brain tissue as inadvertent damage of the targeted cell population due to virus neurotoxicity or other factors might cause unwanted side effects. Although the specific role of ACC in the flexibility of spatial behavior has not been convincingly demonstrated, our results support the beneficial role of noradrenergic transmission for an optimal function of the ACC. Overall, our findings suggest the LC exerts the projection-specific modulation of neural circuits mediating the flexibility of spatial behavior.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Leonid Fedorov
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Regalado JM, Corredera Asensio A, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy P. Neural activity ramps in frontal cortex signal extended motivation during learning. eLife 2024; 13:RP93983. [PMID: 39037775 PMCID: PMC11262795 DOI: 10.7554/elife.93983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Josue M Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | | | - Theresa Haunold
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Andrew C Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Lauren A Neal
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | | |
Collapse
|
19
|
Chen W, Liang J, Wu Q, Han Y. Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation. Nat Commun 2024; 15:6020. [PMID: 39019943 PMCID: PMC11255269 DOI: 10.1038/s41467-024-50388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Adjusting decision-making under uncertain and dynamic situations is the hallmark of intelligence. It requires a system capable of converting feedback information to renew the internal value. The anterior cingulate cortex (ACC) involves in error and reward events that prompt switching or maintenance of current decision strategies. However, it is unclear whether and how the changes of stimulus-action mapping during behavioral adaptation are encoded, nor how such computation drives decision adaptation. Here, we tracked ACC activity in male mice performing go/no-go auditory discrimination tasks with manipulated stimulus-reward contingencies. Individual ACC neurons integrate the outcome information to the value representation in the next-run trials. Dynamic recruitment of them determines the learning rate of error-guided value iteration and decision adaptation, forming a non-linear feedback-driven updating system to secure the appropriate decision switch. Optogenetically suppressing ACC significantly slowed down feedback-driven decision switching without interfering with the execution of the established strategy.
Collapse
Affiliation(s)
- Wenqi Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiejunyi Liang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiyun Wu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Fruhwirth V, Berger L, Gattringer T, Fandler-Höfler S, Kneihsl M, Eppinger S, Ropele S, Fink A, Deutschmann H, Reishofer G, Enzinger C, Pinter D. White matter integrity and functional connectivity of the default mode network in acute stroke are associated with cognitive outcome three months post-stroke. J Neurol Sci 2024; 462:123071. [PMID: 38850772 DOI: 10.1016/j.jns.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Knowledge about factors that are associated with post-stroke cognitive outcome is important to identify patients with high risk for impairment. We therefore investigated the associations of white matter integrity and functional connectivity (FC) within the brain's default-mode network (DMN) in acute stroke patients with cognitive outcome three months post-stroke. METHODS Patients aged between 18 and 85 years with an acute symptomatic MRI-proven unilateral ischemic middle cerebral artery infarction, who had received reperfusion therapy, were invited to participate in this longitudinal study. All patients underwent brain MRI within 24-72 h after symptom onset, and participated in a neuropsychological assessment three months post-stroke. We performed hierarchical regression analyses to explore the incremental value of baseline white matter integrity and FC beyond demographic, clinical, and macrostructural information for cognitive outcome. RESULTS The study cohort comprised 34 patients (mean age: 64 ± 12 years, 35% female). The initial median National Institutes of Health Stroke Scale (NIHSS) score was 10, and significantly improved three months post-stroke to a median NIHSS = 1 (p < .001). Nonetheless, 50% of patients showed cognitive impairment three months post-stroke. FC of the non-lesioned anterior cingulate cortex of the affected hemisphere explained 15% of incremental variance for processing speed (p = .007), and fractional anisotropy of the non-lesioned cingulum of the affected hemisphere explained 13% of incremental variance for cognitive flexibility (p = .033). CONCLUSIONS White matter integrity and functional MRI markers of the DMN in acute stroke explain incremental variance for post-stroke cognitive outcome beyond demographic, clinical, and macrostructural information.
Collapse
Affiliation(s)
- Viktoria Fruhwirth
- Department of Neurology, Medical University of Graz, Graz, Austria; Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria; Institute of Psychology, Department of Biological Psychology, University of Graz, Graz, Austria
| | - Lisa Berger
- Institute of Psychology, Department of Neuropsychology - Neuroimaging, University of Graz, Graz, Austria
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | | | - Markus Kneihsl
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Andreas Fink
- Institute of Psychology, Department of Biological Psychology, University of Graz, Graz, Austria
| | - Hannes Deutschmann
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Gernot Reishofer
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria; Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria; Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria.
| |
Collapse
|
21
|
Xiao J, Adkinson JA, Myers J, Allawala AB, Mathura RK, Pirtle V, Najera R, Provenza NR, Bartoli E, Watrous AJ, Oswalt D, Gadot R, Anand A, Shofty B, Mathew SJ, Goodman WK, Pouratian N, Pitkow X, Bijanki KR, Hayden B, Sheth SA. Beta activity in human anterior cingulate cortex mediates reward biases. Nat Commun 2024; 15:5528. [PMID: 39009561 PMCID: PMC11250824 DOI: 10.1038/s41467-024-49600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
The rewards that we get from our choices and actions can have a major influence on our future behavior. Understanding how reward biasing of behavior is implemented in the brain is important for many reasons, including the fact that diminution in reward biasing is a hallmark of clinical depression. We hypothesized that reward biasing is mediated by the anterior cingulate cortex (ACC), a cortical hub region associated with the integration of reward and executive control and with the etiology of depression. To test this hypothesis, we recorded neural activity during a biased judgment task in patients undergoing intracranial monitoring for either epilepsy or major depressive disorder. We found that beta (12-30 Hz) oscillations in the ACC predicted both associated reward and the size of the choice bias, and also tracked reward receipt, thereby predicting bias on future trials. We found reduced magnitude of bias in depressed patients, in whom the beta-specific effects were correspondingly reduced. Our findings suggest that ACC beta oscillations may orchestrate the learning of reward information to guide adaptive choice, and, more broadly, suggest a potential biomarker for anhedonia and point to future development of interventions to enhance reward impact for therapeutic benefit.
Collapse
Affiliation(s)
- Jiayang Xiao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joshua A Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John Myers
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Raissa K Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Victoria Pirtle
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ricardo Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eleonora Bartoli
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew J Watrous
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Denise Oswalt
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sanjay J Mathew
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wayne K Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xaq Pitkow
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kelly R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
22
|
Heij J, van der Zwaag W, Knapen T, Caan MWA, Forstman B, Veltman DJ, van Wingen G, Aghajani M. Quantitative MRI at 7-Tesla reveals novel frontocortical myeloarchitecture anomalies in major depressive disorder. Transl Psychiatry 2024; 14:262. [PMID: 38902245 PMCID: PMC11190139 DOI: 10.1038/s41398-024-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Whereas meta-analytical data highlight abnormal frontocortical macrostructure (thickness/surface area/volume) in Major Depressive Disorder (MDD), the underlying microstructural processes remain uncharted, due to the use of conventional MRI scanners and acquisition techniques. We uniquely combined Ultra-High Field MRI at 7.0 Tesla with Quantitative Imaging to map intracortical myelin (proxied by longitudinal relaxation time T1) and iron concentration (proxied by transverse relaxation time T2*), microstructural processes deemed particularly germane to cortical macrostructure. Informed by meta-analytical evidence, we focused specifically on orbitofrontal and rostral anterior cingulate cortices among adult MDD patients (N = 48) and matched healthy controls (HC; N = 10). Analyses probed the association of MDD diagnosis and clinical profile (severity, medication use, comorbid anxiety disorders, childhood trauma) with aforementioned microstructural properties. MDD diagnosis (p's < 0.05, Cohen's D = 0.55-0.66) and symptom severity (p's < 0.01, r = 0.271-0.267) both related to decreased intracortical myelination (higher T1 values) within the lateral orbitofrontal cortex, a region tightly coupled to processing negative affect and feelings of sadness in MDD. No relations were found with local iron concentrations. These findings allow uniquely fine-grained insights on frontocortical microstructure in MDD, and cautiously point to intracortical demyelination as a possible driver of macroscale cortical disintegrity in MDD.
Collapse
Affiliation(s)
- Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Forstman
- Department of Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Institute of Education and Child Studies, Section Forensic Family & Youth Care, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
23
|
Monosov IE, Zimmermann J, Frank MJ, Mathis MW, Baker JT. Ethological computational psychiatry: Challenges and opportunities. Curr Opin Neurobiol 2024; 86:102881. [PMID: 38696972 PMCID: PMC11162904 DOI: 10.1016/j.conb.2024.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Studying the intricacies of individual subjects' moods and cognitive processing over extended periods of time presents a formidable challenge in medicine. While much of systems neuroscience appropriately focuses on the link between neural circuit functions and well-constrained behaviors over short timescales (e.g., trials, hours), many mental health conditions involve complex interactions of mood and cognition that are non-stationary across behavioral contexts and evolve over extended timescales. Here, we discuss opportunities, challenges, and possible future directions in computational psychiatry to quantify non-stationary continuously monitored behaviors. We suggest that this exploratory effort may contribute to a more precision-based approach to treating mental disorders and facilitate a more robust reverse translation across animal species. We conclude with ethical considerations for any field that aims to bridge artificial intelligence and patient monitoring.
Collapse
Affiliation(s)
- Ilya E. Monosov
- Departments of Neuroscience, Biomedical Engineering, Electrical Engineering, and Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Michael J. Frank
- Carney Center for Computational Brain Science, Brown University, Providence, RI, USA
| | | | | |
Collapse
|
24
|
Regalado JM, Asensio AC, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy P. Neural activity ramps in frontal cortex signal extended motivation during learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562395. [PMID: 37905153 PMCID: PMC10614791 DOI: 10.1101/2023.10.15.562395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Josue M. Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | | | - Theresa Haunold
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Andrew C. Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Lauren A. Neal
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
- Lead contact
| |
Collapse
|
25
|
Wang YD, Bao ST, Gao Y, Chen J, Jia T, Yin C, Cao JL, Xiao C, Zhou C. The anterior cingulate cortex controls the hyperactivity in subthalamic neurons in male mice with comorbid chronic pain and depression. PLoS Biol 2024; 22:e3002518. [PMID: 38386616 PMCID: PMC10883538 DOI: 10.1371/journal.pbio.3002518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Neurons in the subthalamic nucleus (STN) become hyperactive following nerve injury and promote pain-related responses in mice. Considering that the anterior cingulate cortex (ACC) is involved in pain and emotion processing and projects to the STN, we hypothesize that ACC neurons may contribute to hyperactivity in STN neurons in chronic pain. In the present study, we showed that ACC neurons enhanced activity in response to noxious stimuli and to alterations in emotional states and became hyperactive in chronic pain state established by spared nerve injury of the sciatic nerve (SNI) in mice. In naïve mice, STN neurons were activated by noxious stimuli, but not by alterations in emotional states. Pain responses in STN neurons were attenuated in both naïve and SNI mice when ACC neurons were inhibited. Furthermore, optogenetic activation of the ACC-STN pathway induced bilateral hyperalgesia and depression-like behaviors in naive mice; conversely, inhibition of this pathway is sufficient to attenuate hyperalgesia and depression-like behaviors in SNI mice and naïve mice subjected to stimulation of STN neurons. Finally, mitigation of pain-like and depression-like behaviors in SNI mice by inhibition of the ACC-STN projection was eliminated by activation of STN neurons. Our results demonstrate that hyperactivity in the ACC-STN pathway may be an important pathophysiology in comorbid chronic pain and depression. Thus, the ACC-STN pathway may be an intervention target for the treatment of the comorbid chronic pain and depression.
Collapse
Affiliation(s)
- Ying-Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Shu-Ting Bao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Gao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Chen
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jia
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
26
|
Alizadeh Mansouri F, Buckley MJ, Tanaka K. Mapping causal links between prefrontal cortical regions and intra-individual behavioral variability. Nat Commun 2024; 15:140. [PMID: 38168052 PMCID: PMC10762061 DOI: 10.1038/s41467-023-44341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Intra-individual behavioral variability is significantly heightened by aging or neuropsychological disorders, however it is unknown which brain regions are causally linked to such variabilities. We examine response time (RT) variability in 21 macaque monkeys performing a rule-guided decision-making task. In monkeys with selective-bilateral lesions in the anterior cingulate cortex (ACC) or in the dorsolateral prefrontal cortex, cognitive flexibility is impaired, but the RT variability is significantly diminished. Bilateral lesions within the frontopolar cortex or within the mid-dorsolateral prefrontal cortex, has no significant effect on cognitive flexibility or RT variability. In monkeys with lesions in the posterior cingulate cortex, the RT variability significantly increases without any deficit in cognitive flexibility. The effect of lesions in the orbitofrontal cortex (OFC) is unique in that it leads to deficits in cognitive flexibility and a significant increase in RT variability. Our findings indicate remarkable dissociations in contribution of frontal cortical regions to behavioral variability. They suggest that the altered variability in OFC-lesioned monkeys is related to deficits in assessing and accumulating evidence to inform a rule-guided decision, whereas in ACC-lesioned monkeys it results from a non-adaptive decrease in decision threshold and consequently immature impulsive responses.
Collapse
Affiliation(s)
- Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford, OX1 3UD, UK
| | - Keiji Tanaka
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
27
|
Catanzaro MJ, Rizzo S, Kopchick J, Chowdury A, Rosenberg DR, Bubenik P, Diwadkar VA. Topological Data Analysis Captures Task-Driven fMRI Profiles in Individual Participants: A Classification Pipeline Based on Persistence. Neuroinformatics 2024; 22:45-62. [PMID: 37924429 PMCID: PMC11268454 DOI: 10.1007/s12021-023-09645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
BOLD-based fMRI is the most widely used method for studying brain function. The BOLD signal while valuable, is beset with unique vulnerabilities. The most notable of these is the modest signal to noise ratio, and the relatively low temporal and spatial resolution. However, the high dimensional complexity of the BOLD signal also presents unique opportunities for functional discovery. Topological Data Analyses (TDA), a branch of mathematics optimized to search for specific classes of structure within high dimensional data may provide particularly valuable applications. In this investigation, we acquired fMRI data in the anterior cingulate cortex (ACC) using a basic motor control paradigm. Then, for each participant and each of three task conditions, fMRI signals in the ACC were summarized using two methods: a) TDA based methods of persistent homology and persistence landscapes and b) non-TDA based methods using a standard vectorization scheme. Finally, using machine learning (with support vector classifiers), classification accuracy of TDA and non-TDA vectorized data was tested across participants. In each participant, TDA-based classification out-performed the non-TDA based counterpart, suggesting that our TDA analytic pipeline better characterized task- and condition-induced structure in fMRI data in the ACC. Our results emphasize the value of TDA in characterizing task- and condition-induced structure in regional fMRI signals. In addition to providing our analytical tools for other users to emulate, we also discuss the unique role that TDA-based methods can play in the study of individual differences in the structure of functional brain signals in the healthy and the clinical brain.
Collapse
Affiliation(s)
- Michael J Catanzaro
- Iowa State University, Ames, IA, USA.
- Geometric Data Analytics, 343 West Main Street, Durham, NC, 27701, USA.
| | - Sam Rizzo
- Vanderbilt University, Nashville, TN, USA
| | - John Kopchick
- Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
28
|
Singh U, Das B, Khanra S, Roy C. Resting state and activated brain glutamate-glutamine, brain lactate, cognition, and psychopathology among males with schizophrenia: A 3 Tesla proton magnetic resonance spectroscopic (1H-MRS) study. Indian J Psychiatry 2024; 66:82-89. [PMID: 38419937 PMCID: PMC10898519 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_621_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/09/2023] [Accepted: 12/25/2023] [Indexed: 03/02/2024] Open
Abstract
Background Research on glutamate (Glu) in schizophrenia has so far been inconclusive. Based on preclinical studies on Glu lactate interaction, researchers have now focused on brain lactate level as a sign of major pathology, including cognitive dysfunctions in the brain. Our study aimed to examine changes at resting and activated states in brain lactate and Glu-glutamine (Glx) at the anterior cingulate cortex (ACC) in schizophrenia. Methods A hospital-based prospective study was conducted with twenty-two male cases of schizophrenia and matched healthy controls (HCs). Positive and Negative Syndrome Scale (PANSS), Montreal Cognitive Assessment (MoCA), and Stroop tasks were administered among patients. Brain lactate and Glx at ACC were measured at resting state and during the Stroop test with proton magnetic resonance spectroscopy (1H-MRS) both at baseline and at remission and once among HC. Result Though MoCA scores improved significantly (P < 0.001) at remission from baseline among cases, repeated-measures analysis of variance (RM-ANOVA) did not find a significant time effect for Glx (P = 0.82) and lactate (P = 0.30) among cases from baseline to remission. Glx and lactate changed differently from baseline to remission. Conclusion Our study did not find significant differences in Glx and lactate between schizophrenia patients and HC. No significant time effect on Glx and lactate was observed from baseline to remission among schizophrenia cases. Different changes observed in Glx and lactate from baseline to remission require replication in future studies with larger sample size, longer follow-up period, and multivoxel MR assessment.
Collapse
Affiliation(s)
- Ujjwal Singh
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Sourav Khanra
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Chandramouli Roy
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| |
Collapse
|
29
|
Hoy CW, Quiroga-Martinez DR, Sandoval E, King-Stephens D, Laxer KD, Weber P, Lin JJ, Knight RT. Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex. Nat Commun 2023; 14:8520. [PMID: 38129440 PMCID: PMC10739882 DOI: 10.1038/s41467-023-44248-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The signed value and unsigned salience of reward prediction errors (RPEs) are critical to understanding reinforcement learning (RL) and cognitive control. Dorsomedial prefrontal cortex (dMPFC) and insula (INS) are key regions for integrating reward and surprise information, but conflicting evidence for both signed and unsigned activity has led to multiple proposals for the nature of RPE representations in these brain areas. Recently developed RL models allow neurons to respond differently to positive and negative RPEs. Here, we use intracranially recorded high frequency activity (HFA) to test whether this flexible asymmetric coding strategy captures RPE coding diversity in human INS and dMPFC. At the region level, we found a bias towards positive RPEs in both areas which paralleled behavioral adaptation. At the local level, we found spatially interleaved neural populations responding to unsigned RPE salience and valence-specific positive and negative RPEs. Furthermore, directional connectivity estimates revealed a leading role of INS in communicating positive and unsigned RPEs to dMPFC. These findings support asymmetric coding across distinct but intermingled neural populations as a core principle of RPE processing and inform theories of the role of dMPFC and INS in RL and cognitive control.
Collapse
Affiliation(s)
- Colin W Hoy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - David R Quiroga-Martinez
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Aarhus, Denmark
| | - Eduardo Sandoval
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Peter Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
30
|
Courellis HS, Mixha J, Cardenas AR, Kimmel D, Reed CM, Valiante TA, Salzman CD, Mamelak AN, Fusi S, Rutishauser U. Abstract representations emerge in human hippocampal neurons during inference behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566490. [PMID: 37986878 PMCID: PMC10659400 DOI: 10.1101/2023.11.10.566490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central to this capacity is the ability to form high-level, abstract representations that take advantage of regularities in the world to support generalization 1 . However, little is known about how these representations are encoded in populations of neurons, how they emerge through learning, and how they relate to behavior 2,3 . Here we characterized the representational geometry of populations of neurons (single-units) recorded in the hippocampus, amygdala, medial frontal cortex, and ventral temporal cortex of neurosurgical patients who are performing an inferential reasoning task. We find that only the neural representations formed in the hippocampus simultaneously encode multiple task variables in an abstract, or disentangled, format. This representational geometry is uniquely observed after patients learn to perform inference, and consisted of disentangled directly observable and discovered latent task variables. Interestingly, learning to perform inference by trial and error or through verbal instructions led to the formation of hippocampal representations with similar geometric properties. The observed relation between representational format and inference behavior suggests that abstract/disentangled representational geometries are important for complex cognition.
Collapse
|
31
|
Proskurin M, Manakov M, Karpova A. ACC neural ensemble dynamics are structured by strategy prevalence. eLife 2023; 12:e84897. [PMID: 37991007 DOI: 10.7554/elife.84897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Medial frontal cortical areas are thought to play a critical role in the brain's ability to flexibly deploy strategies that are effective in complex settings, yet the underlying circuit computations remain unclear. Here, by examining neural ensemble activity in male rats that sample different strategies in a self-guided search for latent task structure, we observe robust tracking during strategy execution of a summary statistic for that strategy in recent behavioral history by the anterior cingulate cortex (ACC), especially by an area homologous to primate area 32D. Using the simplest summary statistic - strategy prevalence in the last 20 choices - we find that its encoding in the ACC during strategy execution is wide-scale, independent of reward delivery, and persists through a substantial ensemble reorganization that accompanies changes in global context. We further demonstrate that the tracking of reward by the ACC ensemble is also strategy-specific, but that reward prevalence is insufficient to explain the observed activity modulation during strategy execution. Our findings argue that ACC ensemble dynamics is structured by a summary statistic of recent behavioral choices, raising the possibility that ACC plays a role in estimating - through statistical learning - which actions promote the occurrence of events in the environment.
Collapse
Affiliation(s)
- Mikhail Proskurin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, United States
| | - Maxim Manakov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, United States
| | - Alla Karpova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
32
|
Jangraw DC, Finn ES, Bandettini PA, Landi N, Sun H, Hoeft F, Chen G, Pugh KR, Molfese PJ. Inter-subject correlation during long narratives reveals widespread neural correlates of reading ability. Neuroimage 2023; 282:120390. [PMID: 37751811 PMCID: PMC10783814 DOI: 10.1016/j.neuroimage.2023.120390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
Recent work using fMRI inter-subject correlation analysis has provided new information about the brain's response to video and audio narratives, particularly in frontal regions not typically activated by single words. This approach is very well suited to the study of reading, where narrative is central to natural experience. But since past reading paradigms have primarily presented single words or phrases, the influence of narrative on semantic processing in the brain - and how that influence might change with reading ability - remains largely unexplored. In this study, we presented coherent stories to adolescents and young adults with a wide range of reading abilities. The stories were presented in alternating visual and auditory blocks. We used a dimensional inter-subject correlation analysis to identify regions in which better and worse readers had varying levels of consistency with other readers. This analysis identified a widespread set of brain regions in which activity timecourses were more similar among better readers than among worse readers. These differences were not detected with standard block activation analyses. Worse readers had higher correlation with better readers than with other worse readers, suggesting that the worse readers had "idiosyncratic" responses rather than using a single compensatory mechanism. Close inspection confirmed that these differences were not explained by differences in IQ or motion. These results suggest an expansion of the current view of where and how reading ability is reflected in the brain, and in doing so, they establish inter-subject correlation as a sensitive tool for future studies of reading disorders.
Collapse
Affiliation(s)
- David C Jangraw
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, United States; Emotion and Development Branch, NIMH, Bethesda, MD, United States; Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, United States.
| | - Emily S Finn
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, United States; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Peter A Bandettini
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, United States; Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, United States
| | - Nicole Landi
- Haskins Laboratories, New Haven, CT, United States
| | - Haorui Sun
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, United States
| | - Fumiko Hoeft
- Haskins Laboratories, New Haven, CT, United States; Department of Psychological Sciences, University of Connecticut, Hartford, CT, United States
| | - Gang Chen
- Statistical Computing Core, NIMH, Bethesda, MD, United States
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, United States; Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Peter J Molfese
- Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, United States; Haskins Laboratories, New Haven, CT, United States
| |
Collapse
|
33
|
Wu K, Wang D, Wang Y, Tang P, Li X, Pan Y, Tao HW, Zhang LI, Liang F. Distinct circuits in anterior cingulate cortex encode safety assessment and mediate flexibility of fear reactions. Neuron 2023; 111:3650-3667.e6. [PMID: 37652003 PMCID: PMC10990237 DOI: 10.1016/j.neuron.2023.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
Safety assessment and threat evaluation are crucial for animals to live and survive in the wilderness. However, neural circuits underlying safety assessment and their transformation to mediate flexibility of fear-induced defensive behaviors remain largely unknown. Here, we report that distinct neuronal populations in mouse anterior cingulate cortex (ACC) encode safety status by selectively responding under different contexts of auditory threats, with one preferably activated when an animal staysing in a self-deemed safe zone and another specifically activated in more dangerous environmental settings that led to escape behavior. The safety-responding neurons preferentially target the zona incerta (ZI), which suppresses the superior colliculus (SC) via its GABAergic projection, while the danger-responding neurons preferentially target and excite SC. These distinct corticofugal pathways antagonistically modulate SC responses to threat, resulting in context-dependent expression of fear reactions. Thus, ACC serves as a critical node to encode safety/danger assessment and mediate behavioral flexibility through differential top-down circuits.
Collapse
Affiliation(s)
- Kaibin Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Dijia Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Yuwei Wang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Peiwen Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Xuan Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yidi Pan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Huizhong W Tao
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Feixue Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China; Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
34
|
Muzik O, Diwadkar VA. Depth and hierarchies in the predictive brain: From reaction to action. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1664. [PMID: 37518831 DOI: 10.1002/wcs.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The human brain is a prediction device, a view widely accepted in neuroscience. Prediction is a rational and efficient response that relies on the brain's ability to create and employ generative models to optimize actions over unpredictable time horizons. We argue that extant predictive frameworks while compelling, have not explicitly accounted for the following: (a) The brain's generative models must incorporate predictive depth (i.e., rely on degrees of abstraction to enable predictions over different time horizons); (b) The brain's implementation scheme to account for varying predictive depth relies on dynamic predictive hierarchies formed using the brain's functional networks. We show that these hierarchies incorporate the ascending processes (driven by reaction), and the descending processes (related to prediction), eventually driving action. Because they are dynamically formed, predictive hierarchies allow the brain to address predictive challenges in virtually any domain. By way of application, we explain how this framework can be applied to heretofore poorly understood processes of human behavioral thermoregulation. Although mammalian thermoregulation has been closely tied to deep brain structures engaged in autonomic control such as the hypothalamus, this narrow conception does not translate well to humans. In addition to profound differences in evolutionary history, the human brain is bestowed with substantially increased functional complexity (that itself emerged from evolutionary differences). We argue that behavioral thermoregulation in humans is possible because, (a) ascending signals shaped by homeostatic sub-networks, interject with (b) descending signals related to prediction (implemented in interoceptive and executive sub-networks) and action (implemented in executive sub-networks). These sub-networks cumulatively form a predictive hierarchy for human thermoregulation, potentiating a range of viable responses to known and unknown thermoregulatory challenges. We suggest that our proposed extensions to the predictive framework provide a set of generalizable principles that can further illuminate the many facets of the predictive brain. This article is categorized under: Neuroscience > Behavior Philosophy > Action Psychology > Prediction.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Michigan, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
35
|
Jahangir M, Zheng N, Shah SM, Huang Y, Lang B, Wang XP. Protocol guide for food foraging behavior test: Assessment of decision making in rodents. Heliyon 2023; 9:e21964. [PMID: 38027823 PMCID: PMC10658295 DOI: 10.1016/j.heliyon.2023.e21964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Food foraging behavior requires higher cognitive function like investing efforts in decision making. Hoarding food for the future consumption in adverse climatic conditions or to avoid predatory threats needs precise perception and potential of decision making to overcome challenges in the time of need. The brain areas and neural circuitry responsible for such cognitive skills are poorly understood. Previously available animal models are trained prior to test, which makes it difficult to understand the true nature of animals, and hoard the food from external source into the cage. The new food foraging behavior test, recently developed and evidenced by Li et al., relies on untrained rats and test the competitive ability and hoarding from source within the test box. It can be used to study decision making potentials and underlying neural bases in laboratory settings. Multiple aspects like food quality/flavor preference, competitive nature can be assessed within the test box and the paradigm is conveniently customizable according the hypothesis. However, a detailed protocol guide, to be followed in the laboratory setting, for food foraging behavior test is not available. Therefore, it is urged to produce an elaborated guide for scientists to conduct food foraging behavior test in convenient and precise manner.
Collapse
Affiliation(s)
- Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - NanXi Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - S. Mudasser Shah
- Department of Psychiatry and Psychosomatics, ZhongDa Hospital, Southeast University Nanjing, Jiangsu, China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiao-Ping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| |
Collapse
|
36
|
Valentinova K, Acuña MA, Ntamati NR, Nevian NE, Nevian T. An amygdala-to-cingulate cortex circuit for conflicting choices in chronic pain. Cell Rep 2023; 42:113125. [PMID: 37733589 PMCID: PMC10636611 DOI: 10.1016/j.celrep.2023.113125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Chronic pain is a complex experience with multifaceted behavioral manifestations, often leading to pain avoidance at the expense of reward approach. How pain facilitates avoidance in situations with mixed outcomes is unknown. The anterior cingulate cortex (ACC) plays a key role in pain processing and in value-based decision-making. Distinct ACC inputs inform about the sensory and emotional quality of pain. However, whether specific ACC circuits underlie pathological conflict assessment in pain remains underexplored. Here, we demonstrate that mice with chronic pain favor cold avoidance rather than reward approach in a conflicting task. This occurs along with selective strengthening of basolateral amygdala inputs onto ACC layer 2/3 pyramidal neurons. The amygdala-cingulate projection is necessary and sufficient for the conflicting cold avoidance. Further, low-frequency stimulation of this pathway restores AMPA receptor function and reduces avoidance in pain mice. Our findings provide insights into the circuits and mechanisms underlying cognitive aspects of pain and offer potential targets for treatment.
Collapse
Affiliation(s)
- Kristina Valentinova
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| | - Mario A Acuña
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Niels R Ntamati
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Natalie E Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| |
Collapse
|
37
|
Pelliccia V, Del Vecchio M, Avanzini P, Revay M, Sartori I, Caruana F. 70 Years of Human Cingulate Cortex Stimulation. Functions and Dysfunctions Through the Lens of Electrical Stimulation. J Clin Neurophysiol 2023; 40:491-500. [PMID: 36007014 DOI: 10.1097/wnp.0000000000000961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY In this review, we retrace the results of 70 years of human cingulate cortex (CC) intracerebral electrical stimulation and discuss its contribution to our understanding of the anatomofunctional and clinical aspects of this wide cortical region. The review is divided into three main sections. In the first section, we report the results obtained by the stimulation of the anterior, middle, and posterior CC, in 30 studies conducted on approximately 1,000 patients from the 1950s to the present day. These studies show that specific manifestations can be reliably associated with specific cingulate subfields, with autonomic, interoceptive, and emotional manifestations clustered in the anterior cingulate, goal-oriented motor behaviors elicited from the anterior midcingulate and a variety of sensory symptoms characterizing the posterior cingulate regions. In the second section, we compare the effect of CC intracerebral electrical stimulation with signs and manifestations characterizing cingulate epilepsy, showing that the stimulation mapping of CC subfields provides precious information for understanding cingulate epileptic manifestations. The last section tackles the issue of the discrepancy emerging when comparing the results of clinical (electrical stimulation, epilepsy) studies-revealing the quintessential affective and motor nature of the CC-with that reported by neuroimaging studies-which focus on high-level cognitive functions. Particular attention will be paid to the hypothesis that CC hosts a "Pain Matrix" specifically involved in pain perception, which we will discuss in the light of the fact that the stimulation of CC (as well as cingulate epileptic seizures) does not induce nociceptive effects.
Collapse
Affiliation(s)
- Veronica Pelliccia
- "Claudio Munari" Epilepsy Surgery Center, ASST GOM Niguarda, Milano, Italy; and
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Martina Revay
- "Claudio Munari" Epilepsy Surgery Center, ASST GOM Niguarda, Milano, Italy; and
| | - Ivana Sartori
- "Claudio Munari" Epilepsy Surgery Center, ASST GOM Niguarda, Milano, Italy; and
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| |
Collapse
|
38
|
Xia L, Gu R, Lin Y, Qin J, Luo W, Luo YJ. Explaining reversal learning deficits in anxiety with electrophysiological evidence. J Psychiatr Res 2023; 164:270-280. [PMID: 37390622 DOI: 10.1016/j.jpsychires.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Reversal learning is a crucial aspect of behavioral flexibility that plays a significant role in environmental adaptation and development. While previous studies have established a link between anxiety and impaired reversal learning ability, the underlying mechanisms behind this association remain unclear. This study employed a probabilistic reversal learning task with electroencephalographic recording to investigate these mechanisms. Participants were divided into two groups based on their scores on Spielberger's State-Trait Anxiety Inventory: high trait-anxiety (HTA) and low trait-anxiety (LTA), consisting of 50 individuals in each group. The results showed that the HTA group had poorer reversal learning performance than the LTA group, including a lower tendency to shift to the new optimal option after rule reversals (reversal-shift). The study also examined event-related potentials elicited by reversals and found that although the N1 (related to attention allocation), feedback-related negativity (FRN: related to belief updating), and P3 (related to response inhibition) were all sensitive to the grouping factor, only the FRN elicited by reversal-shift mediated the relationship between anxiety and the number/reaction time of reversal-shift. From these findings, we suggest that abnormalities in belief updating may contribute to the impaired reversal learning performance observed in anxious individuals. In our opinion, this study sheds light on potential targets for interventions aimed at improving behavioral flexibility in anxious individuals.
Collapse
Affiliation(s)
- Lisheng Xia
- School of Psychology, Guizhou Normal University, Guiyang, 550025, China
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongling Lin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Jianqiang Qin
- School of Psychology, Guizhou Normal University, Guiyang, 550025, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China.
| | - Yue-Jia Luo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; School of Social Development and Management, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| |
Collapse
|
39
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
40
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|
41
|
Arnsten AFT, Joyce MKP, Roberts AC. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. Neurosci Biobehav Rev 2023; 145:105000. [PMID: 36529312 PMCID: PMC9898199 DOI: 10.1016/j.neubiorev.2022.105000] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
ARNSTEN, A.F.T., M.K.P. Joyce and A.C. Roberts. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. NEUROSCI BIOBEHAV REV XXX-XXX, 2022. The symptoms of major-depressive-disorder include psychic pain and anhedonia, i.e. seeing the world through an "aversive lens". The neurobiology underlying this shift in worldview is emerging. Here these data are reviewed, focusing on how activation of subgenual cingulate (BA25) induces an "aversive lens", and how higher prefrontal cortical (PFC) areas (BA46/10/32) provide top-down regulation of BA25 but are weakened by excessive dopamine and norepinephrine release during stress exposure, and dendritic spine loss with chronic stress exposure. These changes may generate an attractor state, which maintains the brain under the control of BA25, requiring medication or neuromodulatory treatments to return connectivity to a more flexible state. In line with this hypothesis, effective anti-depressant treatments reduce the activity of BA25 and restore top-down regulation by higher circuits, e.g. as seen with SSRI medications, ketamine, deep brain stimulation of BA25, or rTMS to strengthen dorsolateral PFC. This research has special relevance in an era of chronic stress caused by the COVID19 pandemic, political unrest and threat of climate change.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Angela C Roberts
- Department Physiology, Development and Neuroscience, and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
42
|
Ye Y, Wang Y. Multivariate analysis differentiates intertemporal choices in both value and cognitive control network. Front Neurosci 2023; 17:1037294. [PMID: 36925738 PMCID: PMC10011120 DOI: 10.3389/fnins.2023.1037294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Choices between immediate smaller reward and long-term larger reward are referred to as intertemporal choice. Numerous functional magnetic resonance imaging (fMRI) studies have investigated the neural substrates of intertemporal choice via conventional univariate analytical approaches, revealing dissociable activations of decisions involving immediately available rewards and decisions involving delayed rewards in value network. With the help of multivariate analyses, which is more sensitive for evaluating information encoded in spatially distributed patterns, we showed that fMRI activity patterns represent viable signatures of intertemporal choice, as well as individual differences while controlling for age. Notably, in addition to value network, regions from cognitive control network play prominent roles in differentiating between different intertemporal choices as well as individuals with distinct discount rates. These findings provide clear evidence that substantiates the important role of value and cognitive control networks in the neural representation of one's intertemporal decisions.
Collapse
Affiliation(s)
- Yuting Ye
- Institute of Psychology, School of Public Affairs, Xiamen University, Xiamen, China
| | - Yanqing Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Haber SN, Lehman J, Maffei C, Yendiki A. The rostral zona incerta: a subcortical integrative hub and potential DBS target for OCD. Biol Psychiatry 2023; 93:1010-1022. [PMID: 37055285 DOI: 10.1016/j.biopsych.2023.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/13/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND The zona incerta (ZI) is involved in mediating survival behaviors and is connected to a wide range of cortical and subcortical structures, including key basal ganglia nuclei. Based on these connections and their links to behavioral modulation, we propose that the ZI is a connectional hub for mediating between top-down and bottom-up control and a possible target for deep brain stimulation for obsessive-compulsive disorder. METHODS We analyzed the trajectory of cortical fibers to the ZI in nonhuman and human primates based on tracer injections in monkeys and high-resolution diffusion magnetic resonance imaging in humans. The organization of cortical and subcortical connections within the ZI were identified in the nonhuman primate studies. RESULTS Monkey anatomical data and human diffusion magnetic resonance imaging data showed a similar trajectory of fibers/streamlines to the ZI. Prefrontal cortex/anterior cingulate cortex terminals all converged within the rostral ZI, with dorsal and lateral areas being most prominent. Motor areas terminated caudally. Dense subcortical reciprocal connections included the thalamus, medial hypothalamus, substantia nigra/ventral tegmental area, reticular formation, and pedunculopontine nucleus and a dense nonreciprocal projection to the lateral habenula. Additional connections included the amygdala, dorsal raphe nucleus, and periaqueductal gray. CONCLUSIONS Dense connections with dorsal and lateral prefrontal cortex/anterior cingulate cortex cognitive control areas and the lateral habenula and the substantia nigra/ventral tegmental area, coupled with inputs from the amygdala, hypothalamus, and brainstem, suggest that the rostral ZI is a subcortical hub positioned to modulate between top-down and bottom-up control. A deep brain stimulation electrode placed in the rostral ZI would not only involve connections common to other deep brain stimulation sites but also capture several critically distinctive connections.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts.
| | - Julia Lehman
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Monosov IE, Ogasawara T, Haber SN, Heimel JA, Ahmadlou M. The zona incerta in control of novelty seeking and investigation across species. Curr Opin Neurobiol 2022; 77:102650. [PMID: 36399897 DOI: 10.1016/j.conb.2022.102650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Many organisms rely on a capacity to rapidly replicate, disperse, and evolve when faced with uncertainty and novelty. But mammals do not evolve and replicate quickly. They rely on a sophisticated nervous system to generate predictions and select responses when confronted with these challenges. An important component of their behavioral repertoire is the adaptive context-dependent seeking or avoiding of perceptually novel objects, even when their values have not yet been learned. Here, we outline recent cross-species breakthroughs that shed light on how the zona incerta (ZI), a relatively evolutionarily conserved brain area, supports novelty-seeking and novelty-related investigations. We then conjecture how the architecture of the ZI's anatomical connectivity - the wide-ranging top-down cortical inputs to the ZI, and its specifically strong outputs to both the brainstem action controllers and to brain areas involved in action value learning - place the ZI in a unique role at the intersection of cognitive control and learning.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - J Alexander Heimel
- Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Mehran Ahmadlou
- Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland St., W1T4JG London, UK
| |
Collapse
|
45
|
Berz A, Pasquini de Souza C, Wöhr M, Steinmüller S, Bruntsch M, Schäfer MKH, Schwarting RKW. Contingent Social Interaction Does Not Prevent Habituation towards Playback of Pro-Social 50-kHz Calls: Behavioral Responses and Brain Activation Patterns. Brain Sci 2022; 12:brainsci12111474. [PMID: 36358402 PMCID: PMC9688071 DOI: 10.3390/brainsci12111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Rats, which are highly social animals, are known to communicate using ultrasonic vocalizations (USV) in different frequency ranges. Calls around 50 kHz are related to positive affective states and promote social interactions. Our previous work has shown that the playback of natural 50-kHz USV leads to a strong social approach response toward the sound source, which is related to activation in the nucleus accumbens. In male Wistar rats, the behavioral response habituates, that is, becomes weaker or is even absent, when such playback is repeated several days later, an outcome found to be memory-dependent. Here, we asked whether such habituation is due to the lack of a contingent social consequence after playback in the initial test and whether activation of the nucleus accumbens, as measured by c-fos immunohistochemistry, can still be observed in a retest. To this end, groups of young male Wistar rats underwent an initial 50-kHz USV playback test, immediately after which they were either (1) kept temporarily alone, (2) exposed to a same-sex juvenile, or (3) to their own housing group. One week later, they underwent a retest with playback; this time not followed by social consequences but by brain removal for c-fos immunohistochemistry. Consistent with previous reports, behavioral changes evoked by the initial exposure to 50-kHz USV playback included a strong approach response. In the retest, no such response was found, irrespective of whether rats had experienced a contingent social consequence after the initial test or not. At the neural level, no substantial c-fos activation was found in the nucleus accumbens, but unexpected strong activation was detected in the anterior cingulate cortex, with some of it in GABAergic cells. The c-fos patterns did not differ between groups but cell numbers were individually correlated with behavior, i.e., rats that still approached in response to playback in the retest showed more activation. Together, these data do not provide substantial evidence that the lack of a contingent social consequence after 50-kHz USV playback accounts for approach habituation in the retest. Additionally, there is apparently no substantial activation of the nucleus accumbens in the retest, whereas the exploratory findings in the anterior cingulate cortex indicate that this brain area might be involved when individual rats still approach 50-kHz USV playback.
Collapse
Affiliation(s)
- Annuska Berz
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
| | - Camila Pasquini de Souza
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba 81530-000, PR, Brazil
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sebastian Steinmüller
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
| | - Maria Bruntsch
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
| | - Martin K.-H. Schäfer
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Philipps-University Marburg, 35032 Marburg, Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, 35032 Marburg, Germany
- Correspondence:
| |
Collapse
|
46
|
Parmar H, Tahvildar A, Ghasemi E, Jung S, Davis F, Walden E. To download or not to download? Spatial and temporal neural dynamics across the brain regions when deciding to download an app. INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT 2022. [DOI: 10.1016/j.ijinfomgt.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Orth L, Meeh J, Gur RC, Neuner I, Sarkheil P. Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review. Front Hum Neurosci 2022; 16:933718. [PMID: 36092647 PMCID: PMC9449529 DOI: 10.3389/fnhum.2022.933718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Dysregulated frontostriatal circuitries are viewed as a common target for the treatment of aberrant behaviors in various psychiatric and neurological disorders. Accordingly, experimental neurofeedback paradigms have been applied to modify the frontostriatal circuitry. The human frontostriatal circuitry is topographically and functionally organized into the "limbic," the "associative," and the "motor" subsystems underlying a variety of affective, cognitive, and motor functions. We conducted a systematic review of the literature regarding functional magnetic resonance imaging-based neurofeedback studies that targeted brain activations within the frontostriatal circuitry. Seventy-nine published studies were included in our survey. We assessed the efficacy of these studies in terms of imaging findings of neurofeedback intervention as well as behavioral and clinical outcomes. Furthermore, we evaluated whether the neurofeedback targets of the studies could be assigned to the identifiable frontostriatal subsystems. The majority of studies that targeted frontostriatal circuitry functions focused on the anterior cingulate cortex, the dorsolateral prefrontal cortex, and the supplementary motor area. Only a few studies (n = 14) targeted the connectivity of the frontostriatal regions. However, post-hoc analyses of connectivity changes were reported in more cases (n = 32). Neurofeedback has been frequently used to modify brain activations within the frontostriatal circuitry. Given the regulatory mechanisms within the closed loop of the frontostriatal circuitry, the connectivity-based neurofeedback paradigms should be primarily considered for modifications of this system. The anatomical and functional organization of the frontostriatal system needs to be considered in decisions pertaining to the neurofeedback targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| |
Collapse
|
48
|
Safavi S, Dayan P. Multistability, perceptual value, and internal foraging. Neuron 2022; 110:3076-3090. [PMID: 36041434 DOI: 10.1016/j.neuron.2022.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Substantial experimental, theoretical, and computational insights into sensory processing have been derived from the phenomena of perceptual multistability-when two or more percepts alternate or switch in response to a single sensory input. Here, we review a range of findings suggesting that alternations can be seen as internal choices by the brain responding to values. We discuss how elements of external, experimenter-controlled values and internal, uncertainty- and aesthetics-dependent values influence multistability. We then consider the implications for the involvement in switching of regions, such as the anterior cingulate cortex, which are more conventionally tied to value-dependent operations such as cognitive control and foraging.
Collapse
Affiliation(s)
- Shervin Safavi
- University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Peter Dayan
- University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
49
|
Neacsiu AD, Szymkiewicz V, Galla JT, Li B, Kulkarni Y, Spector CW. The neurobiology of misophonia and implications for novel, neuroscience-driven interventions. Front Neurosci 2022; 16:893903. [PMID: 35958984 PMCID: PMC9359080 DOI: 10.3389/fnins.2022.893903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Decreased tolerance in response to specific every-day sounds (misophonia) is a serious, debilitating disorder that is gaining rapid recognition within the mental health community. Emerging research findings suggest that misophonia may have a unique neural signature. Specifically, when examining responses to misophonic trigger sounds, differences emerge at a physiological and neural level from potentially overlapping psychopathologies. While these findings are preliminary and in need of replication, they support the hypothesis that misophonia is a unique disorder. In this theoretical paper, we begin by reviewing the candidate networks that may be at play in this complex disorder (e.g., regulatory, sensory, and auditory). We then summarize current neuroimaging findings in misophonia and present areas of overlap and divergence from other mental health disorders that are hypothesized to co-occur with misophonia (e.g., obsessive compulsive disorder). Future studies needed to further our understanding of the neuroscience of misophonia will also be discussed. Next, we introduce the potential of neurostimulation as a tool to treat neural dysfunction in misophonia. We describe how neurostimulation research has led to novel interventions in psychiatric disorders, targeting regions that may also be relevant to misophonia. The paper is concluded by presenting several options for how neurostimulation interventions for misophonia could be crafted.
Collapse
Affiliation(s)
- Andrada D. Neacsiu
- Duke Center for Misophonia and Emotion Regulation, Duke Brain Stimulation Research Center, Department of Psychiatry and Behavioral Neuroscience, School of Medicine, Duke University, Durham, NC, United States
| | - Victoria Szymkiewicz
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jeffrey T. Galla
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Brenden Li
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Yashaswini Kulkarni
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Cade W. Spector
- Department of Philosophy, Duke University, Durham, NC, United States
| |
Collapse
|
50
|
Shine JM, O’Callaghan C, Walpola IC, Wainstein G, Taylor N, Aru J, Huebner B, John YJ. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 2022; 145:2967-2981. [DOI: 10.1093/brain/awac256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The neuromodulatory arousal system imbues the nervous system with the flexibility and robustness required to facilitate adaptive behaviour. While there are well-understood mechanisms linking dopamine, noradrenaline and acetylcholine to distinct behavioural states, similar conclusions have not been as readily available for serotonin. Fascinatingly, despite clear links between serotonergic function and cognitive capacities as diverse as reward processing, exploration, and the psychedelic experience, over 95% of the serotonin in the body is released in the gastrointestinal tract, where it controls digestive muscle contractions (peristalsis). Here, we argue that framing neural serotonin as a rostral extension of the gastrointestinal serotonergic system dissolves much of the mystery associated with the central serotonergic system. Specifically, we outline that central serotonin activity mimics the effects of a digestion/satiety circuit mediated by hypothalamic control over descending serotonergic nuclei in the brainstem. We review commonalities and differences between these two circuits, with a focus on the heterogeneous expression of different classes of serotonin receptors in the brain. Much in the way that serotonin-induced peristalsis facilitates the work of digestion, serotonergic influences over cognition can be reframed as performing the work of cognition. Extending this analogy, we argue that the central serotonergic system allows the brain to arbitrate between different cognitive modes as a function of serotonergic tone: low activity facilitates cognitive automaticity, whereas higher activity helps to identify flexible solutions to problems, particularly if and when the initial responses fail. This perspective sheds light on otherwise disparate capacities mediated by serotonin, and also helps to understand why there are such pervasive links between serotonergic pathology and the symptoms of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ishan C Walpola
- Prince of Wales Hospital , Randwick, New South Wales , Australia
| | | | | | - Jaan Aru
- University of Tartu , Tartu , Estonia
| | | | | |
Collapse
|