1
|
Saavedra-Almarza J, Malgue F, García-Gómez M, Gouët S, Edwards N, Palma V, Rosemblatt M, Sauma D. Unveiling the role of resident memory T cells in psoriasis. J Leukoc Biol 2025; 117:qiae254. [PMID: 39689031 DOI: 10.1093/jleuko/qiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by periods of remission and relapse. In this pathology, keratinocytes, dendritic cells, and different subpopulations of T cells are critical to developing psoriatic lesions. Although current treatments can reduce symptoms, they reappear in previously injured areas months after stopping treatment. Evidence has pointed out that besides T-helper 17 cells, other T-cell subsets may be involved in relapses. This review focuses on the leading evidence linking resident memory T cells and P2X7 receptor to psoriasis' pathogenesis and their role in this pathology. Finally, we discuss some of the most widely used experimental murine models and novel strategies to investigate further the role of resident memory T cells in psoriasis.
Collapse
Affiliation(s)
- Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Felipe Malgue
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Moira García-Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Solange Gouët
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Natalie Edwards
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Providencia, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
| |
Collapse
|
2
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 PMCID: PMC11920965 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
3
|
Shaji V, Dagamajalu S, Sanjeev D, George M, Kanekar S, Prasad G, Keshava Prasad TS, Raju R, Devasahayam Arokia Balaya R. Deciphering the Receptor-Mediated Signaling Pathways of Interleukin-19 and Interleukin-20. J Interferon Cytokine Res 2024; 44:388-398. [PMID: 38451706 DOI: 10.1089/jir.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Affiliation(s)
- Vineetha Shaji
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Diya Sanjeev
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Mejo George
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Saptami Kanekar
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Ganesh Prasad
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
4
|
Williams SC, Garcet S, Hur H, Miura S, Gonzalez J, Navrazhina K, Yamamura-Murai M, Yamamura K, Li X, Frew J, Fischetti VA, Sela U, Krueger JG. Gram-negative anaerobes elicit a robust keratinocytes immune response with potential insights into HS pathogenesis. Exp Dermatol 2024; 33:e15087. [PMID: 38685821 PMCID: PMC11433575 DOI: 10.1111/exd.15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Hidradenitis Suppurativa (HS) is a chronic autoinflammatory skin disease with activated keratinocytes, tunnel formation and a complex immune infiltrate in tissue. The HS microbiome is polymicrobial with an abundance of commensal gram-positive facultative (GPs) Staphylococcus species and gram-negative anaerobic (GNA) bacteria like Prevotella, Fusobacterium and Porphyromonas with increasing predominance of GNAs with disease severity. We sought to define the keratinocyte response to bacteria commonly isolated from HS lesions to probe pathogenic relationships between HS and the microbiome. Type strains of Prevotella nigrescens, Prevotella melaninogenica, Prevotella intermedia, Prevotella asaccharolytica, Fusobacterium nucleatum, as well as Staphylococcus aureus and the normal skin commensal Staphylococcus epidermidis were heat-killed and co-incubated with normal human keratinocytes. RNA was collected and analysed using RNAseq and RT-qPCR. The supernatant was collected from cell culture for protein quantification. Transcriptomic profiles between HS clinical samples and stimulated keratinocytes were compared. Co-staining of patient HS frozen sections was used to localize bacteria in lesions. A mouse intradermal injection model was used to investigate early immune recruitment. TLR4 and JAK inhibitors were used to investigate mechanistic avenues of bacterial response inhibition. GNAs, especially F. nucleatum, stimulated vastly higher CXCL8, IL17C, CCL20, IL6, TNF and IL36γ transcription in normal skin keratinocytes than the GPs S. epidermidis and S. aureus. Using RNAseq, we found that F. nucleatum (and Prevotella) strongly induced the IL-17 pathway in keratinocytes and overlapped with transcriptome profiles of HS patient clinical samples. Bacteria were juxtaposed to activated keratinocytes in vivo, and F. nucleatum strongly recruited murine neutrophil and macrophage migration. Both the TLR4 and pan-JAK inhibitors reduced cytokine production. Detailed transcriptomic profiling of healthy skin keratinocytes exposed to GNAs prevalent in HS revealed a potent, extensive inflammatory response vastly stronger than GPs. GNAs stimulated HS-relevant genes, including many genes in the IL-17 response pathway, and were significantly associated with HS tissue transcriptomes. The close association of activated keratinocytes with bacteria in HS lesions and innate infiltration in murine skin cemented GNA pathogenic potential. These novel mechanistic insights could drive future targeted therapies.
Collapse
Affiliation(s)
- Samuel C Williams
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
- The Rockefeller University-Memorial Sloan Kettering-Weill Cornell Medicine Tri-Institutional MD-PhD Program, New York, NY, 10065
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Hong Hur
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Shunsuke Miura
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Juana Gonzalez
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
- The Rockefeller University-Memorial Sloan Kettering-Weill Cornell Medicine Tri-Institutional MD-PhD Program, New York, NY, 10065
| | - Mika Yamamura-Murai
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Kazuhiko Yamamura
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Xuan Li
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - John Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
- Department of Dermatology, Liverpool Hospital, University of New South Wales, Sydney, Australia
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, 10065
| | - Uri Sela
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, 10065
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| |
Collapse
|
5
|
Lim C, Lim J, Choi S. Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration. Mol Cells 2023; 46:573-578. [PMID: 37650216 PMCID: PMC10590709 DOI: 10.14348/molcells.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.
Collapse
Affiliation(s)
- Chaeryeong Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jooyoung Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Medical Science and Engineering, POSTECH, Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea
| |
Collapse
|
6
|
Saheb Sharif-Askari F, Saheb Sharif-Askari N, Hafezi S, Goel S, Ali Hussain Alsayed H, Ansari AW, Mahboub B, Al-Muhsen S, Temsah MH, Hamid Q, Halwani R. Upregulation of interleukin-19 in saliva of patients with COVID-19. Sci Rep 2022; 12:16019. [PMID: 36163397 PMCID: PMC9511465 DOI: 10.1038/s41598-022-20087-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cytokines are major players in orchestrating inflammation, disease pathogenesis and severity during COVID-19 disease. However, the role of IL-19 in COVID-19 pathogenesis remains elusive. Herein, through the analysis of transcriptomic datasets of SARS-CoV-2 infected lung cells, nasopharyngeal swabs, and lung autopsies of COVID-19 patients, we report that expression levels of IL-19 and its receptor, IL-20R2, were upregulated following SARS-CoV-2 infection. Of 202 adult COVID-19 patients, IL-19 protein level was significantly higher in blood and saliva of asymptomatic patients compared to healthy controls when adjusted for patients’ demographics (P < 0.001). Interestingly, high saliva IL-19 level was also associated with COVID-19 severity (P < 0.0001), need for mechanical ventilation (P = 0.002), and/or death (P = 0.010) within 29 days of admission, after adjusting for patients’ demographics, diabetes mellitus comorbidity, and COVID-19 serum markers of severity such as D-dimer, C-reactive protein, and ferritin. Moreover, patients who received interferon beta during their hospital stay had lower plasma IL-19 concentrations (24 pg mL−1) than those who received tocilizumab (39.2 pg mL−1) or corticosteroids (42.5 pg mL−1). Our findings indicate that high saliva IL-19 level was associated with COVID-19 infectivity and disease severity.
Collapse
Affiliation(s)
| | | | - Shirin Hafezi
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Swati Goel
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Abdul Wahid Ansari
- Dermatology Institute, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Saleh Al-Muhsen
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad-Hani Temsah
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Qutayba Hamid
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Rabih Halwani
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates. .,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates. .,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
El-Serafi AT, El-Serafi I, Steinvall I, Sjöberg F, Elmasry M. A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective. Int J Mol Sci 2022; 23:7934. [PMID: 35887279 PMCID: PMC9323141 DOI: 10.3390/ijms23147934] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cell regenerative therapy is a modern solution for difficult-to-heal wounds. Keratinocytes, the most common cell type in the skin, are difficult to obtain without the creation of another wound. Stem cell differentiation towards keratinocytes is a challenging process, and it is difficult to reproduce in chemically defined media. Nevertheless, a co-culture of keratinocytes with stem cells usually achieves efficient differentiation. This systematic review aims to identify the secretions of normal human keratinocytes reported in the literature and correlate them with the differentiation process. An online search revealed 338 references, of which 100 met the selection criteria. A total of 80 different keratinocyte secretions were reported, which can be grouped mainly into cytokines, growth factors, and antimicrobial peptides. The growth-factor group mostly affects stem cell differentiation into keratinocytes, especially epidermal growth factor and members of the transforming growth factor family. Nevertheless, the reported secretions reflected the nature of the involved studies, as most of them focused on keratinocyte interaction with inflammation. This review highlights the secretory function of keratinocytes, as well as the need for intense investigation to characterize these secretions and evaluate their regenerative capacities.
Collapse
Affiliation(s)
- Ahmed T. El-Serafi
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| | - Ibrahim El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Ingrid Steinvall
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| | - Folke Sjöberg
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| | - Moustafa Elmasry
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| |
Collapse
|
8
|
Teplyakova O, Vinnik Y, Drobushevskaya A, Malinovskaya N, Kirichenko A, Ponedelnik D. Ozone improved the wound healing in type 2 diabetics via down-regulation of IL- 8, 10 and induction of FGFR expression. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022060. [PMID: 35546010 PMCID: PMC9171882 DOI: 10.23750/abm.v93i2.12291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023]
Abstract
Background and aim: We aimed to investigate the effect of ozonated autohaemotherapy (OA) on the wound healing, serum values of interleukin (IL) - 6, 8, 10, tumor necrosis factor-alpha (TNF-α), basic fibroblast growth factor (bFGF) and local expression of fibroblast growth factor receptors (FGFR) in type 2 diabetics with the acute soft-tissue infections. Methods: Patients in the first cohort (n-30) received a basic comprehensive treatment (BCT-group), and the second (n=28) also received OA (OA-group). Blood samples for ELISA and tissue specimens for the immunohistochemical examinations were collected at admission (day 0) and at the 9th day of inpatient treatment. Results: The additional using of OA has accelerated the timing of a single and the complete wound granulation and the timing to marginal epithelization, compared with the results of the standard treatment. The use of OA has significantly reduced the production of IL-8, 10 at 9th day. OA-group patients were characterized by consistently high levels of bFGF production in contrast to the BCT-group, where the decreasing in the serum bFGF level was observed. The maximum number of bFGFR - immunopositive labels was observed in OA-group out to 9th day (319,45 (249,90-348,43) versus baseline 192,65 (171,93-207,72), versus BCT-group 123,30 (105,23- 141,10), p<0,001). Conclusions: Application of OA in the complex treatment of the acute soft-tissue infections in diabetics makes it possible to achieve the significant reductions in the duration of the wound inflammation and regeneration phases by eliminating of overproduction of IL- 8, 10 and induction of expression of bFGF and its receptors. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Olga Teplyakova
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| | - Yurii Vinnik
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| | - Anna Drobushevskaya
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Center for collective use «Molecular & cell technologies», Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation .
| | - Natalia Malinovskaya
- Department of Biological Chemistry with the Course of Medical, Pharmaceutical and Toxicological Chemistry, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Research Institute of Molecular Medicine and Pathobiochemistry, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Center for collective use «Molecular & cell technologies», Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| | - Andrey Kirichenko
- Department of Pathological Anatomy named after Professor P. G. Podzolkov, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Department of Pathological Anatomy, Clinical hospital «RZD-Medicine» city Krasnoyarsk, Krasnoyarsk, Russian Federation.
| | - Darya Ponedelnik
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| |
Collapse
|
9
|
Vijayashree RJ, Sivapathasundharam B. The diverse role of oral fibroblasts in normal and disease. J Oral Maxillofac Pathol 2022; 26:6-13. [PMID: 35571294 PMCID: PMC9106253 DOI: 10.4103/jomfp.jomfp_48_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022] Open
Abstract
Fibroblasts are the major cellular component of the connective tissue. They differ both structurally and functionally based on their location. The oral fibroblasts vary from the dermal fibroblasts in their origin, properties and also functions. These cells play an important role in wound healing, tumor progression and metastasis, allergic reactions. In this review, the various functions of the oral fibroblasts are discussed in detail.
Collapse
Affiliation(s)
- R J Vijayashree
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - B Sivapathasundharam
- Department of Oral Pathology and Microbiology, Priyadharshini Dental College and Hospital, Tiruvallur, Tamil Nadu, India
| |
Collapse
|
10
|
Niehues H, Rikken G, van Vlijmen-Willems IM, Rodijk-Olthuis D, van Erp PE, Zeeuwen PL, Schalkwijk J, van den Bogaard EH. Identification of Keratinocyte Mitogens: Implications for Hyperproliferation in Psoriasis and Atopic Dermatitis. JID INNOVATIONS 2022; 2:100066. [PMID: 35146480 PMCID: PMC8801538 DOI: 10.1016/j.xjidi.2021.100066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis and atopic dermatitis are chronic inflammatory skin diseases characterized by keratinocyte (KC) hyperproliferation and epidermal acanthosis (hyperplasia). The milieu of disease-associated cytokines and soluble factors is considered a mitogenic factor; however, pinpointing the exact mitogens in this complex microenvironment is challenging. We employed organotypic human epidermal equivalents, faithfully mimicking native epidermal proliferation and stratification, to evaluate the proliferative effects of a broad panel of (literature-based) potential mitogens. The KC GF molecule, the T-helper 2 cytokines IL-4 and IL-13, and the psoriasis-associated cytokine IL-17A caused acanthosis by hyperplasia through a doubling in the number of proliferating KCs. In contrast, IFN-γ lowered proliferation, whereas IL-6, IL-20, IL-22, and oncostatin M induced acanthosis not by hyperproliferation but by hypertrophy. The T-helper 2‒cytokine‒mediated hyperproliferation was Jak/signal transducer and activator of transcription 3 dependent, whereas IL-17A and KC GF induced MAPK/extracellular signal‒regulated kinase kinase/extracellular signal‒regulated kinase‒dependent proliferation. This discovery that key regulators in atopic dermatitis and psoriasis are direct KC mitogens not only adds evidence to their crucial role in the pathophysiological processes but also highlights an additional therapeutic pillar for the mode of action of targeting biologicals (e.g., dupilumab) or small-molecule drugs (e.g., tofacitinib) by the normalization of KC turnover within the epidermal compartment.
Collapse
Key Words
- 3D, three-dimensional
- AD, atopic dermatitis
- ERK, extracellular signal‒regulated kinase
- EdU, 5-ethynyl-2′-deoxyuridine
- HEE, human epidermal equivalent
- KC, keratinocyte
- KGF, keratinocyte GF
- MEK, MAPK/ extracellular signal‒regulated kinase kinase
- STAT, signal transducer and activator of transcription
- Th, T helper
Collapse
Affiliation(s)
- Hanna Niehues
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Ivonne M.J.J. van Vlijmen-Willems
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Piet E.J. van Erp
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Patrick L.J.M. Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| |
Collapse
|
11
|
Bhartiya P, Masur K, Shome D, Kaushik N, Nguyen LN, Kaushik NK, Choi EH. Influence of Redox Stress on Crosstalk between Fibroblasts and Keratinocytes. BIOLOGY 2021; 10:biology10121338. [PMID: 34943253 PMCID: PMC8698713 DOI: 10.3390/biology10121338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary There has been significant scientific progress in skin care and skin damage repair, but the complete understanding of skin homeostasis is still beyond our reach. With an increase in environmental stress factors, the incidence rates of skin cancer and skin disorders are on the rise. Taken together with the incidence of scar- and burn-related morbidities, there is an urgent need to understand interactions between skin cells to develop novel therapies for the regeneration of healthy skin. One of the recurrent stress factors affecting the skin are the harmful free radicals, also referred to as oxidative stress. This study aimed to address the influence of oxidative stress on the interaction between two types of skin cells, keratinocytes and fibroblasts. The study utilized cold atmospheric plasma (CAP) to induce oxidative stress in cells and to assess the interactions between the two cell types. We showed that CAP can stimulate cells to enhance their proliferation and migration. This study provides a further understanding of skin cell regulation under stress conditions. Such knowledge may help in designing treatment therapies for rapid wound healing and skin repair. Abstract Although the skin is constantly subjected to endogenous and exogenous stress, it maintains a homeostatic state through wound repair and regeneration pathways. Treatment for skin diseases and injury requires a significant understanding of the various mechanisms and interactions that occur within skin cells. Keratinocytes and fibroblasts interact with each other and act as key players in the repair process. Although fibroblasts and keratinocytes are widely studied in wound healing and skin remodeling under different conditions, the influence of redox stress on keratinocyte-fibroblast crosstalk has not been thoroughly investigated. In this study, we used cold atmospheric plasma (CAP) to generate and deliver oxidative stress to keratinocytes and fibroblasts and to assess its impact on their interactions. To this end, we used a well-established in vitro 3D co-culture model imitating a realistic scenario. Our study shows that low CAP exposure is biocompatible and does not affect the viability or energetics of fibroblasts and keratinocytes. Exposure to low doses of CAP enhanced the proliferation rate of cells and stimulated the expression of key genes (KGF, MMP2, GMCSF, IL-6, and IL-8) in fibroblasts, indicating the activation and initiation of the skin repair process. Additionally, enhanced migration was observed under co-culture conditions under the given redox stress conditions, and expression of the upstream regulator and the effectors of the Hippo pathway (YAP and CYR61, respectively), which are associated with enhanced migration, were elevated. Overall, this study reinforces the application of CAP and redox stress in skin repair physiology.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
| | - Kai Masur
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany; (K.M.); (D.S.)
| | - Debarati Shome
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany; (K.M.); (D.S.)
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, University of Suwon, Hwaseong 18323, Korea;
| | - Linh N. Nguyen
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
- Correspondence: (N.K.K.); (E.H.C.)
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
- Correspondence: (N.K.K.); (E.H.C.)
| |
Collapse
|
12
|
Leigh T, Scalia RG, Autieri MV. Resolution of inflammation in immune and nonimmune cells by interleukin-19. Am J Physiol Cell Physiol 2020; 319:C457-C464. [PMID: 32667867 PMCID: PMC7509264 DOI: 10.1152/ajpcell.00247.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
The inflammatory response is a complex, tightly regulated process activated by tissue wounding, foreign body invasion, and sterile inflammation. Over the decades, great progress has been made to advance our understanding of this process. One often overlooked aspect of inflammation is its sequel: resolution. We know that dysregulated resolution often results in numerous chronic degenerative diseases such as arthritis, cancer, and asthma. However, identification of components and mechanisms of resolving pathways lags behind those of proinflammatory processes, yet represents overlooked therapeutic opportunities. One approach is identification of endogenous, negative compensatory mechanisms, which are activated in response to inflammation for the purpose of resolution of that inflammatory stimuli. This review will focus on literature that describes expression and function of interleukin-19, a proposed anti-inflammatory cytokine, in numerous inflammatory diseases. The literature concerning IL-19 is complex, context-dependent, and often contradictory. The expression and function of IL-19 in the inflammatory response are in no way settled. We will attempt to clarify the role that this interesting and understudied cytokine plays in resolution of inflammation and discuss its mechanisms of action in different cell types. We will present a hypothesis that endogenous IL-19 expression in response to inflammatory stimuli is a cellular compensatory mechanism to dampen inflammation. We further present studies suggesting that while endogenously expressed IL-19 may be a response to inflammation, pharmacological levels may be necessary to effectively resolve the inflammatory cascade.
Collapse
Affiliation(s)
- Tani Leigh
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Rosario G Scalia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lemole Center for Integrated Lymphatics Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Furue M. Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int J Mol Sci 2020; 21:E5382. [PMID: 32751111 PMCID: PMC7432778 DOI: 10.3390/ijms21155382] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is an eczematous, pruritic skin disorder with extensive barrier dysfunction and elevated interleukin (IL)-4 and IL-13 signatures. The barrier dysfunction correlates with the downregulation of barrier-related molecules such as filaggrin (FLG), loricrin (LOR), and involucrin (IVL). IL-4 and IL-13 potently inhibit the expression of these molecules by activating signal transducer and activator of transcription (STAT)6 and STAT3. In addition to IL-4 and IL-13, IL-22 and IL-17A are probably involved in the barrier dysfunction by inhibiting the expression of these barrier-related molecules. In contrast, natural or medicinal ligands for aryl hydrocarbon receptor (AHR) are potent upregulators of FLG, LOR, and IVL expression. As IL-4, IL-13, IL-22, and IL-17A are all capable of inducing oxidative stress, antioxidative AHR agonists such as coal tar, glyteer, and tapinarof exert particular therapeutic efficacy for AD. These antioxidative AHR ligands are known to activate an antioxidative transcription factor, nuclear factor E2-related factor 2 (NRF2). This article focuses on the mechanisms by which FLG, LOR, and IVL expression is regulated by IL-4, IL-13, IL-22, and IL-17A. The author also summarizes how AHR and NRF2 dual activators exert their beneficial effects in the treatment of AD.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan; ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Russo B, Brembilla NC, Chizzolini C. Interplay Between Keratinocytes and Fibroblasts: A Systematic Review Providing a New Angle for Understanding Skin Fibrotic Disorders. Front Immunol 2020; 11:648. [PMID: 32477322 PMCID: PMC7232541 DOI: 10.3389/fimmu.2020.00648] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background/Objective: Skin fibrosis is the result of aberrant processes leading to abnormal deposition of extracellular matrix (ECM) in the dermis. In healthy skin, keratinocytes participate to maintain skin homeostasis by actively crosstalking with fibroblasts. Within the wide spectrum of fibrotic skin disorders, relatively little attention has been devoted to the role of keratinocytes for their capacity to participate to skin fibrosis. This systematic review aims at summarizing the available knowledge on the reciprocal interplay of keratinocytes with fibroblasts and their soluble mediators in physiological states, mostly wound healing, and conditions associated with skin fibrosis. Methods: We performed a systematic literature search on PubMed to identify in vitro and ex vivo human studies investigating the keratinocyte characteristics and their interplay with fibroblasts in physiological conditions and within fibrotic skin disorders including hypertrophic scars, keloids, and systemic sclerosis. Studies were selected according to pre-specified eligibility criteria. Data on study methods, models, stimuli and outcomes were retrieved and summarized according to pre-specified criteria. Results: Among the 6,271 abstracts retrieved, 73 articles were included, of which 14 were specifically dealing with fibrotic skin pathologies. Fifty-six studies investigated how keratinocyte may affect fibroblast responses in terms of ECM-related genes or protein production, phenotype modification, and cytokine production. Most studies in both physiological conditions and fibrosis demonstrated that keratinocytes stimulate fibroblasts through the production of interleukin 1, inducing keratinocyte growth factor (KGF) and metalloproteinases in the fibroblasts. When the potential of keratinocytes to modulate collagen synthesis by healthy fibroblasts was explored, the results were controversial. Nevertheless, studies investigating keratinocytes from fibrotic skin, including keloids, hypertrophic scar, and scleroderma, suggested their potential involvement in enhancing ECM deposition. Twenty-three papers investigated keratinocyte proliferation differentiation and production of soluble mediators in response to interactions with fibroblasts. Most studies showed that fibroblasts modulate keratinocyte viability, proliferation, and differentiation. The production of KGF by fibroblast was identified as key for these functions. Conclusions: This review condenses evidence for the active interaction between keratinocytes and fibroblasts in maintaining skin homeostasis and the altered homeostatic interplay between keratinocytes and dermal fibroblasts in scleroderma and scleroderma-like disorders.
Collapse
Affiliation(s)
- Barbara Russo
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolò C Brembilla
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland.,Dermatology, School of Medicine, University Hospital, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Interleukin-17A and Keratinocytes in Psoriasis. Int J Mol Sci 2020; 21:ijms21041275. [PMID: 32070069 PMCID: PMC7072868 DOI: 10.3390/ijms21041275] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
The excellent clinical efficacy of anti-interleukin 17A (IL-17A) biologics on psoriasis indicates a crucial pathogenic role of IL-17A in this autoinflammatory skin disease. IL-17A accelerates the proliferation of epidermal keratinocytes. Keratinocytes produce a myriad of antimicrobial peptides and chemokines, such as CXCL1, CXCL2, CXCL8, and CCL20. Antimicrobial peptides enhance skin inflammation. IL-17A is capable of upregulating the production of these chemokines and antimicrobial peptides in keratinocytes. CXCL1, CXCL2, and CXCL8 recruit neutrophils and CCL20 chemoattracts IL-17A-producing CCR6+ immune cells, which further contributes to forming an IL-17A-rich milieu. This feed-forward pathogenic process results in characteristic histopathological features, such as epidermal hyperproliferation, intraepidermal neutrophilic microabscess, and dermal CCR6+ cell infiltration. In this review, we focus on IL-17A and keratinocyte interaction regarding psoriasis pathogenesis.
Collapse
|
16
|
Assessment and Clinical Relevance of Serum IL-19 Levels in Psoriasis and Atopic Dermatitis Using a Sensitive and Specific Novel Immunoassay. Sci Rep 2019; 9:5211. [PMID: 30914699 PMCID: PMC6435799 DOI: 10.1038/s41598-019-41609-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 02/08/2023] Open
Abstract
Because development of reliable biomarkers in psoriasis and atopic dermatitis has lagged behind therapeutic progress, we created a blood-based test to fill the void in objective methods available for dermatological assessments. Our novel interleukin-19 (IL-19) immunoassay was initially tested to determine concentrations of IL-19 serum levels, then correlated with the psoriasis activity and severity index (PASI) in psoriasis, and the eczema area and severity index (EASI) in atopic dermatitis. Not only was IL-19 increased in psoriasis and correlated to PASI, but ixekizumab administration led to rapid, sustained IL-19 decreases to normal levels, with decreases at 2-weeks correlating with PASI improvement at 16-weeks. IL-19 increased upon ixekizumab withdraw, prior to relapse, and decreased following re-treatment. In baricitinib- and etanercept-treated psoriasis patients, IL-19 decreases also correlated with improvement. Many patients with limited skin disease, including genital psoriasis and psoriatic arthritis patients, also had increased IL-19, which was reduced to normal levels upon ixekizumab treatment, correlating with PASI improvement. We also measured IL-19 in baricitinib-treated atopic dermatitis patients. In atopic dermatitis, IL-19 was significantly elevated, correlated with EASI scores, and decreased with skin improvement. Therefore, measurement of serum IL-19 provides clinicians with an objective disease-activity assessment tool for psoriasis and atopic dermatitis patients.
Collapse
|
17
|
Helou DG, Noël B, Gaudin F, Groux H, El Ali Z, Pallardy M, Chollet-Martin S, Kerdine-Römer S. Cutting Edge: Nrf2 Regulates Neutrophil Recruitment and Accumulation in Skin during Contact Hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2019; 202:2189-2194. [DOI: 10.4049/jimmunol.1801065] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
|
18
|
Collagen/Gelatin Sponges (CGSs) Provide Both Protection and Release of bFGF: An In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4016351. [PMID: 30911542 PMCID: PMC6399556 DOI: 10.1155/2019/4016351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/10/2019] [Indexed: 12/26/2022]
Abstract
It has been reported that collagen/gelatin sponges (CGSs) are able to sustain the release of basic fibroblast growth factor (bFGF) for approximately 10 days via the formation of ion complexes between bFGF and gelatin. CGSs impregnated with bFGF have been proven to promote dermis-like tissue formation in various in vivo studies and clinical trials. However, the bioactivities of bFGF released from CGSs have not been explored in vitro. In this study, we explored the ability of CGS impregnated with bFGF, stored at 37°C for up to 14 days, to promote fibroblast proliferation and the sustained release of bFGF. We analyzed the cellular viability and proliferation in 2D and in 3D cell cultures, by a CCK-8 assay. Furthermore, in order to characterize the morphological alteration of fibroblasts, we studied 3D cultures by microscopy with a scanning electron microscope (SEM) and a confocal microscope. Our analyses revealed that the fibroblasts were elongated and flanked each other. They infiltrated and migrated inside the CGSs and were oriented along the CGS structure. Thus, these data prove that CGSs protect and sustain the efficient release of growth factor for more than 7 days.
Collapse
|
19
|
Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028548. [PMID: 29038121 DOI: 10.1101/cshperspect.a028548] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses during host defense but also in autoimmune disorders, inflammatory diseases, and cancer. Although IL-10 itself primarily acts on leukocytes and has potent immunosuppressive functions, other family members preferentially target nonimmune compartments, such as tissue epithelial cells, where they elicit innate defense mechanisms to control viral, bacterial, and fungal infections, protect tissue integrity, and promote tissue repair and regeneration. As cytokines are prime drug targets, IL-10 family cytokines provide great opportunities for the treatment of autoimmune diseases, tissue damage, and cancer. Yet no therapy in this space has been approved to date. Here, we summarize the diverse biology of the IL-10 family as it relates to human disease and review past and current strategies and challenges to target IL-10 family cytokines for clinical use.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Comparative Biology and Safety Sciences, Amgen, South San Francisco, California 94080
| | - Kit Wong
- Department of Biomarker Development, Genentech, South San Francisco, California 94080
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen, South San Francisco, California 94080
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, South San Francisco, California 94080
| |
Collapse
|
20
|
Wei H, Li B, Sun A, Guo F. Interleukin-10 Family Cytokines Immunobiology and Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:79-96. [PMID: 31628652 DOI: 10.1007/978-981-13-9367-9_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Interleukin (IL)-10 cytokine family includes IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26, which are considered as Class 2α-helical cytokines. IL-10 is the most important cytokine in suppressing pro-inflammatory responses in all kinds of autoimmune diseases and limiting excessive immune responses. Due to protein structure homology and shared usage of receptor complexes as well as downstream signaling pathway, other IL-10 family cytokines also show indispensable functions in immune regulation, tissue homeostasis, and host defense. In this review, we focus on immune functions and structures of different cytokines in this family and try to better understand how their molecular mechanisms connect to their biological functions. The molecular details regarding their actions also provide useful information in developing candidate immune therapy reagents for a variety of diseases.
Collapse
Affiliation(s)
- Huaxing Wei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Bofeng Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
| | - Anyuan Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Feng Guo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| |
Collapse
|
21
|
Liu J, Peng L, Liu Y, Wu K, Wang S, Wang X, Liu Q, Xia Y, Zeng W. Topical TWEAK Accelerates Healing of Experimental Burn Wounds in Mice. Front Pharmacol 2018; 9:660. [PMID: 29977207 PMCID: PMC6021523 DOI: 10.3389/fphar.2018.00660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/01/2018] [Indexed: 01/06/2023] Open
Abstract
The interaction of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor inducible 14 (Fn14) participates in inflammatory responses, fibrosis, and tissue remodeling, which are central in the repair processes of wounds. Fn14 is expressed in main skin cells including dermal fibroblasts. This study was designed to explore the therapeutic effect of TWEAK on experimental burn wounds and the relevant mechanism underlying such function. Third-degree burns were introduced in two BALB/c mouse strains. Recombinant TWEAK was administrated topically, followed by the evaluation of wound areas and histologic changes. Accordingly, the downstream cytokines, inflammatory cell infiltration, and extracellular matrix synthesis were examined in lesional tissue. Moreover, the differentiation markers were analyzed in cultured human dermal fibroblasts upon TWEAK stimulation. The results showed that topical TWEAK accelerated the healing of burn wounds in wild-type mice but not in Fn14-deficient mice. TWEAK strengthened inflammatory cell infiltration, and exaggerated the production of growth factor and extracellular matrix components in wound areas of wild-type mice. Moreover, TWEAK/Fn14 activation elevated the expression of myofibroblastic differentiation markers, including alpha-smooth muscle actin and palladin, in cultured dermal fibroblasts. Therefore, topical TWEAK exhibits therapeutic effect on experimental burn wounds through favoring regional inflammation, cytokine production, and extracellular matrix synthesis. TWEAK/Fn14 activation induces the myofibroblastic differentiation of dermal fibroblasts, partially contributing to the healing of burn wounds.
Collapse
Affiliation(s)
- Jing Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lingling Peng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yale Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Sijia Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xuening Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Qilu Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Niess JH, Hruz P, Kaymak T. The Interleukin-20 Cytokines in Intestinal Diseases. Front Immunol 2018; 9:1373. [PMID: 29967613 PMCID: PMC6015891 DOI: 10.3389/fimmu.2018.01373] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Autoimmune/inflammatory intestinal diseases, such as Crohn’s disease and ulcerative colitis, infectious gastrointestinal diseases, and gastrointestinal cancers, such as colorectal cancer, are worldwide a significant health problem. Intercellular communication and direct contact with the environment as the microbiota colonizes the gastrointestinal surface facilitates these diseases. Cytokines mediate the intercellular communication to maintain the equilibrium between host and environment and to regulate immune responses. One cytokine family that exchange information between immune cells and epithelial cells is the IL-20 cytokine family which includes the cytokines IL-19, IL-20, IL-22, IL-24, and IL-26. These cytokines share common receptor subunits and signaling pathways. IL-22 is the most intensively studied cytokine within this family in contexts of gastrointestinal disease, but the importance of other family members is more and more appreciated. In this review, the potential function of IL-20 cytokines concerning gastrointestinal conditions is discussed.
Collapse
Affiliation(s)
- Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Gastroenterology and Hepatology, University Hospital of Basel, Basel, Switzerland
| | - Petr Hruz
- Department of Gastroenterology and Hepatology, University Hospital of Basel, Basel, Switzerland
| | - Tanay Kaymak
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Caparrós E, Francés R. The Interleukin-20 Cytokine Family in Liver Disease. Front Immunol 2018; 9:1155. [PMID: 29892294 PMCID: PMC5985367 DOI: 10.3389/fimmu.2018.01155] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
The three main causes of inflammation and chronic injury in the liver are viral hepatitis, alcohol consumption, and non-alcoholic steatohepatitis, all of which can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma, which in turn may prompt the need for liver transplant. The interleukin (IL)-20 is a subfamily part of the IL-10 family of cytokines that helps the liver respond to damage and disease, they participate in the control of tissue homeostasis, and in the immunological responses developed in this organ. The best-studied member of the family in inflammatory balance of the liver is the IL-22 cytokine, which on the one hand may have a protective role in fibrosis progression but on the other may induce liver tissue susceptibility in hepatocellular carcinoma development. Other members of the family might also carry out this dual function, as some of them share IL receptor subunits and signal through common intracellular pathways. Investigators are starting to consider the potential for targeting IL-20 subfamily members in liver disease. The recently explored role of miRNA in the transcriptional regulation of IL-22 and IL-24 opens the door to promising new approaches for controlling the local immune response and limiting organ injury. The IL-20RA cytokine receptor has also been classified as being under miRNA control in non-alcoholic steatohepatitis. Moreover, researchers have proposed combining anti-inflammatory drugs with IL-22 as a hepatoprotective IL for alcoholic liver disease (ALD) treatment, and clinical trials of ILs for managing severe alcoholic-derived liver degeneration are ongoing. In this review, we focus on exploring the role of the IL-20 subfamily of cytokines in viral hepatitis, ALD, non-alcoholic steatohepatitis, and hepatocellular carcinoma, as well as delineating the main strategies explored so far in terms of therapeutic possibilities of the IL-20 subfamily of cytokines in liver disease.
Collapse
Affiliation(s)
- Esther Caparrós
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rubén Francés
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Stunova A, Vistejnova L. Dermal fibroblasts—A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev 2018; 39:137-150. [DOI: 10.1016/j.cytogfr.2018.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
|
25
|
Noske K. Secreted immunoregulatory proteins in the skin. J Dermatol Sci 2017; 89:3-10. [PMID: 29111181 DOI: 10.1016/j.jdermsci.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
Abstract
The skin, thought initially to protect the body passively from pathogenic organisms and other environmental insults, is now recognised additionally as a sophisticated immune organ that actively regulates local immunity. Studies linking local innate and adaptive immunity to skin health and disease have revealed a complex network of cell communication and cytokine signalling. Here, we review the last 10 years of literature on this topic, and its relevance to skin immunity.
Collapse
Affiliation(s)
- Katharina Noske
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| |
Collapse
|
26
|
He R, Yin H, Yuan B, Liu T, Luo L, Huang P, Dai L, Zeng K. IL-33 improves wound healing through enhanced M2 macrophage polarization in diabetic mice. Mol Immunol 2017; 90:42-49. [PMID: 28697404 DOI: 10.1016/j.molimm.2017.06.249] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022]
Abstract
IL-33 is a newly discovered member of the IL-1 family and has been identified as a potent inducer of Th2 type immunity. Emerging evidence imply that IL-33 may also act as an alarm to alert the immune system when released by epithelial barrier tissues during trauma or infection. In this study, we further investigate the potential efficacy of IL-33 on dermal wound healing in streptozotocin-induced diabetic mice. A full-thickness skin wound was generated on the back of diabetic mice and treated with IL-33 or vehicle topically. Our data showed that IL-33 delivery contributed to diabetic wound closure with wounds gaping narrower and exhibiting elevated re-epithelialization. IL-33 promoted the new extracellular matrix (ECM) deposition and angiogenesis formation, which indicates an important role of IL-33 on matrix synthesis and neovascularization. Meanwhile, IL-33 accelerated the development of M2 macrophages in wound sites in vivo, and amplified IL-13-induced polarization of bone marrow-derived macrophages toward a M2 phenotype in vitro. Furthermore, IL-33-amplified M2 macrophages augmented the proliferation of fibroblasts and ECM deposition. All together, these results strongly suggest manipulation of IL-33-mediated signal might be a potential therapeutic approach for diabetic skin wounds.
Collapse
Affiliation(s)
- Rongguo He
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Dermatology, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Baohong Yuan
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ping Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liangcheng Dai
- Intensive Care Unit, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
27
|
Steinert A, Linas I, Kaya B, Ibrahim M, Schlitzer A, Hruz P, Radulovic K, Terracciano L, Macpherson AJ, Niess JH. The Stimulation of Macrophages with TLR Ligands Supports Increased IL-19 Expression in Inflammatory Bowel Disease Patients and in Colitis Models. THE JOURNAL OF IMMUNOLOGY 2017; 199:2570-2584. [PMID: 28864472 DOI: 10.4049/jimmunol.1700350] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/02/2017] [Indexed: 12/25/2022]
Abstract
IL-19, a member of the IL-10 cytokine family that signals through the IL-20 receptor type I (IL-20Rα:IL-20Rβ), is a cytokine whose function is not completely known. In this article, we show that the expression of IL19 in biopsies of patients with active ulcerative colitis was increased compared with patients with quiescent ulcerative colitis and that colitis was attenuated in IL-19-deficient mice. The disruption of the epithelial barrier with dextran sodium sulfate leads to increased IL-19 expression. Attenuated colitis in IL-19-deficient animals was associated with reduced numbers of IL-6-producing macrophages in the inflamed colonic lamina propria. Microbial-driven expression of IL-19 by intestinal macrophages may contribute to the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Anna Steinert
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.,Division of Gastroenterology, Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University of Bern, 3010 Bern, Switzerland
| | - Ioannis Linas
- Division of Gastroenterology, Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University of Bern, 3010 Bern, Switzerland
| | - Berna Kaya
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Mohamed Ibrahim
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany.,Single Cell Genomics and Epigenomics Unit, German Center for Neurodegenerative Diseases, University of Bonn, 53115 Bonn, Germany
| | - Andreas Schlitzer
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, 53115 Bonn, Germany.,Single Cell Genomics and Epigenomics Unit, German Center for Neurodegenerative Diseases, University of Bonn, 53115 Bonn, Germany.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648 Singapore; and
| | - Petr Hruz
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Katarina Radulovic
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Andrew J Macpherson
- Division of Gastroenterology, Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University of Bern, 3010 Bern, Switzerland
| | - Jan Hendrik Niess
- Division of Gastroenterology and Hepatology, University Hospital Basel, 4031 Basel, Switzerland; .,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.,Division of Gastroenterology, Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
28
|
Kolumam G, Wu X, Lee WP, Hackney JA, Zavala-Solorio J, Gandham V, Danilenko DM, Arora P, Wang X, Ouyang W. IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice. PLoS One 2017; 12:e0170639. [PMID: 28125663 PMCID: PMC5268431 DOI: 10.1371/journal.pone.0170639] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/30/2016] [Indexed: 12/21/2022] Open
Abstract
Diabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. Mechanistically, when compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.
Collapse
Affiliation(s)
- Ganesh Kolumam
- Department of Biomedical Imaging, Genentech, South San Francisco, California, United States of America
| | - Xiumin Wu
- Department of Immunology, Genentech, South San Francisco, California, United States of America
| | - Wyne P. Lee
- Department of Immunology, Genentech, South San Francisco, California, United States of America
| | - Jason A. Hackney
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, California, United States of America
| | - Jose Zavala-Solorio
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Vineela Gandham
- Department of Biomedical Imaging, Genentech, South San Francisco, California, United States of America
| | - Dimitry M. Danilenko
- Department of Safety Assessment Pathology, Genentech, South San Francisco, California, United States of America
| | - Puneet Arora
- Department of Early Clinical Development, Genentech, South San Francisco, California, United States of America
| | - Xiaoting Wang
- Department of Immunology, Genentech, South San Francisco, California, United States of America
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, California, United States of America
| |
Collapse
|
29
|
Gimblet C, Loesche MA, Carvalho L, Carvalho EM, Grice EA, Artis D, Scott P. IL-22 Protects against Tissue Damage during Cutaneous Leishmaniasis. PLoS One 2015; 10:e0134698. [PMID: 26285207 PMCID: PMC4540492 DOI: 10.1371/journal.pone.0134698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/13/2015] [Indexed: 01/11/2023] Open
Abstract
Cutaneous leishmaniasis is a disease characterized by ulcerating skin lesions, the resolution of which requires an effective, but regulated, immune response that limits parasite growth without causing permanent tissue damage. While mechanisms that control the parasites have been well studied, the factors regulating immunopathologic responses are less well understood. IL-22, a member of the IL-10 family of cytokines, can contribute to wound healing, but in other instances promotes pathology. Here we investigated the role of IL-22 during leishmania infection, and found that IL-22 limits leishmania-induced pathology when a certain threshold of damage is induced by a high dose of parasites. Il22-/- mice developed more severe disease than wild-type mice, with significantly more pathology at the site of infection, and in some cases permanent loss of tissue. The increased inflammation was not due to an increased parasite burden, but rather was associated with the loss of a wound healing phenotype in keratinocytes. Taken together, these studies demonstrate that during cutaneous leishmaniasis, IL-22 can play a previously unappreciated role in controlling leishmania-induced immunopathology.
Collapse
Affiliation(s)
- Ciara Gimblet
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Michael A. Loesche
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Lucas Carvalho
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia—Doenças Tropicais, Salvador, Bahia, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Edgar M. Carvalho
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia—Doenças Tropicais, Salvador, Bahia, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - David Artis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| |
Collapse
|
30
|
Shi H, Cheng Y, Ye J, Cai P, Zhang J, Li R, Yang Y, Wang Z, Zhang H, Lin C, Lu X, Jiang L, Hu A, Zhu X, Zeng Q, Fu X, Li X, Xiao J. bFGF Promotes the Migration of Human Dermal Fibroblasts under Diabetic Conditions through Reactive Oxygen Species Production via the PI3K/Akt-Rac1- JNK Pathways. Int J Biol Sci 2015; 11:845-59. [PMID: 26078726 PMCID: PMC4466465 DOI: 10.7150/ijbs.11921] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022] Open
Abstract
Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways.
Collapse
Affiliation(s)
- Hongxue Shi
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yi Cheng
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jingjing Ye
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Pingtao Cai
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jinjing Zhang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Rui Li
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Ying Yang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Zhouguang Wang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Hongyu Zhang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Cai Lin
- 2. The First Affiliate Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xianghong Lu
- 3. Translation Medicine Research Center, Lishui People's Hospital, Wenzhou Medical University, Lishui, 323000, China
| | - Liping Jiang
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Aiping Hu
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Xinbo Zhu
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Qiqiang Zeng
- 2. The First Affiliate Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaobing Fu
- 4. Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, PR China
| | - Xiaokun Li
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jian Xiao
- 1. School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035 China
| |
Collapse
|
31
|
Hsing CH, Wang JJ. Clinical implication of perioperative inflammatory cytokine alteration. ACTA ACUST UNITED AC 2015; 53:23-8. [PMID: 25837846 DOI: 10.1016/j.aat.2015.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/06/2015] [Indexed: 12/22/2022]
Abstract
Cytokines are key modulators of inflammatory responses, and play an important role in the defense and repair mechanisms following trauma. After traumatic injury, an immuno-inflammatory response is initiated immediately, and cytokines rapidly appear and function as a regulator of immunity. In pathologic conditions, imbalanced cytokines may provide systemic inflammatory responses or immunosuppression. Expression of perioperative cytokines vary by different intensities of surgical trauma and types of anesthesia and anesthetic agents. Inflammatory cytokines play important roles in postoperative organ dysfunction including central nervous system, cardiovascular, lung, liver, and kidney injury. Inhibition of cytokines could protect against traumatic injury in some circumstances, therefore cytokine inhibitors or antagonists might have the potential for reducing postoperative tissue/organ dysfunction. Cytokines are also involved in wound healing and post-traumatic pain. Application of cytokines for the improvement of surgical wound healing has been reported. Anesthesia-related immune response adjustment might reduce perioperative morbidity because it reduces proinflammatory cytokine expression; however, the overall effects of anesthetics on postoperative immune-inflammatory responses needs to be further investigated.
Collapse
Affiliation(s)
- Chung-Hsi Hsing
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan; Department of Anesthesiology, Taipei Medical University, Taipei, Taiwan.
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
32
|
Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol 2014; 14:783-95. [PMID: 25421700 DOI: 10.1038/nri3766] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interleukin-20 (IL-20) subfamily of cytokines comprises IL-19, IL-20, IL-22, IL-24 and IL-26. These cytokines are all members of the larger IL-10 family, but have been grouped together to form the IL-20 subfamily based on their usage of common receptor subunits and similarities in their target-cell profiles and biological functions. Members of the IL-20 subfamily facilitate the communication between leukocytes and epithelial cells, thereby enhancing innate defence mechanisms and tissue repair processes at epithelial surfaces. In this Review, we describe the cellular sources and targets of the IL-20 subfamily cytokines, and we detail how their expression is regulated. Much of our understanding of the unique biology of this group of cytokines is still based on IL-22, which is the most studied member of the IL-20 subfamily. Nevertheless, we attempt a broader discussion of the emerging functions of IL-20 subfamily cytokines in host defence, inflammatory diseases, cancer and metabolism.
Collapse
Affiliation(s)
- Sascha Rutz
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Xiaoting Wang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
33
|
Cantó E, Garcia Planella E, Zamora-Atenza C, Nieto JC, Gordillo J, Ortiz MA, Metón I, Serrano E, Vegas E, García-Bosch O, Juárez C, Vidal S. Interleukin-19 impairment in active Crohn's disease patients. PLoS One 2014; 9:e93910. [PMID: 24718601 PMCID: PMC3981722 DOI: 10.1371/journal.pone.0093910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/09/2014] [Indexed: 11/18/2022] Open
Abstract
The exact function of interleukin-19 (IL-19) on immune response is poorly understood. In mice, IL-19 up-regulates TNFα and IL-6 expression and its deficiency increases susceptibility to DSS-induced colitis. In humans, IL-19 favors a Th2 response and is elevated in several diseases. We here investigate the expression and effects of IL-19 on cells from active Crohn's disease (CD) patient. Twenty-three active CD patients and 20 healthy controls (HC) were included. mRNA and protein IL-19 levels were analyzed in monocytes. IL-19 effects were determined in vitro on the T cell phenotype and in the production of cytokines by immune cells. We observed that unstimulated and TLR-activated monocytes expressed significantly lower IL-19 mRNA in active CD patients than in HC (logFC = -1.97 unstimulated; -1.88 with Pam3CSK4; and -1.91 with FSL-1; p<0.001). These results were confirmed at protein level. Exogenous IL-19 had an anti-inflammatory effect on HC but not on CD patients. IL-19 decreased TNFα production in PBMC (850.7 ± 75.29 pg/ml vs 2626.0 ± 350 pg/ml; p<0.01) and increased CTLA4 expression (22.04 ± 1.55% vs 13.98 ± 2.05%; p<0.05) and IL-4 production (32.5 ± 8.9 pg/ml vs 13.5 ± 2.9 pg/ml; p<0.05) in T cells from HC. IL-10 regulated IL-19 production in both active CD patients and HC. We observed that three of the miRNAs that can modulate IL-19 mRNA expression, were up-regulated in monocytes from active CD patients. These results suggested that IL-19 had an anti-inflammatory role in this study. Defects in IL-19 expression and the lack of response to this cytokine could contribute to inflammatory mechanisms in active CD patients.
Collapse
Affiliation(s)
- Elisabet Cantó
- Department of Immunology Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Esther Garcia Planella
- Department of Digestive Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carlos Zamora-Atenza
- Department of Immunology Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Juan Camilo Nieto
- Department of Immunology Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Jordi Gordillo
- Department of Digestive Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ma Angels Ortiz
- Department of Immunology Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Isidoro Metón
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elena Serrano
- Bioinformatics Platform, PSCT Platforms, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Esteban Vegas
- Department of Statistical, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Orlando García-Bosch
- Department of Digestive, Hospital de Sant Joan Despí Moisès Broggi, Sant Joan Despí, Barcelona, Spain
| | - Cándido Juárez
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sílvia Vidal
- Department of Immunology Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|