1
|
den Hartog G, Schijf MA, Berbers GAM, van der Klis FRM, Buisman AM. Bordetella pertussis induces IFN-γ production by NK cells resulting in chemo-attraction by respiratory epithelial cells. J Infect Dis 2020; 225:1248-1260. [PMID: 32219323 PMCID: PMC8974844 DOI: 10.1093/infdis/jiaa140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/24/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Whooping cough is caused by infection of the airways with Bordetella pertussis (Bp). As IFN-γ is essential for protective immunity against Bp we investigated how IFN-γ is induced by Bp or the virulence antigens FHA, Prn or PT, and how IFN-γ contributes to local immune responses in humans. METHODS PBMCs from healthy donors and/or respiratory epithelial cells were stimulated with soluble antigens or inactivated intact Bp and the presence or absence of blocking antibodies or chemokines. Supernatants and cells were analyzed for IFN-γ and chemokine production and lymphocyte migration tested using epithelial supernatants. RESULTS The soluble antigens failed to induce IFN-γ production, whereas inactivated Bp induced IFN-γ production. NK cells were the main source of IFN-γ production, which was enhanced by IL-15. Epithelial-PBMC co-cultures showed robust IFN-γ-dependent CXCL9 and CXCL10 production by the epithelial cells following stimulation with IFN-γ and Bp. The epithelial-derived chemokines resulted in CXCR3-dependent recruitment of NK and T cells. CONCLUSIONS Inactivated Bp, but not antigens, induced potent IFN-γ production by NK cells, resulting in chemo-attraction of lymphocytes towards the respiratory epithelium. These data provide insight into the requirements for IFN-γ production and how IFN-γ enhances local immune responses to prevent Bp-mediated disease.
Collapse
Affiliation(s)
- Gerco den Hartog
- Department of Immunology of Infectious Diseases and Vaccination, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Marcel A Schijf
- Department of Immunology of Infectious Diseases and Vaccination, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Guy A M Berbers
- Department of Immunology of Infectious Diseases and Vaccination, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Fiona R M van der Klis
- Department of Immunology of Infectious Diseases and Vaccination, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Department of Immunology of Infectious Diseases and Vaccination, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
2
|
Behr FM, Kragten NAM, Wesselink TH, Nota B, van Lier RAW, Amsen D, Stark R, Hombrink P, van Gisbergen KPJM. Blimp-1 Rather Than Hobit Drives the Formation of Tissue-Resident Memory CD8 + T Cells in the Lungs. Front Immunol 2019; 10:400. [PMID: 30899267 PMCID: PMC6416215 DOI: 10.3389/fimmu.2019.00400] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Tissue-resident memory CD8+ T (TRM) cells that develop in the epithelia at portals of pathogen entry are important for improved protection against re-infection. CD8+ TRM cells within the skin and the small intestine are long-lived and maintained independently of circulating memory CD8+ T cells. In contrast to CD8+ TRM cells at these sites, CD8+ TRM cells that arise after influenza virus infection within the lungs display high turnover and require constant recruitment from the circulating memory pool for long-term persistence. The distinct characteristics of CD8+ TRM cell maintenance within the lungs may suggest a unique program of transcriptional regulation of influenza-specific CD8+ TRM cells. We have previously demonstrated that the transcription factors Hobit and Blimp-1 are essential for the formation of CD8+ TRM cells across several tissues, including skin, liver, kidneys, and the small intestine. Here, we addressed the roles of Hobit and Blimp-1 in CD8+ TRM cell differentiation in the lungs after influenza infection using mice deficient for these transcription factors. Hobit was not required for the formation of influenza-specific CD8+ TRM cells in the lungs. In contrast, Blimp-1 was essential for the differentiation of lung CD8+ TRM cells and inhibited the differentiation of central memory CD8+ T (TCM) cells. We conclude that Blimp-1 rather than Hobit mediates the formation of CD8+ TRM cells in the lungs, potentially through control of the lineage choice between TCM and TRM cells during the differentiation of influenza-specific CD8+ T cells.
Collapse
Affiliation(s)
- Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas H Wesselink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Benjamin Nota
- Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rene A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Arumugam P, Carroll KL, Berceli SA, Barnhill S, Wrenshall LE. Expression of a Functional IL-2 Receptor in Vascular Smooth Muscle Cells. THE JOURNAL OF IMMUNOLOGY 2018; 202:694-703. [PMID: 30598511 DOI: 10.4049/jimmunol.1701151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2018] [Indexed: 11/19/2022]
Abstract
Many nonlymphoid cell types express at least two, if not all three, subunits of the IL-2R; although, compared with lymphocytes, relatively little is known about how IL-2 affects the function of nonlymphoid cells. The limited information available suggests that IL-2 has a substantial impact on cells such as gastrointestinal epithelial cells, endothelial cells, and fibroblasts. In a previous report from our laboratory, we noted that IL-2 and IL-2Rβ-deficient mice lose smooth muscle cells over time, eventually resulting in aneurysmal aortas and ectatic esophagi. This finding, combined with our work showing that IL-2 surrounds vascular smooth muscle cells by association with perlecan, led us to ask whether vascular smooth muscle cells express an IL-2R. Toward this end, we reported the expression of IL-2Rβ on human and murine vascular smooth muscle cells. We now report that vascular smooth muscle cells express all three subunits of the IL-2R, and that expression of IL-2Rα varies with vascular smooth muscle cell phenotype. Furthermore, we show that, through a functional IL-2R, IL-2 initiates signaling pathways and impacts vascular smooth muscle cell function. Finally, we demonstrate that IL-2 expression increases upon initiation of conditions that promote intimal hyperplasia, suggesting a mechanism by which the IL-2/IL-2R system may impact this widespread vascular pathology.
Collapse
Affiliation(s)
- Prakash Arumugam
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435;
| | - Katie L Carroll
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH 45435
| | - Scott A Berceli
- Department of Surgery, University of Florida, Gainesville, FL 32611.,Malcolm Randall Veteran's Administration Medical Center, Gainesville, FL 32611; and
| | - Spencer Barnhill
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Lucile E Wrenshall
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH 45435; .,Department of Surgery, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| |
Collapse
|
4
|
Gupta R, Yan XJ, Barrientos J, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. Mechanistic Insights into CpG DNA and IL-15 Synergy in Promoting B Cell Chronic Lymphocytic Leukemia Clonal Expansion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1570-1585. [PMID: 30068596 PMCID: PMC6103916 DOI: 10.4049/jimmunol.1800591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Abstract
Malignant cell growth within patients with B cell chronic lymphocytic leukemia (B-CLL) is largely restricted to lymphoid tissues, particularly lymph nodes. The recent in vitro finding that TLR-9 ligand (oligodeoxynucleotide [ODN]) and IL-15 exhibit strong synergy in promoting B-CLL growth may be particularly relevant to growth in these sites. This study shows IL-15-producing cells are prevalent within B-CLL-infiltrated lymph nodes and, using purified B-CLL cells from blood, investigates the mechanism for ODN and IL-15 synergy in driving B-CLL growth. ODN boosts baseline levels of phospho-RelA(S529) in B-CLL and promotes NF-κB-driven increases in IL15RA and IL2RB mRNA, followed by elevated IL-15Rα and IL-2/IL-15Rβ (CD122) protein. IL-15→CD122 signaling during a critical interval, 20 to 36-48 h following initial ODN exposure, is required for optimal induction of the cycling process. Furthermore, experiments with neutralizing anti-IL-15 and anti-CD122 mAbs indicate that clonal expansion requires continued IL-15/CD122 signaling during cycling. The latter is consistent with evidence of heightened IL2RB mRNA in the fraction of recently proliferated B-CLL cells within patient peripheral blood. Compromised ODN+IL-15 growth with limited cell density is consistent with a role for upregulated IL-15Rα in facilitating homotypic trans IL-15 signaling, although there may be other explanations. Together, the findings show that ODN and IL-15 elicit temporally distinct signals that function in a coordinated manner to drive B-CLL clonal expansion.
Collapse
Affiliation(s)
- Rashmi Gupta
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Xiao J Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Northwell Health, Manhasset, NY 11303
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Northwell Health, Manhasset, NY 11303
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Northwell Health, Manhasset, NY 11303
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Kanti Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Northwell Health, Manhasset, NY 11303
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Patricia K A Mongini
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030;
| |
Collapse
|
5
|
Dietert K, Gutbier B, Wienhold SM, Reppe K, Jiang X, Yao L, Chaput C, Naujoks J, Brack M, Kupke A, Peteranderl C, Becker S, von Lachner C, Baal N, Slevogt H, Hocke AC, Witzenrath M, Opitz B, Herold S, Hackstein H, Sander LE, Suttorp N, Gruber AD. Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia. PLoS One 2017; 12:e0188251. [PMID: 29155867 PMCID: PMC5695780 DOI: 10.1371/journal.pone.0188251] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/05/2017] [Indexed: 01/03/2023] Open
Abstract
Pneumonia may be caused by a wide range of pathogens and is considered the most common infectious cause of death in humans. Murine acute lung infection models mirror human pathologies in many aspects and contribute to our understanding of the disease and the development of novel treatment strategies. Despite progress in other fields of tissue imaging, histopathology remains the most conclusive and practical read out tool for the descriptive and semiquantitative evaluation of mouse pneumonia and therapeutic interventions. Here, we systematically describe and compare the distinctive histopathological features of established models of acute pneumonia in mice induced by Streptococcus (S.) pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Legionella pneumophila, Escherichia coli, Middle East respiratory syndrome (MERS) coronavirus, influenza A virus (IAV) and superinfection of IAV-incuced pneumonia with S. pneumoniae. Systematic comparisons of the models revealed striking differences in the distribution of lesions, the characteristics of pneumonia induced, principal inflammatory cell types, lesions in adjacent tissues, and the detectability of the pathogens in histological sections. We therefore identified core criteria for each model suitable for practical semiquantitative scoring systems that take into account the pathogen- and model-specific patterns of pneumonia. Other critical factors that affect experimental pathologies are discussed, including infectious dose, time kinetics, and the genetic background of the mouse strain. The substantial differences between the model-specific pathologies underscore the necessity of pathogen- and model-adapted criteria for the comparative quantification of experimental outcomes. These criteria also allow for the standardized validation and comparison of treatment strategies in preclinical models.
Collapse
MESH Headings
- Acinetobacter baumannii/pathogenicity
- Acinetobacter baumannii/physiology
- Animals
- Disease Models, Animal
- Escherichia coli/pathogenicity
- Escherichia coli/physiology
- Female
- Host Specificity
- Humans
- Immunohistochemistry
- Influenza A virus/pathogenicity
- Influenza A virus/physiology
- Klebsiella pneumoniae/pathogenicity
- Klebsiella pneumoniae/physiology
- Legionella pneumophila/pathogenicity
- Legionella pneumophila/physiology
- Lung/microbiology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- Middle East Respiratory Syndrome Coronavirus/physiology
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/microbiology
- Pneumonia, Bacterial/pathology
- Pneumonia, Bacterial/physiopathology
- Pneumonia, Viral/genetics
- Pneumonia, Viral/pathology
- Pneumonia, Viral/physiopathology
- Pneumonia, Viral/virology
- Species Specificity
- Staphylococcus aureus/pathogenicity
- Staphylococcus aureus/physiology
- Streptococcus pneumoniae/pathogenicity
- Streptococcus pneumoniae/physiology
Collapse
Affiliation(s)
- Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra M. Wienhold
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiaohui Jiang
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ling Yao
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Catherine Chaput
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Naujoks
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Brack
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Kupke
- Department of Internal Medicine II, Section for Infectious Diseases, Universities Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) Giessen, Germany
- Institute of Virology, Philipps University of Marburg, German Center for Infection Research (DZIF), TTU Emerging Infections, Marburg, Germany
| | - Christin Peteranderl
- Department of Internal Medicine II, Section for Infectious Diseases, Universities Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) Giessen, Germany
| | - Stephan Becker
- Department of Internal Medicine II, Section for Infectious Diseases, Universities Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) Giessen, Germany
- Institute of Virology, Philipps University of Marburg, German Center for Infection Research (DZIF), TTU Emerging Infections, Marburg, Germany
| | | | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Giessen, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Andreas C. Hocke
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Herold
- Department of Internal Medicine II, Section for Infectious Diseases, Universities Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) Giessen, Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Giessen, Germany
| | - Leif E. Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|
7
|
Bae JS, Shim SH, Hwang SD, Kim JW, Park DW, Park CI. Molecular cloning and expression analysis of interleukin (IL)-15 and IL-15 receptor α from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1209-1215. [PMID: 23911652 DOI: 10.1016/j.fsi.2013.07.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Mammalian interleukin (IL)-15 plays an important role in the activation of CD8(+) T cells and natural killer (NK) cells along with its receptor α (IL-15Rα). To understand the potential roles of IL-15 and IL-15Rα in fish, we identified IL-15 and IL-15Rα cDNA from rock bream (Oplegnathus fasciatus) and investigated their gene expression profiles after bacterial and viral infection. Coding regions of rock bream (Rb) IL-15 and RbIL-15Rα cDNAs were 534 and 402 bp encoding 177 and 133 amino acid residues, respectively. The sushi domain of IL-15Rα was highly conserved between rock bream and other species. Unlike other IL-15Rαs, RbIL-15Rα does not have a transmembrane region. Gene expression of RbIL-15 and RbIL-15Rα was widely expressed in different tissues of healthy fish, especially immune-related tissues. RbIL-15 and RbIL-15Rα were highly induced in the kidney and spleen after infection with Edwardsiella tarda, Streptococcus iniae and red seabream iridovirus. Gene expression patterns of RbIL-15 and RbIL-15Rα were similar in the kidney and spleen after pathogen infection. However, these genes were differentially induced in the liver after pathogen infection. These results suggest that the different responses of RbIL-15 and RbIL-15Rα to pathogen infection may be induced by different tissues or cell types.
Collapse
Affiliation(s)
- Jin-Sol Bae
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 445, Inpyong-dong, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Michel T, Poli A, Domingues O, Mauffray M, Thérésine M, Brons NHC, Hentges F, Zimmer J. Mouse lung and spleen natural killer cells have phenotypic and functional differences, in part influenced by macrophages. PLoS One 2012; 7:e51230. [PMID: 23227255 PMCID: PMC3515449 DOI: 10.1371/journal.pone.0051230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/31/2012] [Indexed: 11/22/2022] Open
Abstract
NK cells are lymphocytes of the innate immune system which are a first line of defense against infections and tumor cells, in bone marrow and peripheral organs like lung and spleen. The lung is an organ in contact with respiratory pathogens and the site of inflammatory disorders triggered by the respiratory environment. In contrast, spleen is a lymphatic organ connected to the blood system which regulates the systemic immune response. Here we compare NK cell maturation and expansion as well as expression of NK cell receptors in spleen and lung compartments. We show that spleen and lung NK cells differ in phenotypic and functional characteristics due to a difference of maturity and cellular microenvironment. Indeed we observe that spleen and lung macrophages have the capacity to influence the cytotoxicity of NK cells by cell-to-cell contact. This suggests that the differences of NK cell subsets are in part due to a modulation by the organ environment.
Collapse
Affiliation(s)
- Tatiana Michel
- Laboratory of Immunogenetics and Allergology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Verbist KC, Cole CJ, Field MB, Klonowski KD. A role for IL-15 in the migration of effector CD8 T cells to the lung airways following influenza infection. THE JOURNAL OF IMMUNOLOGY 2010; 186:174-82. [PMID: 21098221 DOI: 10.4049/jimmunol.1002613] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cytokines generated locally in response to infection play an important role in CD8 T cell trafficking, survival, and effector function, rendering these signals prime candidates for immune intervention. In this paper, we show that localized increases in the homeostatic cytokine IL-15 induced by influenza infection is responsible for the migration of CD8 effector T cells to the site of infection. Moreover, intranasal delivery of IL-15-IL-15Rα soluble complexes (IL-15c) specifically restores the frequency of effector T cells lost in the lung airways of IL-15-deficient animals after influenza infection. Exogenous IL-15c quantitatively augments the respiratory CD8 T cell response, and continued administration of IL-15c throughout the contraction phase of the anti-influenza CD8 T cell response magnifies the resultant CD8 T cell memory generated in situ. This treatment extends the ability of these cells to protect against heterologous infection, immunity that typically depreciates over time. Overall, our studies describe what to our knowledge is a new function for IL-15 in attracting effector CD8 T cells to the lung airways and suggest that adjuvanting IL-15 could be used to prolong anti-influenza CD8 T cell responses at mucosal surfaces to facilitate pathogen elimination.
Collapse
Affiliation(s)
- Katherine C Verbist
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
11
|
Phosphodiesterase 2 inhibition diminished acute lung injury in murine pneumococcal pneumonia. Crit Care Med 2009; 37:584-90. [PMID: 19114892 DOI: 10.1097/ccm.0b013e3181959814] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Severe pneumococcal pneumonia frequently causes respiratory failure. Both pathogen factors and an uncontrolled host response may contribute to acute lung injury by impairing microvascular barrier function. Phosphodiesterase 2 (PDE2) was examined as a potential target in pneumonia-induced lung microvascular hyperpermeability. DESIGN Controlled, in vitro, ex vivo, and in vivo laboratory study. SUBJECTS Female Balb/C and C57Bl/6 mice, 8-12 weeks old. INTERVENTIONS Human umbilical vein endothelial cells and isolated mouse lungs were challenged with the pneumococcal exotoxin pneumolysin in the presence or absence of the selective PDE2 inhibitors 9-(6-phenyl-2-oxohex-3-yl)-2-(3,4-dimethoxybenzyl)-purin-6one (PDP) or hydroxy-PDP. Transcellular electrical resistance or human serum albumin leakage in bronchoalveolar lavage fluid was determined, respectively. In addition, we induced pneumococcal pneumonia in mice and treated with hydroxy-PDP via continuous subcutaneous application by osmotic pumps. Human serum albumin leakage in bronchoalveolar lavage fluid was measured 48 hours after transnasal infection, and lung specimens were analyzed by TaqMan real-time polymerase chain reaction and Western blot for PDE2 gene and protein expression. MEASUREMENTS AND MAIN RESULTS In isolated perfused mouse lungs and in human umbilical vein endothelial cell monolayers, selective inhibition of PDE2 markedly decreased pneumolysin-induced hyperpermeability. Furthermore, in murine pneumococcal pneumonia, pulmonary PDE2-mRNA and -protein expression was significantly increased, and pneumonia-induced vascular permeability was distinctively reduced by PDE2 inhibition. CONCLUSIONS PDE2 inhibition diminished microvascular leakage in pneumococcal pneumonia, and pulmonary PDE2 upregulation may play a crucial role in this respect. Selective PDE2 inhibitors thus may offer a promising therapeutic approach in severe pneumococcal pneumonia.
Collapse
|
12
|
Reppe K, Tschernig T, Lührmann A, van Laak V, Grote K, Zemlin MV, Gutbier B, Müller HC, Kursar M, Schütte H, Rosseau S, Pabst R, Suttorp N, Witzenrath M. Immunostimulation with Macrophage-Activating Lipopeptide-2 Increased Survival in Murine Pneumonia. Am J Respir Cell Mol Biol 2009; 40:474-81. [DOI: 10.1165/rcmb.2008-0071oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Current World Literature. Curr Opin Pulm Med 2008; 14:266-73. [DOI: 10.1097/mcp.0b013e3282ff8c19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Subcellular expression pattern and role of IL-15 in pneumococci induced lung epithelial apoptosis. Histochem Cell Biol 2008; 130:165-76. [PMID: 18365236 DOI: 10.1007/s00418-008-0414-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
Streptococcus pneumoniae is the leading causative agent of community-acquired pneumonia. Induction of apoptosis in pulmonary epithelial cells by bacteria during pneumonia might be harmful to the host. Interleukin-15 (IL-15) has been demonstrated as an effective inhibitor of apoptosis and is expressed in lung epithelium on the mRNA and protein level. Therefore, we characterized the sub-cellular expression pattern of the short and long IL-15 isoforms in lung epithelial cells in vitro as well as its role in pneumococci-related lung epithelial cell apoptosis. We found an expression pattern for both IL-15 signal peptides in the pulmonary epithelial cell lines A549 and Beas-2B. Moreover, a strong co-localization of IL-15 and IL-15Ralpha was detected on cell surfaces. Compared to pro-inflammatory cytokine stimulation, neither IL-15 nor its trimeric receptor complex was up-regulated after pneumococcal infection. However, overexpression of IL-15 isoforms revealed IL-15LSP and IL-15Vkl as inhibitors of pneumococci induced apoptosis in pulmonary epithelial cells. Thus, IL-15 may act as an anti-apoptotic molecule in pneumococci infection, thereby suggesting IL-15 as a benefical cytokine in pulmonary host defense against infection.
Collapse
|