1
|
El-kady AM, Altwaim SA, Wakid MH, Banjar AS, Mohammed K, Alfaifi MS, Elshazly H, Al-Megrin WAI, Alshehri EA, Sayed E, Elshabrawy HA. Prior Trichinella spiralis infection protects against Schistosoma mansoni induced hepatic fibrosis. Front Vet Sci 2024; 11:1443267. [PMID: 39439825 PMCID: PMC11494294 DOI: 10.3389/fvets.2024.1443267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background Schistosomiasis affects approximately 250 million people worldwide, with 200,000 deaths annually. It has been documented that the granulomatous response to Schistosoma mansoni (S. mansoni) oviposition is the root cause of progressive liver fibrosis in chronic infection, in 20% of the patients, and can lead to liver cirrhosis and/or liver cancer. The influence of helminths coinfection on schistosomiasis-induced liver pathological alterations remains poorly understood. Therefore, in this study, we investigated the effect of Trichinella spiralis (T. spiralis) infection on S. mansoni-induced hepatic fibrosis. Materials and methods Thirty adult male Balb-c mice were divided into three groups. Group 1 was left uninfected; group 2 was infected with S. mansoni cercariae and group 3 was orally infected with T. spiralis larvae, then 28 days later, this group was infected with S. mansoni cercariae. All groups were sacrificed at the end of the 8th week post infection with S. mansoni to evaluate the effect of pre-infection with T. spiralis on S. mansoni induced liver fibrosis was evaluated parasitologically (worm burden and egg count in tissues), biochemically (levels of alanine aminotransferase and aspartate aminotransferase), histopathologically (H&E and MT staining, and immunohistochemical staining for the expression of α-SMA, IL-6, IL-1β, IL-17, IL-23, TNF-α, and TGF-β). Results The results in the present study demonstrated marked protective effect of T. spiralis against S. mansoni induced liver pathology. We demonstrated that pre-infection with T. spirais caused marked reduction in the number of S. mansoni adult worms (3.17 ± 0.98 vs. 18 ± 2.16, P = 0.114) and egg count in both the intestine (207.2 ± 64.3 vs. 8,619.43 ± 727.52, P = 0.009) and liver tissues (279 ± 87.2 vs. 7,916.86 ± 771.34; P = 0.014). Consistently, we found significant reductions in both number (3.4 ± 1.1 vs. 11.8.3 ± 1.22; P = 0.007) and size (84 ± 11 vs. 294.3 ± 16.22; P = 0.001) of the hepatic granulomas in mice pre-infected with T. spiralis larvae compared to those infected with only S. mansoni. Furthermore, pre- infection with T. spiralis markedly reduced S. mansoni- induced hepatic fibrosis, as evidenced by decreased collagen deposition, low expression of α-SMA, and significantly reduced levels of IL-17, IL-1B, IL-6, TGF-B, IL-23, and TNF-α compared to mice infected with S. mansoni only. Conclusions Our data show that pre-infection with T. spiralis effectively protected mice from severe schistosomiasis and liver fibrosis. We believe that our findings support the potential utility of helminths for the preventing and ameliorating severe pathological alterations induced by schistosomiasis.
Collapse
Affiliation(s)
- Asmaa M. El-kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Sarah A. Altwaim
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Majed H. Wakid
- Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa S. Banjar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalil Mohammed
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mashael S. Alfaifi
- Department of Epidemiology and Medical Statistics, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences-Scientific Departments, Qassim University, Buraidah, Qassim, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Eman Sayed
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, United States
| |
Collapse
|
2
|
Zhang L, Wang L, Xiang S, Hu Y, Zhao S, Liao Y, Zhu Z, Wu X. CRISPR/Cas9-mediated gene knockout of Sj16 in Schistosoma japonicum eggs upregulates the host-to-egg immune response. FASEB J 2022; 36:e22615. [PMID: 36273308 DOI: 10.1096/fj.202200600rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Schistosomiasis is an important, neglected tropical disease. Schistosoma japonicum can evade host attacks by regulating the host's immunity, causing continuous infection. However, interactions between the host's immune system and S. japonicum are unclear. Our previous research found that the Sj16 protein isolated from S. japonicum has an anti-inflammatory effect in the host. However, the role of Sj16 in the regulation of host immunity in S. japonicum infection is not clear. Here, we applied the CRISPR/Cas9 technique to knockout Sj16 in S. japonicum eggs and investigated the effect of Sj16 in regulating host immunity. We found egg viability decreased after Sj16 knockout. In addition, we found granulomatous inflammation increased, the T-cell immune response enhanced and the immune microenvironment changed in mice model injected with Sj16-knockout eggs by tail vein. These findings suggested that S. japonicum could regulate host immunity through Sj16 to evade the host immune attack and cause continuous infection. In addition, we confirmed the application of CRISPR/Cas9-mediated gene reprogramming for functional genomics in S. japonicum.
Collapse
Affiliation(s)
- Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiaoying Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Abdel Aziz N, Musaigwa F, Mosala P, Berkiks I, Brombacher F. Type 2 immunity: a two-edged sword in schistosomiasis immunopathology. Trends Immunol 2022; 43:657-673. [PMID: 35835714 DOI: 10.1016/j.it.2022.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease globally after malaria, with no available therapy to control disease-driven immunopathology. Although schistosomiasis induces a markedly heterogenous immune response, type 2 immunity is the dominating immune response following oviposition. While type 2 immunity has a crucial role in granuloma formation and host survival during the acute stage of disease, its chronic activation can result in tissue scarring, fibrosis, and organ impairment. Here, we discuss recent advances in schistosomiasis, demonstrating how different immune and non-immune cells and signaling pathways are involved in the induction, maintenance, and regulation of type 2 immunity. A better understanding of these immune responses during schistosomiasis is essential to inform the potential development of candidate therapeutic strategies that fine-tune type 2 immunity to ideally modulate schistosomiasis immunopathology.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biotechnology/Biomolecular Chemistry Program, Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| | - Fungai Musaigwa
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Paballo Mosala
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Inssaf Berkiks
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
4
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
5
|
Houlder EL, Costain AH, Cook PC, MacDonald AS. Schistosomes in the Lung: Immunobiology and Opportunity. Front Immunol 2021; 12:635513. [PMID: 33953712 PMCID: PMC8089482 DOI: 10.3389/fimmu.2021.635513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 01/21/2023] Open
Abstract
Schistosome infection is a major cause of global morbidity, particularly in sub-Saharan Africa. However, there is no effective vaccine for this major neglected tropical disease, and re-infection routinely occurs after chemotherapeutic treatment. Following invasion through the skin, larval schistosomula enter the circulatory system and migrate through the lung before maturing to adulthood in the mesenteric or urogenital vasculature. Eggs released from adult worms can become trapped in various tissues, with resultant inflammatory responses leading to hepato-splenic, intestinal, or urogenital disease – processes that have been extensively studied in recent years. In contrast, although lung pathology can occur in both the acute and chronic phases of schistosomiasis, the mechanisms underlying pulmonary disease are particularly poorly understood. In chronic infection, egg-mediated fibrosis and vascular destruction can lead to the formation of portosystemic shunts through which eggs can embolise to the lungs, where they can trigger granulomatous disease. Acute schistosomiasis, or Katayama syndrome, which is primarily evident in non-endemic individuals, occurs during pulmonary larval migration, maturation, and initial egg-production, often involving fever and a cough with an accompanying immune cell infiltrate into the lung. Importantly, lung migrating larvae are not just a cause of inflammation and pathology but are a key target for future vaccine design. However, vaccine efforts are hindered by a limited understanding of what constitutes a protective immune response to larvae. In this review, we explore the current understanding of pulmonary immune responses and inflammatory pathology in schistosomiasis, highlighting important unanswered questions and areas for future research.
Collapse
Affiliation(s)
- Emma L Houlder
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Alice H Costain
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Peter C Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Shen J, Wang L, Peng M, Liu Z, Zhang B, Zhou T, Sun X, Wu Z. Recombinant Sj16 protein with novel activity alleviates hepatic granulomatous inflammation and fibrosis induced by Schistosoma japonicum associated with M2 macrophages in a mouse model. Parasit Vectors 2019; 12:457. [PMID: 31547847 PMCID: PMC6755699 DOI: 10.1186/s13071-019-3697-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potent granulomatous inflammation responses induced by schistosome eggs and resultant fibrosis are the primary causes of morbidity in schistosomiasis. Recombinant Sj16 (rSj16), a 16-kDa protein of Schistosoma japonicum produced in Escherichia coli, has been demonstrated to have novel immunoregulatory effects in vivo and in vitro. Thus, this study investigated the anti-inflammatory and anti-fibrotic effects of rSj16 treatment in S. japonicum-infected mice and demonstrated the immune modulation between the schistosome and the host. METHODS Schistosoma japonicum infected mice were treated with the rSj16 protein and Sj16 peptide at different time points post-infection to assess their efficacy at the optimal time point. Sj16 peptide and/or Praziquantel (PZQ) treatments were initiated at week 5 post-infection to compare the therapeutic efficacy of each regimen. Hepatic granulomatous inflammation, fibrosis and cytokine production (pro-inflammatory, Th1, Th2, Th17 and regulatory cytokines IL-10) were detected. Moreover, M2 macrophages were measured to illuminate the mechanisms of Sj16. RESULTS The rSj16 protein and Sj16 peptide had significant protective effects in S. japonicum-infected mice, as shown by decreased granuloma formation, areas of collagen deposition and inhibition of pro-inflammatory Th1, Th2 and Th17 cytokine production. These protective activities were more obvious when animals were treated with either the Sj16 protein or peptide at early stages post-infection. Interestingly, the combined treatment of PZQ and Sj16 was more effective and upregulated IL-10 production than administration of PZQ alone in infected mice. Furthermore, the Sj16 treatment alleviated the pathological effects associated with activated M2 macrophages. CONCLUSIONS This study demonstrates the anti-inflammatory and anti-fibrotic effects of rSj16 in schistosomiasis. Therefore, the combination of rSj16 with PZQ could be a viable and promising therapeutic strategy for schistosomiasis. In addition, this investigation provides additional information on schistosome-mediated immune modulation and host-parasite interactions.
Collapse
Affiliation(s)
- Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Mei Peng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zhen Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Beibei Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Tao Zhou
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
7
|
Chen D, Tian AL, Hou JL, Li JX, Tian X, Yuan XD, Li X, Elsheikha HM, Zhu XQ. The Multitasking Fasciola gigantica Cathepsin B Interferes With Various Functions of Goat Peripheral Blood Mononuclear Cells in vitro. Front Immunol 2019; 10:1707. [PMID: 31396222 PMCID: PMC6664072 DOI: 10.3389/fimmu.2019.01707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
Cathepsin B, a lysosomal cysteine protease, is thought to be involved in the pathogenesis of Fasciola gigantica infection, but its exact role remains unclear. In the present study, a recombinant F. gigantica cathepsin B (rFgCatB) protein was expressed in the methylotrophic yeast Pichia pastoris. Western blot analysis confirmed the reactivity of the purified rFgCatB protein to serum from F. gigantica-infected goats. The effects of serial concentrations (10, 20, 40, 80, and 160 μg/ml) of rFgCatB on various functions of goat peripheral blood mononuclear cells (PBMCs) were examined. We demonstrated that rFgCatB protein can specifically bind to the surface of PBMCs. In addition, rFgCatB increased the expression of cytokines (IL-2, IL-4, IL-10, IL-17, TGF-β, and IFN-γ), and increased nitric oxide production and cell apoptosis, but reduced cell viability. These data show that rFgCatB can influence cellular and immunological functions of goat PBMCs. Further characterization of the posttranslational modification and assessment of rFgCatB in immunogenicity studies is warranted.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Dan Yuan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
8
|
Protection against Schistosoma haematobium infection in hamsters by immunization with Schistosoma mansoni gut-derived cysteine peptidases, SmCB1 and SmCL3. Vaccine 2017; 35:6977-6983. [PMID: 29122387 DOI: 10.1016/j.vaccine.2017.10.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 10/20/2017] [Indexed: 01/21/2023]
Abstract
We examined the immunogenicity and protective potential of SmCB1 and SmCL3 cysteine peptidases, alone and in combination, in hamsters challenged with S. haematobium. For each of two independent experiments, eight Syrian hamsters were immunized twice with a three week-interval with 0 (controls), 20 µg SmCB1, 20 µg SmCL3, or 10 µg SmCB1 plus 10 µg SmCL3, and then percutaneously exposed eight weeks later to 100 S. haematobium cercariae. Hamsters from each group were assessed for humoral and whole blood culture cytokine responses on day 10 post challenge infection, and examined for parasitological parameters 12 weeks post infection. At day 10 post-infection we found that SmCB1 and SmCL3 elicited low antibody titres and weak but polarized cytokine type 2 responses. Nevertheless, both cysteine peptidases, alone or in combination, evoked reproducible and highly significant reduction in challenge worm burden (>70%, P < 0.02) as well as a significant reduction in worm egg counts and viability. The data support our previous findings and show that S. mansoni cysteine peptidases SmCB1 and SmCL3 are efficacious adjuvant-free vaccines that induce protection in mice and hamsters against both S. mansoni and S. haematobium.
Collapse
|
9
|
Apaer S, Tuxun T, Ma HZ, Zhang H, Aierken A, Aini A, Li YP, Lin RY, Wen H. Parasitic infection as a potential therapeutic tool against rheumatoid arthritis. Exp Ther Med 2016; 12:2359-2366. [PMID: 27698735 DOI: 10.3892/etm.2016.3660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/15/2016] [Indexed: 12/11/2022] Open
Abstract
Parasites, which are a recently discovered yet ancient dweller in human hosts, remain a great public health burden in underdeveloped countries, despite preventative efforts. Rheumatoid arthritis is a predominantly cosmopolitan health problem with drastic morbidity rates, although encouraging progress has been achieved regarding treatment. However, although various types of methods and agents have been applied clinically, their broad usage has been limited by their adverse effects and/or high costs. Sustained efforts have been exerted on the 'hygiene hypothesis' since the 1870s. The immunosuppressive nature of parasitic infections may offer potential insight into therapeutic strategies for rheumatoid arthritis, in which the immune system is overactivated. An increasing number of published papers are focusing on the preventive and/or curative effect of various parasitic infection on rheumatoid arthritis from experimental studies to large-scale epidemiological studies and clinical trials. Therefore, the present review aimed to provide a general literature review on the possible beneficial role of parasitic infection on rheumatoid arthritis.
Collapse
Affiliation(s)
- Shadike Apaer
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Tuerhongjiang Tuxun
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hai-Zhang Ma
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Heng Zhang
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Amina Aierken
- Department of Ultrasonography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abudusalamu Aini
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yu-Peng Li
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ren-Yong Lin
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hao Wen
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
10
|
Abdel Aziz N, Tallima H, Hafez EA, El Ridi R. Papain-Based Vaccination Modulates Schistosoma mansoni Infection-Induced Cytokine Signals. Scand J Immunol 2016; 83:128-38. [PMID: 26603950 DOI: 10.1111/sji.12399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023]
Abstract
We have previously shown that immunization of outbred rodents with cysteine peptidases-based vaccine elicited type 2-biased immune responses associated with consistent and reproducible protection against challenge Schistosoma mansoni. We herein start to elucidate the molecular basis of C57BL/6 mouse resistance to S. mansoni following treatment with the cysteine peptidase, papain. We evaluated the early cytokine signals delivered by epidermal, dermal, and draining lymph node cells of naïve, and S. mansoni -infected mice treated 1 day earlier with 0 or 50 μg papain, or immunized twice with papain only (10 μg/mouse), papain-free recombinant S. mansoni glyceraldehyde 3-phosphate dehydrogenase and 2-Cys peroxiredoxin peptide (10 and 15 μg/mouse, respectively = antigen Mix), or papain-adjuvanted antigen Mix. Schistosoma mansoni infection induced epidermal and lymph node cells to release type 1, type 2 and type 17 cytokines, known to counteract each other. Expectedly, humoral immune responses were negligible until patency. Papain pretreatment or papain-based vaccination diminished or shut off S. mansoni infection early induction of type 1, type 17 and type 2 cytokines except for thymic stromal lymphopoietin and programmed the immune system towards a polarized type 2 immune milieu, associated with highly significant (P < 0.005 - <0.0001) resistance to S. mansoni infection.
Collapse
Affiliation(s)
- N Abdel Aziz
- Chemistry Department, Cairo University, Cairo, Egypt
| | - H Tallima
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - E A Hafez
- Chemistry Department, Cairo University, Cairo, Egypt
| | - R El Ridi
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Ricciardi A, Visitsunthorn K, Dalton JP, Ndao M. A vaccine consisting of Schistosoma mansoni cathepsin B formulated in Montanide ISA 720 VG induces high level protection against murine schistosomiasis. BMC Infect Dis 2016; 16:112. [PMID: 26945988 PMCID: PMC4779570 DOI: 10.1186/s12879-016-1444-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/24/2016] [Indexed: 01/13/2023] Open
Abstract
Background Schistosomiasis is the most important human helminth infection due to its impact on public health. The clinical manifestations are chronic and significantly decrease an individual’s quality of life. Infected individuals suffer from long-term organ pathologies including fibrosis which eventually leads to organ failure. The development of a vaccine against this parasitic disease would contribute to a long-lasting decrease in disease spectrum and transmission. Method Our group has chosen Schistosoma mansoni (Sm) cathepsin B, a peptidase involved in parasite feeding, as a prospective vaccine candidate. Our experimental formulation consisted of recombinant Sm-cathepsin B formulated in Montanide ISA 720 VG, a squalene based adjuvant containing a mannide mono-oleate emulsifier. Parasitological burden was assessed by determining adult worm, hepatic egg, and intestinal egg numbers in each mouse. Serum was used in ELISAs to evaluate production of antigen-specific antibodies, and isolated splenocytes were stimulated with the antigen for the analysis of cytokine secretion levels. Results The Sm-cathepsin B and Montanide formulation conferred protection against a challenge infection by significantly reducing all forms of parasitological burdens. Worm burden, hepatic egg burden and intestinal egg burden were decreased by 60 %, 62 %, and 56 %, respectively in immunized animals compared to controls (P = 0.0002, P < 0.0001, P = 0.0009, respectively). Immunizations with the vaccine elicited robust production of Sm-cathepsin B specific antibodies (endpoint titers = 122,880). Both antigen-specific IgG1 and IgG2c titers were observed, with the former having more elevated titers. Furthermore, splenocytes isolated from the immunized animals, compared to control animals, secreted higher levels of key Th1 cytokines, IFN-γ, IL-12, and TNF-α, as well as the Th2 cytokines IL-5 and IL-4 when stimulated with recombinant Sm-cathepsin B. The Th17 cytokine IL-17, the chemokine CCL5, and the growth factor GM-CSF were also significantly increased in the immunized animals compared to the controls. Conclusion The formulation tested in this study was able to significantly reduce all forms of parasite burden, stimulate robust production of antigen-specific antibodies, and induce a mixed Th1/Th2 response. These results highlight the potential of Sm-cathepsin B/Montanide ISA 720 VG as a vaccine candidate against schistosomiasis. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1444-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Ricciardi
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada.,National Reference Center for Parasitology, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | | | - John P Dalton
- Institute of Parasitology, McGill University, Montreal, QC, Canada.,School of Biological Sciences, Medical Biology Centre (MBC) Queen's University Belfast, Belfast, Northern Ireland
| | - Momar Ndao
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada. .,National Reference Center for Parasitology, Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
12
|
Zhang W, Zhu J, Song X, Xu Z, Xue X, Chen X, Yang X, Li Y, Dong X, Zhou S, Li W, Qian Y, Liu F, Su C. An association of Aquaporin-4 with the immunoregulation of liver pathology in mice infected with Schistosoma japonicum. Parasit Vectors 2015; 8:37. [PMID: 25604731 PMCID: PMC4311472 DOI: 10.1186/s13071-015-0650-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 01/10/2015] [Indexed: 01/17/2023] Open
Abstract
Background Schistosomiasis is a chronic parasitic disease that affects approximately 200 million people. In Schistosomiasis japonica and mansoni, parasite eggs were trapped in host liver and stimulated the CD4+T cell responses to regulate the formation of the granulomas. Subsequently, excessive granulomatous response in some heavily, and/or repeatedly infected individuals could result in chronic liver fibrosis and circulatory impairment. Thus, elucidation of the mechanisms of these responses will not only provide more information to better understand the mechanisms of the immunoregulation in schistosomiasis, but also help to design new therapies to control granuloma-associated immunopathology. The role of aquaporin-4 (AQP4) in water transport has been extensively investigated in the central nervous system (CNS). Recently, studies have shown that AQP4 expresses in immune system and lack of AQP4 in mice results in significantly less CD4+CD25+ T regulatory cells (Treg cells) under physiological condition, one of the subpopulations of CD4+T cells which restrains immunopathology in hosts with schistosomiasis. However, little information exists regarding the contribution of AQP4 to the immune regulation in schistosome infection. Methods The liver granulomatous response in S. japonicum-infected AQP4 knockout (KO) mice and its wild-type (WT) littermates were detected by staining liver sections with hematoxylin and eosin. The generation of various CD4+ T subsets, including Th1, Th2, Th17, and Treg cells were analyzed by flow cytometry. In addition, the levels of total IgG, IgG1, IgG2a in serum of infected mice were detected by ELISA assay. Results Our results showed an enhanced granulomatous response with increased accumulation of eosinophils and macrophages around eggs in the liver of AQP4 KO mice with Schistosomiasis japonica. In addition, our study demonstrated enhanced Th2 but reduced Th1 and Treg cells generation in AQP4 KO mice with Schistosomiasis japonica, which may, at least partly, account for the enhancement of the liver granuloma formation. Conclusion Our study for the first time provides evidences that AQP4 has an association with the immunoregulation of the liver granuloma formation, which may confer a new option for schistosomiasis treatment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Jifeng Zhu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Xian Song
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Zhipeng Xu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Xue Xue
- Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Xiaojun Chen
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Xiaowei Yang
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Yong Li
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Xiaoxiao Dong
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Sha Zhou
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Wei Li
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Yingying Qian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Feng Liu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Chuan Su
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
13
|
Abstract
Schistosomiasis is one of the most prevalent, insidious and serious of the tropical parasitic diseases. Although the effective anthelmintic drug, praziquantel, is widely available and cheap, it does not protect against re-infection, drug-resistant schistosome may evolve and mass drug administration programmes based around praziquantel are probably unsustainable long term. Whereas protective anti-schistosome vaccines are not yet available, the zoonotic nature of Schistosoma japonicum provides a novel approach for developing a transmission-blocking veterinary vaccine in domestic animals, especially bovines, which are major reservoir hosts, being responsible for up to 90% of environmental egg contamination in China and the Philippines. However, a greater knowledge of schistosome immunology is required to understand the processes associated with anti-schistosome protective immunity and to reinforce the rationale for vaccine development against schistosomiasis japonica. Importantly as well, improved diagnostic tests, with high specificity and sensitivity, which are simple, rapid and able to diagnose light S. japonicum infections, are required to determine the extent of transmission interruption and the complete elimination of schistosomiasis following control efforts. This article discusses aspects of the host immune response in schistosomiasis, the current status of vaccine development against S. japonicum and reviews approaches for diagnosing and detecting schistosome infections in mammalian hosts.
Collapse
|
14
|
Bouchery T, Kyle R, Ronchese F, Le Gros G. The Differentiation of CD4(+) T-Helper Cell Subsets in the Context of Helminth Parasite Infection. Front Immunol 2014; 5:487. [PMID: 25360134 PMCID: PMC4197778 DOI: 10.3389/fimmu.2014.00487] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022] Open
Abstract
Helminths are credited with being the major selective force driving the evolution of the so-called “type 2” immune responses in vertebrate animals, with their size and infection strategies presenting unique challenges to the immune system. Originally, type 2 immune responses were defined by the presence and activities of the CD4+ T-helper 2 subset producing the canonical cytokines IL-4, IL-5, and IL-13. This picture is now being challenged by the discovery of a more complex pattern of CD4+ T-helper cell subsets that appear during infection, including Tregs, Th17, Tfh, and more recently, Th22, Th9, and ThGM. In addition, a clearer view of the mechanisms by which helminths and their products selectively prime the CD4+ T-cell subsets is emerging. In this review, we have focused on recent data concerning the selective priming, differentiation, and functional role of CD4+ T-helper cell subsets in the context of helminth infection. We argue for a re-evaluation of the original Th2 paradigm and discuss how the observed plasticity of the T-helper subsets may enable the parasitized host to achieve an appropriate compromise between elimination, tissue repair, containment, and pathology.
Collapse
Affiliation(s)
- Tiffany Bouchery
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Ryan Kyle
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research , Wellington , New Zealand ; Victoria University of Wellington , Wellington , New Zealand
| |
Collapse
|
15
|
Monocyte subsets in schistosomiasis patients with periportal fibrosis. Mediators Inflamm 2014; 2014:703653. [PMID: 24757288 PMCID: PMC3976880 DOI: 10.1155/2014/703653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/16/2014] [Accepted: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
A major issue with Schistosoma mansoni infection is the development of periportal fibrosis, which is predominantly caused by the host immune response to egg antigens. Experimental studies have pointed to the participation of monocytes in the pathogenesis of liver fibrosis. The aim of this study was to characterize the subsets of monocytes in individuals with different degrees of periportal fibrosis secondary to schistosomiasis. Monocytes were classified into classical (CD14++CD16−), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++). The expressions of monocyte markers and cytokines were assessed using flow cytometry. The frequency of classical monocytes was higher than the other subsets. The expression of HLA-DR, IL-6, TNF-α, and TGF-β was higher in monocytes from individuals with moderate to severe fibrosis as compared to other groups. Although no differences were observed in receptors expression (IL-4R and IL-10R) between groups of patients, the expression of IL-12 was lower in monocytes from individuals with moderate to severe fibrosis, suggesting a protective role of this cytokine in the development of fibrosis. Our data support the hypothesis that the three different monocyte populations participate in the immunopathogenesis of periportal fibrosis, since they express high levels of proinflammatory and profibrotic cytokines and low levels of regulatory markers.
Collapse
|
16
|
Attia SK, Moftah NH, Abdel-Azim ES. Expression of IFN-γ, IL-4, and IL-17 in cutaneous schistosomal granuloma. Int J Dermatol 2014; 53:991-8. [PMID: 24601888 DOI: 10.1111/ijd.12464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Cutaneous schistosomal granuloma (CSG) is a rare dermatological disease, the clinical and histopathological features of which are well defined. Although a panoramic picture of its immunopathogenesis in humans is not yet available, it is believed to be induced by T helper 1 (Th1), Th2, or Th17 cytokines in animals. This study evaluated the expression of different types of Th cytokines, including Th1 cytokine interferon-γ (IFN-γ), Th2 cytokine interleukin-4 (IL-4), and Th17 cytokine IL-17, in human CSG. METHODS This study included nine patients with CSG. Dermatological examinations were conducted in all subjects. Skin biopsy specimens were stained with hematoxylin and eosin (H&E). Immunohistochemical examination was performed using three monoclonal anti-human antibodies against IFN-γ, IL-4, and IL-17 to evaluate Th1, Th2, and Th17 cytokines, respectively. RESULTS The most common site of CSG manifestation was the paraumbilical area, which was affected in 66.7% of patients. All lesional skin biopsy specimens revealed multiple dermal granulomas surrounding schistosomal eggs. Positive immunoreactivity for IFN-γ, IL-4, and IL-17 was present in dermal inflammatory infiltrate in 88.9, 11.1, and 88.9% of subjects, respectively. There were statistically significant negative correlations between the duration of disease and both IFN-γ and IL-17 (P ≤ 0.05), and a statistically significant positive correlation between IFN-γ and IL-17 (P ≤ 0.05). CONCLUSIONS This study suggests that CSG is formed by the action of both Th1 (IFN-γ) and Th17 (IL-17) cytokines, which have been shown to be directed against the schistosomal egg to induce a cell-mediated immune response.
Collapse
Affiliation(s)
- Sameh K Attia
- Department of Dermatology, Sexually Transmitted Diseases and Andrology, Al-Minya University Hospital, Al-Minya University, Al-Minya, Egypt
| | | | | |
Collapse
|
17
|
Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, McColl SR. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog 2014; 10:e1003905. [PMID: 24586147 PMCID: PMC3930558 DOI: 10.1371/journal.ppat.1003905] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.
Collapse
Affiliation(s)
- Ervin E. Kara
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Iain Comerford
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kevin A. Fenix
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cameron R. Bastow
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carly E. Gregor
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Duncan R. McKenzie
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R. McColl
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Simultaneous priming with DNA encoding Sm-p80 and boosting with Sm-p80 protein confers protection against challenge infection with Schistosoma mansoni in mice. Parasitol Res 2014; 113:1195-200. [PMID: 24452916 DOI: 10.1007/s00436-014-3757-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/09/2014] [Indexed: 12/25/2022]
Abstract
Prophylactic efficacy of Sm-p80 was tested in the mouse model using DNA priming and boosting with protein approach. However, the novelty of the approach utilized in this study is that both the DNA priming and protein boosting was performed on a single day and no further vaccine inoculations were given to mice; the animals were challenged 1 month after the initial vaccine administration. Using this approach, significant reduction in worm burden (33 to 57 %) and marked decrease in egg retention in tissues (34 to 66%) was observed. Robust antibody titers and upregulation of cytokines (IL-1α/β, IL-12α, and IFN-γ) appears to correlate with the protection. This approach of administering vaccine on a single day could be greatly helpful in the field setting because it will eliminate the compliance issues that may arise with multiple boosters that may be required for optimal efficacy for some vaccines.
Collapse
|
19
|
Min W, Kim WH, Lillehoj EP, Lillehoj HS. Recent progress in host immunity to avian coccidiosis: IL-17 family cytokines as sentinels of the intestinal mucosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:418-428. [PMID: 23583525 DOI: 10.1016/j.dci.2013.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
The molecular and cellular mechanisms leading to immune protection against coccidiosis are complex and include multiple aspects of innate and adaptive immunities. Innate immunity is mediated by various subpopulations of immune cells that recognize pathogen associated molecular patterns (PAMPs) through their pattern recognition receptors (PRRs) leading to the secretion of soluble factors with diverse functions. Adaptive immunity, which is important in conferring protection against subsequent reinfections, involves subtypes of T and B lymphocytes that mediate antigen-specific immune responses. Recently, global gene expression microarray analysis has been used in an attempt to dissect this complex network of immune cells and molecules during avian coccidiosis. These new studies emphasized the uniqueness of the innate immune response to Eimeria infection, and directly led to the discovery of previously uncharacterized host genes and proteins whose expression levels were modulated following parasite infection. Among these is the IL-17 family of cytokines. This review highlights recent progress in IL-17 research in the context of host immunity to avian coccidiosis.
Collapse
Affiliation(s)
- Wongi Min
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | | | | | | |
Collapse
|
20
|
Oda T, Sasaki H, Ito T, Sekine H, Kato T, Yoshinari M, Yajima Y. Plasma cytokine profiles following subcutaneous implantation of titanium in mice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.69113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Cytokine and Chemokine Profile in Individuals with Different Degrees of Periportal Fibrosis due to Schistosoma mansoni Infection. J Parasitol Res 2012; 2012:394981. [PMID: 23320145 PMCID: PMC3540765 DOI: 10.1155/2012/394981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/07/2012] [Indexed: 11/25/2022] Open
Abstract
Periportal fibrosis in schistosomiasis has been associated to the host immune response to parasite antigens. We evaluated the immune response in S. mansoni infected individuals with different degrees of periportal fibrosis. Cytokine and chemokines were measured in serum and in supernatants of PBMC cultures stimulated with the soluble adult worm (SWAP) or egg (SEA) antigens, using a sandwich ELISA. The levels of IL-5 in response to SEA were higher in individuals with moderate to severe fibrosis (310.9 pg/mL) compared to individuals without fibrosis (36.8 pg/mL; P = 0.0418). There was also a higher production of TNF-α in cultures stimulated with SWAP in patients with insipient fibrosis (1446 pg/mL) compared to those without fibrosis (756.1 pg/mL; P = 0.0319). The serum levels of IL-13 and MIP-1α were higher in subjects without fibrosis than in those with moderate to severe fibrosis. However a positive association between serum levels of IL-13, TNF-α, MIP-1α, and RANTES and S. mansoni parasite burden was found. From these data we conclude that IL-5 and TNF-α may participate in liver pathology in schistosomiasis. The positive association between IL-13, TNF-α, MIP-1α, and RANTES with parasite burden, however, might predict the development of liver pathology.
Collapse
|
22
|
Parasite-specific IL-17-type cytokine responses and soluble IL-17 receptor levels in Alveolar Echinococcosis patients. Clin Dev Immunol 2012; 2012:735342. [PMID: 22969818 PMCID: PMC3437316 DOI: 10.1155/2012/735342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/23/2012] [Indexed: 01/08/2023]
Abstract
Alveolar Echinococcosis (AE) caused by the cestode Echinococcus multilocularis, is a severe helminth infection of man, where unrestricted parasite growth will ultimately result in organ failure and fatality. The tissue-infiltrative growth of the larval metacestode and the limited efficacy of available drugs complicate successful intervention in AE; patients often need life-long medication, and if possible, surgical resection of affected tissues and organs. Resistance to AE has been reported, but the determinants which confer protection are not known. ln this study, we analyzed in patients at distinct stages of Alveolar Echirococcosis, that is cured, stable and progressive AE, as well as in infection-free controls, the cellular production and plasma levels of pro-inflammatory cytokines lL-17A, lL-17B, lL-17F and their soluble receptors lL-17RA (slL-17RA) and IL-17RB (sIL-17RB). Significantly elevated levels of IL-17B and slL-17RB were observed, whilst lL-17F and slL-17RA were reduced in patients with AE. Similarly, the cellular production of lL-17F and slL-L7RA in response to E. multilocularis antigens was low in AE patients, while levels of slL-17RB were highly enhanced. These observations suggest immune-modulating properties of E. multitocularis on lL-17 cytokine-mediated pro-inflammatory immune responses; this may facilitate the tissue infiltrative growth of the parasite and its persistence in the human host.
Collapse
|
23
|
Luan Y, Zhang X, Kong F, Cheng GH, Qi TG, Zhang ZH. Mesenchymal stem cell prevention of vascular remodeling in high flow-induced pulmonary hypertension through a paracrine mechanism. Int Immunopharmacol 2012; 14:432-7. [PMID: 22922316 DOI: 10.1016/j.intimp.2012.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/31/2023]
Abstract
UNLABELLED Pulmonary arterial hypertension (PAH) is characterized by functional and structural changes in the pulmonary vasculature, and despite the drug treatment that made significant progress, the prognosis of patients with advanced PH remains extremely poor. In the present study, we investigated the early effect of bone marrow mesenchymal stem cells (BMSCs) on experimental high blood flow-induced PAH model rats and discussed the mechanism. BMSCs were isolated, cultured from bone marrow of Sprague-Dawley (SD) rat. The animal model of PAH was created by surgical methods to produce a left-to-right shunt. Following the successful establishment of the PAH model, rats were randomly assigned to three groups (n=20 in each group): sham group (control), PAH group, and BMSC group (received a sublingual vein injection of 1-5 × 10(6) BMSCs). Two weeks after the administration, BMSCs significantly reduced the vascular remodeling, improved the hemodynamic data, and deceased the right ventricle weight ratio to left ventricular plus septal weight (RV/LV+S) (P<0.05). Real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry analysis results indicated that the inflammation factors such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were reduced (P<0.05); the expression of matrix metallo proteinase-9 (MMP-9) was lower (P<0.05); vascular endothelial growth factor (VEGF) was higher in BMSC group than those in PAH group (P<0.05). CONCLUSION Sublingual vein injection of BMSCs for 2 weeks, significantly improved the lung and heart injury caused by left-to-right shunt-induced PAH; decreased pulmonary vascular remodeling and inflammation; and enhanced angiogenesis.
Collapse
Affiliation(s)
- Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
24
|
El Ridi RAF, Tallima HAM. Novel therapeutic and prevention approaches for schistosomiasis: review. J Adv Res 2012; 4:467-78. [PMID: 25685454 PMCID: PMC4293887 DOI: 10.1016/j.jare.2012.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/12/2012] [Accepted: 05/15/2012] [Indexed: 01/23/2023] Open
Abstract
Schistosomiasis is a debilitating disease affecting approximately 600 million people in 74 developing countries, with 800 million, mostly children at risk. To circumvent the threat of having praziquantel (PZQ) as the only drug used for treatment, several PZQ derivatives were synthesized, and drugs destined for other parasites were used with success. A plethora of plant-derived oils and extracts were found to effectively kill juvenile and adult schistosomes, yet none was progressed to pre- and clinical studies except an oleo-gum resin extracted from the stem of Commiphora molmol, myrrh, which action was challenged in several trials. We have proposed an essential fatty acid, a component of our diet and cells, the polyunsaturated fatty acid arachidonic acid (ARA) as a remedy for schistosomiasis, due to its ability to activate the parasite tegument-bound neutral sphingomyelinase, with subsequent hydrolysis of the apical lipid bilayer sphingomyelin molecules, allowing access of specific antibody molecules, and eventual worm attrition. This concept was convincingly supported using larval and adult Schistosoma mansoni and Schistosoma haematobium worms in in vitro experiments, and in vivo studies in inbred mice and outbred hamsters. Even if ARA proves to be an entirely effective and safe therapy for schistosomiasis, it will not prevent reinfection, and accordingly, the need for developing an effective vaccine remains an urgent priority. Our studies have supported the status of S. mansoni calpain, glutathione-S-transferase, aldolase, triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, enolase, and 2-cys peroxiredoxin as vaccine candidates, as they are larval excreted-secreted products and, contrary to the surface membrane molecules, are entirely accessible to the host immune system effector elements. We have proposed that the use of these molecules, in conjunction with Th2 cytokines-inducing adjuvants for recruiting and activating eosinophils and basophils, will likely lead to development and implementation of a sterilizing vaccine in a near future.
Collapse
Affiliation(s)
- Rashika A F El Ridi
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Hatem A-M Tallima
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
25
|
Yu L, Sun X, Yang F, Yang J, Shen J, Wu Z. Inflammatory cytokines IFN-γ, IL-4, IL-13 and TNF-α alterations in schistosomiasis: a meta-analysis. Parasitol Res 2012; 110:1547-52. [PMID: 21968955 DOI: 10.1007/s00436-011-2661-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Cytokines play an important role in the immunological pathogenesis of schistosomiasis. Schistosomiasis would be associated with an imbalance in inflammatory cytokines that leads to a decrease of T helper (Th) 1 and an increase of Th2 cytokine secretion. Corresponding data so far have been inconsistent, so we performed a meta-analysis to assess whether cytokine alterations were risk factors for schistosomiasis progression. We searched MEDLINE, EMBASE, and CNKI databases for literatures including abstracts, reviews, and reference lists. Our studies included assessment of cytokine concentrations in vivo plasma or serum and secretion of cytokines in vitro by peripheral blood leukocytes from schistosomiasis patients or infected individuals with schistosome. The prototypic Th1 and Th2 cytokines IFN-γ and interleukin (IL)-4 were assessed as well as IL-13 and tumor necrosis factor-alpha (TNF-α). The results implied that an increase occurs in TNF-α and IL-4 with schistosomiasis progression.
Collapse
Affiliation(s)
- Liping Yu
- Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Transforming growth factor-β (TGF-β) is a central regulator in chronic liver disease contributing to all stages of disease progression from initial liver injury through inflammation and fibrosis to cirrhosis and hepatocellular carcinoma. Liver-damage-induced levels of active TGF-β enhance hepatocyte destruction and mediate hepatic stellate cell and fibroblast activation resulting in a wound-healing response, including myofibroblast generation and extracellular matrix deposition. Being recognised as a major profibrogenic cytokine, the targeting of the TGF-β signalling pathway has been explored with respect to the inhibition of liver disease progression. Whereas interference with TGF-β signalling in various short-term animal models has provided promising results, liver disease progression in humans is a process of decades with different phases in which TGF-β or its targeting might have both beneficial and adverse outcomes. Based on recent literature, we summarise the cell-type-directed double-edged role of TGF-β in various liver disease stages. We emphasise that, in order to achieve therapeutic effects, we need to target TGF-β signalling in the right cell type at the right time.
Collapse
|
27
|
Schistosoma mansoni antigen Sm-p80: Prophylactic efficacy of a vaccine formulated in human approved plasmid vector and adjuvant (VR 1020 and alum). Acta Trop 2011; 118:142-51. [PMID: 21334302 DOI: 10.1016/j.actatropica.2011.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 12/18/2022]
Abstract
Schistosomiasis is an important parasitic disease. Consensus is developing now that ideal control methods of the disease should be based on an integrated approach incorporating drug treatment, sanitation improvement, education, and an effective vaccine. With regards to the vaccine development, Sm-p80 has been shown to be a promising and strong immunogenic vaccine candidate. In the present study, Sm-p80-based vaccine formulated in alum was tested for its prophylactic efficacy in a mouse model. It was observed that vaccination using heterologous prime boost (DNA prime followed by boost with protein formulated in alum) and homologous prime boost (both prime and boost with protein formulated in alum) approaches, resulted in 61% and 55% reduction in worm burden, respectively. The protection was directly correlated with the induction of high titers of antibody responses that mainly included IgG, its isotypes, and IgM. In addition, both of the immunization approaches triggered a mixed Th1 and Th2 type response. Some involvement of Th17 specific immune response was also detected as indicated by the up-regulation of relevant cytokines. These results reinforce the potential of Sm-p80 as a viable vaccine candidate.
Collapse
|
28
|
Kolosionek E, Graham BB, Tuder RM, Butrous G. Pulmonary vascular disease associated with parasitic infection--the role of schistosomiasis. Clin Microbiol Infect 2011; 17:15-24. [PMID: 20636425 DOI: 10.1111/j.1469-0691.2010.03308.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Parasitic diseases have been known to cause pulmonary vascular lesions. Schistosomiasis is the most common parasitic disease associated with pulmonary arterial hypertension, although other trematodes have been implicated. Systematic evaluation of and interest in this problem have been rekindled because of the current availability of pulmonary arterial hypertension treatment.
Collapse
|
29
|
Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. Proc Natl Acad Sci U S A 2010; 107:20459-64. [PMID: 21059925 DOI: 10.1073/pnas.1010337107] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The propensity of helminths, such as schistosomes, to immunomodulate the host's immune system is an essential aspect of their survival. Previous research has demonstrated how soluble schistosomal egg antigens (SEA) dampen TLR-signaling during innate immune responses. We show here that the suppressive effect by SEA on TLR signaling is simultaneously coupled to the activation of the Nlrp3 (NLR family, pyrin domain containing 3) inflammasome and thus IL-1β production. Therefore, the responsible protein component of SEA contains the second signal that is required to trigger proteolytic pro-IL-1β processing. Moreover, the SEA component binds to the Dectin-2/FcRγ (Fc receptor γ chain) complex and activates the Syk kinase signaling pathway to induce reactive oxygen species and potassium efflux. As IL-1β has been shown to be an essential orchestrator against several pathogens we studied the in vivo consequences of Schistosoma mansoni infection in mice deficient in the central inflammasome adapter ASC and Nlrp3 molecule. These mice failed to induce local IL-1β levels in the liver and showed decreased immunopathology. Interestingly, antigen-specific Th1, Th2, and Th17 responses were down-regulated. Overall, these data imply that component(s) within SEA induce IL-1β production and unravel a crucial role of Nlrp3 during S. mansoni infection.
Collapse
|
30
|
El Ridi R, Tallima H, Mahana N, Dalton JP. Innate immunogenicity and in vitro protective potential of Schistosoma mansoni lung schistosomula excretory–secretory candidate vaccine antigens. Microbes Infect 2010; 12:700-9. [DOI: 10.1016/j.micinf.2010.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/18/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
|
31
|
Zhang W, Ahmad G, Torben W, Siddiqui AA. Sm-p80-based DNA vaccine made in a human use approved vector VR1020 protects against challenge infection with Schistosoma mansoni in mouse. Parasite Immunol 2010; 32:252-8. [PMID: 20398225 DOI: 10.1111/j.1365-3024.2009.01181.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although there is an effective drug (praziquantel) available for the treatment of schistosomiasis, yet the disease is still spreading unabated and is rampant in 76 countries. Control via praziquantel treatment has so far been insufficient in reducing the disease transmission. Therefore, a vaccine in addition to other strategies, for example, improving sanitation and introduction of new drugs are essential to successfully control and eventually eradicate schistosomiasis. To this effect, we have targeted a functionally important antigen, Sm-p80 as a vaccine candidate. In this study, full length cDNA of Sm-p80 was cloned in VR1020, a FDA approved vector for human use. The protective efficacy of this vaccine formulation was tested in a murine model. Sm-p80-VR1020 vaccine formulation was able to induce 47% reduction in worm burden. Serology on samples obtained from vaccinated animals revealed a strong antibody response which included IgG and all of its subtypes, IgM and IgA. Proliferating splenocytes in response to recombinant Sm-p80 produced a wide spectrum of cytokines representing Th1, Th2 and Th17 types, as ascertained via RT-PCR analysis. These findings further strengthen the importance of Sm-p80 molecule as a vaccine candidate for intestinal schistosomiasis.
Collapse
Affiliation(s)
- W Zhang
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
32
|
Abdul-Ghani RA, Hassan AA. Murine schistosomiasis as a model for human schistosomiasis mansoni: similarities and discrepancies. Parasitol Res 2010; 107:1-8. [PMID: 20369252 DOI: 10.1007/s00436-010-1855-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/18/2010] [Indexed: 11/25/2022]
Abstract
Human schistosomiasis has been studied extensively since its discovery by Theodore Bilharz in 1851. Because of its medical importance as a chronic debilitating disease in the tropics and subtropics, continuing research efforts are still going on. The use of animal models still represents a major cornerstone in this field, with murine hosts, especially mice, as the most preferable experimental units. Murine schistosomiasis has been employed as a model for studying various aspects of human schistosomiasis, including biology, pathogenesis, immunology, chemotherapy screening, and vaccine development. However, there may be differences between murine and human schistosomiasis. The present article tries to explore some of these aspects that may help researchers in the field of schistosomiasis.
Collapse
Affiliation(s)
- Rashad A Abdul-Ghani
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | | |
Collapse
|
33
|
Van De Veerdonk FL, Gresnigt MS, Kullberg BJ, Van Der Meer JW, Joosten LA, Netea MG. Th17 responses and host defense against microorganisms: an overview. BMB Rep 2009; 42:776-87. [DOI: 10.5483/bmbrep.2009.42.12.776] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
34
|
Ahmad G, Zhang W, Torben W, Haskins C, Diggs S, Noor Z, Le L, Siddiqui AA. Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine. Parasitol Res 2009; 105:1767-77. [PMID: 19809833 DOI: 10.1007/s00436-009-1646-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/23/2009] [Indexed: 12/17/2022]
Abstract
Advent of an effective schistosome vaccine would contribute significantly toward reducing the disease spectrum and transmission of schistosomiasis. We have targeted a functionally important antigen, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective and antifecundity potentials, and important role in the immune evasion process. In this study, we report that using two vaccination approaches (prime boost and recombinant protein), Sm-p80-based vaccine formulation(s) confer up to 70% reduction in worm burden in mice. Animals immunized with the vaccine exhibited a decrease in egg production by up to 75%. The vaccine elicited strong immune responses that included IgM, IgA, and IgG (IgG1, IgG2a, IgG2b, and IgG3) in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced Th1 and Th17 response enhancing cytokines. These results again emphasize the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Gul Ahmad
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ahmad G, Torben W, Zhang W, Wyatt M, Siddiqui AA. Sm-p80-based DNA vaccine formulation induces potent protective immunity against Schistosoma mansoni. Parasite Immunol 2009; 31:156-61. [PMID: 19222788 DOI: 10.1111/j.1365-3024.2008.01091.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
No effective vaccine exists for the human parasitic disease, schistosomiasis. We have targeted a functionally important antigen, Sm-p80 as a vaccine candidate because of its consistent immunogenicity, protective potential and important role in the immune evasion process. In this study we report that a Sm-p80-based DNA vaccine formulation confers 59% reduction in worm burden in mice. Animals immunized with Sm-p80-pcDNA3 exhibited a decrease in egg production by 84%. Sm-p80 DNA elicited strong immune responses that include IgG2A and IgG2B antibody isotypes in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced appreciably more Th1 response enhancing cytokines (IL-2, IFN-gamma) than Th2 response enhancing cytokines (IL-4, IL-10). These data reinforce the potential of Sm-p80 as an excellent vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- G Ahmad
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, 79430, USA
| | | | | | | | | |
Collapse
|