1
|
Schmitt SE, das Neves GB, Withoeft JA, Costa LS, Biezus G, Pagani RS, Miletti LC, Costa UM, Casagrande RA. PARROT BORNAVIRUSES IN PSITTACINES KEPT IN CAPTIVITY IN THE STATE OF SANTA CATARINA, BRAZIL. J Zoo Wildl Med 2024; 55:341-354. [PMID: 38875191 DOI: 10.1638/2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 06/16/2024] Open
Abstract
Parrot bornaviruses are responsible for proventricular dilatation disease (PDD) in psittacines. This study aimed to determine the occurrence and factors associated with Parrot bornaviruses infection in psittacines kept in captivity in a state in the southern region of Brazil. A cross-sectional study was carried out with 192 birds from two facilities (A and B) in 2019, using choanal, esophageal, and cloacal swabs and feathers, totaling 768 samples subjected to reverse-transcription polymerase chain reaction (RT-PCR), for the matrix (M) protein gene with a final product of 350 base pairs (bp). Genetic sequencing of three positive samples was performed by the Sanger method. In the study, the overall virus occurrence was 35.9% (69/192), with 40.4% (42/104) in Facility A and 30.7% (27/88) in Facility B. Sequencing analysis of the samples revealed the presence of Parrot bornavirus 2 (PaBV-2) in both facilities. Swab samples from the choanal (40/69), esophageal (30/69), cloacal (35/69), and feather (15/69) tested positive, facilitating the molecular diagnosis of Parrot bornaviruses. The results indicated that there is no single ideal sample type for antemortem molecular diagnosis of this virus. Simultaneously testing all four samples at the same time point yielded more diagnoses than testing any single sample among the four. Most of the 29 sampled psittacine species were native, and 46.9% of the birds (90/192) consisted of endangered species. Among the psittacines that tested positive, 88.4% (61/69) were clinically healthy, and 8.7% (6/69) exhibited clinical or behavioral signs, including behavioral changes, alterations in feathering, and changes in body score at the time of collection. This study showcases the application of minimally invasive sampling for diagnosing Parrot bornaviruses, enabling sample collection when the birds are restrained for clinical evaluation. This approach facilitates a prompt and effective antemortem diagnosis, thereby serving as an efficient screening method for parrots kept in captivity.
Collapse
Affiliation(s)
- Sara E Schmitt
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Avenida Luís de Camões, Santa Catarina 88520-000, Brazil
| | - Gabriela B das Neves
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Avenida Luís de Camões, Santa Catarina 88520-000, Brazil
| | - Jéssica A Withoeft
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Avenida Luís de Camões, Santa Catarina 88520-000, Brazil
| | - Leonardo S Costa
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Avenida Luís de Camões, Santa Catarina 88520-000, Brazil
| | - Giovana Biezus
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Avenida Luís de Camões, Santa Catarina 88520-000, Brazil
| | - Rafael S Pagani
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Avenida Luís de Camões, Santa Catarina 88520-000, Brazil
| | - Luiz C Miletti
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Avenida Luís de Camões, Santa Catarina 88520-000, Brazil
| | - Ubirajara M Costa
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Avenida Luís de Camões, Santa Catarina 88520-000, Brazil
| | - Renata A Casagrande
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina (UDESC), Avenida Luís de Camões, Santa Catarina 88520-000, Brazil,
| |
Collapse
|
2
|
Szotowska I, Ledwoń A. Antiviral Chemotherapy in Avian Medicine-A Review. Viruses 2024; 16:593. [PMID: 38675934 PMCID: PMC11054683 DOI: 10.3390/v16040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This review article describes the current knowledge about the use of antiviral chemotherapeutics in avian species, such as farm poultry and companion birds. Specific therapeutics are described in alphabetical order including classic antiviral drugs, such as acyclovir, abacavir, adefovir, amantadine, didanosine, entecavir, ganciclovir, interferon, lamivudine, penciclovir, famciclovir, oseltamivir, ribavirin, and zidovudine, repurposed drugs, such as ivermectin and nitazoxanide, which were originally used as antiparasitic drugs, and some others substances showing antiviral activity, such as ampligen, azo derivates, docosanol, fluoroarabinosylpyrimidine nucleosides, and novel peptides. Most of them have only been used for research purposes and are not widely used in clinical practice because of a lack of essential pharmacokinetic and safety data. Suggested future research directions are also highlighted.
Collapse
Affiliation(s)
- Ines Szotowska
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | | |
Collapse
|
3
|
HONG SS, KIM S, SEO MK, HAN MN, KIM J, LEE SM, NA KJ. Genetic trends in parrot Bornavirus: a clinical analysis. J Vet Med Sci 2024; 86:239-246. [PMID: 38171882 PMCID: PMC10898989 DOI: 10.1292/jvms.23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Parrot Bornavirus (PaBV) has been reported to cause indigestion and other wasting symptoms such as weight loss and lethargy. The pathogenesis of PaBV has yet to be fully elucidated. This study reports PaBV infections in South Korea and suggests a trend in the genetic information gathered from clinical cases. A total of 487 birds with or without clinical symptoms were tested for bornavirus. Twelve of 361 asymptomatic birds tested positive for bornavirus, while 15 of 126 birds with various symptoms tested positive. A segment of approximately 1,540 bps including the N, X, P and M proteins were obtained from 23 of the positive strains and analyzed with other strains found on GenBank that had clinical information. PaBV was type 2 and 4 in South Korea, and certain amino acid sequences showed a difference between symptom presenting animals and asymptomatic animals in the X protein and P protein. When considering that some asymptomatic cases may have been latent infections at the time of examination, it is plausible these trends may grow stronger with time. Majority of PaBV was type 4 in South Korea. If these trends are confirmed, diagnosis of potentially pathogenic PaBVs in a clinical manner will be possible during the early stages of infection.
Collapse
Affiliation(s)
- Sunghyun S HONG
- College of Veterinary Medicine, Chungbuk National
University, Cheongju, South Korea
- Cheongju Zoo, Cheongju, South Korea
| | - Sungryong KIM
- College of Veterinary Medicine, Chungbuk National
University, Cheongju, South Korea
| | | | - Mi-Na HAN
- Institute of Chungbuk Provincial Veterinary Service and
Research, Cheongju, South Korea
| | | | - Sang-Myeong LEE
- College of Veterinary Medicine, Chungbuk National
University, Cheongju, South Korea
| | - Ki-Jeong NA
- College of Veterinary Medicine, Chungbuk National
University, Cheongju, South Korea
| |
Collapse
|
4
|
Ellis JS, Ritchie BW, McHale B, Rao S, Sadar MJ. Surveillance for Avian Bornavirus in Colorado and Wyoming, USA, Raptor Populations. J Wildl Dis 2024; 60:164-167. [PMID: 37924236 DOI: 10.7589/jwd-d-22-00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/18/2023] [Indexed: 11/06/2023]
Abstract
Avian bornavirus (ABV) is known to infect at least 80 avian species and is associated with avian bornaviral ganglioneuritis (ABG). Avian bornaviral ganglioneuritis is characterized by a lymphoplasmacytic infiltration of the nervous tissue, mainly affecting the nerves that supply the gastrointestinal tract of birds. This disease is diagnosed commonly in psittacines under human care and has been demonstrated in wild bird species; however, its occurrence in raptors is largely unknown. Because of the commonality of ABV in the pet bird population, there is concern about the spread of this virus to other companion avian species, such as falconry birds, as well as wildlife. This prospective study used reverse-transcription quantitative PCR (RT-qPCR) to survey free-ranging Colorado and Wyoming, US, raptor populations for ABV. Quantitative PCR was performed on mixed conjunctival-choanal-cloacal swabs collected from live birds (n=139). In dead birds, a combination of mixed swabs (n=265) and tissue samples of the brain (n=258), heart (n=162), adrenal glands (n=162), liver (n=162), kidney (n=139), spinal cord (n=139), and brachial plexus (n=139) were evaluated. All 1,565 swab and tissue samples RT-qPCR results from the 404 birds evaluated were negative. Based on these results and a lack of clinical signs suggestive of ABG, ABV is likely not a prevalent pathogen in Colorado and Wyoming raptor populations at this time.
Collapse
Affiliation(s)
- Jayne S Ellis
- James L. Voss Veterinary Teaching Hospital, Colorado State University, College of Veterinary Medicine and Biomedical Sciences, 300 West Drake Road, Fort Collins, Colorado 80523, USA
- Current address: Anatomic Pathology Service, Veterinary Medical Teaching Hospital, University of California Davis, 1 Garrod Dr, Davis, California 95616, USA
| | - Branson W Ritchie
- Infectious Diseases Laboratory, University of Georgia, 110 Riverbend Rd, Athens, Georgia 30602, USA
| | - Brittany McHale
- Infectious Diseases Laboratory, University of Georgia, 110 Riverbend Rd, Athens, Georgia 30602, USA
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, College of Veterinary Medicine and Biomedical Sciences, 300 West Drake Road, Fort Collins, Colorado 80523, USA
| | - Miranda J Sadar
- Department of Clinical Sciences, Colorado State University, College of Veterinary Medicine and Biomedical Sciences, 300 West Drake Road, Fort Collins, Colorado 80523, USA
| |
Collapse
|
5
|
Chacón RD, Sánchez-Llatas CJ, Diaz Forero AJ, Guimarães MB, Pajuelo SL, Astolfi-Ferreira CS, Ferreira AJP. Evolutionary Analysis of a Parrot Bornavirus 2 Detected in a Sulphur-Crested Cockatoo ( Cacatua galerita) Suggests a South American Ancestor. Animals (Basel) 2023; 14:47. [PMID: 38200778 PMCID: PMC10778322 DOI: 10.3390/ani14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Parrot bornavirus (PaBV) is an RNA virus that causes Proventricular Dilatation Disease (PDD), neurological disorders, and death in Psittaciformes. Its diversity in South America is poorly known. We examined a Cacatua galerita presenting neuropathies, PDD, and oculopathies as the main signs. We detected PaBV through reverse transcription polymerase chain reaction (RT-PCR) and partial sequencing of the nucleoprotein (N) and matrix (M) genes. Maximum likelihood and Bayesian phylogenetic inferences classified it as PaBV-2. The nucleotide identity of the sequenced strain ranged from 88.3% to 90.3% against genotype PaBV-2 and from 80.2% to 84.4% against other genotypes. Selective pressure analysis detected signs of episodic diversifying selection in both the N and M genes. No recombination events were detected. Phylodynamic analysis estimated the time to the most recent common ancestor (TMRCA) as the year 1758 for genotype PaBV-2 and the year 1049 for the Orthobornavirus alphapsittaciforme species. Substitution rates were estimated at 2.73 × 10-4 and 4.08 × 10-4 substitutions per year per site for N and M, respectively. The analysis of population dynamics showed a progressive decline in the effective population size during the last century. Timescale phylogeographic analysis revealed a potential South American ancestor as the origin of genotypes 1, 2, and 8. These results contribute to our knowledge of the evolutionary origin, diversity, and dynamics of PaBVs in South America and the world. Additionally, it highlights the importance of further studies in captive Psittaciformes and the potential impact on endangered wild birds.
Collapse
Affiliation(s)
- Ruy D. Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Andrea J. Diaz Forero
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| | - Marta B. Guimarães
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| | - Sarah L. Pajuelo
- Faculty of Biological Sciences, National University of Trujillo, Trujillo 13001, La Libertad, Peru;
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| | - Antonio J. Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (A.J.D.F.); (M.B.G.); (C.S.A.-F.)
| |
Collapse
|
6
|
Zhang LN, Huang YH, Liu H, Li LX, Bai X, Yang GD. Molecular detection of bornavirus in parrots imported to China in 2022. BMC Vet Res 2023; 19:259. [PMID: 38057808 DOI: 10.1186/s12917-023-03825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Avian bornavirus (ABV) is a neurotropic virus, it has been established as the primary causative agent of proventricular dilatation disease (PDD). However, substantial international trade and transnational trafficking of wild birds occur, potentially enabling these birds to harbor and transmit pathogens to domestic poultry, adversely affecting their well-being. Real-time RT-PCR was employed to detect the presence of PaBV-4 in parrots imported to China in 2022. RESULTS In 2022, a total of 47 cloacal swabs from 9 distinct species of parrots were collected at the Wildlife Rescue Monitoring Center in Guangdong, China. The purpose of this collection was to detect the presence of PaBV-4. Using real-time PCR techniques, it was determined that the positive rate of PaBV-4 was 2.12% (1 out of 47) in parrots. The PaBV-4 virus was detected in a Amazona aestiva that had been adopted for one month. Conversely, all other species tested negative for the virus. Subsequently, the whole genome of the PaBV-4 GD2207 strains was sequenced, and the homology and genetic evolution between these strains and previously published PaBV-4 strains on GenBank were analyzed using DNAStar and MEGA7.0 software. The findings revealed that the full-length genome of PaBV-4 consisted of 8915 nucleotides and encoded six proteins. Additionally, it exhibited the highest nucleotide similarity (99.9%) to the GZ2019 strain, which causes death and severe clinical symptoms in Aratinga solstitialis. Furthermore, when compared to other strains of PaBV-4, the GD2207 strain demonstrated the highest amino acid homology with GZ2019. The phylogenetic analysis demonstrated that the GD2207 strain clustered with various strains found in Japanese, American, and German parrots, indicating a close genetic relationship with PaBV-4, but it revealed a distant relationship with PaBV-5 Cockg5 from America. Notably, the GD2207 was closely associated with the GZ2019 strain from Aratinga solstitialis in China. CONCLUSION This study presents the preliminary identification of PaBV-4 in Amazona aestiva parrots, emphasizing its importance as the predominant viral genotype linked to parrot infections resulting from trade into China. Through genetic evolution analysis, it was determined that the GD2207 strain of PaBV-4 exhibits the closest genetic relationship with GZ 2019 (Aratinga solstitialis, China), M14 (Ara macao, USA), AG5 (Psittacus erithacus, USA) and 6758 (Ara ararauna, Germany) suggesting a shared ancestry.
Collapse
Affiliation(s)
- Li-Na Zhang
- Eco-Engineering Department, Guangdong, Eco-Engineering Polytechnic, Guangzhou, Guangdong Province, China
| | - Yu-Han Huang
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Hao Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Li-Xia Li
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Xue Bai
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Guang-Da Yang
- Guangdong Wildlife Rescue Monitoring Center, Guangdong Academy of Forestry, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Iverson M, Leacy A, Pham PH, Che S, Brouwer E, Nagy E, Lillie BN, Susta L. Experimental infection of aquatic bird bornavirus in Muscovy ducks. Sci Rep 2022; 12:16398. [PMID: 36180525 PMCID: PMC9525603 DOI: 10.1038/s41598-022-20418-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Aquatic bird bornavirus (ABBV-1), an avian bornavirus, has been reported in wild waterfowl from North America and Europe that presented with neurological signs and inflammation of the central and peripheral nervous systems. The potential of ABBV-1to infect and cause lesions in commercial waterfowl species is unknown. The aim of this study was to determine the ability of ABBV-1 to infect and cause disease in day-old Muscovy ducks (n = 174), selected as a representative domestic waterfowl. Ducklings became infected with ABBV-1 through both intracranial and intramuscular, but not oral, infection routes. Upon intramuscular infection, the virus spread centripetally to the central nervous system (brain and spinal cord), while intracranial infection led to virus spread to the spinal cord, kidneys, proventriculus, and gonads (centrifugal spread). Infected birds developed both encephalitis and myelitis by 4 weeks post infection (wpi), which progressively subsided by 8 and 12 wpi. Despite development of microscopic lesions, clinical signs were not observed. Only five birds had choanal and/or cloacal swabs positive for ABBV-1, suggesting a low potential of Muscovy ducks to shed the virus. This is the first study to document the pathogenesis of ABBV-1 in poultry species, and confirms the ability of ABBV-1 to infect commercial waterfowl.
Collapse
Affiliation(s)
| | | | - Phuc H Pham
- Pathobiology, University of Guelph, Guelph, N1G2W1, Canada
| | - Sunoh Che
- Pathobiology, University of Guelph, Guelph, N1G2W1, Canada
| | - Emily Brouwer
- Animal Health Laboratory, University of Guelph, Guelph, N1G2W1, Canada
| | - Eva Nagy
- Pathobiology, University of Guelph, Guelph, N1G2W1, Canada
| | | | - Leonardo Susta
- Pathobiology, University of Guelph, Guelph, N1G2W1, Canada.
| |
Collapse
|
8
|
Rubbenstroth D. Avian Bornavirus Research—A Comprehensive Review. Viruses 2022; 14:v14071513. [PMID: 35891493 PMCID: PMC9321243 DOI: 10.3390/v14071513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
9
|
Leal de Araújo J, Rech RR. Seeing beyond a Dilated Proventriculus: Diagnostic Tools for Proventricular Dilatation Disease in Psittacine Birds. Animals (Basel) 2021; 11:ani11123558. [PMID: 34944332 PMCID: PMC8697990 DOI: 10.3390/ani11123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Proventricular dilatation disease (PDD) is a life-threatening neurological disease caused by parrot bornaviruses (PaBVs) that affects several species worldwide. PDD can be clinically manifested as either a central nervous system condition or a gastrointestinal condition if the nerves and ganglia of the gastrointestinal tract are compromised. We intend to provide a concise review for veterinary clinicians and diagnosticians with focus on the main tools available for PDD diagnosis, including gross and histopathology, immunohistochemistry, molecular techniques and serology. We suggest that a combination of different strategies can increase the success of diagnostic outcomes, as tools such as reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) can be implemented for identification of bornaviral infections in live patients, and gross pathology, histopathology, immunohistochemistry and RT-PCR can provide reliable results for postmortem diagnosis of PDD.
Collapse
Affiliation(s)
- Jeann Leal de Araújo
- Department of Veterinary Sciences, Center for Agricultural Sciences, Federal University of Paraíba, Areia 58397000, Paraiba, Brazil
- Correspondence:
| | - Raquel Rubia Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA;
| |
Collapse
|
10
|
Heckmann J, Enderlein D, Gartner AM, Bücking B, Herzog S, Heffels-Redmann U, Malberg S, Herden C, Lierz M. Wounds as the Portal of Entrance for Parrot Bornavirus 4 (PaBV-4) and Retrograde Axonal Transport in Experimentally Infected Cockatiels (Nymphicus hollandicus). Avian Dis 2021; 64:247-253. [PMID: 33205181 DOI: 10.1637/aviandiseases-d-19-00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/12/2019] [Indexed: 11/05/2022]
Abstract
In this study, we investigated the natural route of infection of psittacine bornavirus (PaBV), which is the causative agent of proventricular dilatation disease (PDD) in psittacines. We inoculated two infection groups through wounds with a PaBV-4 isolate. In nine cockatiels (Nymphicus hollandicus) we applied a virus suspension with a titer of 103 50% tissue culture infection dose (TCID50) via palatal lesions (Group P, P1-9). In a second group of three cockatiels, we applied a virus suspension with a titer of 104 TCID50 to footpad lesions (Group F, F1-3). In two cockatiels, the control (or "mock") group, we applied a virus-free cell suspension (Group M, M1-2) via palatal lesions. The observation period was 6 mo (Groups P and M) or 7 mo (Group F). We monitored PaBV-4 RNA shedding and seroconversion. At the end of the study, we examined the birds for the presence of inflammatory lesions, PaBV-4 RNA, and antigen in tissues, as well as virus reisolation of brain and crop material. We did not observe any clinical signs typical of PDD during this study. We also did not see seroconversion or PaBV RNA shedding in any bird during the entire investigation period, and virus reisolation was not successful. We only found PaBV-4 RNA in sciatic nerves, footpad tissue, skin, and in one sample from the intestine of Group F. In this group, the histopathology revealed mononuclear infiltrations mainly in skin and footpad tissue; immunohistochemistry showed positive reactions in spinal ganglia and in the spinal cord, and slightly in skin, footpad tissues, and sciatic nerves. In Groups P and M we found no viral antigen or specific inflammations. In summary, only the virus application on the footpad lesion led to detectable PaBV RNA, mononuclear infiltrations, and positive immunohistochemical reactions in tissues of the experimental birds. This could suggest that PaBV spreads via nervous tissue, with skin wounds as the primary entry route.
Collapse
Affiliation(s)
- Julia Heckmann
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 144, 35392 Giessen, Germany
| | - Dirk Enderlein
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 144, 35392 Giessen, Germany
| | - Anna Maria Gartner
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 144, 35392 Giessen, Germany
| | - Bianca Bücking
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 144, 35392 Giessen, Germany
| | - Sibylle Herzog
- Institute of Virology, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Ursula Heffels-Redmann
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 144, 35392 Giessen, Germany
| | - Sara Malberg
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Str. 96, 35392 Giessen, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Str. 96, 35392 Giessen, Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 144, 35392 Giessen, Germany
| |
Collapse
|
11
|
Gartner AM, Link J, Bücking B, Enderlein D, Herzog S, Petzold J, Malberg S, Herden C, Lierz M. Age-dependent development and clinical characteristics of an experimental parrot bornavirus-4 (PaBV-4) infection in cockatiels ( Nymphicus hollandicus). Avian Pathol 2021; 50:138-150. [PMID: 33215512 DOI: 10.1080/03079457.2020.1852177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Parrot bornavirus (PaBV) is a pathogen often found in psittacine populations. Infected, clinically healthy carrier birds are of major importance for epidemiology, but the underlying pathomechanism of this carrier status is poorly understood. The age, implying the maturation status of the immune system, at the time of infection might be significant for the clinical outcome. Therefore, two groups of 11 cockatiels of different ages (adult and newly hatched) were inoculated with a PaBV-4 isolate intravenously. The trial lasted for 233 days and all birds were observed for clinical signs, PaBV-RNA shedding and anti-PaBV antibody production. At the end of the trial, histopathology, immunohistochemistry, PCR and virus re-isolation were performed. All 22 birds seroconverted and shed PaBV-RNA during the investigation period; the juvenile group earlier and more homogeneously. Nine of 11 birds of the adult group developed clinical signs; five birds died or had to be euthanized before the end of the study. In the juvenile group none of the birds developed clinical signs and only one bird died due to bacterial septicaemia. Eight birds of the adult group, but none of the juvenile group, showed a dilatation of the proventriculus. PaBV-RNA detection and virus re-isolation were successful in all birds. Immunohistochemically, PaBV antigen was found in all birds. Histopathology revealed mononuclear infiltrations in organs in birds of both groups, but the juveniles were less severely affected in the brain.Thus, PaBV infection at an age with a more naïve immune system makes the production of carrier birds more likely.RESEARCH HIGHLIGHTS PaBV infection at a young age might favour the development of carrier birds.Cockatiels infected at a very young age showed inflammation but no clinical signs.The juvenile group started seroconversion and PaBV-RNA shedding earlier.Seroconversion and PaBV-RNA shedding occurred more homogeneously in the juveniles.
Collapse
Affiliation(s)
- Anna Maria Gartner
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| | - Jessica Link
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| | - Bianca Bücking
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| | - Dirk Enderlein
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| | - Sibylle Herzog
- Institute of Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Jana Petzold
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Sara Malberg
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
12
|
Nobach D, Müller J, Tappe D, Herden C. Update on immunopathology of bornavirus infections in humans and animals. Adv Virus Res 2020; 107:159-222. [PMID: 32711729 DOI: 10.1016/bs.aivir.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany; Center for Brain, Mind and Behavior, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
13
|
Avian Bornaviral Ganglioneuritis: Current Debates and Unanswered Questions. Vet Med Int 2020; 2020:6563723. [PMID: 32411340 PMCID: PMC7212328 DOI: 10.1155/2020/6563723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Avian bornaviral ganglioneuritis, often referred to as parrot wasting disease, is associated with a newly discovered avian virus from the taxonomic family Bornaviridae. Research regarding the pathogenesis and treatment for this disease is ongoing, with implications for understanding other emerging human and nonhuman diseases, as well as the health and ecology of wildlife. At this time, numerous questions remain unanswered regarding the transmission of the disease, best practices for diagnostic sampling and testing, and whether currently used drug therapies are effective or harmful for afflicted birds. The pathogenesis of the disease also remains unclear with many birds showing resistance to the effects of the virus and being able to remain clinically unaffected for years, while other birds succumb to its effects. New research findings regarding avian bornaviral ganglioneuritis are discussed and important as yet unanswered questions are identified.
Collapse
|
14
|
Escandon P, Heatley JJ, Tizard I, Guo J, Shivaprasad HL, Musser JM. Treatment With Nonsteroidal Anti-Inflammatory Drugs Fails To Ameliorate Pathology In Cockatiels Experimentally Infected With Parrot Bornavirus-2. VETERINARY MEDICINE-RESEARCH AND REPORTS 2019; 10:185-195. [PMID: 31819861 PMCID: PMC6878917 DOI: 10.2147/vmrr.s229936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/15/2019] [Indexed: 11/23/2022]
Abstract
Purpose Parrot bornavirus is the etiological agent of Parrot bornavirus syndrome, also referred to and comprising proventricular dilatation disease or PDD, macaw wasting disease, enteric ganglioneuritis and encephalitis, and avian ganglioneuritis. It has been suggested that nonsteroidal anti-inflammatory drugs may be able to ameliorate this disease. Therefore, this study investigated the effects of two commonly used nonsteroidal anti-inflammatory drugs, celecoxib and meloxicam, on cockatiels experimentally inoculated with Parrot bornavirus-2 (PaBV-2). Materials and methods Twenty-seven cockatiels were randomized into 3 groups of 9 birds, matched with respect to historical PaBV shedding, weight, and sex. The cockatiels were inoculated with cell culture-derived PaBV-2 by the intranasal and intramuscular routes. Beginning at 23 days post-inoculation, birds in each group received oral treatment once daily with placebo, meloxicam (1.0 mg/kg), or celecoxib (10.0 mg/kg). Results Within 33–79 days post-inoculation, 2 birds died and 6 birds were euthanized based on neurological or gastrointestinal signs consistent with Parrot bornavirus syndrome: 2 birds were euthanized in the placebo group, 1 bird died and 1 bird was euthanized in the meloxicam-treated group, and 1 bird died and 3 birds were euthanized in the celecoxib-treated group. Of these 8 birds, black intestinal contents were found upon necropsy in 2 birds of the meloxicam-treated group and 2 birds of the celecoxib-treated group. At day 173 (±2) post-inoculation, the remaining 19 birds were euthanized. Necropsy and histopathology showed lesions characteristic of Parrot bornavirus syndrome in 23 cockatiels. Histopathologic lesions were present in birds of all 3 groups. There was no statistical difference between the groups nor was there a statistical difference among the 3 treatment groups in the detection of PaBV RNA and PaBV nucleoprotein using RT-PCR and immunohistochemistry, respectively. Conclusion Meloxicam and celecoxib treatments do not appear to alter the clinical presentation, viral shedding, gross lesions, histopathology, or viral distribution. Treatment with NSAIDs may cause gastrointestinal toxicity in cockatiels experimentally inoculated with PaBV-2.
Collapse
Affiliation(s)
- Paulina Escandon
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - J Jill Heatley
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.,Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Ian Tizard
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Jianhua Guo
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - H L Shivaprasad
- California Animal Health and Food Safety Laboratory System-Tulare, University of California, Tulare, CA, USA
| | - Jeffrey Mb Musser
- Schubot Exotic Bird Health Center, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Development of a reverse transcription-loop-mediated isothermal amplification assay for the detection of parrot bornavirus 4. J Virol Methods 2019; 275:113749. [PMID: 31622637 DOI: 10.1016/j.jviromet.2019.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
Avian bornavirus (ABV) is the causative agent of proventricular dilatation disease, which is fatal in psittacine birds. ABVs have spread worldwide, and outbreaks have led to mass deaths of captive birds in commercial and breeding facilities. The segregation of infected birds is a countermeasure to prevent ABV spread in aviaries. However, this approach requires a highly sensitive detection method for the screening of infected birds before virus transmission. In this study, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the diagnosis of parrot bornavirus 4 (PaBV-4), a dominant ABV genotype. Using this assay, we successfully detected PaBV-4 RNA in cell cultures, brain tissues, and feces. We also developed methods for simple RNA extraction and visual detection without electrophoresis. The sensitivity of the newly established RT-LAMP assay was 100-fold higher than that of the real-time PCR (RT-qPCR) assay. Accordingly, the RT-LAMP assay developed in this study is suitable for the rapid and sensitive diagnosis of PaBV-4 without specialized equipment and will contribute to virus control in aviaries.
Collapse
|
16
|
Horie M. Parrot bornavirus infection: correlation with neurological signs and feather picking? Vet Rec 2019; 184:473-475. [PMID: 30975843 DOI: 10.1136/vr.l1089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masayuki Horie
- Hakubi Center for Advanced Research/Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Fluck A, Enderlein D, Piepenbring A, Heffels-Redmann U, Herzog S, Pieper K, Herden C, Lierz M. Correlation of avian bornavirus-specific antibodies and viral ribonucleic acid shedding with neurological signs and feather-damaging behaviour in psittacine birds. Vet Rec 2019; 184:476. [DOI: 10.1136/vr.104860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 11/16/2018] [Accepted: 12/16/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Alexandra Fluck
- Clinic for Birds Dr. Kay Pieper and Dr. Alexandra Fluck Leverkusen; Leverkusen Germany
| | - Dirk Enderlein
- Clinic for Birds, Reptiles, Amphibians and Fish; Justus-Liebig University Giessen; Giessen Germany
| | - Anne Piepenbring
- Clinic for Birds, Reptiles, Amphibians and Fish; Justus-Liebig University Giessen; Giessen Germany
| | - Ursula Heffels-Redmann
- Clinic for Birds, Reptiles, Amphibians and Fish; Justus-Liebig University Giessen; Giessen Germany
| | - Sybille Herzog
- Institute of Virology, Justus-Liebig University Giessen; Giessen Germany
| | - Kay Pieper
- Clinic for Birds Dr. Kay Pieper and Dr. Alexandra Fluck Leverkusen; Leverkusen Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig University Giessen; Giessen Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish; Justus-Liebig University Giessen; Giessen Germany
| |
Collapse
|
18
|
Bornavirus. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:519-532. [DOI: 10.1007/s00103-019-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
de Araujo JL, Rodrigues-Hoffmann A, Giaretta PR, Guo J, Heatley J, Tizard I, Rech RR. Distribution of Viral Antigen and Inflammatory Lesions in the Central Nervous System of Cockatiels ( Nymphicus hollandicus) Experimentally Infected with Parrot Bornavirus 2. Vet Pathol 2018; 56:106-117. [PMID: 30235986 DOI: 10.1177/0300985818798112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurotropism is a striking characteristic of bornaviruses, including parrot bornavirus 2 (PaBV-2). Our study evaluated the distribution of inflammatory foci and viral nucleoprotein (N) antigen in the brain and spinal cord of 27 cockatiels ( Nymphicus hollandicus) following experimental infection with PaBV-2 by injection into the pectoral muscle. Tissue samples were taken at 12 timepoints between 5 and 114 days post-inoculation (dpi). Each experimental group had approximately 3 cockatiels per group and usually 1 negative control. Immunolabeling was first observed within the ventral horns of the thoracic spinal cord at 20 dpi and in the brain (thalamic nuclei and hindbrain) at 25 dpi. Both inflammation and viral antigen were restricted to the central core of the brain until 40 dpi. The virus then spread quickly at 60 dpi to both gray and white matter of all analyzed sections of the central nervous system (CNS). Encephalitis was most severe in the thalamus and hindbrain, while myelitis was most prominent in the gray matter and equally distributed in the cervical, thoracic, and lumbosacral spinal cord. Our results demonstrate a caudal to rostral spread of virus in the CNS following experimental inoculation of PABV-2 into the pectoral muscle, with the presence of viral antigen and inflammatory lesions first in the spinal cord and progressing to the brain.
Collapse
Affiliation(s)
- Jeann Leal de Araujo
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | | | - Paula R Giaretta
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Jianhua Guo
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Jill Heatley
- 2 Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Ian Tizard
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Raquel R Rech
- 1 Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Bulbow H, Wu J, Turner D, McEntire M, Tizard I. Campylobacter colonization is not associated with proventricular dilatation disease in psittacines. VETERINARY MEDICINE-RESEARCH AND REPORTS 2018; 8:37-40. [PMID: 30050854 PMCID: PMC6042502 DOI: 10.2147/vmrr.s137213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Psittacine proventricular dilatation disease (PDD) is a neurological disease caused by parrot bornaviruses. A competing theory suggests that intestinal colonization by Campylobacter species may also be a potential cause of PDD or that their presence may be required for disease development. This theory proposes that PDD results from the activities of antiganglioside antibodies on enteric neurons in a manner similar to the pathogenesis of Guillain–Barré syndrome in humans. We therefore cultured feces from domestic chickens as well as from multiple parrot species to determine whether Campylobacter spp. could be detected in the latter. We failed to detect Campylobacter in a flock of cockatiels known to be highly susceptible to experimental parrot bornavirus-induced PDD. Even in naturally infected psittacines suffering from clinical PDD, no Campylobacter species were detected. Conversely, Campylobacter was readily cultured from domestic poultry samples and confirmed by using matrix-associated laser desorption ionization mass spectroscopy/real-time polymerase chain reaction. We conclude that not only are Campylobacter infections of psittacines uncommon, but also that infection by Campylobacter species is not related to the etiology of PDD.
Collapse
Affiliation(s)
- Holden Bulbow
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| | - Jing Wu
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| | - Debra Turner
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| | - Michael McEntire
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| | - Ian Tizard
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| |
Collapse
|
21
|
Rossi G, Dahlhausen RD, Galosi L, Orosz SE. Avian Ganglioneuritis in Clinical Practice. Vet Clin North Am Exot Anim Pract 2018; 21:33-67. [PMID: 29146031 DOI: 10.1016/j.cvex.2017.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Avian ganglioneuritis (AG) comprises one of the most intricate pathologies in avian medicine and is researched worldwide. Avian bornavirus (ABV) has been shown to be a causative agent of proventricular dilatation disease in birds. The avian Bornaviridae represent a genetically diverse group of viruses that are widely distributed in captive and wild populations around the world. ABV and other infective agents are implicated as a cause of the autoimmune pathology that leads to AG, similar to human Guillain Barrè syndrome. Management of affected birds is beneficial and currently centered at reducing neurologic inflammation, managing secondary complications, and providing nutritional support.
Collapse
Affiliation(s)
- Giacomo Rossi
- Animal Pathology Section, School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, Italy
| | - Robert D Dahlhausen
- Avian and Exotic Animal Medical Center and Veterinary Molecular Diagnostics, Inc, 5989 Meijer Drive, Suite 5, Milford, OH 45150, USA
| | - Livio Galosi
- Animal Pathology Section, School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, Italy
| | - Susan E Orosz
- Bird and Exotic Pet Wellness Center, 5166 Monroe Street, Suite 306, Toledo, OH 43623, USA.
| |
Collapse
|
22
|
Hameed SS, Guo J, Tizard I, Shivaprasad HL, Payne S. Studies on immunity and immunopathogenesis of parrot bornaviral disease in cockatiels. Virology 2017; 515:81-91. [PMID: 29274528 DOI: 10.1016/j.virol.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
We have demonstrated that vaccination of cockatiels (Nymphicus hollandicus) with killed parrot bornavirus (PaBV) plus recombinant PaBV-4 nucleoprotein (N) in alum was protective against disease in birds challenged with a virulent bornavirus isolate (PaBV-2). Unvaccinated birds, as well as birds vaccinated after challenge, developed gross and histologic lesions typical of proventricular dilatation disease (PDD). There was no evidence that vaccination either before or after challenge made the infection more severe. Birds vaccinated prior to challenge largely remained free of disease, despite the persistence of the virus in many organs. Similar results were obtained when recombinant N, in alum, was used for vaccination. In some rodent models, Borna disease is immune mediated thus we did an additional study whereby cyclosporine A was administered to unvaccinated birds starting 1day prior to challenge. This treatment also conferred complete protection from disease, but not infection.
Collapse
Affiliation(s)
- Samer Sadeq Hameed
- Schubot Exotic Bird Health Center, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - Jianhua Guo
- Schubot Exotic Bird Health Center, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - Ian Tizard
- Schubot Exotic Bird Health Center, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - H L Shivaprasad
- University of California-Davis, CAHFS - Tulare Branch, 18830 Road 112, Tulare, CA 93274, USA
| | - Susan Payne
- Schubot Exotic Bird Health Center, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA.
| |
Collapse
|
23
|
Araujo JLD, Cristo TGD, Morais RMD, Costa LSD, Biezus G, Müller TR, Rech RR, Casagrande RA. Proventricular dilatation disease (PDD) outbreak in blue-and-gold macaws (Ara ararauna) in the State of Santa Catarina, southern Brazil. PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017001100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Proventricular dilatation disease (PDD) is a lethal and important disease of captive psittacine birds, and affects a wide range of species, including endangered ones, and lacks an effective treatment. This report describes PDD in three blue-and-gold macaws (Ara ararauna) in southern Brazil. All three macaws originated from the same aviary and presented similar clinical signs including anorexia, apathy, emaciation and prostration. At necropsy, one of the macaws presented an enlarged proventriculus. Histologically, lymphoplasmacytic infiltrates was observed in the ganglia and nerves of the esophagus, crop, proventriculus, ventriculus, heart, adrenal glands, and adrenal medulla of all three cases. Two macaws had meningoencephalomyelitis and one had myocarditis. Immunohistochemistry identified PaBV antigen in the brain, proventricular, ventricular ganglia, and epicardial ganglia, and cardiomyocytes of all three macaws.
Collapse
|
24
|
Comparative population pharmacokinetics and absolute oral bioavailability of COX-2 selective inhibitors celecoxib, mavacoxib and meloxicam in cockatiels (Nymphicus hollandicus). Sci Rep 2017; 7:12043. [PMID: 28947805 PMCID: PMC5612971 DOI: 10.1038/s41598-017-12159-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022] Open
Abstract
Selective COX-2 inhibitors are non-steroidal anti-inflammatory drugs which directly target cyclooxygenase-2 (COX-2), an enzyme mainly responsible for induction of inflammation, pyresis and pain. Although commonly used in avian medicine, limited pharmacokinetic (PK) data in domestic and companion birds are available. In this study, PK parameters and absolute oral bioavailability expressed as percentage (F%) of celecoxib (10 mg/kg BW), mavacoxib (4 mg/kg BW) and meloxicam (1 mg/kg BW) were determined following single oral (PO) and intravenous (IV) administration to cockatiels (Nymphicus hollandicus). The drugs were quantified in plasma by liquid chromatography-tandem mass spectrometry. Data were processed using the nonlinear mixed effects (NLME) approach. In contrast to celecoxib (T1/2el = 0.88 h) and meloxicam (T1/2el = 0.90 h), mavacoxib has a prolonged elimination half-life (T1/2el = 135 h) following oral administration of a commercial formulation (CF). High to complete oral absorption was observed following oral administration of celecoxib (F% = 56-110%) and mavacoxib (F% = 111-113%), CF and standard solutions, respectively. In contrast, the F% of meloxicam was low (F% = 11%). Based on the presented results, a less frequent dosing of mavacoxib is proposed compared to celecoxib and meloxicam. However, pharmacodynamic and safety studies are necessary to further investigate the use of these NSAIDs in cockatiels.
Collapse
|
25
|
Heckmann J, Enderlein D, Piepenbring AK, Herzog S, Heffels-Redmann U, Malberg S, Herden C, Lierz M. Investigation of Different Infection Routes of Parrot Bornavirus in Cockatiels. Avian Dis 2017; 61:90-95. [PMID: 28301249 DOI: 10.1637/11490-091316-reg] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to determine the natural infection route of parrot bornavirus (PaBV), the causative agent of proventricular dilatation disease (PDD) in psittacines. For this purpose, nine cockatiels ( Nymphicus hollandicus ) were inoculated orally, and nine cockatiels were inoculated intranasally, with a PaBV-4 isolate. To compare the results of the trials, the same isolate and the same experimental design were used as in a previous study where infection was successful by intravenous as well as intracerebral inoculation. After inoculation, the birds were observed for a period of 6 mo and tested for PaBV RNA shedding, virus replication, presence of inflammatory lesions, and PaBV-4 antigen in tissues, as well as specific antibody production. In contrast to the previous study involving intravenous and intracerebral infections, clinical signs typical for PDD were not observed in this study. Additionally, anti-PaBV antibodies and infectious virus were not detected in any investigated bird during the study. Parrot bornavirus RNA was detected in only four birds early after infection (1-34 days postinfection). Furthermore, histopathologic examination did not reveal lesions typical for PDD, and PaBV antigen was not detected in any organ investigated by immunohistochemistry. In summary, oral or nasal inoculation did not lead to a valid infection with PaBV in these cockatiels. Therefore it seems to be questionable that the formerly proposed fecal-oral transmission is the natural route of infection in immunocompetent adult or subadult cockatiels.
Collapse
Affiliation(s)
- Julia Heckmann
- A Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 91, 35392 Giessen, Germany
| | - Dirk Enderlein
- A Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 91, 35392 Giessen, Germany
| | - Anne K Piepenbring
- A Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 91, 35392 Giessen, Germany
| | - Sibylle Herzog
- B Institute of Virology, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Ursula Heffels-Redmann
- A Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 91, 35392 Giessen, Germany
| | - Sara Malberg
- C Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Str. 96, 35392 Giessen, Germany
| | - Christiane Herden
- C Institute of Veterinary Pathology, Justus Liebig University Giessen, Frankfurter Str. 96, 35392 Giessen, Germany
| | - Michael Lierz
- A Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Frankfurter Str. 91, 35392 Giessen, Germany
| |
Collapse
|
26
|
Högemann C, Richter R, Korbel R, Rinder M. Plasma protein, haematologic and blood chemistry changes in African grey parrots (Psittacus erithacus) experimentally infected with bornavirus. Avian Pathol 2017; 46:556-570. [DOI: 10.1080/03079457.2017.1325442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Charlotte Högemann
- Clinic for Birds, Small Mammals, Reptiles and Ornamental Fish, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | | | - Rüdiger Korbel
- Clinic for Birds, Small Mammals, Reptiles and Ornamental Fish, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Monika Rinder
- Clinic for Birds, Small Mammals, Reptiles and Ornamental Fish, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
27
|
Piepenbring AK, Enderlein D, Herzog S, Al-Ibadi B, Heffels-Redmann U, Heckmann J, Lange-Herbst H, Herden C, Lierz M. Parrot Bornavirus (PaBV)-2 isolate causes different disease patterns in cockatiels than PaBV-4. Avian Pathol 2017; 45:156-68. [PMID: 27100150 DOI: 10.1080/03079457.2015.1137867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Psittaciform 1 bornavirus (PaBV) has already been shown to be the aetiologic agent of proventricular dilatation disease, a significant disease of birds. However, the pathogenesis of PaBV infection has not yet been resolved and valid data regarding the pathogenicity of different PaBV species are lacking. Thus, the present study was aimed to characterize the influence of two different PaBV species on the course of disease. Eighteen cockatiels were inoculated intracerebrally (i.c.) or intravenously (i.v.) with a PaBV-2 isolate under the same conditions as in a previous study using PaBV-4. Birds were surveyed and sampled for 33 weeks to analyse the course of infection and disease in comparison to that of PaBV-4. Similar to PaBV-4, PaBV-2 induced a persistent infection with seroconversion (from day 6 p.i. onwards) and shedding of viral RNA (from day 27 p.i. onwards). However, in contrast to PaBV-4, more birds displayed clinical signs and disease progression was more severe. After PaBV-2 infection, 12 birds exhibited clinical signs and 10 birds revealed a dilated proventriculus in necropsy. After PaBV-4 infection only four birds revealed clinical signs and seven birds showed a dilatation of the proventriculus. Clinically, different courses of disease were observed after PaBV-2 infection, mainly affecting the gastrointestinal tract. This had not been detected after PaBV-4 infection where more neurological signs were noted. The results provide evidence for different disease patterns according to different PaBV species, allowing the comparison between the infection with two PaBV species, and thus underlining the role of viral and individual host factors for disease outcome.
Collapse
Affiliation(s)
- Anne K Piepenbring
- a Clinic for Birds, Reptiles, Amphibians and Fish , Justus-Liebig-Universität Giessen , Giessen , Germany.,b Tierarztpraxis Dr. E. Kellerwessel , Cologne , Germany
| | - Dirk Enderlein
- a Clinic for Birds, Reptiles, Amphibians and Fish , Justus-Liebig-Universität Giessen , Giessen , Germany
| | - Sibylle Herzog
- c Institute of Virology, Justus-Liebig-Universität Giessen , Giessen , Germany
| | - Basim Al-Ibadi
- d Institute for Veterinary Pathology, Justus-Liebig-Universität Giessen , Giessen , Germany
| | - Ursula Heffels-Redmann
- a Clinic for Birds, Reptiles, Amphibians and Fish , Justus-Liebig-Universität Giessen , Giessen , Germany
| | - Julia Heckmann
- a Clinic for Birds, Reptiles, Amphibians and Fish , Justus-Liebig-Universität Giessen , Giessen , Germany
| | | | - Christiane Herden
- d Institute for Veterinary Pathology, Justus-Liebig-Universität Giessen , Giessen , Germany
| | - Michael Lierz
- a Clinic for Birds, Reptiles, Amphibians and Fish , Justus-Liebig-Universität Giessen , Giessen , Germany
| |
Collapse
|
28
|
Bourque L, Laniesse D, Beaufrère H, Pastor A, Ojkic D, Smith DA. Identification of avian bornavirus in a Himalayan monal (Lophophorus impejanus) with neurological disease. Avian Pathol 2016; 44:323-7. [PMID: 25980634 DOI: 10.1080/03079457.2015.1050956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A one-year-old male Himalayan monal (Lophophorus impejanus) was presented for veterinary attention with a history of chronic wasting, weakness and ataxia. The bird died, and post-mortem findings included mild non-suppurative encephalitis and degenerative encephalopathy, lymphoplasmacytic myenteric ganglioneuritis (particularly of the proventriculus), and Wallerian degeneration of the sciatic nerves. Avian bornavirus (ABV) was identified in the brain by immunohistochemistry and reverse-transcriptase polymerase chain reaction. Sequencing of the reverse-transcriptase polymerase chain reaction product indicated the presence of ABV genotype 4, which is generally associated with disease in psittacine birds. Subsequent to the death of the pheasant, ABV genotype 4 was identified at autopsy from a juvenile white-bellied caique (Pionites leucogaster) in the same collection. We hypothesize that the pheasant became infected through contact with psittacine birds with which it shared an aviary. We believe this to be the first reported case of natural ABV infection in a bird in the Order Galliformes.
Collapse
Affiliation(s)
- Laura Bourque
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | | | | | | | | | | |
Collapse
|
29
|
Wellehan • JF, Lierz • M, Phalen • D, Raidal • S, Styles • DK, Crosta • L, Melillo • A, Schnitzer • P, Lennox • A, Lumeij JT. Infectious disease. CURRENT THERAPY IN AVIAN MEDICINE AND SURGERY 2016. [PMCID: PMC7158187 DOI: 10.1016/b978-1-4557-4671-2.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
30
|
Abstract
Avian bornaviruses, recently described members of the family Bornaviridae, have been isolated from captive parrots and passerines as well as wild waterfowl in which they may cause lethal neurologic disease. We report detection of avian bornavirus RNA in the brains of apparently healthy gulls. We tested 439 gull brain samples from 18 states, primarily in the northeastern US, using a reverse-transcriptase PCR assay with primers designed to detect a conserved region of the bornavirus M gene. Nine birds yielded a PCR product of appropriate size. Sequencing of PCR products indicated that the virus was closely related to aquatic bird bornavirus 1 (ABBV-1). Viral RNA was detected in Herring Gulls (Larus argentatus), Ring-billed Gulls (Larus delawarensis), and Laughing Gulls (Leucophaeus atricilla). Eight of the nine positive birds came from the New York/New Jersey area. One positive Herring Gull came from New Hampshire. Histopathologic examination of one well-preserved brain from a Herring Gull from Union County New Jersey, showed a lymphocytic encephalitis similar to that observed in bornavirus-infected parrots and geese. Bornavirus N protein was confirmed in two Herring Gull brains by immunohistochemistry. Thus ABBV-1 can infect gulls and cause encephalitic brain lesions similar to those observed in other birds.
Collapse
|
31
|
Survey of bornaviruses in pet psittacines in Brazil reveals a novel parrot bornavirus. Vet Microbiol 2014; 174:584-590. [PMID: 25465670 DOI: 10.1016/j.vetmic.2014.10.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/20/2022]
Abstract
Avian bornaviruses are the causative agents of proventricular dilatation disease (PDD), a fatal neurological disease considered to be a major threat to psittacine bird populations. We performed a survey of the presence of avian bornaviruses and PDD in pet psittacines in Brazil and also studied PDD's clinical presentation as well as the genomic variability of the viruses. Samples from 112 psittacines with clinical signs compatible with PDD were collected and tested for the presence of bornaviruses. We found 32 birds (28.6%) positive for bornaviruses using reverse transcriptase polymerase chain reaction (RT-PCR). Twenty-one (65.6%) of the 32 bornavirus-positive birds presented neurological signs, seven (21.9%) presented undigested seeds in feces, four (12.5%) showed proventricular dilatation, six (18.8%) regurgitation, three (9.4%) feather plucking and three (9.4%) sudden death. The results confirm that avian bornaviruses are present in pet psittacines in Brazil, and sequence analysis identified a distinct virus, named parrot bornavirus 8 (PaBV-8).
Collapse
|
32
|
Guo J, Payne S, Zhang S, Turner D, Tizard I, Suchodolski P. Avian bornaviruses: diagnosis, isolation, and genotyping. ACTA ACUST UNITED AC 2014; 34:15I.1.1-33. [PMID: 25082005 DOI: 10.1002/9780471729259.mc15i01s34] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
These protocols apply to all currently known genotypes of avian bornavirus (ABV). First, they include four basic protocols for molecular techniques that should enable an investigator to detect ABV infection in a live or dead bird. These include both reverse transcriptase and real-time PCR assays. Second, they include three protocols enabling ABV infections to be diagnosed by serologic techniques including indirect immunofluorescence assays, western blotting, and enzyme-linked immunoassays. Third, they also include methods by which ABV can be isolated from infected bird tissues by culture in primary duck embryo fibroblasts, as well as in other avian cell lines. Finally, as part of a diagnostic workup, any virus detected should be genotyped by sequencing, and a protocol for this is also provided.
Collapse
Affiliation(s)
- Jianhua Guo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | | | | | | | | | | |
Collapse
|
33
|
Rubbenstroth D, Brosinski K, Rinder M, Olbert M, Kaspers B, Korbel R, Staeheli P. No contact transmission of avian bornavirus in experimentally infected cockatiels (Nymphicus hollandicus) and domestic canaries (Serinus canaria forma domestica). Vet Microbiol 2014; 172:146-56. [DOI: 10.1016/j.vetmic.2014.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 11/29/2022]
|
34
|
Delnatte P, Nagy E, Ojkic D, Crawshaw G, Smith DA. Investigation into the possibility of vertical transmission of avian bornavirus in free-ranging Canada geese (Branta canadensis). Avian Pathol 2014; 43:301-4. [PMID: 24801979 DOI: 10.1080/03079457.2014.921279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To investigate the possibility of in ovo infection with avian bornavirus (ABV) in wild Canada geese (Branta canadensis), 53 eggs were opportunistically collected at various stages of embryonic development from 16 free-ranging goose nests at a large urban zoo site where ABV infection is known to be present in this species. ABV RNA was detected in the yolk of one of three unembryonated eggs using real-time reverse transcription polymerase chain reaction. ABV RNA was not identified in the brains from 23 newly hatched goslings or 19 embryos, nor from three early whole embryos. Antibodies against ABV were not detected in the plasma of any of the hatched goslings using an enzyme-linked immunosorbent assay. Possible reasons for the failure to detect ABV RNA in hatchlings or embryos include low sample size, eggs deriving from parents not actively infected with ABV, the testing of only brain tissue, and failure of the virus to replicate in Canada goose embryos. In conclusion, this preliminary investigation demonstrating the presence of ABV RNA in the yolk of a Canada goose egg provides the first evidence for the potential for vertical transmission of ABV in waterfowl.
Collapse
Affiliation(s)
- Pauline Delnatte
- a Ontario Veterinary College , University of Guelph , Guelph , ON , Canada N1G 2W1
| | | | | | | | | |
Collapse
|
35
|
Rubinstein J, Lightfoot T. Feather loss and feather destructive behavior in pet birds. Vet Clin North Am Exot Anim Pract 2014; 17:77-101. [PMID: 24274924 DOI: 10.1016/j.cvex.2013.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Feather loss in psittacine birds is a common and frustrating clinical presentation. Causes include medical and nonmedical causes of feather loss with and without overt feather destructive behavior. Underlying causes include inappropriate husbandry and housing; parasitic, viral and bacterial infections; metabolic and allergic diseases; and behavioral disorders. Prior to a diagnosis of a behavioral disorder, medical causes of feather loss must be excluded through a complete medical work-up including history, physical examination, and diagnostic testing. This article focuses on common medical and nonmedical causes of feather loss and feather destructive behavior and approaches to diagnosis and treatment.
Collapse
|
36
|
Delnatte P, Mak M, Ojkic D, Raghav R, DeLay J, Smith DA. Detection of Avian bornavirus in multiple tissues of infected psittacine birds using real-time reverse transcription polymerase chain reaction. J Vet Diagn Invest 2014; 26:266-71. [PMID: 24518276 DOI: 10.1177/1040638713519641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Avian bornavirus (ABV), the cause of proventricular dilation disease in psittacine birds, has been detected in multiple tissues of infected birds using immunohistochemical staining (IHC) and reverse transcription polymerase chain reaction (RT-PCR). In the current study, real-time RT-PCR, using primers targeting the ABV matrix gene, was used to detect ABV in 146 tissues from 7 ABV-infected psittacine birds. Eighty-six percent of the samples tested positive, with crossing point values ranging from 13.82 to 37.82 and a mean of 22.3. These results were compared to the findings of a previous study using gel-based RT-PCR and IHC on the same samples. The agreement between the 2 RT-PCR techniques was 91%; when tests disagreed it was because samples were negative using gel-based RT-PCR but positive on real-time RT-PCR. Agreement with IHC was 77%; 16 out of 74 samples were negative using IHC but positive on real-time RT-PCR. The results suggest that real-time RT-PCR is a more sensitive technique than gel-based RT-PCR and IHC to detect ABV in tissues. The tissues that were ranked most frequently as having a high amount of viral RNA were proventriculus, kidney, colon, cerebrum, and cerebellum. Skeletal muscle, on the other hand, was found to have a consistently low amount of viral RNA.
Collapse
Affiliation(s)
- Pauline Delnatte
- 1Dale A. Smith, Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Hoppes SM, Tizard I, Shivaprasad HL. Avian bornavirus and proventricular dilatation disease: diagnostics, pathology, prevalence, and control. Vet Clin North Am Exot Anim Pract 2013; 16:339-55. [PMID: 23642866 DOI: 10.1016/j.cvex.2013.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Avian bornavirus (ABV) has been shown the cause of proventricular dilatation disease (PDD) in psittacines. Many healthy birds are infected with ABV, and the development of PDD in such cases is unpredictable. As a result, the detection of ABV in a sick bird is not confirmation that it is suffering from PDD. Treatment studies are in their infancy. ABV is not restricted to psittacines. It has been found to cause PDD-like disease in canaries. It is also present at a high prevalence in North American geese, swans, and ducks. It is not believed that these waterfowl genotypes can cause disease in psittacines.
Collapse
Affiliation(s)
- Sharman M Hoppes
- Department of Veterinary Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4474 TAMU, College Station, TX 77843-4474, USA.
| | | | | |
Collapse
|
38
|
Brandão J, Beaufrère H. Clinical Update and Treatment of Selected Infectious Gastrointestinal Diseases in Avian Species. J Exot Pet Med 2013. [DOI: 10.1053/j.jepm.2013.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Monaco E, Hoppes S, Guo J, Tizard I. The detection of avian bornavirus within psittacine eggs. J Avian Med Surg 2012; 26:144-8. [PMID: 23156976 DOI: 10.1647/2011-049r1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Avian bornavirus (ABV) is a known cause of proventricular dilatation disease in parrots and encephalitis in waterfowl and is a significant cause of both morbidity and mortality in captive birds. Transmission is thought to occur primarily by the fecal-oral route. In an aviary setting, controlling the disease involves a thorough understanding of the complete transmission cycle, including determining whether vertical transmission occurs. In this study, vertical transmission of ABV was evaluated by using 61 eggs obtained from birds in 2 aviaries where proventricular dilatation disease was prevalent, and the presence of ABV had been confirmed by fecal reverse transcription-polymerase chain reaction by using a primer set designed to detect ABV M protein. The contents of these eggs were then tested for the presence of ABV RNA. Of the eggs tested, 10 were determined to contain ABV RNA. These eggs ranged from apparently nonviable to those that contained developing embryos. ABV was detected in the brain tissue of 2 embryos. It remains to be proven that infected chicks can hatch from these eggs to complete the vertical transmission cycle; however, these findings suggest that vertical transmission of ABV may occur.
Collapse
Affiliation(s)
- Erin Monaco
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77840, USA
| | | | | | | |
Collapse
|
40
|
Kerski A, de Kloet AH, de Kloet SR. Vertical transmission of avian bornavirus in Psittaciformes: avian bornavirus RNA and anti-avian bornavirus antibodies in eggs, embryos, and hatchlings obtained from infected sun conures (Aratinga solstitialis). Avian Dis 2012; 56:471-8. [PMID: 23050462 DOI: 10.1637/9879-080511-reg.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fertilized eggs were obtained from four pairs of sun conures (Aratinga solstitialis) infected with avian bornavirus (ABV) genotype 2, as determined by the sequence of the P24 gene. ABV RNA could be detected in early embryos of all four pairs. ABV RNA also was detected in brain, liver, and eyes of late-stage embryos of one of the pairs (Pair 4) and in blood of a 2-wk-old hatchling of this pair, demonstrating that vertical transmission can occur. ABV RNA could be detected in the liver but not in the brain or eyes of the late-stage embryos of another pair (Pair 3). Although it could be detected in the undeveloped eggs of the female parent and 8-day-old embryos, bornaviral RNA could not be found in the brain and liver of the late-stage embryos or in feathers and blood of young (5-9-wk-old) hatchlings of a third pair (Pair 2). At 11 wk, ABV RNA could be detected again in feathers and blood of these hatchlings and in the brain of one of the hatchlings of Pair 2 that suddenly died. ABV RNA could however be detected in throat swabs of the 5- and 9-wk-old hatchlings and their parents (Pair 2). Although the continued presence of ABV RNA in feathers and blood below the detection level of the reverse transcription-PCR used cannot be excluded, this result also may be attributable to feeding by the infected parents. Analysis by enzyme-linked immunosorbent assay showed that egg yolks and serum of late-stage embryos contain variable amounts of non-neutralizing anti-ABV-P40, -P10, -P24, and -P16 antibodies, the ratio of which reflected the antibody ratio in the serum of the female parent. Antibodies against the viral glycoprotein, which are considered neutralizing in mammals, and against ABV RNA polymerase were not detected. Whereas 5-wk-old hatchlings of the pair (Pair 2) that produced ABV RNA-free late-stage embryos were free of anti-ABV antibodies, such antibodies could be detected again in the serum of these hatchlings at 9 wk of age, before the age that bornaviral RNA could again be detected in feathers and blood. At 16 wk, these antibodies became abundant. The finding that late-stage embryos, presumably free of ABV RNA, can be obtained from eggs from infected parents suggests that hand- or foster-raising of such birds may be a method to obtain birnavirus-free offspring from some infected birds.
Collapse
Affiliation(s)
- Anelle Kerski
- Animal Genetics Inc., 1336 Timberlane Road, Tallahassee, FL 32312-1766, USA
| | | | | |
Collapse
|
41
|
|
42
|
Heatley JJ, Villalobos AR. Avian bornavirus in the urine of infected birds. VETERINARY MEDICINE-RESEARCH AND REPORTS 2012; 3:19-23. [PMID: 30155430 DOI: 10.2147/vmrr.s31336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Avian bornavirus (ABV) causes proventricular dilatation disease in multiple avian species. In severe clinical disease, the virus, while primarily neurotropic, can be detected in many organs, including the kidneys. We postulated that ABV could be shed by the kidneys and found in the urine of infected birds. Immunohistochemical staining demonstrated viral N and P proteins of ABV within the renal tubules. We adapted a nonsurgical method of urine collection for use in parrots known to be shedding ABV in their droppings. We obtained urine without feces, and results were compared with swabs of fresh voided feces. Reverse transcription-polymerase chain reaction assay performed on these paired samples from five birds indicated that ABV was shed in quantity in the urine of infected birds, and a single sample was urine-positive and fecal-negative. We suggest that urine sampling may be a superior sample for detection of birds shedding ABV, and advocate that additional birds, known to be shedding or infected with ABV, should be investigated via this method.
Collapse
Affiliation(s)
| | - Alice R Villalobos
- Department of Nutrition & Food Science, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| |
Collapse
|
43
|
Heffels-Redmann U, Enderlein D, Herzog S, Piepenbring A, Bürkle M, Neumann D, Herden C, Lierz M. Follow-Up Investigations on Different Courses of Natural Avian Bornavirus Infections in Psittacines. Avian Dis 2012; 56:153-9. [DOI: 10.1637/9844-062811-reg.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Mirhosseini N, Gray PL, Hoppes S, Tizard I, Shivaprasad HL, Payne S. Proventricular Dilatation Disease in Cockatiels (Nymphicus hollandicus) After Infection With a Genotype 2 Avian Bornavirus. J Avian Med Surg 2011; 25:199-204. [DOI: 10.1647/2010-030.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Wünschmann A, Honkavuori K, Briese T, Lipkin WI, Shivers J, Armien AG. Antigen tissue distribution of Avian bornavirus (ABV) in psittacine birds with natural spontaneous proventricular dilatation disease and ABV genotype 1 infection. J Vet Diagn Invest 2011; 23:716-26. [PMID: 21908314 DOI: 10.1177/1040638711408279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tissues of 10 psittacines from aviary 1 ("case birds") and 5 psittacines from different aviaries were investigated for the presence of Avian bornavirus (ABV) antigen by immunohistochemistry using a polyclonal serum specific for the viral nucleocapsid (N) protein. Seven of 10 case birds had clinical signs, and necropsy findings consistent with proventricular dilatation disease (PDD) while 3 case birds and the 5 birds from other aviaries did not exhibit signs and lesions of this disease. In birds with clinical signs of PDD, ABV antigen was largely limited to neuroectodermal cells including neurons, astroglia, and ependymal cells of the central nervous system, neurons of the peripheral nervous system, and adrenal cells. ABV antigen was present in the nuclei and cytoplasm of infected cells. In 2 case birds that lacked signs and lesions of PDD, viral antigen had a more widespread distribution and was present in nuclei and cytoplasm of epithelial cells of the alimentary and urogenital tract, retina, heart, skeletal muscle, and skin in addition to the mentioned neuroectodermal cells. ABV RNA was identified by reverse transcription polymerase chain reaction (RT-PCR) in tissues of all 7 case birds available for testing from aviary 1, including 4 birds with PDD lesions and the 3 birds without PDD lesions. Sequencing and phylogenetic analysis indicated the presence of ABV genotype 1 in all cases. Findings further substantiate a role of ABV in PDD of psittacine bird species.
Collapse
Affiliation(s)
- Arno Wünschmann
- University of Minnesota, Department of Veterinary Population Medicine, 1333 Gortner Avenue, St. Paul, MN 55108, USA.
| | | | | | | | | | | |
Collapse
|