1
|
Huang P, Chen G, Zhu Z, Wang S, Chen Z, Chai Y, Li W, Ou G. Phosphorylation-dependent regional motility of the ciliary kinesin OSM-3. J Cell Biol 2025; 224:e202407152. [PMID: 40272473 PMCID: PMC12020746 DOI: 10.1083/jcb.202407152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/29/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Kinesin motor proteins, vital for intracellular microtubule-based transport, display region-specific motility within cells, a phenomenon that remains molecularly enigmatic. This study focuses on the localized activation of OSM-3, an intraflagellar transport kinesin crucial for the assembly of ciliary distal segments in Caenorhabditis elegans sensory neurons. Fluorescence lifetime imaging microscopy unveiled an extended, active conformation of OSM-3 in the ciliary base and middle segments, where OSM-3 is conveyed as cargo by kinesin-II. We demonstrate that NEKL-3, a never in mitosis kinase-like protein, directly phosphorylates the motor domain of OSM-3, inhibiting its in vitro activity. NEKL-3 and NEKL-4, localized at the ciliary base, function redundantly to restrict OSM-3 activation. Elevated levels of protein phosphatase 2A at the ciliary transition zone or middle segments triggered premature OSM-3 motility, while its deficiency resulted in reduced OSM-3 activity and shorter cilia. These findings elucidate a phosphorylation-mediated mechanism governing the regional motility of kinesins.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guanghan Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Institute of Molecular Enzymology, Soochow University, Suzhou, China
| | - Shimin Wang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Li
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Martín-Carrascosa MDC, Palacios-Martínez C, Galindo MI. A phylogenetic analysis of the CDKL protein family unravels its evolutionary history and supports the Drosophila model of CDKL5 deficiency disorder. Front Cell Dev Biol 2025; 13:1582684. [PMID: 40371392 PMCID: PMC12075339 DOI: 10.3389/fcell.2025.1582684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
The human CDK-like (CDKL) family of serine‒threonine kinases has five members (CDKL1-5), with a conserved N-terminal kinase domain and variable C-termini. Among these, CDKL5 is of particular interest because of its involvement in CDKL5 deficiency disorder (CDD), a rare epileptic encephalopathy with several comorbidities for which there are no specific treatments. Current CDD vertebrate models are seizure resistant, which could be explained by the genetic background, including leaky expression of other CDKLs. Thus, phylogenetic analysis of the protein family would be valuable for understanding current models and developing new ones. Our phylogenetic studies revealed that ancestral CDKLs were present in all major eukaryotic clades and had ciliary/flagellar functions, which may have diversified throughout evolution. The original CDKL, which was likely similar to human CDKL5, gave rise to the remaining family members through successive duplications. In addition, particular clades have undergone further gene duplication and loss, a pattern that suggests some functional redundancy among them. A separate study focusing on the C-terminal tail of CDKL5 suggested that this domain is only functionally relevant in jawed vertebrates. We have developed a model of CDD in Drosophila based on downregulation of the single Cdkl gene by RNAi, which results in phenotypes similar to those of CDD patients, that are rescued by re-expression of fly Cdkl and human CDKL5. CDKL proteins contain a conserved kinase domain, originally involved in ciliary maintenance; therefore, invertebrate model organisms can be used to investigate CDKL functions that involve the aforementioned domain.
Collapse
Affiliation(s)
- María del Carmen Martín-Carrascosa
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- Laboratory of Developmental Biology and Disease Mechanisms, Centro de Investigación Príncipe Felipe, Valencia, Spain
- UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, Valencia, Spain
| | - Christian Palacios-Martínez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Máximo Ibo Galindo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- Laboratory of Developmental Biology and Disease Mechanisms, Centro de Investigación Príncipe Felipe, Valencia, Spain
- UPV-CIPF Joint Unit Disease Mechanisms and Nanomedicine, Valencia, Spain
| |
Collapse
|
3
|
Bereshneh AH, Andrews JC, Eberl DF, Bademci G, Borja NA, Bivona S, Chung WK, Yamamoto S, Wangler MF, McKee S, Tekin M, Bellen HJ, Kanca O. De novo variants in CDKL1 and CDKL2 are associated with neurodevelopmental symptoms. Am J Hum Genet 2025; 112:846-862. [PMID: 40088891 DOI: 10.1016/j.ajhg.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
The CDKL (cyclin-dependent kinase-like) family consists of five members in humans, CDKL1-5, that encode serine-threonine kinases. The only member that has been associated with a Mendelian disorder is CDKL5, and variants in CDKL5 cause developmental and epileptic encephalopathy type 2 (DEE2). Here, we study four de novo variants in CDKL2 identified in five individuals, including three unrelated probands and monozygotic twins. These individuals present with overlapping symptoms, including global developmental delay, intellectual disability, childhood-onset epilepsy, dyspraxia, and speech deficits. We also identified two individuals with de novo missense variants in CDKL1 in the published Deciphering Developmental Disorders (DDD) and GeneDx cohorts with developmental disorders. Drosophila has a single ortholog of CDKL1-5, CG7236 (Cdkl). Cdkl is expressed in sensory neurons that project to specific regions of the brain that control sensory inputs. Cdkl loss causes semi-lethality, climbing defects, heat-induced seizures, hearing loss, and reduced lifespan. These phenotypes can be rescued by expression of the human reference CDKL1, CDKL2, or CDKL5, showing that the functions of these genes are conserved. In contrast, the CDKL1 and CDKL2 variants do not fully rescue the observed phenotypes, and overexpression of the variant proteins leads to phenotypes that are similar to Cdkl loss. Co-expression of CDKL1 or CDKL2 variants with CDKL1, CDKL2, or CDKL5 references in the mutant background suppresses the rescue ability of the reference genes. Our results suggest that the variants act as dominant negative alleles and are causative of neurological symptoms in these individuals.
Collapse
Affiliation(s)
- Ali H Bereshneh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Nicholas A Borja
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Stephanie Bivona
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Turan MG, Kantarci H, Cevik S, Kaplan OI. ARL13B regulates juxtaposed cilia-cilia elongation in BBSome dependent manner in Caenorhabditis elegans. iScience 2025; 28:111791. [PMID: 39925426 PMCID: PMC11804779 DOI: 10.1016/j.isci.2025.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/30/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The interaction of cilia with various cellular compartments, such as axons, has emerged as a new form of cellular communication. Cilia often extend in proximity to cilia from neighboring cells. However, the mechanisms driving this process termed juxtaposed cilia-cilia elongation (JCE) remain unclear. We use fluorescence-based visualization to study the mechanisms of coordinated cilia elongation in sensory neurons of Caenorhabditis elegans. Conducting a selective gene-based screening strategy reveals that ARL-13/ARL13B and MKS-5/RPGRIP1L are essential for JCE. We demonstrate that ARL-13 modulates JCE independently of cilia length. Loss of NPHP-2/inversin along with HDAC-6 enhances the cilia misdirection phenotype of arl-13 mutants, while disruption of the BBSome complex, but not microtubule components, partially suppresses the JCE defects in arl-13 mutants. We further show changes in the phospholipid compositions in arl-13 mutants. We suggest that ARL-13 contributes to JCE, in part, through the modulation of the ciliary membrane.
Collapse
Affiliation(s)
- Merve Gül Turan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
- Department of Bioengineering, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Hanife Kantarci
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Oktay I. Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| |
Collapse
|
5
|
Zhang Y, He M, Pan J. Axonemal microtubule dynamics in the assembly and disassembly of cilia. Biochem Soc Trans 2025; 53:BST20240688. [PMID: 39889304 DOI: 10.1042/bst20240688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Cilia and eukaryotic flagella (exchangeable terms) function in cell motility and signaling, which are pivotal for development and physiology. Cilia dysfunction can lead to ciliopathies. Cilia are usually assembled in quiescent and/or differentiated cells and undergo disassembly when cells enter cell cycle or in response to environmental stresses. Cilia contain a microtubule-based structure termed axoneme that comprises nine outer doublet microtubules with or without a pair of central microtubules, which is ensheathed by the ciliary membrane. Regulation of the axonemal microtubule dynamics is tightly associated with ciliary assembly and disassembly. In this short review, we discuss recent findings on the regulation of axonemal microtubules by microtubule-binding proteins and microtubule modulating kinesins during ciliary assembly and disassembly.
Collapse
Affiliation(s)
- Yi Zhang
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mu He
- School of Biomedical Sciences, The University of Hong Kong, Hongkong, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences,State Key Laboratory of Complex, Severe, and Rare Diseases, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
6
|
Barbelanne M, Lu Y, Kumar K, Zhang X, Li C, Park K, Warner A, Xu XZS, Shaham S, Leroux MR. C. elegans PPEF-type phosphatase (Retinal degeneration C ortholog) functions in diverse classes of cilia to regulate nematode behaviors. Sci Rep 2024; 14:28347. [PMID: 39550471 PMCID: PMC11569196 DOI: 10.1038/s41598-024-79057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Primary (non-motile) cilia represent structurally and functionally diverse organelles whose roles as specialized cellular antenna are central to animal cell signaling pathways, sensory physiology and development. An ever-growing number of ciliary proteins, including those found in vertebrate photoreceptors, have been uncovered and linked to human disorders termed ciliopathies. Here, we demonstrate that an evolutionarily-conserved PPEF-family serine-threonine phosphatase, not functionally linked to cilia in any organism but associated with rhabdomeric (non-ciliary) photoreceptor degeneration in the Drosophila rdgC (retinal degeneration C) mutant, is a bona fide ciliary protein in C. elegans. The nematode protein, PEF-1, depends on transition zone proteins, which make up a 'ciliary gate' in the proximal-most region of the cilium, for its compartmentalization within cilia. Animals lacking PEF-1 protein function display structural defects to several types of cilia, including potential degeneration of microtubules. They also exhibit anomalies to cilium-dependent behaviors, including impaired responses to chemical, temperature, light, and noxious CO2 stimuli. Lastly, we demonstrate that PEF-1 function depends on conserved myristoylation and palmitoylation signals. Collectively, our findings broaden the role of PPEF proteins to include cilia, and suggest that the poorly-characterized mammalian PPEF1 and PPEF2 orthologs may also have ciliary functions and thus represent ciliopathy candidates.
Collapse
Affiliation(s)
- Marine Barbelanne
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Keerthana Kumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Xinxing Zhang
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Adam Warner
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - X Z Shawn Xu
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
7
|
Li C, Liu Y, Luo S, Yang M, Li L, Sun L. A review of CDKL: An underestimated protein kinase family. Int J Biol Macromol 2024; 277:133604. [PMID: 38964683 DOI: 10.1016/j.ijbiomac.2024.133604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
8
|
Power KM, Nguyen KC, Silva A, Singh S, Hall DH, Rongo C, Barr MM. NEKL-4 regulates microtubule stability and mitochondrial health in ciliated neurons. J Cell Biol 2024; 223:e202402006. [PMID: 38767515 PMCID: PMC11104396 DOI: 10.1083/jcb.202402006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by a mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet it negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. Additionally, nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1∆ mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1∆ cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PEST∆) mutant resembled the ccpp-1∆ mutant with dye-filling defects and B-tubule breaks. The nekl-4(PEST∆) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kaiden M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Ken C. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andriele Silva
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christopher Rongo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
9
|
Silvaroli JA, Martinez GV, Vanichapol T, Davidson AJ, Zepeda-Orozco D, Pabla NS, Kim JY. Role of the CDKL1-SOX11 signaling axis in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F426-F434. [PMID: 38991010 PMCID: PMC11460330 DOI: 10.1152/ajprenal.00147.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024] Open
Abstract
The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Gabriela V Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
10
|
Colarusso A, Lauro C, Canè L, Cozzolino F, Tutino ML. Bacterial Production of CDKL5 Catalytic Domain: Insights in Aggregation, Internal Translation and Phosphorylation Patterns. Int J Mol Sci 2024; 25:8891. [PMID: 39201578 PMCID: PMC11354467 DOI: 10.3390/ijms25168891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a serine/threonine protein kinase involved in human brain development and functioning. Mutations in CDKL5, especially in its catalytic domain, cause a severe developmental condition named CDKL5 deficiency disorder. Nevertheless, molecular studies investigating the structural consequences of such mutations are still missing. The CDKL5 catalytic domain harbors different sites of post-translational modification, such as phosphorylations, but their role in catalytic activity, protein folding, and stability has not been entirely investigated. With this work, we describe the expression pattern of the CDKL5 catalytic domain in Escherichia coli demonstrating that it predominantly aggregates. However, the use of solubility tags, the lowering of the expression temperature, the manual codon optimization to overcome an internal translational start, and the incubation of the protein with K+ and MgATP allow the collection of a soluble catalytically active kinase. Interestingly, the resulting protein exhibits hypophosphorylation compared to its eukaryotic counterpart, proving that bacteria are a useful tool to achieve almost unmodified CDKL5. Posing questions about the CDKL5 autoactivation mechanism and the determinants for its stability, this research provides a valuable platform for comparative biophysical studies between bacterial and eukaryotic-expressed proteins, contributing to our understanding of neurodevelopmental disorders associated with CDKL5 dysfunction.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Translational Medical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B., Viale Medaglie D’Oro 305, 00136 Roma, Italy
| |
Collapse
|
11
|
Zhang H, Lin J, Zheng S, Ma L, Pang Z, Yin H, Meng C, Wang Y, Han Q, Zhang X, Li Z, Cao L, Liu L, Fei T, Gao D, Yang L, Peng X, Ding C, Wang S, Sheng R. CDKL3 is a targetable regulator of cell cycle progression in cancers. J Clin Invest 2024; 134:e178428. [PMID: 38963708 PMCID: PMC11324297 DOI: 10.1172/jci178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.
Collapse
Affiliation(s)
- Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Lin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyi Yin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chengcheng Meng
- Department of Pathology, the Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Yinuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang, China
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lijun Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shixue Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
12
|
Li Z, Xue H, Li J, Zheng Z, Liu Z, Dong X, Wang H, Chen J, Xu S. CDKL1 potentiates the antitumor efficacy of radioimmunotherapy by binding to transcription factor YBX1 and blocking PD-L1 expression in lung cancer. J Exp Clin Cancer Res 2024; 43:89. [PMID: 38520004 PMCID: PMC10958935 DOI: 10.1186/s13046-024-03007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The evasion of the immune response by tumor cells through programmed death-ligand 1 (PD-L1) has been identified as a factor contributing to resistance to radioimmunotherapy in lung cancer patients. However, the precise molecular mechanisms underlying the regulation of PD-L1 remain incompletely understood. This study aimed to investigate the role of cyclin-dependent kinase-like 1 (CDKL1) in the modulation of PD-L1 expression and the response to radioimmunotherapy in lung cancer. METHODS The tumorigenic roles of CDKL1 were assessed via cell growth, colony formation, and EdU assays and an in vivo nude mouse xenograft model. The in vitro radiosensitization effect of CDKL1 was evaluated using a neutral comet assay, γH2AX foci formation analysis, and a clonogenic cell survival assay. The protein‒protein interactions were confirmed via coimmunoprecipitation and GST pulldown assays. The regulation of PD-L1 by CDKL1 was evaluated via chromatin immunoprecipitation (ChIP), real-time quantitative PCR, and flow cytometry analysis. An in vitro conditioned culture model and an in vivo C57BL/6J mouse xenograft model were developed to detect the activation markers of CD8+ T cells and evaluate the efficacy of CDKL1 overexpression combined with radiotherapy (RT) and an anti-PD-L1 antibody in treating lung cancer. RESULTS CDKL1 was downregulated and suppressed the growth and proliferation of lung cancer cells and increased radiosensitivity in vitro and in vivo. Mechanistically, CDKL1 interacted with the transcription factor YBX1 and decreased the binding affinity of YBX1 for the PD-L1 gene promoter, which consequently inhibits the expression of PD-L1, ultimately leading to the activation of CD8+ T cells and the inhibition of immune evasion in lung cancer. Moreover, the combination of CDKL1 overexpression, RT, and anti-PD-L1 antibody therapy exhibited the most potent antitumor efficacy against lung cancer. CONCLUSIONS Our findings demonstrate that CDKL1 plays a crucial role in regulating PD-L1 expression, thereby enhancing the antitumor effects of radioimmunotherapy. These results suggest that CDKL1 may be a promising therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zixuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Huichan Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jinsong Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Hongbo Wang
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Flax RG, Rosston P, Rocha C, Anderson B, Capener JL, Durcan TM, Drewry DH, Prinos P, Axtman AD. Illumination of understudied ciliary kinases. Front Mol Biosci 2024; 11:1352781. [PMID: 38523660 PMCID: PMC10958382 DOI: 10.3389/fmolb.2024.1352781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Cilia are cellular signaling hubs. Given that human kinases are central regulators of signaling, it is not surprising that kinases are key players in cilia biology. In fact, many kinases modulate ciliogenesis, which is the generation of cilia, and distinct ciliary pathways. Several of these kinases are understudied with few publications dedicated to the interrogation of their function. Recent efforts to develop chemical probes for members of the cyclin-dependent kinase like (CDKL), never in mitosis gene A (NIMA) related kinase (NEK), and tau tubulin kinase (TTBK) families either have delivered or are working toward delivery of high-quality chemical tools to characterize the roles that specific kinases play in ciliary processes. A better understanding of ciliary kinases may shed light on whether modulation of these targets will slow or halt disease onset or progression. For example, both understudied human kinases and some that are more well-studied play important ciliary roles in neurons and have been implicated in neurodevelopmental, neurodegenerative, and other neurological diseases. Similarly, subsets of human ciliary kinases are associated with cancer and oncological pathways. Finally, a group of genetic disorders characterized by defects in cilia called ciliopathies have associated gene mutations that impact kinase activity and function. This review highlights both progress related to the understanding of ciliary kinases as well as in chemical inhibitor development for a subset of these kinases. We emphasize known roles of ciliary kinases in diseases of the brain and malignancies and focus on a subset of poorly characterized kinases that regulate ciliary biology.
Collapse
Affiliation(s)
- Raymond G. Flax
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cecilia Rocha
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacob L. Capener
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Power KM, Nguyen KC, Silva A, Singh S, Hall DH, Rongo C, Barr MM. NEKL-4 regulates microtubule stability and mitochondrial health in C. elegans ciliated neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580304. [PMID: 38405845 PMCID: PMC10888866 DOI: 10.1101/2024.02.14.580304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1 mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1 cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PESTΔ) mutant resembled the ccpp-1 mutant with dye filling defects and B-tubule breaks. The nekl-4(PESTΔ) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kaiden M Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Andriele Silva
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States of America
| | - Shaneen Singh
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States of America
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Christopher Rongo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States of America
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| |
Collapse
|
15
|
Lindberg MF, Deau E, Miege F, Greverie M, Roche D, George N, George P, Merlet L, Gavard J, Brugman SJT, Aret E, Tinnemans P, de Gelder R, Sadownik J, Verhofstad E, Sleegers D, Santangelo S, Dairou J, Fernandez-Blanco Á, Dierssen M, Krämer A, Knapp S, Meijer L. Chemical, Biochemical, Cellular, and Physiological Characterization of Leucettinib-21, a Down Syndrome and Alzheimer's Disease Drug Candidate. J Med Chem 2023; 66:15648-15670. [PMID: 38051674 DOI: 10.1021/acs.jmedchem.3c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Leucettinibs are substituted 2-aminoimidazolin-4-ones (inspired by the marine sponge natural product Leucettamine B) developed as pharmacological inhibitors of DYRK1A (dual-specificity, tyrosine phosphorylation-regulated kinase 1A), a therapeutic target for indications such as Down syndrome and Alzheimer's disease. Leucettinib-21 was selected as a drug candidate following extensive structure/activity studies and multiparametric evaluations. We here report its physicochemical properties (X-ray powder diffraction, differential scanning calorimetry, stability, solubility, crystal structure) and drug-like profile. Leucettinib-21's selectivity (analyzed by radiometric, fluorescence, interaction, thermal shift, residence time assays) reveals DYRK1A as the first target but also some "off-targets" which may contribute to the drug's biological effects. Leucettinib-21 was cocrystallized with CLK1 and modeled in the DYRK1A structure. Leucettinib-21 inhibits DYRK1A in cells (demonstrated by direct catalytic activity and phosphorylation levels of Thr286-cyclin D1 or Thr212-Tau). Leucettinib-21 corrects memory disorders in the Down syndrome mouse model Ts65Dn and is now entering safety/tolerance phase 1 clinical trials.
Collapse
Affiliation(s)
- Mattias F Lindberg
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| | - Emmanuel Deau
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1, 60 Avenue Rockefeller, 69008 Lyon, France
| | - Marie Greverie
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1, 60 Avenue Rockefeller, 69008 Lyon, France
| | - Nicolas George
- Oncodesign, 25-27 Avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| | - Laura Merlet
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'Angers, 8 Quai Moncousu, 44007 Nantes Cedex 1, France
- Equipe Labellisée Ligue Contre le Cancer, 75013 Paris, France
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'Angers, 8 Quai Moncousu, 44007 Nantes Cedex 1, France
- Equipe Labellisée Ligue Contre le Cancer, 75013 Paris, France
- Institut de Cancérologie de l'Ouest (ICO), Boulevard Professeur Jacques Monod, 44800 Saint-Herblain, France
| | | | - Edwin Aret
- Symeres, Peelterbaan 2, 6002 NK Weert, The Netherlands
| | - Paul Tinnemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - René de Gelder
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan Sadownik
- Symeres, Peelterbaan 2, 6002 NK Weert, The Netherlands
| | | | | | | | - Julien Dairou
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Álvaro Fernandez-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08036, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08036, Spain
| | - Andreas Krämer
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Strasse 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Strasse 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Laurent Meijer
- Perharidy Research Center, Perha Pharmaceuticals, 29680 Roscoff, Bretagne, France
| |
Collapse
|
16
|
Reed R, Park K, Waddell B, Timbers TA, Li C, Baxi K, Giacomin RM, Leroux MR, Carvalho CE. The Caenorhabditis elegans Shugoshin regulates TAC-1 in cilia. Sci Rep 2023; 13:9410. [PMID: 37296204 PMCID: PMC10256747 DOI: 10.1038/s41598-023-36430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The conserved Shugoshin (SGO) protein family is essential for mediating proper chromosome segregation from yeast to humans but has also been implicated in diverse roles outside of the nucleus. SGO's roles include inhibiting incorrect spindle attachment in the kinetochore, regulating the spindle assembly checkpoint (SAC), and ensuring centriole cohesion in the centrosome, all functions that involve different microtubule scaffolding structures in the cell. In Caenorhabditis elegans, a species with holocentric chromosomes, SGO-1 is not required for cohesin protection or spindle attachment but appears important for licensing meiotic recombination. Here we provide the first functional evidence that in C. elegans, Shugoshin functions in another extranuclear, microtubule-based structure, the primary cilium. We identify the centrosomal and microtubule-regulating transforming acidic coiled-coil protein, TACC/TAC-1, which also localizes to the basal body, as an SGO-1 binding protein. Genetic analyses indicate that TAC-1 activity must be maintained below a threshold at the ciliary base for correct cilia function, and that SGO-1 likely participates in constraining TAC-1 to the basal body by influencing the function of the transition zone 'ciliary gate'. This research expands our understanding of cellular functions of Shugoshin proteins and contributes to the growing examples of overlap between kinetochore, centrosome and cilia proteomes.
Collapse
Affiliation(s)
- R Reed
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - K Park
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - B Waddell
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - T A Timbers
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - C Li
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - K Baxi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - R M Giacomin
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - M R Leroux
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - C E Carvalho
- Department of Biology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
17
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
18
|
Scarinci N, Perez PL, Cantiello HF, Cantero MDR. Polycystin-2 (TRPP2) regulates primary cilium length in LLC-PK1 renal epithelial cells. Front Physiol 2022; 13:995473. [PMID: 36267587 PMCID: PMC9577394 DOI: 10.3389/fphys.2022.995473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polycystin-2 (PC2, TRPP2) is a Ca2+ permeable nonselective cation channel whose dysfunction generates autosomal dominant polycystic kidney disease (ADPKD). PC2 is present in different cell locations, including the primary cilium of renal epithelial cells. However, little is known as to whether PC2 contributes to the primary cilium structure. Here, we explored the effect(s) of external Ca2+, PC2 channel blockers, and PKD2 gene silencing on the length of primary cilia in wild-type LLC-PK1 renal epithelial cells. Confluent cell monolayers were fixed and immuno-labeled with an anti-acetylated α-tubulin antibody to identify primary cilia and measure their length. Although primary cilia length measurements did not follow a Normal distribution, the data were normalized by Box-Cox transformation rendering statistical differences under all experimental conditions. Cells exposed to high external Ca2+ (6.2 mM) decreased a 13.5% (p < 0.001) primary cilia length as compared to controls (1.2 mM Ca2+). In contrast, the PC2 inhibitors amiloride (200 μM) and LiCl (10 mM), both increased primary ciliary length by 33.2% (p < 0.001), and 17.4% (p < 0.001), respectively. PKD2 gene silencing by siRNA elicited a statistically significant, 10.3% (p < 0.001) increase in primary cilia length compared to their respective scrambled RNA transfected cells. The data indicate that conditions that regulate PC2 function or gene expression modify the length of primary cilia in renal epithelial cells. Blocking of PC2 mitigates the effects of elevated external Ca2+ concentration on primary cilia length. Proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.
Collapse
Affiliation(s)
| | | | | | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, IMSaTeD, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (CONICET-UNSE), Santiago del Estero, Argentina
| |
Collapse
|
19
|
Mul W, Mitra A, Peterman EJG. Mechanisms of Regulation in Intraflagellar Transport. Cells 2022; 11:2737. [PMID: 36078145 PMCID: PMC9454703 DOI: 10.3390/cells11172737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Cilia are eukaryotic organelles essential for movement, signaling or sensing. Primary cilia act as antennae to sense a cell's environment and are involved in a wide range of signaling pathways essential for development. Motile cilia drive cell locomotion or liquid flow around the cell. Proper functioning of both types of cilia requires a highly orchestrated bi-directional transport system, intraflagellar transport (IFT), which is driven by motor proteins, kinesin-2 and IFT dynein. In this review, we explore how IFT is regulated in cilia, focusing from three different perspectives on the issue. First, we reflect on how the motor track, the microtubule-based axoneme, affects IFT. Second, we focus on the motor proteins, considering the role motor action, cooperation and motor-train interaction plays in the regulation of IFT. Third, we discuss the role of kinases in the regulation of the motor proteins. Our goal is to provide mechanistic insights in IFT regulation in cilia and to suggest directions of future research.
Collapse
Affiliation(s)
| | | | - Erwin J. G. Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Maurya AK, Sengupta P. The DYF-5 RCK and CDKL-1 CDKL5 kinases contribute differentially to shape distinct sensory neuron cilia morphologies in C. elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000619. [PMID: 35996689 PMCID: PMC9391949 DOI: 10.17912/micropub.biology.000619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022]
Abstract
The conserved CCRK, RCK, and CDKL5 kinases regulate cilia length in diverse organisms. In C. elegans , DYF-18 CCRK regulates DYF-5 RCK to shape both simple and complex cilia morphologies. The CDKL5 ortholog CDKL-1 has also been suggested to act downstream of DYF-18 but independently of DYF-5 to regulate lengths of simple rod-like cilia. Here we show that CDKL-1 is largely dispensable for regulation of complex cilia structures. Using genetic epistasis experiments, we confirm that CDKL-1 and DYF-5 act independently to control cilia architecture. Our results indicate that multiple kinases act via distinct pathways to regulate unique cilia ultrastructures.
Collapse
Affiliation(s)
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA
,
Correspondence to: Piali Sengupta (
)
| |
Collapse
|
21
|
Maurya AK, Sengupta P. xbx-4, a homolog of the Joubert syndrome gene FAM149B1, acts via the CCRK and RCK kinase cascade to regulate cilia morphology. Curr Biol 2021; 31:5642-5649.e5. [PMID: 34731674 DOI: 10.1016/j.cub.2021.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule (MT)-based organelles that mediate sensory functions in multiple cell types. Disruption of cilia structure or function leads to a diverse collection of diseases termed ciliopathies.1-3 The highly conserved CCRK and RCK kinases (ICK/MOK/MAK) negatively regulate cilia length and structure in Chlamydomonas, C. elegans, and mammalian cells.4-10 How the activity of this kinase cascade is tuned to precisely regulate cilia architecture is unclear. Mutations in the Domain of Unknown Function 3719 (DUF3719)-containing protein FAM149B1 have recently been shown to elongate cilia via unknown mechanisms and result in the ciliopathy Joubert syndrome.11 Here we identify XBX-4, a DUF3719-containing protein related to human FAM149B1, as a regulator of the DYF-18 CCRK and DYF-5 MAK kinase pathway in C. elegans. As in dyf-18 and dyf-5 mutants,10 sensory neuron cilia are elongated in xbx-4 mutants and exhibit stabilized axonemal MTs. XBX-4 promotes DYF-18 CCRK function to regulate localization and function of DYF-5 MAK. We find that Joubert syndrome-associated mutations in the XBX-4 DUF3719 domain also elongate cilia in C. elegans. Our results identify a new metazoan-specific regulator of this highly conserved kinase pathway and suggest that FAM149B1 may similarly act via the CCRK/RCK kinase pathway to regulate ciliary homeostasis in humans.
Collapse
Affiliation(s)
- Ashish K Maurya
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Piali Sengupta
- Department of Biology, MS008, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|