1
|
Lee SYJ, Dallmann CJ, Cook A, Tuthill JC, Agrawal S. Divergent neural circuits for proprioceptive and exteroceptive sensing of the Drosophila leg. Nat Commun 2025; 16:4105. [PMID: 40316553 PMCID: PMC12048489 DOI: 10.1038/s41467-025-59302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Somatosensory neurons provide the nervous system with information about mechanical forces originating inside and outside the body. Here, we use connectomics from electron microscopy to reconstruct and analyze neural circuits downstream of the largest somatosensory organ in the Drosophila leg, the femoral chordotonal organ (FeCO). The FeCO has been proposed to support both proprioceptive sensing of the fly's femur-tibia joint and exteroceptive sensing of substrate vibrations, but it was unknown which sensory neurons and central circuits contribute to each of these functions. We found that different subtypes of FeCO sensory neurons feed into distinct proprioceptive and exteroceptive pathways. Position- and movement-encoding FeCO neurons connect to local leg motor control circuits in the ventral nerve cord (VNC), indicating a proprioceptive function. In contrast, signals from the vibration-encoding FeCO neurons are integrated across legs and transmitted to mechanosensory regions in the brain, indicating an exteroceptive function. Overall, our analyses reveal the structure of specialized circuits for processing proprioceptive and exteroceptive signals from the fly leg. These findings are consistent with a growing body of work in invertebrate and vertebrate species demonstrating the existence of specialized limb mechanosensory pathways for sensing external vibrations.
Collapse
Affiliation(s)
- Su-Yee J Lee
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J Dallmann
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
- Neurobiology and Genetics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Andrew Cook
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - John C Tuthill
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - Sweta Agrawal
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Mou Y, Zhang Y, Zheng Y, He G, Xu Z, Xiao X, Ping Y. Intermittent Vibration Induces Sleep via an Allatostatin A-GABA Signaling Pathway and Provides Broad Benefits in Alzheimer's Disease Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411768. [PMID: 39656885 PMCID: PMC11791986 DOI: 10.1002/advs.202411768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Indexed: 12/17/2024]
Abstract
While animals across species typically experience suppressed consciousness and an increased arousal threshold during sleep, the responsiveness to specific sensory inputs persists. Previous studies have demonstrated that rhythmic and continuous vibration can enhance sleep in both animals and humans. However, the neural circuits underlying vibration-induced sleep (VIS) and its potential therapeutic benefits on neuropathological processes in disease models remain unclear. Here, it is shown that intermittent vibration, such as cycles of 30 s on followed by 30 s off, is more effective in inducing sleep compared to continuous vibration. A clear evidence is further provided that allatostatin A (AstA)-GABA signaling mediates short-term intermittent vibration-induced sleep (iVIS) by inhibiting octopaminergic arousal neurons through activating GABAA receptors. The existence of iVIS in mice is corroborated, implicating the GABAergic system in this process. Finally, intermittent vibration not only enhances sleep but also reduces amyloid-β (Aβ) deposition and reverses memory defects in Alzheimer's disease models. In conclusion, the study defines a central neural circuit involved in mediating short-term iVIS and the potential implications of vibration in treating sleep-related brain disorders.
Collapse
Affiliation(s)
- Yang Mou
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Yan Zhang
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Yuxian Zheng
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Guang He
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Zhi‐Xiang Xu
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghai200032China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceMinistry of EducationBehavioural and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain‐Inspired IntelligenceMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| | - Yong Ping
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
3
|
Virdi S, Sane SP. Structure of the Femoral Chordotonal Organ in the Oleander Hawkmoth, Daphnis nerii. J Comp Neurol 2025; 533:e70022. [PMID: 39935029 DOI: 10.1002/cne.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 02/13/2025]
Abstract
Insect legs serve as crucial organs for locomotion and also act as sensory probes into the environment. They are involved in several complex movements including walking, jumping, prey capture, manipulation of objects, and self-grooming. These behaviors require continuous modulation of motor output through mechanosensory feedback, which is provided by numerous mechanosensors located on the cuticle and within the soft tissue. A key mechanosensory organ in the insect leg, the femoral chordotonal organ (FeCO), detects movements of the femoro-tibial joint. This organ is multifunctional and senses both self-generated movements (proprioception) and external stimuli (exteroception). Movements of the tibia alter the length of FeCO, which activates the embedded mechanosensory neurons. Due to the mechanical nature of these stimuli, the structure and material properties of the FeCO are crucial for their function, alongside the encoding properties of FeCO neurons. Here, as a first step toward understanding how its structure modulates its function, we characterized the morphology and anatomy of FeCO in the hawkmoth Daphnis nerii. Using a combination of computed micro-tomography, neuronal dye fills, and confocal microscopy, we describe the structure of FeCO and the location, composition, and central projections of FeCO neurons. FeCO is located in the proximal half of the femur and is composed of the ventral (vFeCO) and dorsal scoloparia (dFeCO), which vary vastly in their sizes and in the number of neurons they house. Moreover, the characteristic accessory structures of chordotonal organs, the scolopales, significantly differ in their sizes when compared between the two scoloparia. FeCO neurons project to the central nervous system and terminate in the respective hemiganglia. Using these morphological data, we propose a mechanical model of FeCO, which can help us understand several FeCO properties relating to its physiological function.
Collapse
Affiliation(s)
- Simran Virdi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
4
|
Lee SYJ, Dallmann CJ, Cook A, Tuthill JC, Agrawal S. Divergent neural circuits for proprioceptive and exteroceptive sensing of the Drosophila leg. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590808. [PMID: 38712128 PMCID: PMC11071415 DOI: 10.1101/2024.04.23.590808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Somatosensory neurons provide the nervous system with information about mechanical forces originating inside and outside the body. Here, we use connectomics from electron microscopy to reconstruct and analyze neural circuits downstream of the largest somatosensory organ in the Drosophila leg, the femoral chordotonal organ (FeCO). The FeCO has been proposed to support both proprioceptive sensing of the fly's femur-tibia joint and exteroceptive sensing of substrate vibrations, but it was unknown which sensory neurons and central circuits contribute to each of these functions. We found that different subtypes of FeCO sensory neurons feed into distinct proprioceptive and exteroceptive pathways. Position- and movement-encoding FeCO neurons connect to local leg motor control circuits in the ventral nerve cord (VNC), indicating a proprioceptive function. In contrast, signals from the vibration-encoding FeCO neurons are integrated across legs and transmitted to mechanosensory regions in the brain, indicating an exteroceptive function. Overall, our analyses reveal the structure of specialized circuits for processing proprioceptive and exteroceptive signals from the fly leg. These findings are consistent with a growing body of work in invertebrate and vertebrate species demonstrating the existence of specialized limb mechanosensory pathways for sensing external vibrations.
Collapse
Affiliation(s)
- Su-Yee J. Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J. Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Department of Neurobiology and Genetics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - John C. Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
Bontonou G, Saint-Leandre B, Kafle T, Baticle T, Hassan A, Sánchez-Alcañiz JA, Arguello JR. Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids. Nat Commun 2024; 15:1047. [PMID: 38316749 PMCID: PMC10844241 DOI: 10.1038/s41467-023-44558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Chemosensory tissues exhibit significant between-species variability, yet the evolution of gene expression and cell types underlying this diversity remain poorly understood. To address these questions, we conducted transcriptomic analyses of five chemosensory tissues from six Drosophila species and integrated the findings with single-cell datasets. While stabilizing selection predominantly shapes chemosensory transcriptomes, thousands of genes in each tissue have evolved expression differences. Genes that have changed expression in one tissue have often changed in multiple other tissues but at different past epochs and are more likely to be cell type-specific than unchanged genes. Notably, chemosensory-related genes have undergone widespread expression changes, with numerous species-specific gains/losses including novel chemoreceptors expression patterns. Sex differences are also pervasive, including a D. melanogaster-specific excess of male-biased expression in sensory and muscle cells in its forelegs. Together, our analyses provide new insights for understanding evolutionary changes in chemosensory tissues at both global and individual gene levels.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bastien Saint-Leandre
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Tane Kafle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tess Baticle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Afrah Hassan
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - J Roman Arguello
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
6
|
Strauß J, Stritih-Peljhan N, Nishino H. Vibration receptor organs in the insect leg: neuroanatomical diversity and functional principles. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101153. [PMID: 38128778 DOI: 10.1016/j.cois.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Detecting substrate vibrations is essential for insects in different behavioural contexts. These vibrational behaviours are mediated by mechanoreceptor organs detecting and processing vibrational stimuli transmitted in the environment. We discuss recently gained insights about the functional principles of insect vibration receptors, mainly leg chordotonal organs highly sensitive to vibrational stimuli, and the mechanisms of their diversification in neuroanatomy and functional morphology, in relation to the attachment structures and mechanical coupling. The two main input pathways for vibration stimuli transferred by the insect legs to vibrosensory organs via the cuticle and via the hemolymph are fundamental for explaining sensory specialisations. The vibroreceptor organs can diversify in their neuroanatomy and morphology in several key aspects. This provides the structural basis for complex adaptations in sensory evolution.
Collapse
Affiliation(s)
- Johannes Strauß
- Institute for Animal Physiology, AG Integrative Sensory Physiology, Justus Liebig University Gießen, Gießen, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Gießen, Germany.
| | - Nataša Stritih-Peljhan
- National Institute of Biology, Department of Organisms and Ecosystems Research, Ljubljana, Slovenia
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Mamiya A, Sustar A, Siwanowicz I, Qi Y, Lu TC, Gurung P, Chen C, Phelps JS, Kuan AT, Pacureanu A, Lee WCA, Li H, Mhatre N, Tuthill JC. Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron 2023; 111:3230-3243.e14. [PMID: 37562405 PMCID: PMC10644877 DOI: 10.1016/j.neuron.2023.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/28/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.
Collapse
Affiliation(s)
- Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natasha Mhatre
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Dallmann CJ, Dickerson BH, Simpson JH, Wyart C, Jayaram K. Mechanosensory Control of Locomotion in Animals and Robots: Moving Forward. Integr Comp Biol 2023; 63:450-463. [PMID: 37279901 PMCID: PMC10445419 DOI: 10.1093/icb/icad057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
While animals swim, crawl, walk, and fly with apparent ease, building robots capable of robust locomotion remains a significant challenge. In this review, we draw attention to mechanosensation-the sensing of mechanical forces generated within and outside the body-as a key sense that enables robust locomotion in animals. We discuss differences between mechanosensation in animals and current robots with respect to (1) the encoding properties and distribution of mechanosensors and (2) the integration and regulation of mechanosensory feedback. We argue that robotics would benefit greatly from a detailed understanding of these aspects in animals. To that end, we highlight promising experimental and engineering approaches to study mechanosensation, emphasizing the mutual benefits for biologists and engineers that emerge from moving forward together.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Paris 75005, France
| | - Kaushik Jayaram
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
9
|
Hopkins BR, Barmina O, Kopp A. A single-cell atlas of the sexually dimorphic Drosophila foreleg and its sensory organs during development. PLoS Biol 2023; 21:e3002148. [PMID: 37379332 DOI: 10.1371/journal.pbio.3002148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
To respond to the world around them, animals rely on the input of a network of sensory organs distributed throughout the body. Distinct classes of sensory organs are specialized for the detection of specific stimuli such as strain, pressure, or taste. The features that underlie this specialization relate both to the neurons that innervate sensory organs and the accessory cells they comprise. To understand the genetic basis of this diversity of cell types, both within and between sensory organs, we performed single-cell RNA sequencing on the first tarsal segment of the male Drosophila melanogaster foreleg during pupal development. This tissue displays a wide variety of functionally and structurally distinct sensory organs, including campaniform sensilla, mechanosensory bristles, and chemosensory taste bristles, as well as the sex comb, a recently evolved male-specific structure. In this study, we characterize the cellular landscape in which the sensory organs reside, identify a novel cell type that contributes to the construction of the neural lamella, and resolve the transcriptomic differences among support cells within and between sensory organs. We identify the genes that distinguish between mechanosensory and chemosensory neurons, resolve a combinatorial transcription factor code that defines 4 distinct classes of gustatory neurons and several types of mechanosensory neurons, and match the expression of sensory receptor genes to specific neuron classes. Collectively, our work identifies core genetic features of a variety of sensory organs and provides a rich, annotated resource for studying their development and function.
Collapse
Affiliation(s)
- Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
10
|
Virant-Doberlet M, Stritih-Peljhan N, Žunič-Kosi A, Polajnar J. Functional Diversity of Vibrational Signaling Systems in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:191-210. [PMID: 36198397 DOI: 10.1146/annurev-ento-120220-095459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Communication by substrate-borne mechanical waves is widespread in insects. The specifics of vibrational communication are related to heterogeneous natural substrates that strongly influence signal transmission. Insects generate vibrational signals primarily by tremulation, drumming, stridulation, and tymbalation, most commonly during sexual behavior but also in agonistic, social, and mutualistic as well as defense interactions and as part of foraging strategies. Vibrational signals are often part of multimodal communication. Sensilla and organs detecting substrate vibration show great diversity and primarily occur in insect legs to optimize sensitivity and directionality. In the natural environment, signals from heterospecifics, as well as social and enemy interactions within vibrational communication networks, influence signaling and behavioral strategies. The exploitation of substrate-borne vibrational signaling offers a promising application for behavioral manipulation in pest control.
Collapse
Affiliation(s)
- Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Nataša Stritih-Peljhan
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Alenka Žunič-Kosi
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| |
Collapse
|
11
|
Acoustic characteristics of sound produced by males of Bactrocera oleae change in the presence of conspecifics. Sci Rep 2022; 12:13086. [PMID: 35906260 PMCID: PMC9338093 DOI: 10.1038/s41598-022-16888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Males of the olive fruit fly Bactrocera oleae vibrate and stridulate their wings at dusk producing sounds different from flight sounds with no confirmed behavior role. We recorded and performed a temporal-spectral analysis of this sound. Sound produced by male wing vibration/stridulation consists of intermittent pulses of highly variable duration and of fundamental frequency of around 350 Hz. Flight sound has a much lower fundamental frequency of approximately 180 Hz. Males begin to display wing vibration and sound production at the beginning of their sexual maturity at the 5th day of their age. This behavior is more pronounced in the presence of another conspecific male and observed less in male–female pairs or in solitary males. Broadcasts of the recorded sound did not attract flies of either sex. The highest fundamental frequency was found in association with wing vibrations emitted by male–male pairs, followed by those emitted by male–female pairs and then solitary males, which showed the lowest frequency values. The mean pulse duration and interpulse interval were shorter in male–male pairs than in male–female pairs. We assume that the male wing vibration and the produced signal, apart from its possible role in the courtship of the females, could also be associated with male–male interactions for territorial and rival activities, for which further experiments are required.
Collapse
|
12
|
Ehlers S, Baum D, Mühlethaler R, Hoch H, Bräunig P. Large abdominal mechanoreceptive sense organs in small plant-dwelling insects. Biol Lett 2022; 18:20220078. [PMID: 35414220 PMCID: PMC9006004 DOI: 10.1098/rsbl.2022.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Hemiptera, with approximately 98 000 species, is one of the largest insect orders. Most species feed by sucking sap from plant tissues and are thus often vectors for economically important phytopathogens. Well known within this group are the large cicadas (Cicadomorpha: Cicadoidea: Cicadidae) because they produce extremely loud airborne sounds. Less well known are their mostly tiny relatives, the leafhoppers, spittlebugs, treehoppers and planthoppers that communicate by silent vibrational signals. While the generation of these signals has been extensively investigated, the mechanisms of their perception are poorly understood. This study provides a complete description and three-dimensional reconstruction of a large and complex array of mechanoreceptors in the first abdominal segments of the Rhododendron leafhopper Graphocephala fennahi (Cicadomorpha: Membracoidea: Cicadellidae). Further, we identify homologous organs in the spittlebug Philaenus spumarius (Cicadomorpha: Cercopoidea: Aphrophoridae) and the planthopper Issus coleoptratus (Fulgoromorpha: Fulgoroidea: Issidae). Such large abdominal sensory arrays have not been found in any other insect orders studied so far. This indicates that these sense organs, together with the signal-producing tymbal organ, constitute a synapomorphy of the Tymbalia (Hemiptera excl. Sternorrhyncha). Our results contribute to the understanding of the evolution from substrate-borne to airborne communication in insects.
Collapse
Affiliation(s)
- Sarah Ehlers
- Centre for Integrative Biodiversity Discovery (CIBD), Museum of Natural History Berlin (MfN), Invalidenstraße 43, 10115 Berlin, Germany
| | - Daniel Baum
- Visual and Data-Centric Computing, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
| | | | - Hannelore Hoch
- Centre for Integrative Biodiversity Discovery (CIBD), Museum of Natural History Berlin, Invalidenstraße 43, 10115 Berlin, Germany
| | - Peter Bräunig
- Biology Department II (Zoology), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| |
Collapse
|
13
|
Chen C, Agrawal S, Mark B, Mamiya A, Sustar A, Phelps JS, Lee WCA, Dickson BJ, Card GM, Tuthill JC. Functional architecture of neural circuits for leg proprioception in Drosophila. Curr Biol 2021; 31:5163-5175.e7. [PMID: 34637749 PMCID: PMC8665017 DOI: 10.1016/j.cub.2021.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
To effectively control their bodies, animals rely on feedback from proprioceptive mechanosensory neurons. In the Drosophila leg, different proprioceptor subtypes monitor joint position, movement direction, and vibration. Here, we investigate how these diverse sensory signals are integrated by central proprioceptive circuits. We find that signals for leg joint position and directional movement converge in second-order neurons, revealing pathways for local feedback control of leg posture. Distinct populations of second-order neurons integrate tibia vibration signals across pairs of legs, suggesting a role in detecting external substrate vibration. In each pathway, the flow of sensory information is dynamically gated and sculpted by inhibition. Overall, our results reveal parallel pathways for processing of internal and external mechanosensory signals, which we propose mediate feedback control of leg movement and vibration sensing, respectively. The existence of a functional connectivity map also provides a resource for interpreting connectomic reconstruction of neural circuits for leg proprioception. To understand how diverse proprioceptive signals from the Drosophila leg are integrated by downstream circuits, Chen et al. use optogenetics and calcium imaging to map functional connectivity between sensory and central neurons. This work identifies parallel neural pathways for processing leg vibration vs. joint position and movement.
Collapse
Affiliation(s)
- Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA
| | - Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, 1705 N.E. Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Hill PSM, Wessel A. Biotremology: Have a look and find something wonderful! Curr Biol 2021; 31:R1053-R1055. [PMID: 34520718 DOI: 10.1016/j.cub.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new study has provided a major advance in understanding courtship communication in Drosophila, arguably the world's best known model organism, by experimentally defining the complete pathway, step by step, from a male's vibrational courtship signal to perception in the female's brain.
Collapse
Affiliation(s)
- Peggy S M Hill
- Department of Biological Science, University of Tulsa, 800 Tucker Drive, Tulsa, OK 74104, USA.
| | - Andreas Wessel
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde Berlin, Invalidenstr. 43, 10115 Berlin, Germany.
| |
Collapse
|